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Abstract— Synthetic extracellular neural recordings allow
precise knowledge of when and which neuron spikes in a
recording, and therefore are important to assess and refine spike
detection and sorting algorithms. Such algorithms are strongly
dependent on the spike waveform shapes. Therefore, it is critical
for a model that generates synthetic recordings to incorporate
the factors changing the waveform shape in the neural
environment. In this paper, we present a simulation tool that
models frequency-filtering and layer-inhomogeneity of cortical
layers, where most actual extracellular recordings are
performed. The tool uses simulated transmembrane currents of
neurons from NEURON, and implements line-source-
approximation, method-of-images, and low-pass filtering to
calculate the potentials on MATLAB.

[. INTRODUCTION

Information is represented by means of neural spikes in the
brain. Therefore, by monitoring the spiking activity in the
brain, connectivity of the brain and computations performed
can be explored. The most direct way of neural activity
monitoring involves analyzing the neural spikes captured as
electrical potentials by electrodes placed in extracellular neural
tissue. A striking application of neural signal analysis is brain-
computer interfaces (BCI), where the spikes of pyramidal
neurons in the brain cortex are decoded into high-level
information such as movement inference. Neural spike
analysis aims extracting the activities of different neurons
nearby a recording electrode and typically involves spike
detection and sorting steps. In the literature, various algorithms
have been proposed towards improving the accuracy of spike
detection and sorting [1,2,3].

To properly assess the performance of an algorithm,
biological extracellular recordings are widely used [5]. In
these datasets, precise knowledge of neuron firing
information, which is critical to assess spike sorting
performance, is obtained via simultaneous intracellular
recordings. The challenges in performing intracellular
recordings impose a limit on maximum the number of neurons
whose activities could be precisely known. To overcome the
challenge in biological recordings, different research groups
have proposed models for generating synthetic datasets
[1,2,3]. Synthetic datasets offer the advantage of precise firing
information knowledge for large numbers of neurons. Clearly,
a synthetic dataset needs to faithfully emulate a biological
recording. Specifically, in the context of spike detection and
sorting; accurate modeling of spike waveform shapes, activity
levels of neurons, and background noise are critical.
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The latter two, activity levels and background noise, are
well-characterized and therefore realistically simulated in
existing models in the literature. On the other hand, the
extracellular spike waveform shape of a firing neuron is
impacted by several factors such as the transmembrane current
profiles of the neuron, the geometrical properties such as
distance and orientation of the neuron with respect to the
electrode, the electrode dimensions and electrical model, and
the impedance profile of the neural tissue. Previous models
have reflected the impacts of biophysical and geometrical
properties of neurons as well as the electrode properties on
spike waveforms [1,2,3].

On the other hand, these models do not offer a
comprehensive impedance modelling of the brain cortex. First,
in some of these models, brain cortex is represented as a single
homogeneous medium [1,2,3], which does not accurately
reflect the multi-layered structure of the cortex. Notably, due
to the nonlinearities introduced on current paths by boundaries
between different layers, the relationship between the
transmembrane currents and the resultant extracellular
potential does not solely depend on the distance [4]. Second,
in some [2,3], the tissue is modeled using a constant
conductivity, thereby neglecting the low-pass-filtering effect
of the tissue.

To accurately incorporate the effects of brain cortex
impedance properties on the extracellular waveform shapes,
and therefore obtain more realistic synthetic datasets, in this
study we present a new extracellular medium simulation tool.

II. METHODS

An overview of our simulation approach is presented in Fig.
1. First, we use the NEURON software [5] to simulate the
transmembrane currents for each compartment of a neuron.
Our NEURON model generates the transmembrane currents
based on the defined biophysics and geometrical information
provided for the different sections of a neuron; namely
dendrite, soma, and axon; and the excitation method of the
neuron. To simulate the response to a natural excitation of
neurons (i.e., conductance-change in a postsynaptic neuron),
we used NEURON’s Alpha Synapse. The transmembrane
current simulations of neurons with different biophysical,
geometrical, and/or connectivity-related properties are
performed by changing those properties on a single .hoc file
run on NEURON. Lastly, we parse the NEURON data to
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Figure 1. Flowchart of the computer model.

Figure 2. A line current source and the distances to a recording electrode.

MATLAB, where we generate the synthetic data based on a
hypothetical neuron distribution around a recording electrode
in a double layer cortex tissue.

The principles of simulating extracellular potentials are as
follows. When a neuron membrane potential exceeds the
threshold and fires a spike, the channels of the membrane that
are in a small proximity will let Na*! and K*! ions to move
across the membrane, and thus resulting in ionic currents.
Volume conduction of the ionic transmembrane currents
results in an electrical potential on an electrode placed at an
extracellular location. An extracellular medium having
multiple current sources, each belonging to a different
segment of a different neuron, can be considered as a linear
time invariant system (LTI). An LTI system allows the use of
superposition principle to calculate the contribution of each
current source on an extracellular potential recorded by an
electrode.

In an extracellular space, a point current source, +1, will spread
radially from the source. Based on the conservation of charge
and the Ohm’s law, in a homogeneous medium having a
constant conductivity, o, it can be shown that the electric field,
E, and the resultant extracellular potential, V¢, due to volume
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where R is the distance from the point source. Our model
assumes the soma as a point source. For neurites (i.e., dendrite
and axon), the result in equation (2) can be expanded to a 2D
neuron through line-source approximation (LSA) by
leveraging the cylindrical coordinate system [6]. In LSA,
neurites are divided into smaller segments used as
independent line current sources. On each segment, a uniform
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Figure 3. The neuron connectivity used in this study. The axon and each
dendrite branch are divided into ten and two segments, respectively.

line current distribution is assumed, where the current is the
sum of transmembrane currents corresponding to different
ions In this analysis, for a line current source with a length of
As (Fig. 2), corresponding extracellular potential, Vi, is
calculated as [6]:
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The distances, A,r, and [ are shown in Fig. 2. In equation (3);
Casel is h,] < 0; Case2 is 7<0, [>0; and Case3 is /,/>0. The
neuron connectivity used in this study is presented in Fig. 3.

A. Low-Level Simulations on NEURON

We use the NEURON software to simulate the
transmembrane currents for soma and neurites. We use
passive membrane modeling for the dendrite and active
Hodgkin-Huxley modeling for the soma and the axon. For a
dendrite and axon segment, simulated current waveforms
corresponding to two different channel conductance values
and capacitive nature of the neural membrane are presented in
Fig. 4. The waveforms demonstrated how the current
amplitude varies with the channel conductance of the
corresponding ion. We used conductance values that lie
within the biological ranges for pyramidal cells [5].

B. High-Level Simulations on MATLAB

The neuron-level simulation data from NEURON are used to
calculate an extracellular potential recording for a
hypothetical extracellular recording medium. To define a
hypothetical medium; we identify neuron-related properties
such as the number of neurons, distance and orientation of
neurons with respect to the electrode; and the position of the
boundary between different cortical layers.

Modeling  frequency-dependent volume  conduction:
Equations (2) and (3) reflect the distance dependence of the
extracellular potential. However, the approximation of
constant conductivity neglects the frequency dependence of
the medium originated from the spatial inhomogeneities in
conductivity and permittivity. In reality, the extracellular
medium introduces low-pass filtering effect due to the spatial
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Figure 4. Effects of channel conductivities on transmembrane currents
for an actively (axon) and passively (dendrite) simulated neurite
segment.
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Figure 5. The frequency-dependence of the medium is reflected into the
model as a 1* order low-pass filter.

inhomogeneities in conductivity and permittivity, which can
be modeled as a 1% order low-pass filter [7]. For biologically
realistic values, the low-pass filter has a cut-off frequency of
~100 Hz [8]. Beginning with equations (2) and (3) the
extracellular potential, V,,;, is calculated and then applied to
the low-pass filter. The smoothing effect of the filter is shown
in Fig. 5.

Modeling layer inhomogeneity: The cerebral cortex
consists of six layers (L1-through-L6) that differ in terms of
neuron distribution and connectivity. Accordingly, the
impedance characteristics of the extracellular medium varies
from layer to layer, thereby creating discontinuity in
conductivities at the layer boundaries [9]. In such an
inhomogeneous medium, layer boundaries will cause
nonlinearities in the spread of the current, and therefore
distort the resultant V,,,. A precise modeling of the current
spread can be performed by solving the Poisson’s equation
via finite-element-analysis (FEA) tools. On the other hand,
two properties of the inhomogeneity allow us to leverage a
computationally efficient analytical solution, alternative to
FEA, namely method-of-images (Mol). The first property is
that the cortical layers extend almost parallel to each other and
therefore the conductivity inhomogeneity is in the z-direction.
Second, the neuron-electrode distance where a neural spike
becomes equal to the noise floor and thus can barely be
detected is ~140 pm [10]. Considering the layer thickness
ranges of ~200 pm (L2) to ~700 pm (L3) [11], the
inhomogeneity in a practical extracellular recording would be
created by two layers only. An illustration of an electrode, the
circular region in which neural activities can be collected
from, and different cortical layers are shown in Fig. 6. The
Mol is applied by assuming an image of the source in the other
layer such that the continuity of the tangential and
perpendicular components of the E field are satisfied at the
boundary [12]. The source and image neuron-electrode

Figure 6. The region within which neural spikes can be detected (red
circular region) is illustrated for an electrode (red triangle) placed in L3
of the cortical tissue.
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Figure 7. Depending on where the layer boundary is, the spike of a
neuron would result in a different spike waveform at the electrode. For
three boundary locations on the left, the waveforms are shown on the
right.

distances are modeled by the coordinate pair (x,y) and (x’,y’)
respectively, as in equations (4) and (5). For the case when
the electrode and the current source are in the same cortical
layer, the extracellular potential, V,,;, is:

Vext = Vsource(%,¥) + 1, Vimage x,y"), 4)
where the reflection coefficient due to the second layer r, =

I7% and o, and g, are the conductivities of the first and

o1+0;,
second medium respectively. When the electrode and the

current source are in different layers:

Vext = taVsource (X, ), (5)
where the transmission coefficient due to the second layer
t, = 02: . The location of where the layer boundary is,

1 2

changes V,,; for a given electrode-neuron placement, as
illustrated in Fig. 7.

Extracellular medium generation and integrating the
contributions from the line segments: Our model arbitrarily
places neurons and the boundary layer around an electrode
positioned at the coordinates (0,0). The model mimics the
vertical alignment of the pyramidal cells along the cortex. An
example placement is shown in Fig. 8. Note that in Fig. 8, the
same color code in Fig. 3 is used to denote the neurites.

Next, the model calculates the distances (i.e., 4, r, and /) for
each compartment with respect to the recording electrode and
determines if the segment is in the same or opposite layer with
respect to the layer that the electrode is in. The
transmembrane current, extracellular conductivity, and the
calculated distances are used in equations (2-3) to equate the
electric potential contribution for each compartment, which
when compiled develops the electric potential for each
neuron.

The electric potential calculation is repeated for all neurons
within the virtual environment. Firing rates are arbitrarily
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Figure 8. An example neuron distribution around an electrode (black
triangle). Note the different scales in the x (200 um/square) and y (1000
um/square) axes. The region within which spike activity can be detected
is shown as the red elliptical region. A layer boundary crosses the region.

assigned to each neuron, which are then sequenced pseudo-
randomly and triggered to fire throughout the specified
duration, thus creating a compiled synthetic data sequence.
The background noise is simulated as a combination of white
and flicker noise based on [13].

III. EXAMPLE SYNTHETIC DATA

We created a 60 s synthetic extracellular recording using the
proposed model with ten randomly selected neurons. The
dataset is presented in Fig. 9. Simulations were performed on
a 64-bit Windows PC with Intel 8" Generation processor and
12 GB of RAM. The simulations took 4.85 s.

IV. DISCUSSION

A summary of the proposed simulation tool and comparison
with recent alternative tools are provided in Table I. The table
is prepared with the consideration of metrics that impact the
spike waveform shapes and thus are important for spike
detection and sorting applications. All tools in the table use
NEURON to simulate the transmembrane currents. What
differentiates the proposed simulator from the others is the
ability to model both frequency-dependence and
inhomogeneity of the cortical layers. The synthetic data
presented in Fig. 9 is created using a simple neuron
connectivity shown in Fig. 3. However, the tool allows use of
neurons with more complicated connectivity such as in [14].
To more accurately model an actual extracellular recording,
future improvements will include incorporating the effects of
electrode properties and medium anisotropies.

V. CONCLUSION

We presented a simulation tool to create synthetic
extracellular neural recordings. Its ability to model the
conductivity inhomogeneities and frequency-dependences in
the simulated environment distinguishes it from the
alternatives and makes it convenient for investigating new
spike detection and sorting algorithms such as [15-16].
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Figure 9. An example 60 s synthetic dataset. A spike is highlighted.
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