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Abstract 

Objective. Background noise experienced during extracellular neural recording limits the 

number of spikes that can be reliably detected, which ultimately limits the performance of 

next-generation neuroscientific work. In this study, we aim to utilize stochastic resonance 

(SR), a technique that can help identify weak signals in noisy environments, to enhance spike 

detectability. Approach. Previously, an SR-based pre-emphasis algorithm was proposed, 

where a particle inside a 1D potential well is exerted by a force defined by the extracellular 

recording, and the output is obtained as the displacement of the particle. In this study, we 

investigate how the well shape and damping status impact the output Signal-to-Noise Ratio 

(SNR). We compare the overdamped and underdamped solutions of shallow- and steep-wall 

monostable wells and bistable wells in terms of SNR improvement using two synthetic 

datasets. Then, we assess the spike detection performance when thresholding is applied on the 

output of the well shape-damping status configuration giving the best SNR enhancement. 

Main results. The SNR depends on the well-shape and damping-status type as well as the 

input noise level. The underdamped solution of the shallow-wall monostable well can yield to 

more than four orders of magnitude greater SNR improvement compared to other 

configurations for low noise intensities. Using this configuration also results in better spike 

detection sensitivity and positive predictivity than the state-of-the-art spike detection 

algorithms for a public synthetic dataset. For larger noise intensities, the overdamped solution 

of the steep-wall monostable well provides better spike enhancement than the others. 

Significance. The dependence of SNR improvement on the input signal noise level can be 

used to design a detector with multiple outputs, each more sensitive to a certain distance from 

the electrode. Such a detector can potentially enhance the performance of a successive spike 

sorting stage. 
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1. Stochastic Resonance for Pre-emphasis of Neural 

Spikes 

Neural circuits in the brain represent and convey 

information in the form of electrical action potentials, namely 

neural spikes. By obtaining and analyzing these spikes, it is 

possible to explore the connectivity and computation in the 

brain. 

The first step to capture and analyze neural spikes is to 

record neural activity by placing electrodes in extracellular 

tissue near the brain. An extracellular neural recording is first 

electronically amplified and filtered in hardware. The signal is 

then digitized to perform successive signal processing steps of 

(i) pre-emphasis to suppress the noise and enhance the spikes, 

(ii) detection to identify the spikes, and (iii) sorting to match 

the spikes with the neurons at the recording site. 

Thanks to low-noise electronics design techniques and 

advanced signal processing methods, it is possible to suppress 

the interference and obtain high signal-to-noise ratio (SNR) 

spikes leading to improved detection and sorting performance. 

However, currently the  number of neurons that can be 

monitored by a single electrode (five to ten [1, 2]) is 

significantly smaller than the theoretical number of ~200 that 

corresponds to the number of neurons inside a spherical region 

centered at the electrode and having a radius of ~140 𝜇𝑚 [3]. 

One of the reasons for the small number of sortable spikes is 

that, spikes originated from distant neurons can go unnoticed 

due to background noise. Accordingly, these spikes are lost 

even at the detection step. 

Potentially, the number of spikes that can be detected in an 

extracellular recording can be increased by improving the 

SNR. Accordingly, several pre-emphasis methods have been 

proposed over the past decade [4, 5, 6, 7, 8]. Recently in a pre-

emphasis method that facilitates stochastic resonance (SR), it 

was shown that background noise could indeed help 

enhancing the spikes [9]. This counterintuitive result can be 

explained by considering a system consisting of a particle 

inside a 2D monostable well (Figure 1(a)). Here, the well can 

be described as a nonlinear function of the x-coordinate. A 

force applied on the particle along the x-axis causes the 

particle to move inside the well. The input to the system (i.e., 

a neural recording) is introduced as a force exerted on the 

particle and the output of the system (i.e., pre-emphasized 

neural recording) is the resultant displacement of the particle 

along the x-axis. In this system, a noise-free input, such as a 

noise-free neural spike, exerted onto the particle will move the 

particle. Compared to a noise-free signal, a noisy signal could 

push the particle more, and thus improving the spike 

amplitude at the output. Here, the intensity of the noise is 

important; a large noise intensity will swamp the spike, 

whereas a small noise intensity will not have much impact on 

the particle displacement. This non-linear system is essentially 

a non-linear filter. In [9], the output of such a non-linear filter 

is investigated when introduced with noisy extracellular 

recordings. By applying thresholding on the noise-enhanced 

recordings, detection sensitivities comparable to the state-of-

the-art template-based spike detection methods were 

demonstrated in [9]. 

In this study, we investigate the pre-emphasis performances 

of several SR systems with different characteristics. We are 

motivated by, first, the detection performance of the SR-based 

spike enhancement. Second, the use of background noise as a 

facilitator of SNR improvement, which can potentially enable 

SNR enhancement of spikes from more distal neurons. Lastly, 

unlike template-based spike detection, SR-based pre-

emphasis does not need apriori spike waveform information. 

Therefore, spike detection performance is not dependent on 

the activity level or type of neurons. Our goal is to develop 

insights on the parameters of an SR-based pre-emphasis 

system in the context of spike enhancement. 

Below we describe our methods and dataset in Section 2. 

We present our results in Section 3 followed by a discussion 

in Section 4. We conclude the paper in Section 5. 

2. Methods and Dataset 

2.1. Stochastic-Resonance-based pre-emphasis 

 

Figure 1. Stochastic resonance (SR) is facilitated to enhance neural 

spikes. (a) In the SR pre-emphasis approach, neural recording is applied 

on a particle inside a monostable well. The resultant displacement of the 

particle is an SNR-enhanced version of the input signal. (b) Noisy 

signal, 𝑠𝑛(𝑡), and the well slope at the particle position −
𝑑𝑈0(𝑥)

𝑑𝑥
 are two 

forces acting on the particle. 𝑥(𝑡) denotes the output. 
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Stochastic resonance (SR) is a phenomenon where additive 

noise is used to enable detectability of a weak signal [10, 11, 

12, 13]. In the context of pre-emphasis of extracellular 

recordings, in [9] SR has been leveraged by considering a 

particle in a potential well, 𝑈0(𝑥) (Figure 1(b)). In this system, 

the noisy input signal, 𝑠𝑛 , is applied as a force on the particle; 

and 𝑠𝑛(𝑡) = 𝑠(𝑡) + 𝑛(𝑡), where 𝑠(𝑡) is the noise-free input 

signal and the 𝑛(𝑡) is the noise. Another force acting on the 

particle is proportional to the well slope at the particle position 

and in the opposite direction of the slope. The output of the 

non-linear filter, 𝑥(𝑡), is obtained as the projection of the 

particle on the x-axis as the particle moves inside the well. For 

small-amplitude inputs, the particle tends to remain near its 

stable point. Larger inputs on the other hand, cause the particle 

to make larger swings. When using the described non-linear 

filter to emphasize neural spikes, 𝑠𝑛(𝑡) is the recorded neural 

signal that is inherently noisy. The neural recording, 𝑠𝑛(𝑡), is 

fed to the non-linear filter as the input. The emphasized neural 

recording is the output of the non-linear filter, namely 𝑥(𝑡). 

In this system, depending on the signal amplitude, additive 

noise will affect the output differently. For low-amplitude 

inputs such as spike-free regions of an extracellular recording, 

random variations in the signal due to noise will not 

persistently exert a force on the particle to push it away from 

the stable point, thereby limiting the output amplitude. In other 

words, the existence of a stable point will facilitate noise 

suppression. On the other hand, when the particle moves 

towards a wall due to a large-amplitude signal such as a spike, 

additive noise, 𝑛(𝑡), may increase the input, 𝑠𝑛(𝑡), assisting 

the particle to move away from the stable point and thus 

enhancing the output amplitude. Importantly, there is an 

optimum noise intensity: Small noise intensities would not 

have much impact on the particle movement, whereas large 

noise intensities would cause the particle make large but 

random movements in the well. 

The expression describing the input-output relationship of 

the non-linear filter is governed by the generalized Langevin 

equation as [14]: 

     
𝑑2𝑥(𝑡)

𝑑𝑡2
+ 𝛾

𝑑𝑥(𝑡)

𝑑𝑡
= −

𝑑𝑈0(𝑥)

𝑑𝑥
+ 𝑠𝑛(𝑡),        (1) 

where 𝑥(𝑡) is the output of the filter and 𝛾 is damping factor. 

Based on equation (1), one of the parameters that may 

affect the output is the well shape, 𝑈0(𝑥). Specifically, the 

number of stable points and slope of the walls should affect 

the force exerted on the particle by the wall. For instance, as 

the steepness of the wall increases, the force −
𝑑𝑈0(𝑥)

𝑑𝑥
 would 

increase, and thus making it more difficult for the particle to 

rise along the wall. The number of stable points of the well is 

also expected to affect the output signal amplitude. 

Considering a particle in a bistable well, a noisy-spike input 

can be sufficiently large to move the particle across the 

unstable equilibrium point and thus carrying it from one stable 

point to the other. In that case, the x-position (i.e., the output) 

of the particle, will be affected by the distance between the 

stable points. 

In addition to the well shape, damping status is also 

expected to impact the output. On the left-hand side of 

equation (1), if 𝛾 is large, which corresponds to an 

overdamped case, the inertia term (the second-order time 

derivative) is negligible compared to the damping term (the 

first-order time derivative term). An underdamped case 

corresponds to a small 𝛾, where both inertia and damping 

terms are considered. The previous implementation of the SR-

based spike pre-emphasis method in [9] is an overdamped 

system. However, inertia can potentially be used to enhance 

the output SNR: The existing acceleration of a particle due to 

the large perturbation in the input signal (i.e., noisy spike) 

could be favorable to achieve larger displacement and thus 

output.  

It should be noted that, in the scenario where inertia is 

included, low perturbations in the input (i.e., noise-only 

portions of a neural recording) would also cause larger swings 

and therefore impairing the noise suppression performance. 

To potentially address the issue, the damping of the system 

could be dynamically controlled depending on the amplitude 

of the input signal. As such, while the particle would take 

advantage of its acceleration during large amplitude portions 

of the input, large damping during small amplitude portions 

would limit its movement. 

2.2. Well-shape and damping combinations 

Based on the discussion on well shape and damping status 

above, we investigate the responses of different well-shape 

and damping combinations (Figure 2). 

 

Figure 2. The well shapes investigated. (a) Shallow-slope monostable 

well potential. (b) Steep-slope monostable well potential. (c) Shallow-

slope bistable well potential. (d) Steep-slope bistable well potential. 
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Shallow-slope monostable (ShM) well (Figure 2(a)): The first 

monostable well we consider is the one investigated in the SR-

based neural spike improvement in [9]. Another motivation 

for investigating a monostable well is related to potentially 

achieving high sorting performance on the pre-emphasized 

spikes. The movement of a particle inside a monostable well 

is expected to be continuous, which would limit potential 

disruptions in the output spike waveform shapes. This well 

and its derivative for the dimension 𝑥 are described as: 

       𝑈𝑆ℎ𝑀(𝑥) = 𝑎𝑥2/2 + 𝑏𝑥4/4.     𝑎, 𝑏 > 0                   (2) 

 𝑈𝑆ℎ𝑀
′ (𝑥) = 𝑎𝑥 + 𝑏𝑥3.                𝑎, 𝑏 > 0                  (3) 

It should be noted that, it is possible to define a shallow-

slope monostable well using alternative expressions. The 

expression in equation (2) is selected for its convenience in 

describing the bistable version of the shallow-slope well by 

simply using negative values for 𝑎. To compare with the 

previous implementation in [9], we investigate this well first 

for the overdamped case (ShM-OD). Second, we investigate 

the well for an underdamped response (ShM-UD). Following 

the damping coefficient discussion in Section 2.1, we adjust 

the damping dynamically depending on the input such that it 

is reduced when the input is large. Specifically, for 𝑠𝑛 <
𝑠𝑛,𝑝𝑝

𝑑𝑡ℎ
 

we set the 𝛾 = 120. For 𝑠𝑛 ≥
𝑠𝑛,𝑝𝑝

𝑑𝑡ℎ
, we set the 𝛾 = 0.12. Here 

𝑠𝑛,𝑝𝑝 is the peak-to-peak value of the entire recording and 

𝑑𝑡ℎ = 10 is the damping threshold. 

Steep-slope monostable (StM) well (Figure 2(b)): 

Following the discussion on equation (1) regarding the 

potential effect of wall slope on particle displacement, we also 

investigate the response in a monostable well having steeper 

slopes around the stable point, namely Wood-Saxon (WS) 

well [15]. 

To compare with the shallow-slope overdamped results in 

[9], we consider an over damped case for the WS well (StM-

OD). The WS well potential and its derivative are given as: 

    𝑈𝑆𝑡𝑀(𝑥) =
𝑉

1+exp((|𝑥|−𝑅)/𝑎)
.     𝑉 > 0, 𝑅 > 0, 𝑎 > 0   (4) 

            𝑈𝑆𝑡𝑀
′ (𝑥) =  −

𝑉

𝑎
𝑠𝑔𝑛(𝑥)𝑒𝑥𝑝 (

|𝑥|−𝑅

𝑎
) (1 +

                            𝑒𝑥𝑝 (
|𝑥|−𝑅

𝑎
))

−2

.     𝑉 > 0, 𝑅 > 0, 𝑎 > 0       (5) 

In (5), 𝑉, 𝑅, and 𝑎 respectively control the depth, width, 

and wall-slope of the well potential. The SNR improvement 

StM wall is expected to work as follows: A steep slope around 

the stable point would hamper the particle movement during 

small-amplitude noise-only portions of the neural recording, 

which would translate into strong noise suppression. On the 

other hand, a noisy neural spike would allow the particle to 

move up along the wall. A decreasing slope along the wall 

would translate into greater particle displacement, and thus 

enhanced spike at the output.  

Shallow-slope bistable (ShB) well (Figure 2(c)): In 

addition to the monostable wells, we investigate the response 

to a shallow-slope bistable well, the classic well used to 

describe the SR for periodic signals [16]. A shallow-slope 

bistable well potential and its derivative are given as: 

       𝑈𝑆ℎ𝐵(𝑥) = 𝑎𝑥2/2 + 𝑏𝑥4/4.     𝑎 < 0, 𝑏 > 0           (6) 

𝑈𝑆ℎ𝐵
′ (𝑥) =  𝑎𝑥 + 𝑏𝑥3.                𝑎 < 0 𝑏 > 0           (7) 

For ShB well to enhance the neural spikes, it is anticipated 

that a noisy spike would be able to switch the particle from 

one stable point to the other. On the other hand, a noise-only 

section would move the particle only around a stable point. 

First, we investigate an overdamped response of the 

shallow-slope bistable well (ShB-OD). Second, to ease 

switching between the stable points during spike events and 

impede the transition during noise-only sections, we 

implement a dynamic damping (ShB-UD) similar to the 

implementation explained in ShM-UD. 

Steep-slope bistable (StB) well (Figure 2(d)): We also 

investigate the response in a bistable well having both steep 

slopes around the stable points. 

To compare with the overdamped response of the shallow-

slope bistable well, we consider an overdamped case for the 

steep-slope bistable well (StB-OD). The steep-slope bistable 

well potential is obtained as the sum of two StM wells 

described by equation (4). The two StM wells are separated by 

a variable. The StB well and its derivative are given as: 

𝑈𝑆𝑡𝐵(𝑥) = 𝑈𝑆𝑡𝑀(𝑥 − 𝑠𝑒𝑝) + 𝑈𝑆𝑡𝑀(𝑥 + 𝑠𝑒𝑝).     

 𝑉 > 0, 𝑅 > 0, 𝑎 > 0, 𝑠𝑒𝑝 > 0             (8) 

𝑈𝑆𝑡𝐵
′ (𝑥) =  𝑈′

𝑆𝑡𝑀(𝑥 − 𝑠𝑒𝑝) + 𝑈′
𝑆𝑡𝑀(𝑥 + 𝑠𝑒𝑝).      

𝑉 > 0, 𝑅 > 0, 𝑎 > 0, 𝑠𝑒𝑝 > 0             (9) 

In (9), 𝑉, 𝑅, 𝑎, 𝑠𝑒𝑝 respectively control the depth, width, 

wall-slope, and stable point separation of the steep-slope 

bistable well potential. It is anticipated that, a StB would 

facilitate the noise suppression mechanism of steep wall and 

spike enhancement mechanism of a bistable well. 

2.3. Numerical solution of the SR system 

The solution to equation (1) can be approximated by an 

iterative numerical method, namely the fourth-order Runge-

Kutta (RK) method [14, 17]: 

   𝑥[𝑛 + 1] = 𝑥[𝑛] + (𝑝1 + 2𝑝2 + 2𝑝3 + 𝑝4)ℎ/6,          (10) 

        𝑦[𝑛 + 1] = 𝑦[𝑛] + (𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4)ℎ/6,         (11) 

where 𝑥[𝑛] is the nth sample of 𝑥(𝑡) and 𝑦[𝑛] is the nth sample 

of  
𝑑𝑥(𝑡)

𝑑𝑡
. In equations (10) and (11), 𝑘1 through 𝑘4 and 𝑝1 

through 𝑝4 are given as: 

𝑘1 = [−𝑈0
′ (𝑥[𝑛]) − 𝛾𝑝1 + 𝑠𝑛[𝑛]] 

  (12) 

𝑘2 = [−𝑈0
′

(𝑥[𝑛] +
𝑝

1
ℎ

2
) − 𝛾𝑝2 + 𝑠𝑛[𝑛]] 

𝑘3 = [−𝑈0
′

(𝑥[𝑛] +
𝑝

2
ℎ

2
) − 𝛾𝑝3 + 𝑠𝑛[𝑛 + 1]] 

𝑘4 = [−𝑈0
′

(𝑥[𝑛] + 𝑝
3
ℎ) − 𝛾𝑝4 + 𝑠𝑛[𝑛 + 1]]. 
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Figure 3. Flow diagram of the parameter optimization for each well-solver configurations. First and second parametric search of the parameters are given 

with blue and red, respectively. 
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𝑝1 = 𝑦[𝑛] 

(13) 
𝑝2 = 𝑦[𝑛] +

𝑘1ℎ

2
 

𝑝3 = 𝑦[𝑛] +
𝑘2ℎ

2
 

𝑝4 = 𝑦[𝑛] + 𝑘3ℎ. 

 

In (12) and (13), ℎ is the interval size of the RK 

approximation; and 𝑠𝑛[𝑛] and 𝑠𝑛[𝑛 + 1] are respectively the 

nth and n+1st samples of 𝑠𝑛(𝑡). For the overdamped solution 

cases, only the equations (10) and (12) are used after the 

modifications of 𝑝𝑖  in equation (10) are changed to 𝑘𝑖, where 

𝑖 = 1,2,3 and 𝛾 = 0 in equation (12).  
To optimize performance, we perform a parametric search 

for the well and solver parameters (i.e., 

𝑎, 𝑏, 𝑉, 𝑅, 𝑠𝑒𝑝, ℎ, 𝛾, 𝑑𝑡ℎ) towards maximizing the output SNR 

defined as: 

 

  𝑆𝑁𝑅 = 20𝑙𝑜𝑔 (
𝐴𝑝𝑝  𝑜𝑓 𝑠𝑝𝑖𝑘𝑒

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎 𝑛𝑜𝑖𝑠𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡
),    (14) 

where 𝐴𝑝𝑝 is the average peak-to-peak amplitude of 20 

arbitrarily selected spikes in the employed dataset. We 

calculate the standard deviation of noise from 20 noise-only 

segments with a total duration of 2 s.  

2.4. Well-solver parameter selection 

The selection of the parameters is performed through a series 

of parametric search maximizing ∆𝑆𝑁𝑅. The parameters of 

different well-solver configurations are summarized in Table 

1. The parameter optimization flow is carried out over three 

steps consisting of (i) initialization, (ii) parametric search of 

the parameters with an order of solver/well/damping 

parameters, and (iii) parametric search of the parameters with 

the reverse order of damping/well/solver parameters. 

At the initialization step, the parameter initialization is 

performed following the values in the literature as follows: ℎ 

= 5*10-5 (for all models) [18], 𝑎 = 1000 (for ShM)  or -1000 

(for ShB) [19], 𝑏 = 1000 (for ShM and ShB) [19], 𝛾 = 1 (for 

ShM and ShB) [20, 21], 𝑑𝑡ℎ= 2 (for ShM and ShB), 𝑎 = 0.4 

(for StM, StB), 𝑉 = 3 (for StM and StB), 𝑅 = 0.5 (for StM and 

StB) [22],  𝑠𝑒𝑝 = 1 (for StB). The orders of parameter 

optimization in the two steps following the initialization step 

are presented in Figure 3. Optimization of each parameter 

involves first identifying the search limits, then sweeping 

within the limits, and lastly selecting the value providing the 

highest ∆𝑆𝑁𝑅. Search ranges of all parameters are determined 

as the ranges that the output does not diverge. To illustrate the 

divergence of the output, example outputs when the ℎ value is 

inside and outside the search range are shown in Figure 4.  

2.5. Thresholding for spike detection 

Following the SR-based pre-emphasis implemented on 

each of the aforementioned well-shape and damping status 

configurations, we use thresholding to determine the spikes. 

When comparing different configuration models, threshold 

levels are swept to obtain receiver operating characteristic 

(ROC) curve and area under curve (AUC) values. For a deeper 

investigation on the detection performance of the ShM-UD for 

the recordings in the 1st dataset, threshold levels giving the 

minimum false negative (FN) and false positive (FP) values 

are selected. Sensitivity (Se) is defined as the ratio between 

number of spikes correctly detected, namely true positive 

(TP), and the total number of spikes in the recording. Positive 

predictivity (Pp) is defined as the ratio between true positives 

and the total number of detected spikes: 

  𝑆𝑒 (%) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
∗ 100                          (15)  

  𝑃𝑝 (%) =
𝑇𝑃

𝑇𝑃+𝐹𝑃
∗ 100                          (16)  

We used FN, FP, Se, and Pp as metrics of performance 

assessment and comparison. 

2.6. Datasets 

We use two datasets to evaluate and compare the different 

well-shape and damping-status configurations used in the SR-

based pre-emphasis method. The first dataset is a publicly 

available synthetic extracellular dataset [4]. In the literature, 

this dataset is widely used as a benchmark to evaluate spike 

detection algorithms [23, 24, 25, 26, 27]. The dataset consists 

of 16 recordings grouped as Easy1, Easy2, Difficult1, and 

Difficult2. Recordings, each 60 s long and sampled at a rate of 

24 kHz, use actual in-vivo spike waveforms from three 

different neurons. Each neuron has an average firing rate of 20 

Hz. Background noise in the recordings is modeled after the 

activity of far neurons by superimposing arbitrarily selected 

spikes from the database at random times and amplitudes. The 

 

Figure 4. The output when ℎ parameter is (a) inside and (b) outside the 

search range. Note the diverging output in (b). 

Table 1. The parameters of well-solver configurations 

Model 

type 

Solver 

parameter 

Well 

parameters 

Damping 

parameters 

ShM-OD ℎ 𝑎, 𝑏 - 

ShM-UD ℎ 𝑎, 𝑏 𝛾, 𝑑𝑡ℎ 

ShB-OD ℎ 𝑎, 𝑏 - 

ShB-UD ℎ 𝑎, 𝑏 𝛾, 𝑑𝑡ℎ 

StM-OD ℎ 𝑉, 𝑅, 𝑎 - 

StB-OD ℎ 𝑉, 𝑅, 𝑎, 𝑠𝑒𝑝 - 
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noise levels in the recording name (e.g., _noise005, _noise02) 

corresponds to the noise standard deviation calculated as the 

ratio of spike amplitude to the noise standard deviation. We 

use the largest SNR recording in this dataset, Easy1_noise005 

(SNR=15.25 dB), to compare the different configurations of 

well potential and damping conditions. Then, we use the entire 

dataset for a comparison against the state-of-the-art spike-

detection methods. True spike locations provided with the 

dataset are used to assess the detection performance as 

described in Section 2.4. 

The second dataset consists of 20 recordings obtained by 

scaling the Easy1_noise005 recording of the first dataset and 

adding gaussian white noise (GWN) at different intensities 

such that each recording represents a hypothetical condition, 

where only neurons at a specific distance from the electrode, 

𝑟, are firing. We use this dataset to assess the performance of 

the algorithms in detecting the spikes at a particular distance. 

We consider the spikes in the original recording, 

Easy1_noise005, as being generated by neurons adjacent to 

the electrode (i.e., 𝑟 = 0). To estimate the spike amplitudes 

corresponding to 𝑟 > 0, we use the following exponential 

model presented in [28]: 

     𝐴𝑑𝑖𝑠𝑡 = 𝐴 ∗ 𝑒−𝑟/𝑟0 ,                        (17) 

where 𝐴 is the spike amplitude of neurons adjacent to the 

electrode (i.e., 𝑟 = 0), 𝐴𝑑𝑖𝑠𝑡 is the scaled amplitude of the 

spike based on the distance,  and 𝑟0 is the distance that the 

amplitude drops to 1/𝑒 of 𝐴. In this study, the value of 𝑟0 is 

selected as  𝑟0  =  28 𝜇𝑚, which is the experimentally-

measured value in different neural recording environments 

[28]. It should be noted that although the spike amplitude in 

an extracellular recording decays with 𝑟; the background noise 

at the recording site, remains constant for all spikes [29]. To 

identify the background noise level, we use the following 

measurement-based observation in [3] and [28]: Spikes of 

neurons that are ~140 µm away from the electrode are smaller 

than the noise floor and thus cannot be detected. Therefore, we 

set the background noise peak-to-peak value to be equal to the 

average spike amplitude, 𝐴𝑑𝑖𝑠𝑡, originating from neurons with 

𝑟 = 140 𝜇𝑚. We calculate the average 𝐴𝑑𝑖𝑠𝑡 using arbitrarily-

selected 20 spikes. In Figure 5, a portion of the recording 

corresponding to 𝑟 = 140 𝜇𝑚 is shown. We initially create 

synthetic recordings for four 𝑟 values, 𝑟 =

[0, 25, 55, 105] 𝜇𝑚. Here 𝑟 = [0, 25] 𝜇𝑚 fall inside the 

region (𝑟 < 50 𝜇𝑚), where spike amplitudes of neurons are 

sufficiently large (i.e., >60 𝜇𝑉) and thus can be detected [3]. 

The remaining 16 recordings are created by adding GWN with 

standard deviations calculated as √2 ∗ 𝐷, where 𝐷 =

0.0001, 0.001, 0.01, 0.1. For 𝑟 = [25, 55, 105] 𝜇𝑚, sample 

signals for noise density of 0.0001 are shown in Figure 6. 

3. Results 

We conduct the analysis over two steps. First, we compare 

configurations of well-shape and damping-status in terms of 

their SNR improvements. Second, we compare the spike-

detection performance of the ShM-U with the state-of-the-art 

spike detection algorithms. 

 

Figure 5. Sample portion of the signal (red) and signal + noise (blue) for 

the maximum distance of 140 µm. Spike and noise amplitudes are equal 

to each other in a complete recording. 

 

Figure 6. Sample portions of 𝑠(𝑡) (red) and 𝑠𝑛(𝑡) (blue) for (a) 𝑟 =  0 µ𝑚, (b) 𝑟 =  55 µ𝑚, and (c) 𝑟 =  105 µ𝑚. The waveforms in (b) and (c) are obtained 

by adding a noise density of 0.0001 to scaled versions of the waveform in (a) based on the equation (17). 
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We conduct the comparison using (1) the Easy1_noise005 

of the 1st dataset (Figure 7) without any noise addition and (2) 

the 2nd dataset (Figures 8 and 9). For each input having an SNR 

of 𝑆𝑁𝑅𝑖𝑛, the configurations of well-shape and damping 

condition are optimized individually based on the procedure 

explained in Section 2.4, to obtain the largest SNR at the 

output signal, 𝑆𝑁𝑅𝑜𝑢𝑡. For each combination, the SNR 

improvement is calculated as ∆𝑆𝑁𝑅 = 𝑆𝑁𝑅𝑜𝑢𝑡 − 𝑆𝑁𝑅𝑖𝑛, 

where 𝑆𝑁𝑅𝑖𝑛 and 𝑆𝑁𝑅𝑜𝑢𝑡 are calculated using 20 arbitrarily-

selected spikes in the input and output signals, respectively. 

For a sample spike in Easy1_noise005 shown in Figure 

7(a), the output waveforms of the different combinations are 

presented in Figure 7(b)-(g). ∆𝑆𝑁𝑅 for all configurations for 

Easy1_noise005 is presented in Figure 7(h). The SNR 

improvement analysis on the entire 2nd dataset, where GWN is 

added on the Easy1_noise005 at different intensities, is 

performed on 100 recordings per noise intensity: Each of the 

100 recordings is obtained by adding a unique GWN dataset. 

Accordingly, for each noise intensity, 100 different ∆𝑆𝑁𝑅 is 

calculated. The statistics of SNR improvement are presented 

as box plots in Figure 8. To compare the different model 

configurations, the Friedman non-parametric statistical test is 

applied on the ∆𝑆𝑁𝑅 values in Figure 8. This comparison is 

followed by the Wilcoxon signed rank post-hoc testing for 

pairwise comparison of the configurations. Lastly, false-

discovery-rate-corrected p-values, namely q-values, are 

obtained following [30]. For statistical significance analysis, 

q-values are used. For each of the 20 recordings of the 2nd 

dataset, 15 pairwise statistical significance comparisons are 

made between the six configuration models. Among the 300 

pairwise comparisons, all configurations were statistically 

significantly different (𝑞 < 0.001) except the 32 

configuration pairs presented in Table 2. 

 

Figure 7. A spike portion of the input signal when enhanced with the SR-based pre-emphasis algorithm using the tested configurations of spike-shape and 

damping status. (a) The input spike. (b) ShM-OD output (c) ShM-UD output. (d) ShB-OD output. (e) ShB-UD output. (f) StM-OD output. (g) StB-OD 

output. (h) Average 𝛥𝑆𝑁𝑅 = 𝑆𝑁𝑅𝑜𝑢𝑡 − 𝑆𝑁𝑅𝑖𝑛 values calculated using 20 spikes for all configurations. 

 

Figure 8. Statistics of SNR improvements of each well-solver 

configurations with 100 realizations of GWN. 
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The median ∆𝑆𝑁𝑅 from each configuration model for all 

recordings is presented in Figure 9. The results in Figures 7, 

8, and 9 reveal that, the ShM-OD combination, which is the 

well shape-damping status configuration presented 

previously in [9], yields to the smallest ∆𝑆𝑁𝑅 for 

Easy1_noise005 and smallest median ∆𝑆𝑁𝑅 for the 2nd 

dataset.  
A comparison on the model configurations is performed 

also in regards of the true detection vs. false alarm rates, as 

presented in Figure 10. True detection rate (TDR) is defined 

 

Figure 9. The median ∆𝑆𝑁𝑅 obtained from the outputs of each configuration. 

 

Figure 10. ROC curves for all well-solver configurations. The inset is 

the magnified portion of the ROC curves to show difference between 

ShM-OD, ShM-UD, and ShB-OD. 

Table 2. The configuration pairs that are not statistically significantly 

different 

𝒓 + Noise Density Configuration pair 𝒒 value 

0 𝜇𝑚 + 0.001 ShB-UD, StB-OD 0.1174 

0 𝜇𝑚 + 0.01 ShM-UD, ShB-OD 0.1244 

0 𝜇𝑚 + 0.01 StM-OD, StB-OD 0.1327 

0 𝜇𝑚 + 0.1 ShM-UD, ShB-UD 0.0046 

25 𝜇𝑚 + 0.001 ShM-UD, StM-OD 0.0082 

25 𝜇𝑚 + 0.001 ShM-UD, StB-OD 0.0824 

25 𝜇𝑚 + 0.001 StM-OD, StB-OD 0.0183 

25 𝜇𝑚 + 0.01 ShB-OD, ShB-UD 0.0036 

25 𝜇𝑚 + 0.01 StM-OD, StB-OD 0.0028 

25 𝜇𝑚 + 0.1 ShM-UD, ShB-OD 0.0012 

25 𝜇𝑚 + 0.1 StM-OD, StB-OD 0.0032 

55 𝜇𝑚 + 0.0001 ShM-OD, ShB-OD 0.0089 

55 𝜇𝑚 + 0.001 ShM-UD, ShB-OD 0.268 

55 𝜇𝑚 + 0.001 ShM-UD, ShB-UD 0.268 

55 𝜇𝑚 + 0.001 ShB-OD, ShB-UD 0.268 

55 𝜇𝑚 + 0.001 StM-OD, StB-OD 0.268 

55 𝜇𝑚 + 0.01 ShM-UD, ShB-OD 0.0731 

55 𝜇𝑚 + 0.01 StM-OD, StB-OD 0.1332 

55 𝜇𝑚 + 0.1 ShM-OD, ShB-OD 0.1339 

55 𝜇𝑚 + 0.1 StM-OD, StB-OD 0.1339 

105 𝜇𝑚 + 0.0001 ShM-OD, ShB-OD 0.1318 

105 𝜇𝑚 + 0.0001 StM-OD, StB-OD 0.0796 

105 𝜇𝑚 + 0.001 ShM-OD, ShB-OD 0.1388 

105 𝜇𝑚 + 0.001 ShM-UD, StB-OD 0.0776 

105 𝜇𝑚 + 0.001 StM-OD, StB-OD 0.0871 

105 𝜇𝑚 + 0.01 ShM-OD, ShM-UD 0.0478 

105 𝜇𝑚 + 0.01 ShB-OD, StM-OD 0.1654 

105 𝜇𝑚 + 0.01 ShB-OD, StB-OD 0.1108 

105 𝜇𝑚 + 0.01 StM-OD, StB-OD 0.2349 

105 𝜇𝑚 + 0.1 ShM-OD, ShB-OD 0.1121 

105 𝜇𝑚 + 0.1 ShM-UD, StB-OD 0.0149 

105 𝜇𝑚 + 0.1 StM-OD, StB-OD 0.0335 
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as the ratio between TPs and the total number of spikes in a 

recording.  False alarm rate (FAR) is defined as the number of 

FPs per second.  

  𝑇𝑃𝑅 (%) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
∗ 100                          (18)  

  𝐹𝐴𝑅 =
𝐹𝑃

𝑟𝑒𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 (𝑠)
.                          (19)  

 

Here, the input signal used is Easy1_noise005. The 

threshold levels are swept between 0.1σ and 10σ where σ is 

the standard deviation of the noise segment. The models using 

shallow-wall monostable well achieve better AUC than the 

others. Specifically, AUC of ShM-UD and ShM-OD are 

99.87% and 99.86%, respectively. The third best AUC is 

obtained from ShB-OD configuration with a value of 97.4%. 

The AUC of StM-OD, ShB-UD, and StB-OD are respectively 

84.4%, 80.64%, and 65.9%. 

Based on SNR improvement and AUC obtained from the 

true detection vs. false alarm rates for the recording 

Easy1_noise005, the ShM-UD outperforms better than the 

other configurations. Accordingly, the spike detection 

performance of ShM-UD is assessed using all recordings in 

the first dataset. The results along with a comparison with the 

state-of-the-art spike detector algorithms are presented in 

Table 3. The results are discussed in the following section.  

4. Discussion 

The comparison of the two monostable wells for an 

overdamped solution using Easy1_noise005 (Figure 7), shows 

that ∆𝑆𝑁𝑅𝑆𝑡𝑀−𝑂𝐷 = 16 𝑑𝐵, and ∆𝑆𝑁𝑅𝑆ℎ𝑀−𝑂𝐷 = 8 𝑑𝐵. 

For all recordings in the 2nd dataset, the overdamped 

solution of the StM well consistently performs better than the 

ShM well (Figures 8 and 9). This difference between the two 

configurations is statistically significant for all recordings 

(𝑞 < 0.001). The difference between the median ∆𝑆𝑁𝑅 of the 

two wells varies between 11.8 𝑑𝐵 (𝑟 = 105 𝜇𝑚 with noise 

intensity 0.001) and 6.94 dB (𝑟 = 55 𝜇𝑚 with noise intensity 

0). The significant improvement in the signal enhancement 

can be explained by how the wall slope changes with |𝑥|. In 

the shallow-slope and the steep-slope monostable wells, the 

slope respectively increases and decreases with |𝑥| (Figure 

2(c)). Compared to the ShM well, in the StM well; for a noise-

only input, the particle is exposed to a large | − 𝑑𝑈0(𝑥)

𝑑𝑥
|, 

limiting its movement to within small proximity of the stable 

point. On the other hand, when the particle is exerted an input 

sufficiently-large to make it move away from the stable point 

(e.g., noisy spike), the decreasing slope of the wall will 

facilitate the particle movement, thereby allowing it to reach a 

larger |x|. The opposite is true for the interaction of the particle 

with the ShM well. The small slope around the stable point 

results in a worse noise suppression than the StM case for 

noise-only input segments; whereas, the increasing slope with 

|x| limits the farthest point the particle can reach when the 

input is a noisy spike. 

The overdamped well responses of the Easy1_noise005 

(Figure 7) also show that the shallow-wall bistable well spike 

enhancement (∆𝑆𝑁𝑅 = 17.5 𝑑𝐵) is greater than the shallow-

wall monostable well (∆𝑆𝑁𝑅 = 8 𝑑𝐵). The ShB-OD performs 

better than ShM-OD, also for the recordings in the second 

dataset (Figure 9), except two recordings; 𝑟 = 55 𝜇𝑚, noise 

intensity = 0.0001 and 𝑟 = 105 𝜇𝑚, noise intensity = 0.001. 

Notably, for recordings, where median ∆𝑆𝑁𝑅 obtained from 

ShB-OD is more than 3 dB greater than ShM-OD (i.e., all 

noise intensities when 𝑟 = 0 𝜇𝑚 and 𝑟 = 25 𝜇𝑚; and noise 

intensities of 0.001, 0.01, 0.1 when 𝑟 = 55 𝜇𝑚), the 

comparison between ShB-OD and ShM-OD is statistically 

meaningful (𝑞 < 0.001). On the other hand, for the other 

Table 3. Detection performance of the ShM-UD SR system and the other state-of-the-art using the synthetic extracellular dataset in [4] 

 
# of 

Spikes 

This Work 

ShM-UD SR-system 

[24] 

Wave_clus, 

BOTM, SIC 

[25] 

PBOTM 

[26] 

Two side 

thresholding 

[4] 

BPF 

[27] 

MRTDE 

#FN #FP 
Se 

(%) 

Pp 

(%) 

# FN 

+ FP 

Se 

(%) 

# FN 

+ FP 

Se 

(%) 
#FN #FP #FN # FP 

Se 

(%) 

Pp 

(%) 

E
a

sy
1
 0.05 3514 0 0 100 100 11 99.7 68 98.1 17 9 17 711 93.75 100 

0.1 3522 0 0 100 100 4 99.9 58 98.4 26 32 2 57 93.28 100 

0.15 3477 0 0 100 100 8 99.8 63 98.2 61 114 145 14 95.50 100 

0.2 3474 1 2 99.97 99.94 9 99.7 84 97.6 170 212 714 10 95.54 99.07 

E
a

sy
2
 0.05 3410 0 0 100 100 2 99.9 58 98.3 34 5 0 0 92.86 100 

0.1 3520 0 0 100 100 6 99.8 47 98.7 27 2 0 2 93.60 100 
0.15 3411 0 0 100 100 4 99.9 52 98.5 55 12 10 1 93.33 98.00 

0.2 3526 2 2 99.94 99.94 6 99.8 78 97.8 259 157 376 5 90.60 99.07 

D
if

f1
 0.05 3383 0 0 100 100 2 99.9 58 98.3 30 0 1 63 93.07 100 

0.1 3448 0 0 100 100 18 99.5 57 98.3 34 4 0 10 96.08 100 

0.15 3472 1 0 99.97 100 9 99.7 61 98.2 68 21 8 6 95.83 100 

0.2 3414 4 5 99.88 99.85 20 99.4 92 97.3 175 169 184 2 96.15 100 

D
if

f2
 0.05 3364 0 0 100 100 8 99.8 53 98.4 31 2 0 1 94.44 100 

0.1 3462 0 0 100 100 5 99.9 38 98.9 21 2 0 5 95.50 100 

0.15 3440 0 0 100 100 8 99.8 61 98.2 60 33 3 4 92.38 100 

0.2 3493 6 8 99.83 99.77 36 99.0 91 97.4 302 162 262 2 91.00 92.86 

BOTM = Bayes optimal template matching, SIC = Subtractive interference cancellation, PBOTM = Preselection Bayes optimal template matching,            
BPF = Band-pass filtering, MRTDE = Multiresolution time-dependent entropy 
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recordings (including the two recordings where ShB-OD is 

worse than ShM-OD), the differences between the 

configurations are not statistically significant (𝑞 values 

ranging between 0.0089 and 0.1388). 

The SNR improvement of the shallow-wall bistable well 

can be explained by the existence of a second stable point. If 

the input is sufficiently large to move the particle across the 

unstable equilibrium point between the two stable points, the 

output is rewarded by the well gravitating the particle towards 

the other stable point. During a noise-only input portion, the 

particle will remain trapped in one of the stable points. 

It should be noted that a shallow-wall bistable well does not 

necessarily perform better than a monostable well. In fact, for 

most recordings (15 out of 20) the ShB-OD performs worse 

than the StM-OD. Notably, for the two recordings, where the 

bistable well yields greater median Δ𝑆𝑁𝑅 (i.e., 𝑟 =
[0, 55] 𝜇𝑚 and noise intensity is 0), the Δ𝑆𝑁𝑅 differences are 

less than 1.6 dB. The differences between ShB-OD and StM-

OD are statistically significant (𝑞 < 0.001) for all recordings 

except for the recording 𝑟 = 105 𝜇𝑚 with a noise intensity of 

0.01 (𝑞 = 0.1654).  
These results from the bistable and monostable wells could 

potentially point to the collective importance of number of 

stable points and the wall steepness in the output SNR. In fact, 

a steep-wall bistable well outperforms the shallow-wall 

bistable well in all recordings for overdamped solutions. The 

difference between the median ∆𝑆𝑁𝑅 from the StB-OD and 

ShB-OD varies between 1.85 dB and 13.6 dB. The two 

configurations are statistically significantly different (𝑞 <

0.001) for all recordings except for the 𝑟 = 105 𝜇𝑚 and noise 

intensity of 0.01 (𝑞 = 0.1108). The StB-OD and StM-OD 

SNR improvements are very similar for all recordings. The 

difference between the median ∆𝑆𝑁𝑅 for these configurations 

is limited to 2.4 dB. Notably, for 𝑟 = [0, 25, 55] 𝜇𝑚 with 

noise intensities of 0 and 0.0001; the median ∆𝑆𝑁𝑅 of StB-

OD is greater than StM-OD. Remarkably, for those 

recordings, the two configurations are statistically 

significantly different (𝑞 < 0.001). For the recordings, where 

median ∆𝑆𝑁𝑅 from the two configurations differ only by less 

than 0.4 dB, the two configurations are not statistically 

significantly different (0.0028 < 𝑞 < 0.268). 

Another observation made on the Figures 7, 8, and 9 is that 

for the ShB well, the underdamped solutions perform better 

than the overdamped solutions for (i) 𝑟 = 0 𝜇𝑚 all noise 

intensities except 0.1; (ii) 𝑟 = 25 𝜇𝑚 noise intensities 0.001 

or smaller; (iii) 𝑟 = 55 𝜇𝑚 noise intensities 0.0001 or smaller; 

and (iv) 𝑟 = 105 𝜇𝑚 noise intensity of 0. For those 

recordings, the underdamped and overdamped solutions of the 

ShB well are statistically significantly different (𝑞 < 0.001). 

Only for the two of the remaining four recordings, where both 

models produce positive median ∆𝑆𝑁𝑅, the two models are 

statistically significantly different. Notably, while the 

overdamped solution of the shallow-wall bistable well 

performs worse than the StM-OD in 15 of the recordings, 

underdamped solution of the shallow-wall bistable well yields 

to either greater or comparable median Δ𝑆𝑁𝑅 compared to the 

StM-OD with median ∆𝑆𝑁𝑅 difference between the two 

configurations being limited to 1.6 dB. The configurations of 

StM-OD and ShB-UD are statistically significantly different 

(𝑞 < 0.001). 

The difference between the underdamped vs. overdamped 

performances of the ShM well is more significant than the ShB 

well: For all recordings, where both ShM-OD and ShM-UD 

produce positive median ∆𝑆𝑁𝑅, the ShM-UD performs better 

than the ShM-OD. The difference between the median ∆𝑆𝑁𝑅 

from these two configurations can be as large as 91.1 dB. 

These configurations are statistically significantly different 

for all recordings (𝑞 < 0.001). 

For Easy1_noise005, the configuration that produces 

significantly better Δ𝑆𝑁𝑅 than the others is the underdamped 

solution of the shallow wall monostable well. The differences 

between the ShM-UD and the others based on the performance 

on Easy1_noise005 are statistically significant (𝑞 < 0.001). 

In fact, ShM-UD can lead to up to five orders of magnitude 

better Δ𝑆𝑁𝑅 than the others. We believe, this performance can 

be attributed to the monostable system transitioning to a 

bistable system via adaptive adjustment of the damping 

coefficient: Notably, in a shallow-wall monostable well with 

a constant 𝛾 value, the position of the stable point is dependent 

to 𝛾 and the dc level of the input. If 𝛾 is small, a spike will 

move the particle away from the stable point of 0, but as soon 

as the spike ceases, the particle will move back to the stable 

point. However, a larger 𝛾 combined with a non-zero dc level 

may shift the stability point, which is illustrated in Figure 11. 

For an input with a negative dc level of -0.01, the stable point 

of the ShM moves in the negative x direction with increasing 

𝛾. Changing 𝛾 as the particle moves can result in two stable 

points. Small 𝛾 during a spike will allow the particle to move 

to an x-position away from its starting point. Increasing 𝛾 

when the input becomes small at the end of a spike will 

 

Figure 11. The stable point location change with increasing 𝛾 for an 

input with a negative dc level of -0.01. 
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prevent the particle from moving back to its original point and 

the particle will sway around its new x location. This acquired 

bistable behavior of the ShM-UD is visible in the output: 

Similar to the ShB-UD output, ShM-UD output also switches 

between two stable points as shown in Figure 12. Supporting 

our hypothesis that adaptive damping control of the ShM leads 

to the bistable behavior, an ShM-UD model without adaptive 

damping coefficient adjustment has only one stable point 

(Figure 13). 

Performance comparison of different models in terms of 

how accurately the true spikes are being detected while 

limiting the false detections reveals that the shallow-

monostable well achieves the greatest AUC. Despite the 

greater ∆𝑆𝑁𝑅 achieved from the underdamped solution of the 

shallow-slope bistable well, ~17% greater AUC is obtained 

from the overdamped solution of the well. This can be 

explained by the higher rate of stable point switching caused 

by background noise. The high amplitude noise segments 

result in spike-like portions at the output, which result in high 

number of false alarms. The overdamped solution of the steep-

slope monostable well demonstrates steep increase in true 

detection rate for false alarm rates smaller than 0.05. On the 

other hand, the true detection rate is limited to 83% for even 

the false alarm rate increases beyond 24, thereby limiting the 

AUC at 84.4%. A similar behavior is observed for the bistable 

version of the overdamped steep-wall. The true detection rate 

reaches 78% at when the false alarm rate is 0.8 but remains 

there between 0.6 and 4, which results in an AUC of 65.9%. 

The fact that true detection rates of steep-wall wells remain 

relatively constant for a wide range of false alarm rate can be 

associated with the dependence of the response of steep-slope 

wall well to the spike width: The output amplitude is high for 

wide spikes and low for narrow spikes. As the threshold is 

lowered between the high and low amplitude spike outputs, 

the false alarm rate increases without changing the true 

detection rate.    

The average sensitivity and positive predictivity values 

obtained by thresholding the recordings in the first dataset 

after pre-emphasizing using the ShM-UD configuration are 

both 99.97% (Table 3). For this dataset, the SR-based ShM-

UD pre-emphasis algorithm achieves better detection 

performance than the state-of-the-art algorithms. 

The ∆𝑆𝑁𝑅 results in Figures 8 and 9 can also be analyzed 

in the context of how spike enhancement varies with the 

distance from the electrode, 𝑟. Increasing 𝑟, like increasing 

noise intensity, reduces SNR. Using equation (17), we 

calculated the 𝑟 values corresponding to eight datasets in the 

second dataset (Table 4). Waveforms corresponding to the 𝑟 

values and illustration of a hypothetical recording site are 

presented in Figure 14. Based on the results, for 𝑟 ≤ 105 𝜇𝑚; 

the ShM-UD configuration offers significantly better 

(>78 𝑑𝐵) SNR improvement than the others. For 𝑟 ≥

135 𝜇𝑚, the StM-OD configuration yields greater Δ𝑆𝑁𝑅 than 

the others. However, the degree of superiority decreases with 

 

Figure 12. Bistable behavior of ShM-UD due to the dynamic adjustment of the damping coefficient. (a) A portion of input signal and the corresponding 

outputs from the (b) ShM-UD and (c) ShB-UD. Spike locations are marked with black triangles. 

 

Figure 13. An output portion obtained using the ShM-UD model (a) 

without and (b) with adaptive damping coefficient adjustment. 

Table 4. Estimated 𝑟 values for eight recordings in the second dataset. 

𝒓 + Noise Intensity 𝒓𝒄𝒂𝒍𝒄𝒖𝒍𝒂𝒕𝒆𝒅 (𝝁𝒎) Best ΔSNR 

25 𝜇𝑚 + 0 25 ShM-UD 

55 𝜇𝑚 + 0 55 ShM-UD 

25 𝜇𝑚 + 0.0001 72 ShM-UD 

25 𝜇𝑚 + 0.001 105 ShM-UD 

25 𝜇𝑚 + 0.01 135 StM-OD 

105 𝜇𝑚 + 0.0001 152 StM-OD 

55 𝜇𝑚 + 0.01 170 StM-OD 

55 𝜇𝑚 + 0.1 250 StM-OD 
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𝑟 is increased. For 𝑟 = 135 𝜇𝑚, the difference between the 

𝑆𝑁𝑅𝑜𝑢𝑡 of StM-OD and ShB-UD, the second-best performing 

configuration, is ~9 dB. However, the difference reduces to ~4 

dB for 𝑟 = 152 𝜇𝑚 and <1.5dB for 𝑟 = 170 𝜇𝑚 and 𝑟 =

250 𝜇𝑚. The configuration type using which the best Δ𝑆𝑁𝑅 

values are obtained for each 𝑟 are also summarized in Table 4. 

 

Figure 14. Sample portions of the input signal with noisy signals for each distance shown on 2D representation of spherical volume around an electrode. 

Spike locations are marked with black triangles for each plot (a)-(i). (a) Sample portion of input signal. (b) Sample portion of the noisy signal for a point 

at 25 µm. (c) Sample portion of the noisy signal for a point at 55 µm. (d) Sample portion of the noisy signal for a point at 72 µm. (e) Sample portion of 

the noisy signal for a point at 105 µm. (f) Sample portion of the noisy signal for a point at 135 µm. (g) Sample portion of the noisy signal for a point at 

152 µm. (h) Sample portion of the noisy signal for a point at 170 µm. (i) Sample portion of the noisy signal for a point at 250 µm. (j) 2D representation 

of spherical volume around an electrode.  

 

Figure 15. The ∆𝑆𝑁𝑅 = 𝑆𝑁𝑅𝑜𝑢𝑡 − 𝑆𝑁𝑅𝑖𝑛 for ShM-UD configuration with smaller steps in noise density. 
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The abrupt drop in ∆𝑆𝑁𝑅 performance of the ShM-UD with 𝑟 

and superior ∆𝑆𝑁𝑅 performance of StM-OD for spikes 

originated from distant neurons may be facilitated to 

implement a spike detector having parallel SR-based pre-

emphasis algorithms implemented using different well-shape 

and damping status configuration. In addition to increasing the 

number of spikes detected, such an amplitude-sensitive 

detector can group spikes with similar amplitudes and 

therefore potentially improve the performance of a successive 

spike sorting stage. 

Notably, the ∆𝑆𝑁𝑅 variation for 𝑟 = [0, 25] 𝜇𝑚 in Figures 

8 and 9 demonstrate an increase of ∆𝑆𝑁𝑅 for a non-zero noise 

intensity (0.0001). To investigate an optimum noise intensity 

level that maximizes the ∆𝑆𝑁𝑅, the ShM-UD is assessed for 

when the noise intensity is increased with smaller increments 

within the noise range where the ∆𝑆𝑁𝑅 increase is observed 

(Figure 15). The results show that for 𝑟 = [0, 25, 55] 𝜇𝑚, 

∆𝑆𝑁𝑅 follows the characteristic bell curve shape of SNR 

peaking at a noise intensity of 0.0006 for 𝑟 = [0, 25] 𝜇𝑚 and 

0.0004 for 𝑟 = 55 𝜇𝑚. The bell curve shape is not observed 

for 𝑟 = 105 𝜇𝑚. These results reflect that, in this study, it is 

the intensity of the noise that facilitates the SR in the proposed 

non-linear SR pre-emphasis technique. The SR can enhance 

the spikes significantly better for when the noise intensity is at 

an optimum level. In the dataset modeling recordings closer to 

the electrode (i.e., 𝑟 = [0, 25, 55] 𝜇𝑚) the original dataset 

background noise is below the optimum noise intensity level. 

Therefore, adding more noise can further improve the SNR. 

Furthermore, as expected, the intensity of noise that needs to 

be added on the original recording to maximize the SNR is 

less for 𝑟 = 55 𝜇𝑚 than 𝑟 = [0, 25] 𝜇𝑚. On the other hand, 

for the dataset modeling the recording farthest from the 

electrode, the noise level of the original recording is higher 

than the optimum noise intensity, and thus any additional 

noise only decreases the SNR.  

The proposed non-linear SR spike enhancement approach 

is compared against two linear filtering approaches widely 

used in spike detection applications. Specifically, the 

proposed method is compared with a linear state-space model 

using Kalman filter (KF) [31, 32] and an autoregressive filter 

(AR) [33, 34, 35] in the frequency domain (Figure 16). This 

comparison is made in terms of average ∆𝑆𝑁𝑅 obtained from 

ten arbitrarily-selected spikes from a low-noise recording 

(Easy1_noise005) and a high noise recording 

(Easy1_noise02) by integrating the power spectral density 

over the normal neural spike frequency bandwidth of [300 Hz 

– 8 kHz]. For the low-noise recording, the SR spike 

enhancement using ShM-UD achieves an average ∆𝑆𝑁𝑅 of 

164.9 dB; while Kalman output is 16.6 dB and the AR output 

is 4.2 dB. For the high-noise recording, the SR model results 

in 12.9 dB of average ∆𝑆𝑁𝑅; while Kalman and AR filters 

result in 6.6 dB and -0.7dB, respectively. 

Additionally, a time-domain comparison between the SR 

method and the Kalman filter is made on overlapping spikes. 

This comparison is limited to Kalman filter, which - unlike the 

AR filter - produces the filtered spikes in the time-domain. 

Specifically, a total of six overlapping spike cases from a low 

noise level recording (Easy1_noise005) and a high noise level 

recording (Easy1_noise005) are investigated, three spikes 

from each (Figure 17). The SR filter approach enables 

potential detection of overlapping spikes that are as short as 

 

Figure 16. The 𝑆𝑁𝑅 vs frequency plots of AR, KF, and ShM-UD 

configuration (labeled as SR) for a low noise (Easy1_noise005) and a 

high noise (Easy1_noise02) recording. (a) SNR comparison of AR, KF, 

and SR for the low noise recording. (b) SNR comparison of AR, KF, and 

SR for the high noise recording. 

 

Figure 17. The overlapping spike examples from a low 

(Easy1_noise005) and a high noise (Easy1_noise02) recording along 

with the ShM-UD (SR) and KF outputs. (a) Three overlapping spike 

examples from the low noise recording. (b) Three overlapping spike 

examples from high noise recording. 

 

Figure 16. The 𝑆𝑁𝑅 vs frequency plots of AR, KF, and ShM-UD 

configuration (labeled as SR) for a low noise (Easy1_noise005) and a 

high noise (Easy1_noise02) recording. (a) SNR comparison of AR, KF, 

and SR for the low noise recording. (b) SNR comparison of AR, KF, and 

SR for the high noise recording. 

 

Figure 17. The overlapping spike examples from a low 

(Easy1_noise005) and a high noise (Easy1_noise02) recording along 

with the ShM-UD (SR) and KF outputs. (a) Three overlapping spike 

examples from the low noise recording. (b) Three overlapping spike 

examples from high noise recording. 
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0.1 ms apart for the low-noise recording. For the high-noise 

recording, detection of overlapping spikes that are apart by 

0.25 ms is also potentially possible: Notably, optimization of 

the system for a high-noise recording leads to a lower damping 

coefficient than the low-noise recording, which results in a 

longer ringing period (~ 0.4 ms) that limits the time resolution 

of the output waveform. However, a careful look into the 

oscillations reveals that, a spike that follows an initial spike by 

as short as 0.25 ms increases the amplitude of the oscillations. 

Accordingly, the output waveform consists of two peaks with 

similar amplitudes followed by low amplitude oscillations 

(Figure 17 (b)). On the contrary, Kalman filter output closely 

follows the input overlapping spike waveform. To compare 

the spike enhancement performance of overlapping spikes, the 

range of possible threshold levels that can be used in a 

successive thresholding stage can be used. For the low-noise 

recording, average threshold ranges of -0.3 to 0.5 and 0 to 0.4 

would identify the two spike events separately for the SR and 

Kalman filter methods, respectively. For the high-noise 

recording, average threshold ranges of 0.1 to 0.4 and 0.1 to 0.3 

would identify the two spike events separately for the SR and 

Kalman filter methods, respectively.  
The performance of the SR spike enhancement algorithm is 

directly affected by the model-solver parameter values. To 

investigate the strength of this dependence between parameter 

values and Δ𝑆𝑁𝑅, each model is assessed based on the SNR 

improvement when the parameter values are uniform 

randomly selected within their respective ranges. A total of 

100 Δ𝑆𝑁𝑅 calculation is performed for each model 

configuration for the Easy1_noise005. Based on the statistical 

distribution of the SNR improvement presented in Figure 18, 

the variances for the models are 7.5 dB, 11 dB, 15 dB, 14 dB, 

19 dB, and 14.2 dB for ShM-OD, ShM-UD, ShB-OD, ShB-

UD, StM-OD, and StB-OD, respectively. The small variance 

within each model points that the system is robust inside the 

parameter range that does not diverge the output. 

In this study, where the focus is on SR model performance 

comparison with respect to spike enhancement, the parametric 

search is performed based on Δ𝑆𝑁𝑅 optimization. A trivial 

limitation of this approach for parametric optimization in an 

actual neural monitoring scenario is the necessity for apriori 

knowledge of spike locations in a recording. Although 

investigation of different metrics for parametric-search-based 

or other means of parameter optimization is left as a future 

work; performance of the models optimized based on 

maximizing another metric, the overall peak-to-peak value of 

the output (𝑉𝑜𝑢𝑡,𝑝𝑝), is also investigated for the 

Easy1_noise005. In line with the previous results 

demonstrating the robustness of the system for parameters 

within the ranges that converge the output, the median Δ𝑆𝑁𝑅 

obtained from models optimized for maximizing  Δ𝑆𝑁𝑅 and 

𝑉𝑜𝑢𝑡,𝑝𝑝 are very close (Figure 19). The difference varies 

between 3.3 dB for StB-OD and 0 dB for ShB-OD. The 

model-solver parameters optimized with respect to output 

SNR and output peak-to-peak are identical, except the ℎ, 𝑎, 

and 𝛾 of ShM-UD, and ℎ, 𝑉, 𝑅, 𝑎, and 𝑠𝑒𝑝 of StM-OD and 

StB-OD. 

The striking SNR improvement performance of the ShM-

UD comes at the cost of disturbing the original spike 

waveform shapes, which is critical for spike sorting. To assess 

if the spikes in a recording can be sorted, a correlation analysis 

is performed across the spikes from three different neurons in 

the recordings of the 1st dataset. First a correlation matrix is 

prepared by calculating the correlations between templates of 

spike waveforms obtained by ensemble averaging the spikes 

from different neurons (Table 5). Second, the correlation 

analysis is repeated on the SR-enhanced output. The 

correlation is performed between individual output spikes and 

template spikes obtained by ensemble averaging the output 

spikes from different neurons (Table 6). Lastly, the difference 

between the correlations is calculated (Table 7). The Table 7 

 

Figure 18. Statistics of SNR improvements of each well-solver 

configurations with randomly selected well/solver parameters. 

 

Figure 19. Average 𝛥𝑆𝑁𝑅 = 𝑆𝑁𝑅𝑜𝑢𝑡 − 𝑆𝑁𝑅𝑖𝑛 values calculated using 

20 spikes for all configurations. Configurations are optimized for 

maximizing ∆𝑆𝑁𝑅 (blue) and overall peak-to-peak value (𝑉𝑜𝑢𝑡,𝑝𝑝) (red) 

of the output. 
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shows that, in majority of the recordings, the dissimilarity 

between spikes from different neurons increase. On the other 

hand, the similarity between spikes of a given neuron and the 

template obtained from all spikes of that neuron decreases 

significantly (-0.41±0.275), which could potentially decrease 

the sorting performance. Despite this limitation of the SR 

spike enhancement using ShM-UD, the spike sorting 

performance can be potentially improved by feeding the spike 

sorting stage with the spike waveforms of the input recording, 

instead of the SR outputs. A similar approach is followed in 

[4, 36], where the spike enhancement is used for detecting the 

spike locations in the original recording and the spikes in the 

original recording are used for sorting. It should be also noted 

that, in various neural monitoring applications, spike sorting 

stage is bypassed, and high-level decoding is performed 

directly on the detected spikes [37, 38, 39, 40]. In such 

applications, the proposed SR algorithm could be used as the 

pre-emphasis stage before detection. 

One limitation of this study is the use of only GWN in 

modelling the background noise of an extracellular neural 

recording. In an actual recording, in addition to GWN, colored 

noise is also present. Notably, by filtering prior to the SR-

based pre-emphasis algorithm, 1/𝑓 type colored noise can be 

suppressed. It should be also noted that SR is not limited to 

GWN. In fact, numerical studies on biological neural network 

modeling have shown that non-Gaussian noise can enhance 

the spike coherence [41]. Furthermore, as shown in [42, 43], 

colored noise can also facilitate SR. Therefore, when using the 

proposed SR pre-emphasis method, colored noise of the 

recording could also be potentially facilitated, instead of 

Table 5. Correlation coefficient values of spikes of the 1st dataset. 

 
Easy1 Easy2 Difficult1 Difficult2 

N1 N2 N3 N1 N2 N3 N1 N2 N3 N1 N2 N3 

N
o
is

e

0
0
5

 N1 1 0.3175 0.4163 1 0.8071 0.8788 1 0.8007 0.9166 1 0.9739 0.82 

N2 0.3175 1 0.1621 0.8071 1 0.8473 0.8007 1 0.9053 0.9739 1 0.81 

N3 0.4163 0.1621 1 0.8788 0.8473 1 0.9166 0.9053 1 0.82 0.81 1 

N
o
is

e 

0
1
 

N1 1 0.3032 0.4069 1 0.8029 0.8752 1 0.8015 0.9212 1 0.9735 0.8235 

N2 0.3032 1 0.163 0.8029 1 0.8399 0.8015 1 0.9039 0.9735 1 0.8107 

N3 0.4069 0.163 1 0.8752 0.8399 1 0.9212 0.9039 1 0.8235 0.8107 1 

N
o
is

e

0
1
5

 N1 1 0.3102 0.398 1 0.8033 0.8771 1 0.8061 0.9257 1 0.9722 0.8262 

N2 0.3102 1 0.1669 0.8033 1 0.8494 0.8061 1 0.9093 0.9722 1 0.8082 

N3 0.398 0.1669 1 0.8771 0.8494 1 0.9257 0.9093 1 0.8262 0.8082 1 

N
o
is

e

0
2

 

N1 1 0.3007 0.4197 1 0.8039 0.869 1 0.8005 0.9226 1 0.9747 0.8176 

N2 0.3007 1 0.1452 0.8039 1 0.8353 0.8005 1 0.9017 0.9747 1 0.8102 

N3 0.4197 0.1452 1 0.869 0.8353 1 0.9226 0.9017 1 0.8176 0.8102 1 

 
Table 6. Correlation coefficient values of spikes of the SR-enhanced 1st dataset (Template vs. Individual spikes). Standard deviation values are given in 

parenthesis. 

 
Easy1 Easy2 Difficult1 Difficult2 

N1 N2 N3 N1 N2 N3 N1 N2 N3 N1 N2 N3 

N
o

is
e0

0
5
 N1 

0.2691 

(0.249) 

0.279 

(0.291) 

0.286 

(0.052) 

-0.012 

(0.032) 

-0.005 

(0.031) 

-0.011 

(0.028) 

0.289 

(0.235) 

0.339 

(0.259) 

0.283 

(0.282) 

0.096 

(0.02) 

0.142 

(0.034) 

0.128 

(0.032) 

N2 
0.2114 

(0.095) 

0.208 

(0.133) 

0.165 

(0.034) 

0.182 

(0.018) 

0.209 

(0.044) 

0.192 

(0.034) 

0.237 

(0.057) 

0.222 

(0.097) 

0.244 

(0.067) 

0.066 

(0.016) 

0.094 

(0.016) 

0.076 

(0.016) 

N3 
0.0302 
(0.021) 

0.0294 
(0.026) 

0.024 
(0.005) 

0.086 
(0.01) 

0.101 
(0.022) 

0.088 
(0.016) 

0.202 
(0.135) 

0.227 
(0.156) 

0.199 
(0.17) 

0.098 
(0.03) 

0.165 
(0.057) 

0.155 
(0.051) 

N
o

is
e0

1
 

N1 
0.8426 

(0.134) 

0.5138 

(0.107) 

0.451 

(0.051) 

0.614 

(0.09) 

0.689 

(0.182) 

0.587 

(0.128) 

0.675 

(0.121) 

0.767 

(0.103) 

0.821 

(0.094) 

0.842 

(0.084) 

0.832 

(0.084) 

0.726 

(0.081) 

N2 
0.2929 

(0.107) 

0.7394 

(0.137) 

0.183 

(0.067) 

0.549 

(0.078) 

0.643 

(0.143) 

0.541 

(0.107) 

0.658 

(0.076) 

0.813 

(0.097) 

0.839 

(0.069) 

0.839 

(0.089) 

0.876 

(0.083) 

0.75 

(0.081) 

N3 
0.4056 

(0.15) 

0.1622 

(0.14) 

0.958 

(0.059) 

0.59 

(0.109) 

0.673 

(0.175) 

0.668 

(0.124) 

0.617 

(0.108) 

0.776 

(0.103) 

0.862 

(0.083) 

0.596 

(0.083) 

0.634 

(0.082) 

0.663 

(0.065) 

N
o

is
e0

1
5
 N1 

0.6193 

(0.122) 

0.3354 

(0.123) 

0.421 

(0.067) 

0.654 

(0.091) 

0.544 

(0.121) 

0.543 

(0.104) 

0.661 

(0.127) 

0.74 

(0.105) 

0.799 

(0.093) 

0.867 

(0.119) 

0.883 

(0.096) 

0.834 

(0.119) 

N2 
0.1831 

(0.072) 

0.7495 

(0.205) 

0.174 

(0.097) 

0.604 

(0.076) 

0.579 

(0.125) 

0.528 

(0.091) 

0.63 

(0.088) 

0.781 

(0.096) 

0.814 

(0.076) 

0.853 

(0.115) 

0.894 

(0.088) 

0.864 

(0.115) 

N3 
0.1898 

(0.149) 

0.1923 

(0.255) 

0.933 

(0.125) 

0.625 

(0.084) 

0.546 

(0.137) 

0.598 

(0.113) 

0.599 

(0.125) 

0.749 

(0.115) 

0.832 

(0.09) 

0.83 

(0.122) 

0.872 

(0.097) 

0.783 

(0.128) 

N
o

is
e0

2
 

N1 
0.5719 

(0.11) 

0.458 

(0.115) 

0.502 

(0.084) 

0.7 

(0.168) 

0.424 

(0.087) 

0.592 

(0.183) 

0.634 

(0.132) 

0.705 

(0.118) 

0.768 

(0.095) 

0.769 

(0.115) 

0.803 

(0.112) 

0.605 

(0.124) 

N2 
0.1539 

(0.087) 

0.6502 

(0.08) 

0.167 

(0.139) 

0.716 

(0.123) 

0.552 

(0.069) 

0.599 

(0.127) 

0.61 

(0.094) 

0.743 

(0.102) 

0.789 

(0.068) 

0.744 

(0.118) 

0.825 

(0.115) 

0.593 

(0.116) 

N3 
0.1858 

(0.194) 

0.1336 

(0.147) 

0.759 

(0.307) 

0.674 

(0.127) 

0.436 

(0.096) 

0.647 

(0.155) 

0.576 

(0.141) 

0.713 

(0.134) 

0.805 

(0.096) 

0.603 

(0.11) 

0.67 

(0.123) 

0.66 

(0.101) 
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filtering it. However, the extent to which the proposed SR 

method can benefit from colored noise in the recording needs 

separate investigation, and thus left as a future study. 

Another limitation is related to all spikes in the 

Easy1_noise005 recording of the first dataset having 

comparable amplitudes. In an actual recording, neuron-to-

neuron variations in channel conductances would lead to spike 

amplitude variations. Accordingly, two same-amplitude 

spikes in an actual recording do not necessarily originate from 

neurons equidistant to the electrode. However, those 

variations in spike amplitudes do not affect how different 

well-shape damping-status configurations perform for 

different SNRin. 

It is anticipated that the proposed SR pre-emphasis method 

could find applications in other spike-like feature detection 

problems in the general field of neurophysiology. One 

example is burst suppression feature in electroencephalogram 

(EEG), which indicates inactivated brain states such as coma 

and anesthesia [44, 45]. Notably, there are temporal- and 

frequency- characteristics differences between the bursts in an 

EEG and spikes in a neural recording. On the other hand, with 

proper selections of the model and solver parameters, the EEG 

burst suppression features could potentially be enhanced 

significantly before detection. 

5. Conclusion 

In this study, we expand on the initial results of neural spike 

enhancement facilitating stochastic resonance through 

interaction of a particle in a monostable well. Our 

investigation on systems with different well potentials and 

damping conditions indicate that by changing the number of 

stable points, wall steepness profile, and damping condition; 

signal enhancement can be improved. The contribution of 

additive noise on enhancing a neural spike in such a system 

can potentially allow detection of spikes originated from far 

neurons. 
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