
  

  

Abstract— Synthetic extracellular neural recordings allow 

precise knowledge of when and which neuron spikes in a 

recording, and therefore are important to assess and refine spike 

detection and sorting algorithms. Such algorithms are strongly 

dependent on the spike waveform shapes. Therefore, it is critical 

for a model that generates synthetic recordings to incorporate 

the factors changing the waveform shape in the neural 

environment. In this paper, we present a simulation tool that 

models frequency-filtering and layer-inhomogeneity of cortical 

layers, where most actual extracellular recordings are 

performed. The tool uses simulated transmembrane currents of 

neurons from NEURON, and implements line-source-

approximation, method-of-images, and low-pass filtering to 

calculate the potentials on MATLAB. 

I. INTRODUCTION 

Information is represented by means of neural spikes in the 
brain. Therefore, by monitoring the spiking activity in the 
brain, connectivity of the brain and computations performed 
can be explored. The most direct way of neural activity 
monitoring involves analyzing the neural spikes captured as 
electrical potentials by electrodes placed in extracellular neural 
tissue. A striking application of neural signal analysis is brain-
computer interfaces (BCI), where the spikes of pyramidal 
neurons in the brain cortex are decoded into high-level 
information such as movement inference. Neural spike 
analysis aims extracting the activities of different neurons 
nearby a recording electrode and typically involves spike 
detection and sorting steps. In the literature, various algorithms 
have been proposed towards improving the accuracy of spike 
detection and sorting [1,2,3]. 

To properly assess the performance of an algorithm, 
biological extracellular recordings are widely used [5]. In 
these datasets, precise knowledge of neuron firing 
information, which is critical to assess spike sorting 
performance, is obtained via simultaneous intracellular 
recordings. The challenges in performing intracellular 
recordings impose a limit on maximum the number of neurons 
whose activities could be precisely known. To overcome the 
challenge in biological recordings, different research groups 
have proposed models for generating synthetic datasets 
[1,2,3]. Synthetic datasets offer the advantage of precise firing 
information knowledge for large numbers of neurons. Clearly, 
a synthetic dataset needs to faithfully emulate a biological 
recording. Specifically, in the context of spike detection and 
sorting; accurate modeling of spike waveform shapes, activity 
levels of neurons, and background noise are critical. 
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The latter two, activity levels and background noise, are 
well-characterized and therefore realistically simulated in 
existing models in the literature. On the other hand, the 
extracellular spike waveform shape of a firing neuron is 
impacted by several factors such as the transmembrane current 
profiles of the neuron, the geometrical properties such as 
distance and orientation of the neuron with respect to the 
electrode, the electrode dimensions and electrical model, and 
the impedance profile of the neural tissue. Previous models 
have reflected the impacts of biophysical and geometrical 
properties of neurons as well as the electrode properties on 
spike waveforms [1,2,3]. 

On the other hand, these models do not offer a 
comprehensive impedance modelling of the brain cortex. First, 
in some of these models, brain cortex is represented as a single 
homogeneous medium [1,2,3], which does not accurately 
reflect the multi-layered structure of the cortex. Notably, due 
to the nonlinearities introduced on current paths by boundaries 
between different layers, the relationship between the 
transmembrane currents and the resultant extracellular 
potential does not solely depend on the distance [4]. Second, 
in some [2,3], the tissue is modeled using a constant 
conductivity, thereby neglecting the low-pass-filtering effect 
of the tissue. 

To accurately incorporate the effects of brain cortex 
impedance properties on the extracellular waveform shapes, 
and therefore obtain more realistic synthetic datasets, in this 
study we present a new extracellular medium simulation tool. 

II. METHODS 

An overview of our simulation approach is presented in Fig. 

1. First, we use the NEURON software [5] to simulate the 

transmembrane currents for each compartment of a neuron. 

Our NEURON model generates the transmembrane currents 

based on the defined biophysics and geometrical information 

provided for the different sections of a neuron; namely 

dendrite, soma, and axon; and the excitation method of the 

neuron. To simulate the response to a natural excitation of 

neurons (i.e., conductance-change in a postsynaptic neuron), 

we used NEURON’s Alpha Synapse. The transmembrane 

current simulations of neurons with different biophysical, 

geometrical, and/or connectivity-related properties are 

performed by changing those properties on a single .hoc file 

run on NEURON. Lastly, we parse the NEURON data to 
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MATLAB, where we generate the synthetic data based on a 

hypothetical neuron distribution around a recording electrode 

in a double layer cortex tissue. 

The principles of simulating extracellular potentials are as 

follows. When a neuron membrane potential exceeds the 

threshold and fires a spike, the channels of the membrane that 

are in a small proximity will let Na+1 and K+1 ions to move 

across the membrane, and thus resulting in ionic currents. 

Volume conduction of the ionic transmembrane currents 

results in an electrical potential on an electrode placed at an 

extracellular location. An extracellular medium having 

multiple current sources, each belonging to a different 

segment of a different neuron, can be considered as a linear 

time invariant system (LTI). An LTI system allows the use of 

superposition principle to calculate the contribution of each 

current source on an extracellular potential recorded by an 

electrode. 

In an extracellular space, a point current source, +𝐼, will spread 
radially from the source. Based on the conservation of charge 
and the Ohm’s law, in a homogeneous medium having a 
constant conductivity, 𝜎, it can be shown that the electric field, 
𝐸, and the resultant extracellular potential, 𝑉𝑝𝑠, due to volume 

conduction are respectively: 

𝐸(𝑅) =
𝐼

4πσ𝑅2
,                                  (1) 

𝑉 𝑝𝑠 = −∫ 𝐸(𝑅′)
∞

𝑅

𝑑𝑅′ =
𝐼

4πσ𝑅
  ,                    (2) 

where 𝑅 is the distance from the point source. Our model 

assumes the soma as a point source. For neurites (i.e., dendrite 

and axon), the result in equation (2) can be expanded to a 2D 

neuron through line-source approximation (LSA) by 

leveraging the cylindrical coordinate system [6]. In LSA, 

neurites are divided into smaller segments used as 

independent line current sources. On each segment, a uniform 

line current distribution is assumed, where the current is the 

sum of transmembrane currents corresponding to different 

ions In this analysis, for a line current source with a length of 

𝛥𝑠 (Fig. 2), corresponding extracellular potential, 𝑉𝑙𝑠, is 

calculated as [6]: 

𝑉𝑙𝑠 =
𝑉𝑝𝑠
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(3) 

The distances, h,r, and l are shown in Fig. 2. In equation (3); 

Case1 is h,l < 0; Case2 is h<0, l>0; and Case3 is h,l>0. The 

neuron connectivity used in this study is presented in Fig. 3.  

A. Low-Level Simulations on NEURON 

We use the NEURON software to simulate the 

transmembrane currents for soma and neurites. We use 

passive membrane modeling for the dendrite and active 

Hodgkin-Huxley modeling for the soma and the axon. For a 

dendrite and axon segment, simulated current waveforms 

corresponding to two different channel conductance values 

and capacitive nature of the neural membrane are presented in 

Fig. 4. The waveforms demonstrated how the current 

amplitude varies with the channel conductance of the 

corresponding ion. We used conductance values that lie 

within the biological ranges for pyramidal cells [5]. 

B. High-Level Simulations on MATLAB 

The neuron-level simulation data from NEURON are used to 

calculate an extracellular potential recording for a 

hypothetical extracellular recording medium. To define a 

hypothetical medium; we identify neuron-related properties 

such as the number of neurons, distance and orientation of 

neurons with respect to the electrode; and the position of the 

boundary between different cortical layers. 

Modeling frequency-dependent volume conduction: 
Equations (2) and (3) reflect the distance dependence of the 
extracellular potential. However, the approximation of 
constant conductivity neglects the frequency dependence of 
the medium originated from the spatial inhomogeneities in 
conductivity and permittivity. In reality, the extracellular 
medium introduces low-pass filtering effect due to the spatial 

 
Figure 1. Flowchart of the computer model. 

 
Figure 2. A line current source and the distances to a recording electrode. 

 
Figure 3. The neuron connectivity used in this study. The axon and each 

dendrite branch are divided into ten and two segments, respectively.  



  

inhomogeneities in conductivity and permittivity, which can 
be modeled as a 1st order low-pass filter [7]. For biologically 
realistic values, the low-pass filter has a cut-off frequency of 
~100 Hz [8]. Beginning with equations (2) and (3) the 
extracellular potential, 𝑉𝑒𝑥𝑡 , is calculated and then applied to 
the low-pass filter. The smoothing effect of the filter is shown 
in Fig. 5. 

Modeling layer inhomogeneity: The cerebral cortex 

consists of six layers (L1-through-L6) that differ in terms of 

neuron distribution and connectivity. Accordingly, the 

impedance characteristics of the extracellular medium varies 

from layer to layer, thereby creating discontinuity in 

conductivities at the layer boundaries [9]. In such an 

inhomogeneous medium, layer boundaries will cause 

nonlinearities in the spread of the current, and therefore 

distort the resultant 𝑉𝑒𝑥𝑡 . A precise modeling of the current 

spread can be performed by solving the Poisson’s equation 

via finite-element-analysis (FEA) tools. On the other hand, 

two properties of the inhomogeneity allow us to leverage a 

computationally efficient analytical solution, alternative to 

FEA, namely method-of-images (MoI). The first property is 

that the cortical layers extend almost parallel to each other and 

therefore the conductivity inhomogeneity is in the z-direction. 

Second, the neuron-electrode distance where a neural spike 

becomes equal to the noise floor and thus can barely be 

detected is ~140 μm [10]. Considering the layer thickness 

ranges of ~200 μm (L2) to ~700 μm (L3) [11], the 

inhomogeneity in a practical extracellular recording would be 

created by two layers only. An illustration of an electrode, the 

circular region in which neural activities can be collected 

from, and different cortical layers are shown in Fig. 6. The 

MoI is applied by assuming an image of the source in the other 

layer such that the continuity of the tangential and 

perpendicular components of the 𝐸 field are satisfied at the 

boundary [12]. The source and image neuron-electrode 

distances are modeled by the coordinate pair (x,y) and (x’,y’) 

respectively, as in equations (4) and (5). For the case when 

the electrode and the current source are in the same cortical 

layer, the extracellular potential, 𝑉𝑒𝑥𝑡 , is: 

𝑉𝑒𝑥𝑡 = 𝑉𝑠𝑜𝑢𝑟𝑐𝑒(𝑥, 𝑦) + 𝑟2𝑉𝑖𝑚𝑎𝑔𝑒(𝑥
′, 𝑦′),        (4) 

where the reflection coefficient due to the second layer 𝑟2 =
𝜎1−𝜎2

𝜎1+𝜎2
, and 𝜎1 and 𝜎2  are the conductivities of the first and 

second medium respectively.  When the electrode and the 

current source are in different layers: 

𝑉𝑒𝑥𝑡 = 𝑡2𝑉𝑠𝑜𝑢𝑟𝑐𝑒(𝑥, 𝑦),                             (5) 
where the transmission coefficient due to the second layer 

𝑡2 =
2𝜎1

𝜎1+𝜎2
. The location of where the layer boundary is, 

changes 𝑉𝑒𝑥𝑡  for a given electrode-neuron placement, as 

illustrated in Fig. 7.  

Extracellular medium generation and integrating the 

contributions from the line segments: Our model arbitrarily 

places neurons and the boundary layer around an electrode 

positioned at the coordinates (0,0). The model mimics the 

vertical alignment of the pyramidal cells along the cortex. An 

example placement is shown in Fig. 8. Note that in Fig. 8, the 

same color code in Fig. 3 is used to denote the neurites. 

Next, the model calculates the distances (i.e., h, r, and l) for 

each compartment with respect to the recording electrode and 

determines if the segment is in the same or opposite layer with 

respect to the layer that the electrode is in. The 

transmembrane current, extracellular conductivity, and the 

calculated distances are used in equations (2-3) to equate the 

electric potential contribution for each compartment, which 

when compiled develops the electric potential for each 

neuron. 

The electric potential calculation is repeated for all neurons 

within the virtual environment. Firing rates are arbitrarily 

 
Figure 4. Effects of channel conductivities on transmembrane currents 

for an actively (axon) and passively (dendrite) simulated neurite 

segment. 

 
Figure 5. The frequency-dependence of the medium is reflected into the 

model as a 1st order low-pass filter. 

 
Figure 6. The region within which neural spikes can be detected (red 
circular region) is illustrated for an electrode (red triangle) placed in L3 

of the cortical tissue. 

 
Figure 7. Depending on where the layer boundary is, the spike of a 
neuron would result in a different spike waveform at the electrode. For 

three boundary locations on the left, the waveforms are shown on the 
right. 



  

assigned to each neuron, which are then sequenced pseudo-

randomly and triggered to fire throughout the specified 

duration, thus creating a compiled synthetic data sequence. 

The background noise is simulated as a combination of white 

and flicker noise based on [13]. 

III. EXAMPLE SYNTHETIC DATA 

We created a 60 s synthetic extracellular recording using the 
proposed model with ten randomly selected neurons. The 
dataset is presented in Fig. 9. Simulations were performed on 
a 64-bit Windows PC with Intel 8th Generation processor and 
12 GB of RAM. The simulations took 4.85 s. 

IV. DISCUSSION 

A summary of the proposed simulation tool and comparison 
with recent alternative tools are provided in Table I. The table 
is prepared with the consideration of metrics that impact the 
spike waveform shapes and thus are important for spike 
detection and sorting applications. All tools in the table use 
NEURON to simulate the transmembrane currents. What 
differentiates the proposed simulator from the others is the 
ability to model both frequency-dependence and 
inhomogeneity of the cortical layers. The synthetic data 
presented in Fig. 9 is created using a simple neuron 
connectivity shown in Fig. 3. However, the tool allows use of 
neurons with more complicated connectivity such as in [14]. 
To more accurately model an actual extracellular recording, 
future improvements will include incorporating the effects of 
electrode properties and medium anisotropies. 

V. CONCLUSION 

We presented a simulation tool to create synthetic 
extracellular neural recordings. Its ability to model the 
conductivity inhomogeneities and frequency-dependences in 
the simulated environment distinguishes it from the 
alternatives and makes it convenient for investigating new 
spike detection and sorting algorithms such as [15-16]. 
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Figure 8. An example neuron distribution around an electrode (black 

triangle). Note the different scales in the x (200 μm/square) and y (1000 

μm/square) axes. The region within which spike activity can be detected 
is shown as the red elliptical region. A layer boundary crosses the region. 

 
Figure 9. An example 60 s synthetic dataset. A spike is highlighted. 

TABLE I. COMPARISON WITH OTHER TOOLS 

 
This 

Work 

LFPsim 

(2016) [1] 

Bionet 

(2018) [2] 

LFPY2 
(2018) 

[3] 

Model 

Environment 
MATLAB NEURON Python Python 

Frequency 

Dependence 
Yes Yes No No 

Cortical Layer 

Inhomogeneity 
Yes No No No* 

Anisotropy No No No Yes** 

Electrode 

Model 
No No No Yes 

*Models inhomogeneity for different head layers (e.g., skull, scalp). 
**Models anisotropy for a homogeneous medium. 
 


