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Abstract 

Objective: We aim to increase the number of neural spikes that can be detected in a single 

channel extracellular neural recording. Approach: We propose a pre-emphasis method 

facilitating stochastic resonance (SR), where we introduce the band-pass-filtered noisy 

extracellular recording to an overdamped Brownian particle in a monostable well. The x-

position of the Brownian particle is the output of the proposed pre-emphasis method. 

Threshold is applied on the output for spike detection. To characterize the dynamics and the 

solution of the system, we use a synthetic dataset generated by adding Gaussian white noise 

at different intensities to an intracellular recording. Then, we evaluate and compare the spike 

detection performance of the proposed method on a public synthetic extracellular dataset. 

Main results: The proposed SR-based spike detection improves the signal-to-noise ratio 

(SNR) of the intracellular-based synthetic dataset as much as 7.35 dB and outperforms the 

state-of-the-art pre-emphasis methods in false positive and false negative rates in 15 of the 16 

synthetic extracellular datasets, with 100% sensitivity and positive predictivity values in 

seven of the recordings. Significance: The method has the potential of significantly increasing 

the number of neurons that can be monitored from a single-channel extracellular recording. 

Keywords: Extracellular spike detection, mono-stable well, stochastic resonance. 

 

1. Extracellular neural monitoring and Stochastic 

Resonance 

Information is communicated across the brain in the form 

of electrical action potentials, namely neural spikes, generated 

by neurons. By analyzing spike activity, it is possible to unveil 

the brain connectivity and how information is represented in 

the brain. In fact, spike analyses have led to remarkable 

advances such as understanding brain mechanisms of different 

actions [1-3] and the disruptions in the neural networks in case 

of neurological disorders [2-5]. The foremost step to spike 

analysis is extracellular neural monitoring, where electrodes 

placed in a neural tissue capture the electrical potential 

changes corresponding to activities of neurons nearby. The 

captured signal is first amplified and filtered to improve the 

signal-to-noise-ratio (SNR). The conditioned signal is then 

pre-emphasized on which thresholding is applied for spike 

detection. Spikes are sorted based on several features (e.g., 

principal components, wavelet coefficients) to specify activity 

of different neurons. 

Researchers studying extracellular neural monitoring have 

proposed a wide range of pre-emphasis methods for accurate 

spike detection (e.g., simple band-pass filtering [6], 

superparamagnetic clustering [6], Teager energy operator 
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(TEO) [7], wavelet transform [6, 8], template matching [9], 

cepstrum of bispectrum [10], time-frequency analysis [11], 

morphological filtering [12]). In general, template-matching 

methods have demonstrated higher detection performances 

than other methods [13-15]. However, template matching does 

not achieve high detection rates for spikes of low-activity 

neurons [16], which is considered as one of the reasons 

limiting the typical number of neurons observed in a recording 

from a single electrode to ~5 to 10 [17-18]. 

With the ultimate goal of increasing the detectability of 

spikes, we investigate stochastic resonance (SR) as a pre-

emphasis method. SR is a phenomenon observed in many 

nonlinear systems including biological neurons, whereby 

noise is counterintuitively used to reinforce weak signals ([19-

22]). Initially introduced as a phenomenon to explain the 

observed periodicity in global climate dynamics [23], later, 

systems of a variety of fields ranging from biology to human 

perception have been shown to perform noise-enhanced 

detection of weak signals and thus facilitating communication 

and signal processing [24-26]. Previously, we demonstrated 

that, in a threshold-based spike detection system with band-

pass filtering implemented as the pre-emphasis method, there 

is an optimum flicker noise intensity maximizing spike 

detection sensitivity [27]. In this study, we investigate a non-

linear system facilitating the background noise to improve the 

SNR of an extracellular recording. Although several studies 

have demonstrated SR-enhanced detection of weak signals 

[28-31], SR is investigated in the context of SNR 

improvement for spike detection in extracellular recordings 

for the first time. 

We begin with describing our method and perform a 

comparison against the widely-used pre-emphasizing methods 

on a synthetic dataset with varying background noise 

intensities in Section 2. In Section 3, we evaluate the 

performance of our approach on a public synthetic dataset [6] 

and compare our results against the state-of-the-art. We 

discuss our results in Section 4, which is followed by 

conclusion and potential future work in Section 5. 

2. Datasets and methods 

2.1 Stochastic Resonance 

Stochastic resonance (SR) is a phenomenon, where noise is 

used to enhance weak signals. Typically, SR is used to detect 

weak periodic signals. A common mechanism to facilitate SR 

is observing the movement of a Brownian particle in a bistable 

well potential when the signal is applied on the particle as a 

velocity term [32]. In the steady state, the particle rests in one 

of the stable points. If a periodic signal is introduced to the 

system, the particle swings around the stability point. If the 

signal amplitude is small (subthreshold), it cannot cause the 

particle to cross the barrier between the two stable points. If 

some noise is added on the subthreshold signal, however, the 

noisy subthreshold signal can make the particle cross the 

barrier and reach the other stability point. If the added noise 

intensity is too large, the particle movement follows the noise. 

However, if the added noise is at an optimal level, the particle 

moves between the stable points at the same frequency as the 

subthreshold signal. In other words, there is an optimal noise 

level that causes the input signal to be amplified [32]. 

In this study, we investigate SR as a method to enhance neural 

signals. Then, a threshold is applied on the enhanced signal for 

spike detection. It should be noted that, for neural monitoring 

purposes, detected spikes should eventually be classified 

(spike sorting) to extract the activities of different neurons. 

Although the focus of our study is limited to spike detection, 

because performance of spike sorting algorithms depends on 

how well the waveform characteristics of neural spikes are 

preserved [6], we perform our SR analysis on a system that 

can preserve spike waveform characteristics. Therefore, rather 

than a bistable well, which can introduce non-linearities and 

discontinuities on the original spike waveforms, we perform 

our analysis using a monostable well. To understand how 

noise can enhance the signal, we can consider a hypothetical 

noise-free recording. In this case, the particle would move 

towards the walls of the well during spike events only. In an 

actual recording, where the signal has noise on it, the noise 

could cause the particle to make larger movements during the 

spike events, thereby amplifying the spike amplitudes. Like 

the bistable well case, the noise intensity should be at an 

optimal level. If the noise intensity is too small, it will not have 

much effect. If it is too large, the signal will be swamped 

inside the noise. Notably, noise-only portions of an actual 

recording would also cause the particle to move around the 

stability point. To limit those movements and improve the 

SNR further, we consider an overdamped system. 

2.2 Datasets 

We perform our analyses on two types of synthetic datasets 

(Figure 1). The synthetic-dataset-1 (SD1) is generated using 

an intracellular recording, d11222, from the hippocampus 

region CA1 of rats from the Collaborative Research in 

Computational Neuroscience (CRCNS) database [33]. We 

control the noise level by addition of zero mean gaussian white 

noise at different intensities. The dataset is 750 s long, 

sampled at 20 kHz, and consists of 628 spikes. We use SD1 to 

describe and investigate our pre-emphasis method and 

perform comparisons with three widely-used pre-emphasis 

methods; namely band-pass filtering, TEO, and wavelet 

transform. The synthetic-dataset-2 (SD2) is a public synthetic 

extracellular dataset [6]; which consists of 16 recordings 

grouped under four categories, Easy1, Easy2, Difficult1, and 

Difficult2. Each recording is 60 s long, sampled at 24 kHz, 

and consists of simulated spikes from three neurons. These 

synthetic recordings consist of spikes with waveform shapes 
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obtained from a database of ~600 spike shapes obtained from 

actual recordings in the neocortex and basal ganglia. The 

dataset mimics the background noise by including the small 

amplitude spikes from hypothetical distant neurons. The 

datasets contain spike trains with randomly-generated event 

times from three distinct neurons, each having an average 

firing rate of 20 Hz. The spike trains and noise are combined 

to generate the synthetic recordings. The noise levels 

correspond to the noise standard deviations normalized by the 

spike amplitudes. 

In the literature, SD2 is widely used as a benchmarking 

dataset for evaluation of spike detection algorithms [12, 14, 

15, 34-36]. Therefore, we use this dataset to validate the 

performance of our method on a realistic extracellular 

recording as well as do a direct comparison against the state-

of-the-art spike-detection methods reported. 

 2.3 SR-based pre-emphasis 

Our pre-emphasis method involves monitoring the 

movement of an overdamped Brownian particle in a nonlinear 

system, which is governed by the special form of the Langevin 

equation with neglected inertia term as [37]: 

 
𝑑𝑥(𝑡)

𝑑𝑡
= −

𝑑𝑈0(𝑥,𝑡)

𝑑𝑥
+ 𝑠𝑛(𝑡),     (1) 

where 𝑥(𝑡) is the x-position of the particle, 𝑈0(𝑥, 𝑡)  is a 

potential well that the particle interacts with; and 𝑠𝑛(𝑡) =

𝑠(𝑡) + 𝑛(𝑡) is a noisy signal with 𝑠(𝑡) and 𝑛(𝑡) being the 

signal and noise, respectively. A closer look into (1) reveals 

that, in this system, the velocity of the particle, 
𝑑𝑥(𝑡)

𝑑𝑡
, is 

controlled by two terms on the right-hand side of the equation. 

The first term, which has negative sign, represents the 

contribution of the potential well on the particle velocity. 

Essentially, the particle tends to move towards the stable 

point, which is the opposite direction to the sign of the well 

slope. The second term represents the contribution of the 

system input on the particle velocity. In our case, we introduce 

a band-pass filtered (BPF) version of the input signal, 𝑠𝑛(𝑡), 

to the particle. We use a Kaiser window, finite impulse 

response (FIR) filter with cut-offs 300 Hz – 6 kHz. The BPF 

output signal is 𝑠𝑛,𝐹(𝑡). 

To graphically understand the movement of the Brownian 

particle, we modify equation (1) such that both terms are 

incorporated inside a new time-dependent potential well, 

𝑈(𝑥, 𝑡) [30]: 

 

𝑑𝑥(𝑡)

𝑑𝑡
= −

𝑑𝑈(𝑥, 𝑡)

𝑑𝑥
, (2) 

where 

𝑈(𝑥, 𝑡) = 𝑈0(𝑥, 𝑡) − 𝑥 ∙ 𝑠𝑛,𝐹(𝑡). (3) 

Based on (3), the monostable well, which the particle 

interacts with, has both temporal and spatial characteristics 

that collectively impact the movement of the particle. From 

(2), at a given time instant, the particle tends to move towards 

the stable point of 𝑈(𝑥, 𝑡) at a velocity equal to the amplitude 

of the slope of the well calculated at where the particle is 

 

Figure 2. The proposed SR-based pre-emphasis method is based on the 

interaction of a Brownian particle in an overdamped monostable well. 

The original well, 𝑈0(𝑥), drawn in red, has a stable point at x=0. Based 

on equation (3) in the text, the shape of the potential is changed 

depending on the band-pass filtered input signal, 𝑠𝑛,𝐹(𝑡). The resultant 

potential wells corresponding to different time instances are drawn in 

black. The movement of the particle is also illustrated. For numerical 

solution of the particle movement, refer to equations (5)-through-(7) in 

the text. The system output is the x-position of the particle. 

 

Figure 1. Close-up view to the spikes in the synthetic datasets used in 

the study. Top: Noise added on an intracellular recording. Bottom: 

Synthetic extracellular dataset in [6]. 
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located. The output of the system is the x-position of the 

particle. 

The last step before illustrating the particle movement in 

the well is defining the well potential. As previously 

mentioned in Section 2.1, for neural spike pre-emphasis 

application, we investigate a monostable well potential given 

as: 

 

   𝑈0(𝑥) = 𝑎𝑥2/2 + 𝑏𝑥4/4.     𝑎, 𝑏 > 0 (4) 

After replacing the monostable well expression in (4) inside 

(3), we illustrate the variation of 𝑈(𝑥, 𝑡) for a short-period, T, 

(T<1 ms) of an exemplary 𝑠𝑛,𝐹 in Figure 2. The potential well 

drawn in red represents 𝑈0(𝑥). The potential wells drawn in 

black represent 𝑈(𝑥, 𝑡) for different 𝑡 ∈ (0, 𝑇). To find the 

movement of the Brownian particle, we first combine the 

equations (2)-(4), leading to: 

𝑑𝑥(𝑡)

𝑑𝑡
= −[𝑎𝑥(𝑡) + 𝑏𝑥3(𝑡)] + 𝑠𝑛,𝐹(𝑡).    (5) 

A flowchart representing the equation (5) is presented in 

Figure 3. In the digital domain, solution of (5), an ordinary 

differential equation, can be approximated by an iterative 

numerical method, namely the fourth-order Runge-Kutta (RK) 

method, described by [37]: 

 

𝑥[𝑛 + 1] = 𝑥[𝑛] + (𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4)/6, (6) 

where 𝑥[𝑛] is the nth sample of 𝑥(𝑡) and 𝑘1 through 𝑘4 are 

given as: 

 
𝑘1 = ℎ [−𝑎𝑥[𝑛] − 𝑏𝑥3[𝑛] + 𝑠𝑛[𝑛]] 

(7) 

𝑘2 = ℎ [−𝑎 (𝑥[𝑛] +
𝑘1

2
) − 𝑏 (𝑥[𝑛] +

𝑘1

2
)

3

+ 𝑠𝑛[𝑛 + 1]] 

𝑘3 = ℎ [−𝑎 (𝑥[𝑛] +
𝑘2

2
) − 𝑏 (𝑥[𝑛] +

𝑘2

2
)

3

+ 𝑠𝑛[𝑛 + 1]] 

𝑘4 = ℎ [−𝑎(𝑥[𝑛] + 𝑘3) − 𝑏(𝑥[𝑛] + 𝑘3)3 + 𝑠𝑛[𝑛 + 2]]. 

 

In (7), ℎ is the interval size of the approximation; and 

𝑠𝑛[𝑛], 𝑠𝑛[𝑛 + 1], and 𝑠𝑛[𝑛 + 2] are respectively the nth, n+1st, 

and n+2nd samples of 𝑠𝑛(𝑡). A graphical representation and a 

description of how RK method approximates the movement of 

the particle is provided in Figure 4 and its caption. 

The change in the potential well and the response of the 

system at different time instances for non-spike and spike 

events are shown in Figure 5. The over-damped system cannot 

respond sufficiently fast to the rapid and arbitrary changes 

during non-spike regions; thereby causing the particle to 

remain in the proximity of the stable equilibrium point, 𝑥 = 0 

(Figure 5(c) - Left) A noisy spike on the other hand causes a 

persistent change in the well potential for a period that is 

sufficiently long to move the particle outside the equilibrium 

point (Figure 5(c) - Right). 

In equations (3)-(5), proper selection of positive-valued 

𝑎, 𝑏, and ℎ is critical to achieve high SNR at the output. In the 

literature, several SNR definitions are made in the context of 

spike detection [7, 8, 39-42]. We calculate the SNR as the ratio 

of the peak-to-peak amplitude (𝐴𝑝𝑝) of the minimum-

amplitude spike in the dataset to the peak-to-peak amplitude 

of a noise-only portion of the recording: 

 

𝑆𝑁𝑅 = 20𝑙𝑜𝑔 (
𝐴𝑝𝑝 𝑜𝑓 𝑠𝑝𝑖𝑘𝑒 𝑤𝑖𝑡ℎ 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒

𝐴𝑝𝑝 𝑜𝑓 𝑎 𝑛𝑜𝑖𝑠𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡
).     (6) 

For noise App calculation, 60 s and 2 s of total noise-only 

segment durations are used in SD1 and SD2, respectively. 

We perform parametric search for the optimum values of a, 

b, and h maximizing the SNR. Variation of SNR for SD1 with 

 

Figure 3. A flowchart of the differential equation, which is given in 

equation (5) in the text, solved to find the x-position of the Brownian 

particle in an overdamped monostable well. The differential equation is 

solved using the fourth-order Runge Kutta method described using 

equations (6)-(7) in the text. 

 

Figure 4. A graphical illustration of the Runge-Kutta (RK) method. The 

sum of the negative derivative of the well potential and the noisy input 

signal are evaluated at, x[n], the original position of the particle at the nth 

data point to obtain a slope parameter k1. Then, a new slope, k2, is 

calculated using the sum evaluated at a new position informed by both 

the original particle position and the previous slope, k1. The process is 

repeated to find two additional slopes, k3 and k4,. The x[n] and all 

calculated slopes are linearly combined to find x[n+1]. 
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a noise level of 10 is presented in Figure 6. The output SNR is 

correlated more strongly to a than b for a given input noise 

level. This result is explained by the stronger dependence of 

𝑈0 to a than b values in (3) for x between -0.001 and 0.001, 

the dynamic range of the x-position of the particle moves for 

different datasets [Figure 6(a) inset]. Our parametric search 

has led to different optimum values for the a and h parameters 

for a range of background noise levels between 1 and 50. The 

corresponding input SNR, SNRin, ranges between -1.16 dB and 

+0.3 dB. The corresponding output SNR, SNRout, ranges 

between -1.2 dB to +7.65 dB (Table 1). 

The dc level of the input signal impacts the stability point 

of the dynamic system. An input signal with zero mean, which 

indicates that the average added velocity of the particle is also 

zero, causes the particle to move around x0=0. However, a 

positive (negative) dc level shifts the stability point to x0>0 

(x0<0). The outputs of the system corresponding to SD1 with 

a noise level of 10 for three dc levels of [-20, 0, +20] are shown 

in Figure 7. 

 

 

 

 

Figure 5. The response of the SR-based pre-emphasis method to non-spike (noise) and spike segments in SD1 with a noise-level of 10. (a) 200 s portion of 

SD1 and the SR-output. The intracellular recording d11222 is shown to indicate the spike locations. Amplitudes of all waveforms are normalized for 

visualization purposes. The two highlighted segments show non-spike and spike cases. (b) The close-up view of the two highlighted segments in (a). The 

black dots represent the data points at which the well and the Brownian particle movements are illustrated in (c). Fifteen data points, t1 through t15, per case 

are used to show the changes in the well-shape for non-spike and spike cases. The data points for the spike event are selected as the time instances over which 

the spike in d11222 is rising. (c) The well shape and the particle movement are shown (center). The red-line represents the original well shape, U(x), with 

zero input. The black lines represent the changes in the well-shape. The movement of the particle is demonstrated on half of the data points. The dashed 

rectangle represents the close-up views of the changes for the non-spike (left) and spike (right) cases. 
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2.4 Conventional pre-emphasis methods 

To assess the detection performance of the proposed SR-

based pre-emphasis method, we performed a comparison 

against the conventional methods of (i) band-pass filtering, (ii) 

TEO, and (iii) wavelet transform. Below we describe the 

implementation details of those methods. 

Following the literature [6]; in band-pass filtering, the 

signal is filtered by a Kaiser-window FIR-filter with high-pass 

and low-pass cutoff frequencies of 300 Hz and 6 kHz. 

Teager Energy Operator (TEO) emphasizes local peaks in 

both amplitude and frequency [43], thereby making it 

sensitive to spikes in a neural recording. The discrete-time 

TEO is given as: 

 

   𝜓(𝑥[𝑛]) = 𝑥2[𝑛] − 𝑥[𝑛 + 1] ∙ 𝑥[𝑛 − 1].               (7) 

TEO suffers from degraded detection performance in low 

SNR and/or high noise peak scenarios [7, 41]. To smooth TEO 

output, following the literature [7], we use the Hamming-

window FIR filter of length 5 with the following coefficients: 

 

        𝑤(𝑛) = [0.08 0.54 1 0.54 0.08].                   (8) 

Discrete wavelet transform (DWT) is implemented with 

different mother wavelets with sym4 being the most 

pronounced mother wavelet for pre-emphasizing in the 

literature [8, 44]. Accordingly, sym4 is used as mother wavelet 

in this paper. 

2.5 Thresholding for spike detection 

Spikes in the pre-emphasized signals are determined via 

thresholding. Threshold levels giving the minimum false 

negative (FN) and false positive (FP) values are used. We use 

FN and FP values; and true-detection and false-alarm rates as 

performance assessment and comparison metrics. 

True-detection rate (TDR) is defined as the ratio between 

number of spikes correctly detected (true positive, TP) and the 

total number of spikes in recording. False alarm rate (FAR) is 

defined as the number of falsely detected spikes (FP) per 

second. 

𝑇𝑃𝑅 (%) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
∗ 100 

(9) 
𝐹𝐴𝑅 =

𝐹𝑃

𝑟𝑒𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 (𝑠)
. 

 

Figure 6. Parametric search to optimize a, b, and h. that would maximize 

the SNR. The results are given for SD1 with noise level: 10 (a) The 

parameter b has a weak control over the well potential, U0 (Inset). 

Therefore, SNR is primarily dependent on the parameter a. (b) The SNR 

is strongly dependent on the well parameter a and the step-size parameter, 

h, of the Runge-Kutta approximation method. 

Table 1. Optimum well and solver parameters for different 

background noise levels 

Added 

Noise Level 

SNRin 

(dB) 
a h 

SNRout 

(dB) 

1 0.3 960 1.47 x 10-5 7.65 
2 -0.71 970 1.09 x 10-5 5.34 

3 -0.81 1050 9.3 x 10-6 3.98 

4 -0.86 1050 1 x 10-5 3.26 
5 -0.96 1020 8.7 x 10-6 2.93 

6 -1.03 1050 1.11 x 10-5 2.05 

7 -1.04 1050 9.17 x 10-6 2.22 
8 -1.05 1050 6.99 x 10-6 2.09 

9 -1.06 1050 7.87 x 10-6 1.6 

10 -1.1 1050 7.4 x 10-6 1.1 
15 -1.08 1000 1.54 x 10-5 -0.56 

20 -1.11 1000 1.79 x 10-5 -1.07 

40 -1.17 1060 1.4 x 10-3 -1.2 
50 -1.16 1190 1 x 10-3 -1.2 

 

 

 

Figure 7. Different dc levels of the input signal change the stability point 

of the particle, and thus the dc level of the output signal. Input and output 

dc levels of the three cases are indicated for each plot. All output signals 

have identical SNR values of 1.1 dB. 
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2.6 Receiver operating characteristic (ROC) 

Receiver operating characteristic (ROC) curves of pre-

emphasis methods are extracted by changing the detection 

threshold from 0.1σ to 8σ, where σ is the standard deviation 

of the noise segment. Based on TPR and FAR values for each 

level of detection threshold, ROC curves are plotted and then 

area under curve (AUC) is calculated. 

3. Results 

After optimizing the SR-based pre-emphasis method for 

different background noise intensities, we obtained the TPR 

and FAR for the SD1. For SD1 with noise levels of 5 (SNRin 

=-0.96 dB) and 20 (SNRin =-1.11 dB); the original intracellular 

recording, the noise-added input signal, the SR-based pre-

emphasized output, and the threshold level are presented for a 

50 s portion of the signals in Figure 8(a, b). To demonstrate 

the enhancement of the spikes, we highlight one of the spikes. 

For these two SD1 signals, SNR improvements calculated as 

the SNR differences between the SR output and the noisy 

input signal (ΔSNR=SNRout-SNRin) are 3.89 dB and 0.4 dB. 

The receiver operating characteristic curves (ROC) for a range 

of noise levels between 1 (SNRin=0.3 dB) and 50 (SNRin=-1.16 

dB) are presented in Figure 8(c). For noise levels <10 (SNRin>-

1.1 dB) the AUC of the curves are greater than 98% of the 

maximum area. The outputs of the proposed SR-based pre-

emphasis method and those of BPF, TEO, and wavelet 

 

Figure 8. The response of the SR-based pre-emphasis method to SD1. 

50 s portions of the input, the output, and the intracellular recording for 

the noise level of 5 and 20 are presented in (a) and (b). In the upper plots 

of each section, the original amplitudes of the noise-added input signal 

and the d11222 are shown. In the lower plots, the amplitudes of the SR 

output and the d11222 are normalized for visualization purposes. The 

close-up views (insets) show the noisy input and demonstrate the spike 

enhancement and noise suppression for one of the spikes. The threshold 

levels are shown as the horizontal red lines. (c) For different noise levels, 

the ROC curves are plotted. The area under the curves (AUCs) range 

from 199.2 (Noise Level 1) to 144.6 (Noise Level 50). 

 

Figure 9. Comparison of the SR-based pre-emphasis method output to 

SD1 with the commonly-used methods. (a) 10 s portions of the outputs of 

the SR-based, DWT, TEO, and BPF pre-emphasis methods to the SD1 

with noise level: 10 are shown. Amplitudes of the SD1 and the output 

waveforms are normalized. A scaled version of the d11222 is also shown 

to indicate the spike locations. (b) The ROCs for all methods. 
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transform for a 10 s portion of the SD1 with a noise level of 

10 (SNRin=-1.1 dB) are presented in Figure 9(a). The ROCs 

are presented in Figure 9(b). The SR-based pre-emphasis 

method AUC is 97% of the maximum area, whereas the other 

methods achieve AUC<77%. 

The proposed method improves the threshold-detection of 

the recordings in the SD2. In Figure 10; the input, SR output, 

threshold level, actual and detected spike locations are 

presented for a 20 s portion of the SD2 recording with the least 

detection accuracy, namely Difficult2 - Noise 0.2. Majority of 

the 24 missed spikes in this recording are overlapping, three 

of which are highlighted in Figure 10; where examples of 

spike enhancement (A) and noise suppression (B) are also 

highlighted. For the complete SD2 datasets, we summarize the 

detection performance of the SR-based pre-emphasis method 

in Table 2. For comparison, we also present the spike detection 

accuracies of the state-of-the-art methods using the same 

datasets. Notably, compared to the best performing method in 

[14], where Bayes optimal template-matching (BOTM) and 

subtractive interference cancellation (SIC) are used, our 

 

Figure 10. A 20 s section of the SR-based pre-emphasis method output for the SD2 dataset with the least spike detection accuracy, Difficult2 Noise 0.2. The 

close-up view on the left shows three of the 24 total missed spikes in this dataset. In general, overlapping spikes are missed. The close-up view on the right 

demonstrates the SR-output preventing a false negative (A) and a false positive (B). 

Table 2. Detection performance of the proposed method and the other state-of-the-art using the synthetic-dataset-2 in [6] 

 
# of 

Spikes 

This Work 

Stochastic-Resonance 

[14] 

Wave_clus, 

BOTM, SIC 

[15] 

PBOTM 

[33] 

Two side 

thresholding 

[6] 

BPF 

[35] 

MRTDE 

#FN #FP 
Se 

(%) 

Pp 

(%) 

# FN 

+ FP 

Se 

(%) 

# FN 

+ FP 

Se 

(%) 
#FN #FP #FN # FP 

Se 

(%) 

Pp 

(%) 

E
a

sy
1
 0.05 3514 0 0 100 100 11 99.7 68 98.1 17 9 17 711 93.75 100 

0.1 3522 2 0 99.95 100 4 99.9 58 98.4 26 32 2 57 93.28 100 
0.15 3477 5 3 99.86 99.92 8 99.8 63 98.2 61 114 145 14 95.50 100 

0.2 3474 4 4 99.89 99.89 9 99.7 84 97.6 170 212 714 10 95.54 99.07 

E
a

sy
2
 0.05 3410 0 0 100 100 2 99.9 58 98.3 34 5 0 0 92.86 100 

0.1 3520 0 0 100 100 6 99.8 47 98.7 27 2 0 2 93.60 100 

0.15 3411 0 1 100 99.97 4 99.9 52 98.5 55 12 10 1 93.33 98.00 
0.2 3526 5 4 99.86 99.89 6 99.8 78 97.8 259 157 376 5 90.60 99.07 

D
if

f1
 0.05 3383 0 0 100 100 2 99.9 58 98.3 30 0 1 63 93.07 100 

0.1 3448 0 0 100 100 18 99.5 57 98.3 34 4 0 10 96.08 100 

0.15 3472 1 0 99.97 100 9 99.7 61 98.2 68 21 8 6 95.83 100 

0.2 3414 5 4 99.85 99.88 20 99.4 92 97.3 175 169 184 2 96.15 100 

D
if

f2
 0.05 3364 0 0 100 100 8 99.8 53 98.4 31 2 0 1 94.44 100 

0.1 3462 0 0 100 100 5 99.9 38 98.9 21 2 0 5 95.50 100 

0.15 3440 4 2 99.88 99.94 8 99.8 61 98.2 60 33 3 4 92.38 100 

0.2 3493 24 1 99.31 99.97 36 99.0 91 97.4 302 162 262 2 91.00 92.86 

BOTM = Bayes optimal template matching, SIC = Subtractive interference cancellation, PBOTM = Preselection Bayes optimal template matching,            

BPF = Band-pass filtering, MRTDE = Multiresolution time-dependent entropy 
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results exhibit better detection performance for fifteen of the 

datasets, and comparable performance for the remaining 

dataset, namely Easy2 – Noise 0.2. 

In this study, we limit our focus to spike detection only. On 

the other hand, in neurophysiology research and neural 

monitoring applications, it is important to accurately sort the 

detected spikes. Spike sorting performance is affected by 

waveform shape similarities within spikes originated by the 

same neuron and dissimilarities among spikes from different 

neurons [45]. To investigate if the proposed pre-emphasis 

method could potentially enable accurate sorting of the 

detected spikes, we performed a similarity/dissimilarity 

analysis on the pre-emphasized spikes of SD2. Specifically, 

we performed a correlation analysis quantified by Pearson’s 

correlation coefficient, r, on the spike waveforms of the SR-

based pre-emphasis outputs. Our analysis consists of the 

following three steps: 

- We performed a baseline correlation analysis on spikes of 

the SD2 before pre-emphasis. Here, for a given recording 

(e.g., Easy1_005), we obtained a template of each spike type 

(neuron 1, neuron 2, or neuron 3) by ensemble averaging all 

spikes under the same type. Then, we performed cross- and 

auto-correlation on the templates of spikes (Table 3). 

- We performed a correlation analysis on spikes pre-

emphasized by the proposed method. Here, for a given SR-

based pre-emphasis output recording, we obtained a template 

Table 3. Correlation coefficient values of spikes of the SD2 dataset. 

 
Easy1 Easy2 Difficult1 Difficult2 

N1 N2 N3 N1 N2 N3 N1 N2 N3 N1 N2 N3 

N
o
is

e

0
0
5

 N1 1 0.3175 0.4163 1 0.8071 0.8788 1 0.8007 0.9166 1 0.9739 0.82 

N2 0.3175 1 0.1621 0.8071 1 0.8473 0.8007 1 0.9053 0.9739 1 0.81 

N3 0.4163 0.1621 1 0.8788 0.8473 1 0.9166 0.9053 1 0.82 0.81 1 

N
o
is

e 

0
1

 

N1 1 0.3032 0.4069 1 0.8029 0.8752 1 0.8015 0.9212 1 0.9735 0.8235 

N2 0.3032 1 0.163 0.8029 1 0.8399 0.8015 1 0.9039 0.9735 1 0.8107 

N3 0.4069 0.163 1 0.8752 0.8399 1 0.9212 0.9039 1 0.8235 0.8107 1 

N
o
is

e

0
1
5

 N1 1 0.3102 0.398 1 0.8033 0.8771 1 0.8061 0.9257 1 0.9722 0.8262 

N2 0.3102 1 0.1669 0.8033 1 0.8494 0.8061 1 0.9093 0.9722 1 0.8082 

N3 0.398 0.1669 1 0.8771 0.8494 1 0.9257 0.9093 1 0.8262 0.8082 1 

N
o
is

e

0
2

 

N1 1 0.3007 0.4197 1 0.8039 0.869 1 0.8005 0.9226 1 0.9747 0.8176 

N2 0.3007 1 0.1452 0.8039 1 0.8353 0.8005 1 0.9017 0.9747 1 0.8102 

N3 0.4197 0.1452 1 0.869 0.8353 1 0.9226 0.9017 1 0.8176 0.8102 1 

 

Table 4. Correlation coefficient values of spikes of the SR-based pre-emphasized SD2 dataset (Template vs. Individual spikes). 

 
Easy1 Easy2 Difficult1 Difficult2 

N1 N2 N3 N1 N2 N3 N1 N2 N3 N1 N2 N3 

N
o

is
e0

0
5
 N1 

0.714 

(0.116) 

0.617 

(0.072) 

0.67 

(0.06) 

0.935 

(0.081) 

0.692 

(0.102) 

0.766 

(0.092) 

0.86 

(0.111) 

0.875 

(0.095) 

0.907 

(0.076) 

0.932 

(0.095) 

0.899 

(0.085) 

0.818 

(0.107) 

N2 
0.168 

(0.048) 

0.869 

(0.075) 

0.141 

(0.044) 

0.85 

(0.07) 

0.924 

(0.099) 

0.747 

(0.083) 

0.794 

(0.089) 

0.876 

(0.013) 

0.878 

(0.07) 

0.93 

(0.092) 

0.942 

(0.082) 

0.821 

(0.104) 

N3 
0.071 

(0.072) 

0.231 

(0.076) 

0.873 

(0.076) 

0.887 

(0.079) 

0.777 

(0.107) 

0.889 

(0.101) 

0.75 

(0.099) 

0.868 

(0.096) 

0.915 

(0.074) 

0.699 

(0.095) 

0.674 

(0.093) 

0.917 

(0.104) 

N
o

is
e0

1
 

N1 
0.781 

(0.124) 

0.515 

(0.085) 

0.569 

(0.047) 

0.916 

(0.08) 

0.671 

(0.117) 

0.745 

(0.115) 

0.836 

(0.107) 

0.856 

(0.088) 

0.888 

(0.075) 

0.912 

(0.085) 

0.882 

(0.087) 

0.799 

(0.107) 

N2 
0.189 

(0.069) 

0.889 

(0.084) 

0.15 

(0.05) 

0.83 

(0.072) 

0.897 

(0.103) 

0.718 

(0.098) 

0.73 

(0.089) 

0.856 

(0.092) 

0.862 

(0.066) 

0.911 

(0.082) 

0.926 

(0.082) 

0.802 

(0.103) 

N3 
0.142 

(0.124) 

0.22 

(0.118) 

0.927 

(0.057) 

0.861 

(0.085) 

0.746 

(0.124) 

0.862 

(0.113) 

0.736 

(0.108) 

0.856 

(0.094) 

0.898 

(0.073) 

0.688 

(0.094) 

0.666 

(0.099) 

0.895 

(0.1) 

N
o

is
e0

1
5
 N1 

0.752 

(0.124) 

0.496 

(0.103) 

0.552 

(0.065) 

0.886 

(0.091) 

0.642 

(0.124) 

0.718 

(0.118) 

0.803 

(0.111) 

0.819 

(0.091) 

0.861 

(0.078) 

0.864 

(0.102) 

0.845 

(0.099) 

0.763 

(0.117) 

N2 
0.192 

(0.086) 

0.858 

(0.098) 

0.155 

(0.081) 

0.805 

(0.079) 

0.865 

(0.092) 

0.701 

(0.097) 

0.693 

(0.102) 

0.819 

(0.095) 

0.832 

(0.072) 

0.865 

(0.098) 

0.891 

(0.09) 

0.763 

(0.11) 

N3 
0.131 

(0.156) 

0.208 

(0.151) 

0.901 

(0.081) 

0.834 

(0.095) 

0.725 

(0.122) 

0.829 

(0.109) 

0.708 

(0.125) 

0.817 

(0.105) 

0.868 

(0.082) 

0.657 

(0.124) 

0.643 

(0.12) 

0.856 

(0.102) 

N
o

is
e0

2
 

N1 
0.709 

(0.126) 

0.48 

(0.114) 

0.561 

(0.07) 

0.707 

(0.104) 

0.478 

(0.113) 

0.482 

(0.137) 

0.758 

(0.113) 

0.772 

(0.102) 

0.83 

(0.079) 

0.825 

(0.109) 

0.817 

(0.11) 

0.718 

(0.13) 

N2 
0.181 

(0.115) 

0.828 

(0.106) 

0.145 

(0.126) 

0.751 

(0.09) 

0.726 

(0.096) 

0.5181 

(0.123) 

0.666 

(0.107) 

0.775 

(0.103) 

0.802 

(0.075) 

0.826 

(0.103) 

0.853 

(0.098) 

0.723 

(0.121) 

N3 
0.1346 

(0.1943) 

0.198 

(0.172) 

0.851 

(0.168) 

0.715 

(0.104) 

0.563 

(0.118) 

0.574 

(0.131) 

0.672 

(0.139) 

0.767 

(0.125) 

0.836 

(0.092) 

0.634 

(0.14) 

0.625 

(0.135) 

0.808 

(0.118) 
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of each spike type (neuron 1, neuron 2, or neuron 3) by 

ensemble averaging all spikes under the same type. Then, we 

performed cross- and auto-correlation between template of a 

spike type and individual spikes of the other two spike types. 

We present the mean and standard deviations of the 

correlation results (Table 4). 

- We performed an analysis of how correlation coefficients 

obtained in step 2 change from the baseline values obtained in 

step 1 (Table 5). Here, a negative change in cross-correlation 

coefficients corresponds to a reduced similarity between 

different spike types, and thus is desired. We use red colour to 

highlight those cases. 

4. Discussion 

The large damping of the system and the existence of a 

stability point in the well collectively limit the movement of 

the particle when the tilt direction and magnitude rapidly 

changes with noise. However, a spike added with noise causes 

the well to tilt persistently in one direction, thereby causing 

larger movements of the particle resulting in SNR 

improvement for different noise levels as presented in Table 

1. In general, the SNR improvement, ΔSNR, decreases with 

the added noise level and reaches ~0 dB for noise levels >~20 

(Figure 11). Notably, the trend of the ΔSNR decrease is 

disrupted for noise levels between 6 and 10 with a local 

maximum occurring at a noise level of 7 (Figure 11 - inset). 

This behaviour can be explained by the contribution of 

additive noise on spike enhancement dynamics. During a 

spike event, the additive noise serves as a facilitator increasing 

the likelihood of the particle move further away from the 

stable point, thereby strengthening the spike. This 

enhancement becomes more prominent for a range of noise 

levels, and thus resulting in a curve similar to the characteristic 

bell curve of stochastic resonance, where SNR improvement 

is greater for a particular range of non-zero noise levels [32, 

37]. 

The comparison of our pre-emphasis method against state-

of-the-art pre-emphasis methods (i.e., BPF, TEO, and wavelet 

transform) reveal that, our approach offers greater SNR 

improvement even for high background noise levels. 

Accordingly, we anticipate that our pre-emphasis method 

enabling detection of activities from distant neurons. 

In terms of spike detection performance, our method of SR-

based pre-emphasising followed by thresholding offers 

comparable performance to the state-of-the-art template-based 

spike detection method in [6]. Unlike the template-based 

methods however, our approach potentially does not suffer 

from poor detection performance of spikes from low-activity 

neurons. 

The proposed method can contribute to the field of neural 

monitoring by potentially increasing the number of spikes that 

can be monitored from a recording captured by a single 

electrode. Despite a theoretical number of ~1000 neurons 

from which an electrode can record from; presently, the 

number of sortable spikes in an extracellular recording is 

Table 5. Correlation coefficient changes with respect to the baseline. 

 
Easy1 Easy2 Difficult1 Difficult2 

N1 N2 N3 N1 N2 N3 N1 N2 N3 N1 N2 N3 

N
o
is

e

0
0
5

 N1 -0.286 0.3 0.253  -0.065 -0.115  -0.113 -0.141 0.075 -0.010 -0.068 -0.075 -0.002 

N2 -0.145  -0.131 -0.021 0.042 -0.077 -0.101 -0.006 -0.124 -0.027 -0.044 -0.058 0.011 

N3 -0.346 0.069 -0.127 0.008 -0.066 -0.111 -0.166 -0.037 -0.085 -0.121 -0.136 -0.083 

N
o
is

e 

0
1

 

N1 -0.219 0.211  0.163  -0.084 -0.132 -0.131 -0.164 0.055 -0.032 -0.088 -0.091 -0.024 

N2 -0.114 -0.11  -0.02  0.027 -0.104 -0.122 -0.072 -0.144 -0.042 -0.063 -0.074 -0.008 

N3 -0.27 0.057 -0.073  -0.014 -0.094 -0.138 -0.185 -0.048 -0.102 -0.135 -0.145 -0.105 

N
o
is

e 

0
1
5

 

N1 -0.248 0.186 0.154 -0.114 -0.161 -0.159 -0.197 0.013 -0.064 -0.136 -0.127 -0.063 

N2 -0.118  -0.142 -0.012 0.001 -0.135 -0.149 -0.114 -0.181 -0.077 -0.108 -0.109 -0.046 

N3 -0.267 0.041 -0.099 -0.043 -0.124 -0.171 -0.218 -0.093 -0.132 -0.169 -0.165 -0.144 

N
o
is

e 

0
2

 

N1 -0.291 0.18 0.141 -0.293 -0.326 -0.387 -0.242 -0.028 -0.093 -0.175 -0.158 -0.1 

N2 -0.12 -0.172 0.001 -0.053 -0.274 -0.317 0.134 -0.226 -0.1 -0.149 -0.147 -0.087 

N3 -0.285 0.053 -0.149 -0.154 -0.272 -0.427 -0.251 -0.135 -0.164 -0.184 -0.186 -0.192 

 

 

Figure 11. The SNR improvements of the SR-based pre-emphasis on 

SD1 with different noise intensities. 
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limited to 5-10 [17-18]. Importantly, there are two major 

reasons limiting the number. 

First, the state-of-the-art spike detection algorithms that 

perform significantly better than other spike detection 

methods such as [6] follow template-based spike detection 

approaches, which causes them to perform poorly in detecting 

the spikes of sparsely firing neurons [16]. The first advantage 

of our approach is that, it does not require waveform templates 

for spike detection. Therefore, we anticipate that our method 

would accurately detect spikes regardless of the activity levels 

of the originating neurons. 

Second, spikes from distant neurons have amplitudes 

smaller than the threshold, causing them to go unnoticed even 

at the spike detection stage. Based on our results from SD1, 

the proposed method offers better SNR improvement 

compared to standard pre-emphasizing methods of BPF, TEO, 

and wavelet transform. Therefore, the second advantage of the 

proposed approach is that, it could potentially detect spikes 

created inside a larger radius than existing methods. 

Based on our correlation analysis of spikes, the proposed 

SR-based pre-emphasis methods improves the dissimilarity 

between spikes of different neurons in 74 of the 96 different 

comparison combinations with an average improvement 

(decrease in correlation coefficients) of 0.12±0.08. In the 

remaining 22 combinations, the average deterioration in 

dissimilarities is small (0.099±0.088). The results indicate 

that, in most of the datasets, spike sorting on the spikes pre-

emphasized using the proposed method could potentially lead 

to higher classification accuracy compared to the original 

spikes in the datasets. The pre-emphasized spike outputs can 

be sorted using the state-of-the-art spike sorting algorithms 

such as superparamagnetic clustering [6], MountainSort [46], 

or KiloSort [47]. 

The noise suppression mechanism of the proposed method 

and the enhancement of the features with persistent changes in 

one direction bears a resemblance to a moving window 

averaging (MWA) filter; where the smoothed version of the 

output emphasizes the portions of the signal with persistent 

change (e.g., a noisy spike) while suppressing the noise-only 

sections. However, there are clear differences between the two 

approaches, which we demonstrate on SD1, where spikes are 

from the same neuron (Figure 12). First, an MWA filter 

generates spikes advancing the actual spike onset. As the 

window length (WL) is increased, the time difference between 

the onsets of the actual spike and the spike at the output 

increases, which impairs the time resolution of spike events at 

the output. On the other hand, the SR-based pre-emphasis 

method follows the abrupt and persistent changes quickly, 

thereby potentially enabling high detection specificity for 

overlapping spikes. Second; compared to an MWA filter with 

a short WL that can offer better time resolution (e.g., WL: 5 

ms in Figure 12); the SR-based method offers better noise 

suppression, thereby resulting in higher SNR (Figure 12). 

There are three major limitations of the proposed pre-

emphasis and spike detection method. First, there is an upper 

bound of SNRin for which a meaningful ΔSNR increase is 

observed. Accordingly, the spike detection performance is 

limited for high input noise levels. In an actual recording 

scenario, these results indicate that, to a first order 

approximation, there is a maximum distance within which the 

spikes can be enhanced. Second, spike detection performance 

degrades for some overlapping spikes. It should be noted that, 

in this study, where we present the analysis of a SR-based pre-

emphasis method of neural spikes for the first time, we use a 

monostable well potential. Further analysis on different well 

potentials could be investigated to address these limitations. 

Third, in the proposed spike detection method, threshold 

needs to be adjusted to maximize the sensitivity and positive 

predictivity. Likewise, to maximize the detection 

performance, the parameters a and h need to be optimized for 

different noise levels of the neural recording (SNRin). These 

characteristics might suggest that, spike detection from a 

single-channel extracellular recording can be optimized by 

using multiple SR-based detectors, each tuned to maximize 

the detection of spikes for a range of spike amplitudes. 

Additionally, there are several limitations of this study 

related to the datasets used. First, we use an intracellular-

recording-based synthetic dataset, SD1, to demonstrate the 

attributes of the dynamics of the system at the desired 

granularity by precisely controlling the background noise. 

However, the shape of an intracellular spike in SD1 does not 

accurately reflect the spikes that are seen in an extracellular 

recording, such as the ones in the synthetic dataset SD2. 

Furthermore, we only use a Gaussian white noise to model the 

background noise in SD1. Accordingly, the SNR 

improvements and the ROC AUCs obtained for different 

 

Figure 12. Comparison of the SR-based pre-emphasis method with a 

moving window averaging (MWA) filter. The outputs of the SR and 

MWA with different window lengths (WL) are shown for a 500 ms 

segment of the SD1 – Noise Level 10. The vertical line shows the spike 

onset and the black dots show the spike onsets at the outputs. 
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background noise levels could be potentially different from an 

actual extracellular recording with similar background noise 

intensities. It should be noted that, different noise types (i.e., 

white or colored) could result in different levels of 

improvements in SNR and spike detection performances [27, 

49, 50]. The effects of different noise types on the proposed 

method could be investigated to unveil these differences. 

Notably, the background noise of an extracellular recording 

consists of different noise types including white and colored 

noise originated from different sources related to the 

measurement setup and environment (e.g., electrode 

impedance, electromyogram) [51]. Therefore, such an 

investigation could provide insights on the design of the 

measurement setup. 

The results of this study could find applications across 

different neuroscience studies, where noise is investigated in 

the context of physiological responses of the brain. 

Specifically, our approach of SNR-based optimal system 

parameter identification for a given noise level can be 

expanded to optimizing the neurostimulation noise level that 

maximizes the physiological firing responses of neurons [48]. 

5. Conclusion and future work 

This paper presents a pre-emphasis method facilitating 

stochastic resonance for spike detection in neural recordings. 

We demonstrated quantitatively that, the dynamics of a 

Brownian particle in a damped monostable-well can be used 

to improve spike detectability by suppressing noise while 

enhancing spikes. The presence of a stability point and the 

large damping of the particle suppresses the noise-only 

sections of the recordings. Specifically, we show that, the 

spike enhancement of the additive noise is more noticeable for 

a range of noise levels. Our results on a public synthetic 

dataset demonstrate the spike enhancement and noise 

suppression, as well as a spike detection performance 

surpassing the state-of-the-art. 

In future works, towards reaching an error-free spike 

detection performance, we will investigate multiple SR-based 

pre-emphasis and spike-detector systems operating in parallel. 

As a first step, we will expand our results in this study on 

synthetic extracellular datasets enabling precise control of the 

intensity of accurately modelled background noise. These 

datasets will enable us to investigate the correlations between 

background noise level/spike amplitude in a given 

extracellular dataset and the variables of the well/solver, 

which can then be used to identify the architecture and 

parameters of a multiple spike detector system. 
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