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Abstract

Objective: We aim to increase the number of neural spikes that can be detected in a single
channel extracellular neural recording. Approach: We propose a pre-emphasis method
facilitating stochastic resonance (SR), where we introduce the band-pass-filtered noisy
extracellular recording to an overdamped Brownian particle in a monostable well. The x-
position of the Brownian particle is the output of the proposed pre-emphasis method.
Threshold is applied on the output for spike detection. To characterize the dynamics and the
solution of the system, we use a synthetic dataset generated by adding Gaussian white noise
at different intensities to an intracellular recording. Then, we evaluate and compare the spike
detection performance of the proposed method on a public synthetic extracellular dataset.
Main results: The proposed SR-based spike detection improves the signal-to-noise ratio
(SNR) of the intracellular-based synthetic dataset as much as 7.35 dB and outperforms the
state-of-the-art pre-emphasis methods in false positive and false negative rates in 15 of the 16
synthetic extracellular datasets, with 100% sensitivity and positive predictivity values in
seven of the recordings. Significance: The method has the potential of significantly increasing
the number of neurons that can be monitored from a single-channel extracellular recording.

Keywords: Extracellular spike detection, mono-stable well, stochastic resonance.

1. Extracellular neural monitoring and Stochastic
Resonance

Information is communicated across the brain in the form
of electrical action potentials, namely neural spikes, generated
by neurons. By analyzing spike activity, it is possible to unveil
the brain connectivity and how information is represented in
the brain. In fact, spike analyses have led to remarkable
advances such as understanding brain mechanisms of different
actions [1-3] and the disruptions in the neural networks in case
of neurological disorders [2-5]. The foremost step to spike
analysis is extracellular neural monitoring, where electrodes
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placed in a neural tissue capture the electrical potential
changes corresponding to activities of neurons nearby. The
captured signal is first amplified and filtered to improve the
signal-to-noise-ratio (SNR). The conditioned signal is then
pre-emphasized on which thresholding is applied for spike
detection. Spikes are sorted based on several features (e.g.,
principal components, wavelet coefficients) to specify activity
of different neurons.

Researchers studying extracellular neural monitoring have
proposed a wide range of pre-emphasis methods for accurate
spike detection (e.g., simple band-pass filtering [6],
superparamagnetic clustering [6], Teager energy operator
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(TEO) [7], wavelet transform [6, 8], template matching [9],
cepstrum of bispectrum [10], time-frequency analysis [11],
morphological filtering [12]). In general, template-matching
methods have demonstrated higher detection performances
than other methods [13-15]. However, template matching does
not achieve high detection rates for spikes of low-activity
neurons [16], which is considered as one of the reasons
limiting the typical number of neurons observed in a recording
from a single electrode to ~5 to 10 [17-18].

With the ultimate goal of increasing the detectability of
spikes, we investigate stochastic resonance (SR) as a pre-
emphasis method. SR is a phenomenon observed in many
nonlinear systems including biological neurons, whereby
noise is counterintuitively used to reinforce weak signals ([19-
22]). Initially introduced as a phenomenon to explain the
observed periodicity in global climate dynamics [23], later,
systems of a variety of fields ranging from biology to human
perception have been shown to perform noise-enhanced
detection of weak signals and thus facilitating communication
and signal processing [24-26]. Previously, we demonstrated
that, in a threshold-based spike detection system with band-
pass filtering implemented as the pre-emphasis method, there
is an optimum flicker noise intensity maximizing spike
detection sensitivity [27]. In this study, we investigate a non-
linear system facilitating the background noise to improve the
SNR of an extracellular recording. Although several studies
have demonstrated SR-enhanced detection of weak signals
[28-31], SR is investigated in the context of SNR
improvement for spike detection in extracellular recordings
for the first time.

We begin with describing our method and perform a
comparison against the widely-used pre-emphasizing methods
on a synthetic dataset with varying background noise
intensities in Section 2. In Section 3, we evaluate the
performance of our approach on a public synthetic dataset [6]
and compare our results against the state-of-the-art. We
discuss our results in Section 4, which is followed by
conclusion and potential future work in Section 5.

2. Datasets and methods
2.1 Stochastic Resonance

Stochastic resonance (SR) is a phenomenon, where noise is
used to enhance weak signals. Typically, SR is used to detect
weak periodic signals. A common mechanism to facilitate SR
is observing the movement of a Brownian particle in a bistable
well potential when the signal is applied on the particle as a
velocity term [32]. In the steady state, the particle rests in one
of the stable points. If a periodic signal is introduced to the
system, the particle swings around the stability point. If the
signal amplitude is small (subthreshold), it cannot cause the
particle to cross the barrier between the two stable points. If
some noise is added on the subthreshold signal, however, the

noisy subthreshold signal can make the particle cross the
barrier and reach the other stability point. If the added noise
intensity is too large, the particle movement follows the noise.
However, if the added noise is at an optimal level, the particle
moves between the stable points at the same frequency as the
subthreshold signal. In other words, there is an optimal noise
level that causes the input signal to be amplified [32].

In this study, we investigate SR as a method to enhance neural
signals. Then, a threshold is applied on the enhanced signal for
spike detection. It should be noted that, for neural monitoring
purposes, detected spikes should eventually be classified
(spike sorting) to extract the activities of different neurons.
Although the focus of our study is limited to spike detection,
because performance of spike sorting algorithms depends on
how well the waveform characteristics of neural spikes are
preserved [6], we perform our SR analysis on a system that
can preserve spike waveform characteristics. Therefore, rather
than a bistable well, which can introduce non-linearities and
discontinuities on the original spike waveforms, we perform
our analysis using a monostable well. To understand how
noise can enhance the signal, we can consider a hypothetical
noise-free recording. In this case, the particle would move
towards the walls of the well during spike events only. In an
actual recording, where the signal has noise on it, the noise
could cause the particle to make larger movements during the
spike events, thereby amplifying the spike amplitudes. Like
the bistable well case, the noise intensity should be at an
optimal level. If the noise intensity is too small, it will not have
much effect. If it is too large, the signal will be swamped
inside the noise. Notably, noise-only portions of an actual
recording would also cause the particle to move around the
stability point. To limit those movements and improve the
SNR further, we consider an overdamped system.

2.2 Datasets

We perform our analyses on two types of synthetic datasets
(Figure 1). The synthetic-dataset-1 (SD1) is generated using
an intracellular recording, d/1222, from the hippocampus
region CAl of rats from the Collaborative Research in
Computational Neuroscience (CRCNS) database [33]. We
control the noise level by addition of zero mean gaussian white
noise at different intensities. The dataset is 750 s long,
sampled at 20 kHz, and consists of 628 spikes. We use SD1 to
describe and investigate our pre-emphasis method and
perform comparisons with three widely-used pre-emphasis
methods; namely band-pass filtering, TEO, and wavelet
transform. The synthetic-dataset-2 (SD2) is a public synthetic
extracellular dataset [6]; which consists of 16 recordings
grouped under four categories, Easyl, Easy2, Difficultl, and
Difficult2. Each recording is 60 s long, sampled at 24 kHz,
and consists of simulated spikes from three neurons. These
synthetic recordings consist of spikes with waveform shapes
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Figure 1. Close-up view to the spikes in the synthetic datasets used in
the study. Top: Noise added on an intracellular recording. Bottom:
Synthetic extracellular dataset in [6].

obtained from a database of ~600 spike shapes obtained from
actual recordings in the neocortex and basal ganglia. The
dataset mimics the background noise by including the small
amplitude spikes from hypothetical distant neurons. The
datasets contain spike trains with randomly-generated event
times from three distinct neurons, each having an average
firing rate of 20 Hz. The spike trains and noise are combined
to generate the synthetic recordings. The noise levels
correspond to the noise standard deviations normalized by the
spike amplitudes.

In the literature, SD2 is widely used as a benchmarking
dataset for evaluation of spike detection algorithms [12, 14,
15, 34-36]. Therefore, we use this dataset to validate the
performance of our method on a realistic extracellular
recording as well as do a direct comparison against the state-
of-the-art spike-detection methods reported.

2.3 SR-based pre-emphasis

Our pre-emphasis method involves monitoring the
movement of an overdamped Brownian particle in a nonlinear
system, which is governed by the special form of the Langevin
equation with neglected inertia term as [37]:

dx(t) _ dUq(x,t)

- 2=+ 5 (0), ()

where x(t) is the x-position of the particle, Uy(x,t) is a
potential well that the particle interacts with; and s, (t) =
s(t) + n(t) is a noisy signal with s(t) and n(t) being the
signal and noise, respectively. A closer look into (1) reveals

Monostable We erent Time Instanc
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Figure 2. The proposed SR-based pre-emphasis method is based on the
interaction of a Brownian particle in an overdamped monostable well.
The original well, Uy(x), drawn in red, has a stable point at x=0. Based
on equation (3) in the text, the shape of the potential is changed
depending on the band-pass filtered input signal, s, (t). The resultant
potential wells corresponding to different time instances are drawn in
black. The movement of the particle is also illustrated. For numerical
solution of the particle movement, refer to equations (5)-through-(7) in
the text. The system output is the x-position of the particle.

dx(t)
dt
controlled by two terms on the right-hand side of the equation.

The first term, which has negative sign, represents the
contribution of the potential well on the particle velocity.
Essentially, the particle tends to move towards the stable
point, which is the opposite direction to the sign of the well
slope. The second term represents the contribution of the
system input on the particle velocity. In our case, we introduce
a band-pass filtered (BPF) version of the input signal, s, (t),
to the particle. We use a Kaiser window, finite impulse
response (FIR) filter with cut-offs 300 Hz — 6 kHz. The BPF
output signal is s,, g ().

To graphically understand the movement of the Brownian
particle, we modify equation (1) such that both terms are
incorporated inside a new time-dependent potential well,
U(x,t) [30]:

that, in this system, the velocity of the particle, , 18

dx(t) __ dU(x, t)' @)
dt dx
where
UG, t) = Up(x, ) = X * 5,(0). 3)

Based on (3), the monostable well, which the particle
interacts with, has both temporal and spatial characteristics
that collectively impact the movement of the particle. From
(2), at a given time instant, the particle tends to move towards
the stable point of U(x;, t) at a velocity equal to the amplitude

of the slope of the well calculated at where the particle is
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located. The output of the system is the x-position of the
particle.

The last step before illustrating the particle movement in
the well is defining the well potential. As previously
mentioned in Section 2.1, for neural spike pre-emphasis
application, we investigate a monostable well potential given
as:
a,b>0

Uo(x) = ax?/2 + bx*/4. 4)

After replacing the monostable well expression in (4) inside
(3), we illustrate the variation of U(x, t) for a short-period, 7,
(7<1 ms) of an exemplary s,  in Figure 2. The potential well
drawn in red represents Uy(x). The potential wells drawn in
black represent U(x,t) for different t € (0,T). To find the
movement of the Brownian particle, we first combine the
equations (2)-(4), leading to:

CO _ fax(t) + bx* (O] + 5, (0).

)

A flowchart representing the equation (5) is presented in
Figure 3. In the digital domain, solution of (5), an ordinary
differential equation, can be approximated by an iterative
numerical method, namely the fourth-order Runge-Kutta (RK)
method, described by [37]:

x[n+ 1] = x[n] + (ky + 2k, + 2k3 + k,)/6, (6)

where x[n] is the n™ sample of x(t) and k; through k, are
given as:

ky = h [—ax[n] — bx3[n] + s,[n]]
3
k,=h [—a (x[n] + %) —-b (x[n] + %) + sy[n+ 1]]

ks = h[—a(x[n] + k3) — b(x[n] + k3)3 + s, [n + 2]].

In (7), h is the interval size of the approximation; and
sp[nl, s,[n + 1], and s,,[n + 2] are respectively the n', n+1%,
and n+2" samples of s,,(t). A graphical representation and a
description of how RK method approximates the movement of
the particle is provided in Figure 4 and its caption.

The change in the potential well and the response of the
system at different time instances for non-spike and spike
events are shown in Figure 5. The over-damped system cannot
respond sufficiently fast to the rapid and arbitrary changes
during non-spike regions; thereby causing the particle to
remain in the proximity of the stable equilibrium point, x = 0
(Figure 5(c) - Left) A noisy spike on the other hand causes a
persistent change in the well potential for a period that is
sufficiently long to move the particle outside the equilibrium
point (Figure 5(c) - Right).

o I o

Figure 3. A flowchart of the differential equation, which is given in
equation (5) in the text, solved to find the x-position of the Brownian
particle in an overdamped monostable well. The differential equation is
solved using the fourth-order Runge Kutta method described using
equations (6)-(7) in the text.

Figure 4. A graphical illustration of the Runge-Kutta (RK) method. The
sum of the negative derivative of the well potential and the noisy input
signal are evaluated at, x/n/, the original position of the particle at the
data point to obtain a slope parameter k;. Then, a new slope, £, is
calculated using the sum evaluated at a new position informed by both
the original particle position and the previous slope, k;. The process is
repeated to find two additional slopes, k; and k4. The x/n] and all
calculated slopes are linearly combined to find x/n+1].

In equations (3)-(5), proper selection of positive-valued
a, b, and h is critical to achieve high SNR at the output. In the
literature, several SNR definitions are made in the context of
spike detection [7, 8, 39-42]. We calculate the SNR as the ratio
of the peak-to-peak amplitude (4,,) of the minimum-
amplitude spike in the dataset to the peak-to-peak amplitude
of a noise-only portion of the recording:

of spike with minimum amplitude

SNR = 20log <AW ) ©6)

App of anoise segment
For noise A,, calculation, 60 s and 2 s of total noise-only
segment durations are used in SD1 and SD2, respectively.
We perform parametric search for the optimum values of a,
b, and h maximizing the SNR. Variation of SNR for SD1 with
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Figure 5. The response of the SR-based pre-emphasis method to non-spike (noise) and spike segments in SD1 with a noise-level of 10. (a) 200 s portion of
SD1 and the SR-output. The intracellular recording d//222 is shown to indicate the spike locations. Amplitudes of all waveforms are normalized for
visualization purposes. The two highlighted segments show non-spike and spike cases. (b) The close-up view of the two highlighted segments in (a). The
black dots represent the data points at which the well and the Brownian particle movements are illustrated in (c). Fifteen data points, t, through t;s, per case
are used to show the changes in the well-shape for non-spike and spike cases. The data points for the spike event are selected as the time instances over which
the spike in d71222 is rising. (c) The well shape and the particle movement are shown (center). The red-line represents the original well shape, U(x), with
zero input. The black lines represent the changes in the well-shape. The movement of the particle is demonstrated on half of the data points. The dashed

rectangle represents the close-up views of the changes for the non-spike (left) and spike (right) cases.

anoise level of 10 is presented in Figure 6. The output SNR is
correlated more strongly to a than b for a given input noise
level. This result is explained by the stronger dependence of
U, to a than b values in (3) for x between -0.001 and 0.001,
the dynamic range of the x-position of the particle moves for
different datasets [Figure 6(a) inset]. Our parametric search
has led to different optimum values for the @ and / parameters
for a range of background noise levels between 1 and 50. The
corresponding input SNR, SNR;,, ranges between -1.16 dB and
+0.3 dB. The corresponding output SNR, SNR,. ranges
between -1.2 dB to +7.65 dB (Table 1).

The dc level of the input signal impacts the stability point
of the dynamic system. An input signal with zero mean, which
indicates that the average added velocity of the particle is also
zero, causes the particle to move around x,=0. However, a
positive (negative) dc level shifts the stability point to x>0
(x9<0). The outputs of the system corresponding to SD1 with
anoise level of 10 for three dc levels of [-20, 0, +20] are shown
in Figure 7.
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Figure 6. Parametric search to optimize a, b, and 4. that would maximize
the SNR. The results are given for SD1 with noise level: 10 (a) The
parameter b has a weak control over the well potential, U, (Inset).
Therefore, SNR is primarily dependent on the parameter a. (b) The SNR
is strongly dependent on the well parameter a and the step-size parameter,
h, of the Runge-Kutta approximation method.

2.4 Conventional pre-emphasis methods

To assess the detection performance of the proposed SR-
based pre-emphasis method, we performed a comparison
against the conventional methods of (i) band-pass filtering, (ii)
TEO, and (iii) wavelet transform. Below we describe the
implementation details of those methods.

Following the literature [6]; in band-pass filtering, the
signal is filtered by a Kaiser-window FIR-filter with high-pass
and low-pass cutoff frequencies of 300 Hz and 6 kHz.

Teager Energy Operator (TEO) emphasizes local peaks in
both amplitude and frequency [43], thereby making it
sensitive to spikes in a neural recording. The discrete-time
TEO is given as:

Y(x[n]) = x2[n] —x[n+ 1] - x[n — 1]. 7

TEO suffers from degraded detection performance in low
SNR and/or high noise peak scenarios [7, 41]. To smooth TEO
output, following the literature [7], we use the Hamming-
window FIR filter of length 5 with the following coefficients:

w(n) = [0.08 0.54 1 0.54 0.08]. (8)

Table 1. Optimum well and solver parameters for different
background noise levels

Added SNR: P SNRout
Noise Level  (dB) “ (dB)
1 03 960  147x10° 7.65
2 20.71 970  1.09x 10° 534
3 -0.81 1050 93 x10° 3.98
4 0.86 1050 1x10° 3.26
5 -0.96 1020 8.7x10° 2.93
6 -1.03 1050  1.11x10° 2.05
7 -1.04 1050 9.17x 10° 222
8 -1.05 1050 699 x 10 2.09
9 -1.06 1050  7.87x10° 1.6
10 11 1050  7.4x10° 1.1
15 -1.08 1000 154x10°  -0.56
20 -1.11 1000 1.79x10%  -1.07
40 -1.17 1060  14x10° 12
50 -1.16 1190 1x 103 1.2
x10_4 dCi" =+20

dCoyr = +1x107%

1 il

dcin =0
57' dcout =0
550 M“MVWWM"MMWMWM
x dCl‘” = —-20
dcyyr = —1x107*
-1 ‘ .
0 25 50
Time [s]

Figure 7. Different dc levels of the input signal change the stability point
of the particle, and thus the dc level of the output signal. Input and output
dc levels of the three cases are indicated for each plot. All output signals
have identical SNR values of 1.1 dB.

Discrete wavelet transform (DWT) is implemented with
different mother wavelets with sym4 being the most
pronounced mother wavelet for pre-emphasizing in the
literature [8, 44]. Accordingly, sym4 is used as mother wavelet
in this paper.

2.5 Thresholding for spike detection

Spikes in the pre-emphasized signals are determined via
thresholding. Threshold levels giving the minimum false
negative (FN) and false positive (FP) values are used. We use
FN and FP values; and true-detection and false-alarm rates as
performance assessment and comparison metrics.

True-detection rate (TDR) is defined as the ratio between
number of spikes correctly detected (true positive, TP) and the
total number of spikes in recording. False alarm rate (FAR) is
defined as the number of falsely detected spikes (FP) per
second.

0, e —
TPR (%) TP+FN*100
FP ©)
FAR = .
recording time (s)
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Figure 8. The response of the SR-based pre-emphasis method to SDI.
50 s portions of the input, the output, and the intracellular recording for
the noise level of 5 and 20 are presented in (a) and (b). In the upper plots
of each section, the original amplitudes of the noise-added input signal
and the d11222 are shown. In the lower plots, the amplitudes of the SR
output and the d11222 are normalized for visualization purposes. The
close-up views (insets) show the noisy input and demonstrate the spike
enhancement and noise suppression for one of the spikes. The threshold
levels are shown as the horizontal red lines. (c) For different noise levels,
the ROC curves are plotted. The area under the curves (AUCs) range
from 199.2 (Noise Level 1) to 144.6 (Noise Level 50).

2.6 Receiver operating characteristic (ROC)

Receiver operating characteristic (ROC) curves of pre-
emphasis methods are extracted by changing the detection
threshold from 0.1c to 8o, where o is the standard deviation
of the noise segment. Based on TPR and FAR values for each
level of detection threshold, ROC curves are plotted and then
area under curve (AUC) is calculated.

mw«‘.wﬂmw*.‘w'u‘-'-.awmw-«?awmw ,m.\-'n'w iy gt M w-m\.www LTS

Figure 9. Comparison of the SR-based pre-emphasis method output to
SD1 with the commonly-used methods. (a) 10 s portions of the outputs of
the SR-based, DWT, TEO, and BPF pre-emphasis methods to the SDI
with noise level: 10 are shown. Amplitudes of the SD1 and the output
waveforms are normalized. A scaled version of the d11222 is also shown
to indicate the spike locations. (b) The ROCs for all methods.

3. Results

After optimizing the SR-based pre-emphasis method for
different background noise intensities, we obtained the TPR
and FAR for the SD1. For SD1 with noise levels of 5 (SNR;,
=-0.96 dB) and 20 (SNR;, =-1.11 dB); the original intracellular
recording, the noise-added input signal, the SR-based pre-
emphasized output, and the threshold level are presented for a
50 s portion of the signals in Figure 8(a, b). To demonstrate
the enhancement of the spikes, we highlight one of the spikes.
For these two SD1 signals, SNR improvements calculated as
the SNR differences between the SR output and the noisy
input signal (ASNR=SNR,.~SNR;,) are 3.89 dB and 0.4 dB.
The receiver operating characteristic curves (ROC) for a range
of noise levels between 1 (SNR;,=0.3 dB) and 50 (SNR;,=-1.16
dB) are presented in Figure 8(c). For noise levels <10 (SNR;,,>-
1.1 dB) the AUC of the curves are greater than 98% of the
maximum area. The outputs of the proposed SR-based pre-
emphasis method and those of BPF, TEO, and wavelet
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Figure 10. A 20 s section of the SR-based pre-emphasis method output for the SD2 dataset with the least spike detection accuracy, Difficult2 Noise 0.2. The
close-up view on the left shows three of the 24 total missed spikes in this dataset. In general, overlapping spikes are missed. The close-up view on the right
demonstrates the SR-output preventing a false negative (A) and a false positive (B).

transform for a 10 s portion of the SD1 with a noise level of
10 (SNRj,=-1.1 dB) are presented in Figure 9(a). The ROCs
are presented in Figure 9(b). The SR-based pre-emphasis
method AUC is 97% of the maximum area, whereas the other
methods achieve AUC<77%.

The proposed method improves the threshold-detection of
the recordings in the SD2. In Figure 10; the input, SR output,
threshold level, actual and detected spike locations are
presented for a 20 s portion of the SD2 recording with the least
detection accuracy, namely Difficult? - Noise 0.2. Majority of

the 24 missed spikes in this recording are overlapping, three
of which are highlighted in Figure 10; where examples of
spike enhancement (A) and noise suppression (B) are also
highlighted. For the complete SD2 datasets, we summarize the
detection performance of the SR-based pre-emphasis method
in Table 2. For comparison, we also present the spike detection
accuracies of the state-of-the-art methods using the same
datasets. Notably, compared to the best performing method in
[14], where Bayes optimal template-matching (BOTM) and
subtractive interference cancellation (SIC) are used, our

Table 2. Detection performance of the proposed method and the other state-of-the-art using the synthetic-dataset-2 in [6]

. [14] [33]
This Work [15] . [6] [35]
. Wave_clus, Two side
Szi:{fe . Stochastic-Resonance BOTM, SIC PBOTM thresholding BPF MRTDE
Se Pp #FN Se #FN Se Se Pp
#FN #FP (%) (%) + FP (%) +FP (%) #FN #FP #FN #FP %) %)
. 0.05 3514 0 0 100 100 11 99.7 68 98.1 17 9 17 711 93.75 100
> 0.1 3522 2 0 99.95 100 4 99.9 58 98.4 26 32 2 57 93.28 100
h“j 0.15 3477 5 3 99.86  99.92 8 99.8 63 98.2 61 114 145 14 95.50 100
0.2 3474 4 4 99.89  99.89 9 99.7 84 97.6 170 212 714 10 95.54  99.07
- 0.05 3410 0 0 100 100 2 99.9 58 98.3 34 5 0 0 92.86 100
> 0.1 3520 0 0 100 100 6 99.8 47 98.7 27 2 0 2 93.60 100
h“j 0.15 3411 0 1 100 99.97 4 99.9 52 98.5 55 12 10 1 93.33 98.00
0.2 3526 5 4 99.86  99.89 6 99.8 78 97.8 259 157 376 5 90.60 99.07
0.05 3383 0 0 100 100 2 99.9 58 98.3 30 0 1 63 93.07 100
= 0.1 3448 0 0 100 100 18 99.5 57 98.3 34 4 0 10 96.08 100
a2 0.15 3472 1 0 99.97 100 9 99.7 61 98.2 68 21 8 6 95.83 100
0.2 3414 5 4 99.85 99.88 20 99.4 92 97.3 175 169 184 2 96.15 100
0.05 3364 0 0 100 100 8 99.8 53 98.4 31 2 0 1 94.44 100
g o1 3462 0 0 100 100 5 99.9 38 98.9 21 2 0 5 95.50 100
a 0.15 3440 4 2 99.88 99.94 8 99.8 61 98.2 60 33 3 4 92.38 100
0.2 3493 24 1 99.31 99.97 36 99.0 91 97.4 302 162 262 2 91.00 92.86

BOTM = Bayes optimal template matching, SIC = Subtractive interference cancellation, PBOTM = Preselection Bayes optimal template matching,
BPF = Band-pass filtering, MRTDE = Multiresolution time-dependent entropy
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Table 3. Correlation coefficient values of spikes of the SD2 dataset.

Easyl Easy2 Difficultl Difficult2
N1 N2 N3 N1 N2 N3 N1 N2 N3 N1 N2 N3
° N1 1 03175 | 0.4163 1 0.8071 | 0.8788 1 0.8007 | 0.9166 1 0.9739 0.82
‘é § N2 | 0.3175 1 0.1621 0.8071 1 0.8473 | 0.8007 1 0.9053 § 0.9739 1 0.81
N3 | 04163 | 0.1621 1 0.8788 | 0.8473 1 0.9166 | 0.9053 1 0.82 0.81 1
o N1 1 0.3032 | 0.4069 1 0.8029 | 0.8752 1 0.8015 | 0.9212 1 0.9735 | 0.8235
‘é S N2 | 0.3032 1 0.163 0.8029 1 0.8399 | 0.8015 1 0.9039 § 0.9735 1 0.8107
N3 | 0.4069 0.163 1 0.8752 | 0.8399 1 0.9212 | 0.9039 1 0.8235 | 0.8107 1
° N1 1 0.3102 0.398 1 0.8033 | 0.8771 1 0.8061 0.9257 1 0.9722 | 0.8262
3 g N2 | 0.3102 1 0.1669 | 0.8033 1 0.8494 | 0.8061 1 0.9093 | 0.9722 1 0.8082
“ N3 0.398 0.1669 1 0.8771 0.8494 1 0.9257 | 0.9093 1 0.8262 | 0.8082 1
© N1 1 0.3007 | 0.4197 1 0.8039 0.869 1 0.8005 | 0.9226 1 0.9747 | 0.8176
‘é g N2 ] 0.3007 1 0.1452 § 0.8039 1 0.8353 | 0.8005 1 0.9017 § 0.9747 1 0.8102
N3 | 0.4197 | 0.1452 1 0.869 0.8353 1 0.9226 | 0.9017 1 0.8176 | 0.8102 1

results exhibit better detection performance for fifteen of the
datasets, and comparable performance for the remaining
dataset, namely Easy2 — Noise 0.2.

In this study, we limit our focus to spike detection only. On
the other hand, in neurophysiology research and neural
monitoring applications, it is important to accurately sort the
detected spikes. Spike sorting performance is affected by
waveform shape similarities within spikes originated by the
same neuron and dissimilarities among spikes from different
neurons [45]. To investigate if the proposed pre-emphasis
method could potentially enable accurate sorting of the
detected spikes, we performed a similarity/dissimilarity
analysis on the pre-emphasized spikes of SD2. Specifically,

we performed a correlation analysis quantified by Pearson’s
correlation coefficient, r, on the spike waveforms of the SR-
based pre-emphasis outputs. Our analysis consists of the
following three steps:

- We performed a baseline correlation analysis on spikes of
the SD2 before pre-emphasis. Here, for a given recording
(e.g., Easyl 005), we obtained a template of each spike type
(neuron 1, neuron 2, or neuron 3) by ensemble averaging all
spikes under the same type. Then, we performed cross- and
auto-correlation on the templates of spikes (Table 3).

- We performed a correlation analysis on spikes pre-
emphasized by the proposed method. Here, for a given SR-
based pre-emphasis output recording, we obtained a template

Table 4. Correlation coefficient values of spikes of the SR-based pre-emphasized SD2 dataset (Template vs. Individual spikes).

Easyl Easy2 Difficultl Difficult2

NI N2 N3 N1 N2 N3 NI N2 N3 NI N2 N3

NI 0.714 0.617 0.67 0.935 0.692 0.766 0.86 0.875 0.907 0.932 0.899 0.818

© (0.116) (0.072) (0.06) (0.081) | (0.102) | (0.092) § (0.111) | (0.095) | (0.076) | (0.095) | (0.085) | (0.107)
3 N2 0.168 0.869 0.141 0.85 0.924 0.747 0.794 0.876 0.878 0.93 0.942 0.821
-2 (0.048) (0.075) | (0.044) (0.07) (0.099) | (0.083) J (0.089) | (0.013) (0.07) (0.092) | (0.082) | (0.104)
Z N3 0.071 0.231 0.873 0.887 0.777 0.889 0.75 0.868 0.915 0.699 0.674 0917
(0.072) (0.076) | (0.076) § (0.079) | (0.107) | (0.101) J (0.099) | (0.096) | (0.074) } (0.095) | (0.093) | (0.104)

NI 0.781 0.515 0.569 0916 0.671 0.745 0.836 0.856 0.888 0.912 0.882 0.799
(0.124) (0.085) | (0.047) (0.08) (0.117) | (0.115) J (0.107) | (0.088) | (0.075) J (0.085) | (0.087) | (0.107)

?m) N2 0.189 0.889 0.15 0.83 0.897 0.718 0.73 0.856 0.862 0911 0.926 0.802
'25_ (0.069) (0.084) (0.05) (0.072) | (0.103) | (0.098) § (0.089) | (0.092) | (0.066) § (0.082) | (0.082) | (0.103)
N3 0.142 0.22 0.927 0.861 0.746 0.862 0.736 0.856 0.898 0.688 0.666 0.895
(0.124) (0.118) | (0.057) § (0.085) | (0.124) | (0.113) J (0.108) | (0.094) | (0.073) } (0.094) | (0.099) (0.1)

NI 0.752 0.496 0.552 0.886 0.642 0.718 0.803 0.819 0.861 0.864 0.845 0.763

" (0.124) (0.103) | (0.065) § (0.091) | (0.124) | (0.118) J (0.111) | (0.091) | (0.078) } (0.102) | (0.099) | (0.117)
3 N2 0.192 0.858 0.155 0.805 0.865 0.701 0.693 0.819 0.832 0.865 0.891 0.763
-2 (0.086) (0.098) | (0.081) § (0.079) | (0.092) | (0.097) | (0.102) | (0.095) | (0.072) } (0.098) (0.09) (0.11)
Z N3 0.131 0.208 0.901 0.834 0.725 0.829 0.708 0.817 0.868 0.657 0.643 0.856
(0.156) (0.151) | (0.081) § (0.095) | (0.122) | (0.109) J (0.125) | (0.105) | (0.082) } (0.124) (0.12) (0.102)

N 0.709 0.48 0.561 0.707 0.478 0.482 0.758 0.772 0.83 0.825 0.817 0.718
~ (0.126) (0.114) (0.07) (0.104) | (0.113) | (0.137) § (0.113) | (0.102) | (0.079) } (0.109) (0.11) (0.13)
?’)} N2 0.181 0.828 0.145 0.751 0.726 0.5181 0.666 0.775 0.802 0.826 0.853 0.723
'ZS_ (0.115) (0.106) | (0.126) (0.09) (0.096) | (0.123) § (0.107) | (0.103) | (0.075) J (0.103) | (0.098) | (0.121)
N3 0.1346 0.198 0.851 0.715 0.563 0.574 0.672 0.767 0.836 0.634 0.625 0.808
(0.1943) | (0.172) | (0.168) § (0.104) | (0.118) [ (0.131) J (0.139) | (0.125) | (0.092) (0.14) (0.135) | (0.118)
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Table 5. Correlation coefficient changes with respect to the baseline.

Easyl Easy2 Difficultl Difficult2

N1 N2 N3 N1 N2 N3 N1 N2 N3 N1 N2 N3
° NI § -0.286 0.3 0253 | -0.065 | -0.115 | -0.113 § -0.141 | 0.075 | -0.010 } -0.068 | -0.075 | -0.002
'é’ € N2 [ -0145 [ 0131 [ -0.021 | 0.042 | -0.077 | -0.101 [ -0.006 | -0.124 [ -0.027 | -0.044 | -0.058 | 0.011
N3 § -0.346 | 0.069 | -0.127 | 0.008 | -0.066 | -0.111 } -0.166 | -0.037 | -0.085 J -0.121 | -0.136 | -0.083
© N1 § -0.219 | 0.211 0.163 | -0.084 | -0.132 | -0.131 § -0.164 | 0.055 | -0.032 } -0.088 | -0.091 | -0.024
'é S N2 §-0.114 -0.11 -0.02 0.027 | -0.104 | -0.122 § -0.072 | -0.144 | -0.042 § -0.063 | -0.074 | -0.008
N3 | -0.27 | 0.057 | -0.073 § -0.014 | -0.094 | -0.138 § -0.185 | -0.048 | -0.102 § -0.135 | -0.145 | -0.105
N NI § -0.248 | 0.186 | 0.154 | -0.114 | -0.161 | -0.159 § -0.197 | 0.013 | -0.064 § -0.136 | -0.127 | -0.063
'; g N2 § -0.118 | -0.142 | -0.012 § 0.001 -0.135 | -0.149 § -0.114 | -0.181 | -0.077 § -0.108 | -0.109 | -0.046
N3 § -0.267 | 0.041 | -0.099 § -0.043 | -0.124 | -0.171 § -0.218 | -0.093 | -0.132 § -0.169 | -0.165 | -0.144

o N1 | -0.291 0.18 0.141 J -0.293 | -0.326 | -0.387 | -0.242 | -0.028 | -0.093 § -0.175 | -0.158 -0.1
'é g N2 -0.12 -0.172 1 0.001 -0.053 | -0.274 | -0.317 4 0.134 | -0.226 -0.1 -0.149 | -0.147 | -0.087
N3 § -0.285 | 0.053 | -0.149 § -0.154 | -0.272 | -0.427 } -0.251 | -0.135 | -0.164 § -0.184 | -0.186 | -0.192

of each spike type (neuron 1, neuron 2, or neuron 3) by
ensemble averaging all spikes under the same type. Then, we
performed cross- and auto-correlation between template of a
spike type and individual spikes of the other two spike types.
We present the mean and standard deviations of the
correlation results (Table 4).

- We performed an analysis of how correlation coefficients
obtained in step 2 change from the baseline values obtained in
step 1 (Table 5). Here, a negative change in cross-correlation
coefficients corresponds to a reduced similarity between
different spike types, and thus is desired. We use red colour to
highlight those cases.

4. Discussion

The large damping of the system and the existence of a
stability point in the well collectively limit the movement of
the particle when the tilt direction and magnitude rapidly
changes with noise. However, a spike added with noise causes
the well to tilt persistently in one direction, thereby causing
larger movements of the particle resulting in SNR
improvement for different noise levels as presented in Table
1. In general, the SNR improvement, 4SNR, decreases with
the added noise level and reaches ~0 dB for noise levels >~20
(Figure 11). Notably, the trend of the ASNR decrease is
disrupted for noise levels between 6 and 10 with a local
maximum occurring at a noise level of 7 (Figure 11 - inset).
This behaviour can be explained by the contribution of
additive noise on spike enhancement dynamics. During a
spike event, the additive noise serves as a facilitator increasing
the likelihood of the particle move further away from the
stable point, thereby strengthening the spike. This
enhancement becomes more prominent for a range of noise
levels, and thus resulting in a curve similar to the characteristic
bell curve of stochastic resonance, where SNR improvement
is greater for a particular range of non-zero noise levels [32,
37].

The comparison of our pre-emphasis method against state-
of-the-art pre-emphasis methods (i.e., BPF, TEO, and wavelet
transform) reveal that, our approach offers greater SNR
improvement even for high background noise levels.
Accordingly, we anticipate that our pre-emphasis method
enabling detection of activities from distant neurons.

In terms of spike detection performance, our method of SR-
based pre-emphasising followed by thresholding offers
comparable performance to the state-of-the-art template-based
spike detection method in [6]. Unlike the template-based
methods however, our approach potentially does not suffer
from poor detection performance of spikes from low-activity
neurons.

The proposed method can contribute to the field of neural
monitoring by potentially increasing the number of spikes that
can be monitored from a recording captured by a single
electrode. Despite a theoretical number of ~1000 neurons
from which an electrode can record from; presently, the
number of sortable spikes in an extracellular recording is

Figure 11. The SNR improvements of the SR-based pre-emphasis on
SD1 with different noise intensities.
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limited to 5-10 [17-18]. Importantly, there are two major
reasons limiting the number.

First, the state-of-the-art spike detection algorithms that
perform significantly better than other spike detection
methods such as [6] follow template-based spike detection
approaches, which causes them to perform poorly in detecting
the spikes of sparsely firing neurons [16]. The first advantage
of our approach is that, it does not require waveform templates
for spike detection. Therefore, we anticipate that our method
would accurately detect spikes regardless of the activity levels
of the originating neurons.

Second, spikes from distant neurons have amplitudes
smaller than the threshold, causing them to go unnoticed even
at the spike detection stage. Based on our results from SD1,
the proposed method offers better SNR improvement
compared to standard pre-emphasizing methods of BPF, TEO,
and wavelet transform. Therefore, the second advantage of the
proposed approach is that, it could potentially detect spikes
created inside a larger radius than existing methods.

Based on our correlation analysis of spikes, the proposed
SR-based pre-emphasis methods improves the dissimilarity
between spikes of different neurons in 74 of the 96 different
comparison combinations with an average improvement
(decrease in correlation coefficients) of 0.12+0.08. In the
remaining 22 combinations, the average deterioration in
dissimilarities is small (0.099+£0.088). The results indicate
that, in most of the datasets, spike sorting on the spikes pre-
emphasized using the proposed method could potentially lead
to higher classification accuracy compared to the original
spikes in the datasets. The pre-emphasized spike outputs can
be sorted using the state-of-the-art spike sorting algorithms
such as superparamagnetic clustering [6], MountainSort [46],
or KiloSort [47].

The noise suppression mechanism of the proposed method
and the enhancement of the features with persistent changes in
one direction bears a resemblance to a moving window
averaging (MWA) filter; where the smoothed version of the
output emphasizes the portions of the signal with persistent
change (e.g., a noisy spike) while suppressing the noise-only
sections. However, there are clear differences between the two
approaches, which we demonstrate on SD1, where spikes are
from the same neuron (Figure 12). First, an MWA filter
generates spikes advancing the actual spike onset. As the
window length (WL) is increased, the time difference between
the onsets of the actual spike and the spike at the output
increases, which impairs the time resolution of spike events at
the output. On the other hand, the SR-based pre-emphasis
method follows the abrupt and persistent changes quickly,
thereby potentially enabling high detection specificity for
overlapping spikes. Second; compared to an MWA filter with
a short WL that can offer better time resolution (e.g., WL: 5
ms in Figure 12); the SR-based method offers better noise
suppression, thereby resulting in higher SNR (Figure 12).

11

apiizeme ™ SNR: 4.11 dB
Rl Ean o WS N
3 - . ‘*
T | Wh2oms /N . SNR:4.8dB
- e i I S
L2 w5 ms
° ‘ SNR: 2.79 dB
] .
21
| | SR o SNR:5.89dB
E 0 Ira, M ", ‘"'.w_.." W o N VW WA AN ’“, L]
1! 1— oise Leve| 10
- 100 ms
— d11222
bt ]

Time

Figure 12. Comparison of the SR-based pre-emphasis method with a
moving window averaging (MWA) filter. The outputs of the SR and
MWA with different window lengths (WL) are shown for a 500 ms
segment of the SD1 — Noise Level 10. The vertical line shows the spike
onset and the black dots show the spike onsets at the outputs.

There are three major limitations of the proposed pre-
emphasis and spike detection method. First, there is an upper
bound of SNR;, for which a meaningful ASNR increase is
observed. Accordingly, the spike detection performance is
limited for high input noise levels. In an actual recording
scenario, these results indicate that, to a first order
approximation, there is a maximum distance within which the
spikes can be enhanced. Second, spike detection performance
degrades for some overlapping spikes. It should be noted that,
in this study, where we present the analysis of a SR-based pre-
emphasis method of neural spikes for the first time, we use a
monostable well potential. Further analysis on different well
potentials could be investigated to address these limitations.
Third, in the proposed spike detection method, threshold
needs to be adjusted to maximize the sensitivity and positive
predictivity. Likewise, to maximize the detection
performance, the parameters a and 4 need to be optimized for
different noise levels of the neural recording (SNR;,). These
characteristics might suggest that, spike detection from a
single-channel extracellular recording can be optimized by
using multiple SR-based detectors, each tuned to maximize
the detection of spikes for a range of spike amplitudes.

Additionally, there are several limitations of this study
related to the datasets used. First, we use an intracellular-
recording-based synthetic dataset, SD1, to demonstrate the
attributes of the dynamics of the system at the desired
granularity by precisely controlling the background noise.
However, the shape of an intracellular spike in SD1 does not
accurately reflect the spikes that are seen in an extracellular
recording, such as the ones in the synthetic dataset SD2.
Furthermore, we only use a Gaussian white noise to model the
background noise in SDI. Accordingly, the SNR
improvements and the ROC AUCs obtained for different
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background noise levels could be potentially different from an
actual extracellular recording with similar background noise
intensities. It should be noted that, different noise types (i.c.,
white or colored) could result in different levels of
improvements in SNR and spike detection performances [27,
49, 50]. The effects of different noise types on the proposed
method could be investigated to unveil these differences.
Notably, the background noise of an extracellular recording
consists of different noise types including white and colored
noise originated from different sources related to the
measurement setup and environment (e.g., electrode
impedance, electromyogram) [51]. Therefore, such an
investigation could provide insights on the design of the
measurement setup.

The results of this study could find applications across
different neuroscience studies, where noise is investigated in
the context of physiological responses of the brain.
Specifically, our approach of SNR-based optimal system
parameter identification for a given noise level can be
expanded to optimizing the neurostimulation noise level that
maximizes the physiological firing responses of neurons [48].

5. Conclusion and future work

This paper presents a pre-emphasis method facilitating
stochastic resonance for spike detection in neural recordings.
We demonstrated quantitatively that, the dynamics of a
Brownian particle in a damped monostable-well can be used
to improve spike detectability by suppressing noise while
enhancing spikes. The presence of a stability point and the
large damping of the particle suppresses the noise-only
sections of the recordings. Specifically, we show that, the
spike enhancement of the additive noise is more noticeable for
a range of noise levels. Our results on a public synthetic
dataset demonstrate the spike enhancement and noise
suppression, as well as a spike detection performance
surpassing the state-of-the-art.

In future works, towards reaching an error-free spike
detection performance, we will investigate multiple SR-based
pre-emphasis and spike-detector systems operating in parallel.
As a first step, we will expand our results in this study on
synthetic extracellular datasets enabling precise control of the
intensity of accurately modelled background noise. These
datasets will enable us to investigate the correlations between
background noise level/spike amplitude in a given
extracellular dataset and the variables of the well/solver,
which can then be used to identify the architecture and
parameters of a multiple spike detector system.
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