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Abstract—Low-rank tensor recovery problems have been
widely studied in many signal processing and machine learning
applications. Tensor rank is typically defined under certain
tensor decomposition. In particular, Tucker decomposition is
known as one of the most popular tensor decompositions. In
recent years, researchers have developed many state-of-the-art
algorithms to address the problem of low-Tucker-rank tensor
recovery. Motivated by the favorable properties of the stochastic
algorithms, such as stochastic gradient descent and stochastic
iterative hard thresholding, we aim to extend the stochastic itera-
tive hard thresholding algorithm from vectors to tensors in order
to address the problem of recovering a low-Tucker-rank tensor
from its linear measurements. We have also developed linear
convergence analysis for the proposed method and conducted
a series of experiments with both synthetic and real data to
illustrate the performance of the proposed method.

I. INTRODUCTION

Tensors are high-dimensional extensions of vectors and
matrices. There are many different kinds of tensor decomposi-
tions, among which, the Canonical Polyadic (CP) decomposi-
tion and Tucker decomposition are the most popular [1], [2]. In
recent years, low-rank tensor recovery problems have gained a
great amount of attention in various applications including hy-
perspectral image restoration [3], video processing [4], signal
processing [5], [6], and simultaneous blind deconvolution and
phase retrieval [7]. Unlike low-rank matrix recovery problems,
which often use nuclear norm minimization as a popular
heuristic for rank minimization, the computation of the nuclear
norm for high order tensors is NP-hard [8], [9].

Over the decades, the iterative hard thresholding (IHT)
algorithm has been widely used in compressive sensing [10],
[11], [12] and low-rank matrix recovery [13], [14], [15]. It
has many extensions, such as the stochastic variant proposed
in [16], which was further extended to the multiple mea-
surement vector framework in [17]. Inspired by the idea of
using the IHT algorithm in low-rank matrix recovery problems,
the authors in [18] extended the IHT algorithm to the tensor
framework and proposed the Tensor IHT (TIHT) algorithm
as an alternative to the tensor nuclear norm minimization.
The authors of [7] then combined this TIHT algorithm with
higher-order singular value decomposition (HOSVD), a type
of Tucker decomposition, to solve a low-rank tensor recovery
problem formulated from a simultaneous blind deconvolution

and phase retrieval problem. Another recent work [19] also
extends the IHT algorithm to the problem of low-rank tensor
recovery based on a low-Tucker-rank approximation technique
named sequentially optimal modal projections.

The stochastic versions of gradient descent algorithms and
IHT algorithms usually have many favorable properties. For
example, these algorithms do not need to compute the full
gradient, which makes it possible for them to be utilized
in large scale problems where computing the full gradient
is very expensive. These properties inspired us to extend
stochastic IHT to the tensor framework and introduce the
Stochastic Tensor IHT (StoTIHT) algorithm to recover a low-
Tucker-rank tensor from its linear measurements. In this work,
we provide convergence analysis for the proposed StoTIHT
algorithm, based on a Tucker decomposition of the tensor,
under the assumption that the linear operator used to obtain
the measurements satisfies a tensor restricted isometry prop-
erty (TRIP). Our simulations also indicate that the proposed
StoTIHT algorithm converges much faster than the original
TIHT algorithm in a large scale setting.

The remainder of this work is organized as follows. In
Section II, we briefly review some fundamental concepts and
definitions used in the tensor framework. We formulate our
low-rank tensor recovery problem in Section III and present
the proposed StoTIHT algorithm in Section IV. We then
introduce the linear convergence analysis for our proposed
StoTIHT algorithm in Section V and illustrate its performance
with both synthetic and real data in Section VI. Finally, we
conclude our work in Section VII.

II. PRELIMINARIES

In this section, we briefly review some fundamental con-
cepts and definitions used in the tensor framework [1], [2],
[20]. We denote a d-th order tensor as X ∈ Rn1×n2×···×nd .
Vectors and matrices can be viewed as low-dimensional
tensors with d = 1 and 2, respectively. Denote X{i} ∈
Rni×(n1n2···ni−1ni+1···nd) as the mode-i matricization or the
i-th unfolding of a tensor X ∈ Rn1×n2×···×nd . One can
refer to [20] for a more detailed definition and some simple
examples. Similar to the matrix case, it is possible to convert
a tensor to a column vector while the ordering of all elements
is not unique. In this work, we stick to the following tensor



vectorization: for any tensor X ∈ Rn1×...×nd , its vectorized
version vec(X) is obtained by columnwise stacking all entries
of the mode-1 matricization X{1} ∈ Rn1×(n2n3···nd). The
inner product of two tensors X1,X2 ∈ Rn1×n2×···×nd is then
defined as

〈X1,X2〉 , vec(X2)
>vec(X1).

Based on the tensor inner product, the induced Frobenius norm
is defined as

‖X‖F ,
√
〈X,X〉.

The Tucker decomposition is one common tensor decompo-
sition and one can find more details in [21], [22]. As one
type of Tucker decompositions, HOSVD decomposes a tensor
X ∈ Rn1×n2×···×nd as follows

X = S×1 U
(1) · · · ×d U(d). (II.1)

Here, S ∈ Rr1×···×rd and U(i) ∈ Rni×ri denote the core
tensor and the basis, respectively. One can refer to [1], [2] for
more details about the properties of the core tensor and basis.
The product ×i is the mode-i (matrix) product of the tensor,
that is, the product of a tensor and a matrix along the i-th
mode of the tensor. The Tucker rank of tensor X is defined
as a tuple r = (r1, · · · , rd) with ri = rank(X{i}).

III. PROBLEM FORMULATION

In this work, we aim to recover a rank-r tensor X? ∈
Rn1×n2×···×nd from its linear measurements y = A(X?) ∈
Rm, where A : Rn1×n2×···×nd → Rm is a linear operator
used to generate the measurements. More specifically, the i-th
element of y is given as

y(i) = Ai(X?) = 〈Ai,X
?〉, i = 1, . . . ,m, (III.1)

where Ai ∈ Rn1×n2×...×nd is a sensing tensor. We define the
cost function F (X) to be

F (X) ,
1

2m
‖y −A(X)‖22 =

1

2m

m∑
i=1

(y(i)− 〈Ai,X〉)2

=
1

M

M∑
i=1

 1

2b

ib∑
j=(i−1)b+1

(y(j)− 〈Aj ,X〉)2


=
1

M

M∑
i=1

1

2b
‖ybi −Abi(X)‖22 ,

1

M

M∑
i=1

fi(X).

(III.2)
Here the measurement vector y ∈ Rm can be decomposed
into M non-overlapping vectors ybi ∈ Rb, i = 1, . . . ,M .
Note that b is an integer and M = dm/be. We denote Abi :
Rn1×n2×···×nd → Rb as a linear operator with the j-th entry
of Abi(X) being 〈A(i−1)b+j ,X〉, j = 1, . . . b. It can be seen
that each function fi(X) is associated with a collection of
measurements ybi .

Due to the low-rank structure, X? can be recovered by
solving the following rank-restricted minimization problem

minimize
X∈Rn1×n2×...×nd

F (X) subject to rank(X) ≤ r, (III.3)

where the cost function F (X) is defined in (III.2). Many
methods have been proposed to solve the above problem in
existing literature. For instance, [23], [24] relax the problem
by minimizing the sum of the nuclear norm of the tensor
matricizations. However, this kind of convex relaxation is
not optimal [25]. Inspired by the IHT algorithm for solving
compressive sensing and low-rank matrix recovery problems,
[18] extends the IHT algorithm [10] to the tensor framework
and proposes the TIHT algorithm. In particular, to recover X?,
the TIHT algorithm consists of the following two steps at the
t-th iteration:

X̃t = Xt + µA∗(y −A(Xt)), (III.4)

Xt+1 = Hr(X̃
t). (III.5)

Here, µ is the stepsize and A∗ : Rm → Rn1×n2×...×nd is
the adjoint operator of A. That is, for tensor X and vector
y, 〈A(X),y〉 = 〈X,A∗(y)〉. The operator Hr(X) computes
a best rank-r approximation of a tensor X using HOSVD.
Note that the second step (III.5) is not straightforward, and
the assumption

‖Hr(X̃
t)− X̃t‖F ≤ η‖X̃t

best − X̃t‖F (III.6)

is held for all t = 1, 2, . . . , T with some η ∈ [1,∞) in [18].
Here X̃t

best is the best rank-r approximation of X̃t with respect
to the Tucker decomposition (given by the HOSVD), namely,
X̃t

best = argminrank(X)≤r ‖X̃t − X‖F . We assume such an
approximation exists in our convergence analysis.

IV. PROPOSED ALGORITHM

Assume that the linear measurements y can be rewritten as

y = Ax?,

where A ∈ Rm×n1n2···nd is a matrix with the i-th row being
the vectorized version of Ai, and x? is the vectorized version
of X?. Then, we can update X̃t in (III.4) with

x̃t = xt + µA>(y −Axt), (IV.1)

where x̃ is the vectorized version of X̃.
It is well known that stochastic gradient descent and its vari-

ants do not require computation of the full gradient and, thus
can be much more efficient in large scale settings especially
when the computation and/or storage of the full gradient is
very expensive. Thus, we propose a stochastic variant of the
TIHT algorithm, termed as Stochastic TIHT (StoTIHT), which
replaces (IV.1) with

x̃t = xt +
µ

Mp(it)
A(it, :)

>(ybit −A(it, :)x
t), , (IV.2)

where it is an index randomly selected from [M ] =
{1, 2, · · · ,M} with probability p(it), and A(it, :) ∈



Rb×n1n2···nd denotes the it-th block of A. This updating step
is equivalent to

X̃t = Xt +
µ

Mp(it)

1

b

itb∑
j=(it−1)b+1

Aj(y(j)− 〈Aj ,X
t〉)

= Xt − µ

Mp(it)
∇fit(Xt)

(IV.3)
with fit(X

t) , 1
2b

∑itb
j=(it−1)b+1(y(j) − 〈Aj ,X〉)2 as

in (III.2). Based on the above analysis, we summarize the
proposed algorithm in Algorithm 1.

Algorithm 1 Stochastic Tensor Iterative Hard Thresholding
(StoTIHT)

1: Input: r, µ, and p(i).
2: Output: X̂ = XT .
3: Initialize: X0 = 0
4: for t = 0, 1, . . . , T − 1 do
5: Randomly select a batch index it ∈ [M ] with proba-

bility p(it)
6: Compute the gradient ∇fit(Xt) as given in (IV.3)
7: X̃t = Xt − µ

Mp(it)
∇fit(Xt)

8: Xt+1 = Hr(X̃
t)

9: If the stopping criteria are met, exit.
10: end for

V. CONVERGENCE ANALYSIS

In this section, we discuss the convergence of the proposed
StoTIHT algorithm. In what follows, we first introduce the
tensor restricted isometry property (TRIP).

Definition 1. (TRIP) [18] Let A : Rn1×n2×···×nd → Rm
and Abi : Rn1×n2×···×nd → Rb be the two linear operators
defined in Section III. For a fixed tensor Tucker decomposition
and a corresponding Tucker rank r, we say A and Abi satisfy
the TRIP if there exists a tensor restricted isometry constant
δr such that

1

m
‖A(X)‖22 ≥ (1− δr)‖X‖2F (V.1)

1

b
‖Abi(X)‖22 ≤ (1 + δr)‖X‖2F (V.2)

hold for all tensors X ∈ Rn1×n2×···×nd of Tucker-rank at
most r.

Using TRIP and following the convergence analysis in [16],
we obtain the linear convergence of the proposed algorithm.

Theorem 1. Assume that the operators A : Rn1×n2×···×nd →
Rm and Abi : Rn1×n2×···×nd → Rb used in generating the
linear measurements y satisfy the TRIP defined in Definition 1.
Let X? be a feasible solution of the optimization prob-
lem (III.3), and X0 the initial tensor. We also assume that the
Tucker-rank-r approximation operator Hr(·) satisfies (III.6)
for all t = 0, 1, . . . , T − 1 with some η ∈ [1,∞). Then at the

t-th iteration of Algorithm 1, the expectation of the recovery
error is bounded by

EIt‖Xt+1 −X?‖F ≤ κt+1‖X0 −X?‖F + σX? ,

where It = {i1, i2, . . . , it} is the set containing all indices
i1, i2, . . . , it randomly selected at and before iteration t. Here
κ and σX? are the contraction coefficient and tolerance
parameter, which are defined as

κ ,2

√
1− (2− µα3r)µρ

−
3r

+
√
η2 − 1

√
1 + µ2α3rρ

+
3r − 2µρ−3r

σX? ,
µ

M mini∈[M ] p(i)

(
2Eit ‖PUt(∇fit(X?))‖F

+
√
η2 − 1Eit ‖∇fit(X?)‖F

)
with ρ+r , 2(1 + δr), ρ

−
r , 1 − δr, αr , maxi

ρ+r
Mp(i) , and

it being an index selected from [M ] with probability p(it).
Here, U t is defined as a subspace of Rn1×n2×...×nd spanned
by X?, Xt and Xt+1. Then PUt : Rn1×n2×...×nd → U t is
the orthogonal projection onto U t.

VI. NUMERICAL SIMULATIONS

In this section, we demonstrate the performance of the
proposed StoTIHT algorithm by conducting a variety of ex-
periments on both synthetic and real data. To quantitatively
evaluate the performance, we use the relative recovery error
given as ‖X

?−X̂‖F
‖X?‖F and consider the recovery as a success if

the relative recovery error is less than 10−5. The experiments
are conducted in Matlab R2014a installed on a laptop with
an Intel(R) Core(TM) i7-4700MQ CPU @ 2.40GHz and 64G
RAM.

In the first experiment, we work on third-order tensors (i.e.,
d = 3) and set the parameters n1 = 5, n2 = 5, and n3 = 6.
The true Tucker-rank is r = (1, 2, 2). Note that we choose
a relatively small tensor size and rank in this experiment
to reduce the problem size and thereby computational time,
which are nevertheless sufficient to show how the proposed
algorithm performs. With these parameters, we generate a
core tensor S ∈ Rr1×···×rd and a basis U(i) ∈ Rni×ri as
random Gaussian tensors or equivalently matrices with entries
following N (0, 1). Then we create a low-rank tensor X? as
the tensor of interest according to the Tucker decomposition
given in (II.1). We set m = 360. The sensing tensors Ai

with i = 1, . . . ,m are also generated as random Gaussian
tensors with entries satisfying N (0, 1), but followed by a
normalization. In particular, each entry of the sensing tensors is
rescaled by a factor of 1/‖A‖F , where A ∈ Rm×(n1n2···nd) is
a matrix with the i-th row being the vectorized version of Ai.
Then, we obtain the measurements y ∈ Rm according to the
measurement model (III.1). For simplicity, we set p(i) = 1

M
with i = 1, . . . ,M . Here, M = m

b is the number of batches
and we experiment with different batch sizes b, as shown
in Figures 1 and 2. Note that in the case when b = m,
the proposed StoTIHT algorithm reduces to the regular TIHT

 



algorithm (black dashed line in Figures 1 and 2). We set the
stepsize µ = 0.46m and use X̂ to denote the recovered low-
rank tensor. For the sake of analysis, we adopt the epoch,
which is defined as the number of iterations needed to use
m rows. For deterministic algorithms like TIHT algorithm, an
epoch is just one iteration, while for our StoTIHT algorithm,
an epoch is m/b iterations. We present how the (a) cost
function and (b) relative recovery error behave with respect
to the number of epochs in Figure 1 and running time in
Figure 2. The presented results are all averaged over 100 trials.
It can be seen that the proposed StoTIHT algorithm converges
much faster than the original TIHT algorithm in such a high
dimensional setting.

Next, we fix the batch size as b = 0.5m and repeat the
above experiment with several values of m and r as shown
in Figure 3. We allow a maximum of 200 epochs for both
the TIHT and StoTIHT algorithms in this experiment. The
presented results are all averaged over 100 trials. We set the
stepsize µ = m. It can be seen that in this region with small
m, the percentage of trials with successful recovery increases
as we increase the number of measurements m and decrease
the Tucker-rank. Then we repeat this experiment with a large
number of measurements. We fix the batch size at b = 0.25m
and set the maximum number of epochs at 80. We change
the stepsize back to µ = 0.5m. As is shown in Figure 4,
in the region with a large m and a small number of epochs,
our proposed StoTIHT algorithm always successfully recovers
the tensor and significantly outperforms the TIHT algorithm.
This observation also coincides with Figure 1, which indicates
that the proposed StoTIHT algorithm converges much faster
than the TIHT algorithm in a large scale setting. Therefore,
we conjecture that the TIHT algorithm needs more epochs
to get a successful recovery. To verify this conjecture, we
conduct another experiment and present the number of epochs
needed to achieve a successful recovery for different r and m
in Figure 5. We decrease the stepsize to µ = 0.4m. It can be
seen that the proposed StoTIHT algorithm needs fewer epochs
to get a perfect recovery especially when m is large.

Finally, we test the proposed StoTIHT algorithm on a real
candle video, which can be downloaded from the Dynamic
Texture Toolbox in http://www.vision.jhu.edu/code/. To ensure
the recovery problem in a relatively small dimension, we
truncate the video frames to be of size 30 × 30 and only
keep the first 10 frames. Thus, the tensor to be recovered
is of size 30 × 30 × 10. We assume this tensor has Tucker-
rank r = (8, 8, 2). Then, we use the same strategy as in the
synthetic experiments to obtain the linear measurements with
m = 3 × 104. We set the batch size as b = 0.25m for the
StoTIHT algorithm. The last two true candle frames and the
recovered ones are shown in Figure 6. We also present the
cost function and relative recovery error in Figure 7.

VII. CONCLUSION

In this paper, we propose the StoTIHT algorithm by combin-
ing StoIHT and HOSVD to address the problem of recovering
a low-Tucker-rank tensor from its linear measurements. Using

0 50 100 150 200 250
Epoch

10-30

10-20

10-10

StoTIHT b= 10
StoTIHT b= 30
StoTIHT b= 60
StoTIHT b= 90
StoTIHT b= 120
StoTIHT b= 180
StoTIHT b= 360
TIHT

30 40 50

10-20

10-10

0 50 100 150 200 250
Epoch

10-15

10-10

10-5

100
StoTIHT b= 10
StoTIHT b= 30
StoTIHT b= 60
StoTIHT b= 90
StoTIHT b= 120
StoTIHT b= 180
StoTIHT b= 360
TIHT

30 40 50

10-10

10-5

(a) (b)

Fig. 1. Low-rank tensor recovery: n1 = 5, n2 = 5, n3 = 6, m = 360,
r = (1, 2, 2).
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Fig. 2. Low-rank tensor recovery: n1 = 5, n2 = 5, n3 = 6, m = 360,
r = (1, 2, 2).
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Fig. 6. Candle video recovery: n1 = 30, n2 = 30, n3 = 10, b = 0.25m.
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(a) Cost function. (b) Plot of relative error.

the tensor restricted isometry, we can guarantee the linear
convergence of the proposed algorithm. Our simulation results
also show that the proposed StoTIHT algorithm significantly
outperforms the original TIHT algorithm especially for high-
dimensional data sets. In particular, the proposed StoTIHT
algorithm converges much faster and can achieve a lower
recovery error than the original TIHT algorithm in a large-
scale setting.
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