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ABSTRACT

This contribution presents a rewritten and expanded version of the Fast Grain
Boundary (FGB) program (Eiler et al. 1994) with the motivation of adding to the
geochemical tools available for reconstructing temperature-time (7-t) histories that inform
studies of tectonics and crustal evolution. Both the original and the new FGB programs
model the oxygen-isotope compositional evolution of a rock resulting from diffusive
oxygen isotope exchange between minerals. The new FGB program is coded in Python and
includes a graphical user interface. Additionally, C-compiled versions of the code are
available that provide a 20x speedup of model calculations. The new implementation also
allows for inversion of the FGB model to extract unbiased thermal histories from oxygen
isotope data. The Levenberg-Marquardt (LM) algorithm is applied to search for cooling
histories that maximize agreement between the model output and the measured oxygen
isotope data. Tests with synthetic datasets show that the LM algorithm is able to
distinguish between simple linear cooling and more complex thermal histories that include
reheating events. Inversion of a natural oxygen isotope zoning dataset from titanite shows
that, within the resolution of the models and data, the Adirondack Mountains sample
location experienced rapid (30-70 °C/m.y.), monotonic cooling from 700 to 500 °C. We
develop a heuristic guide to sampling and analytical approaches that improve the
resolution of inversion solutions for current SIMS analytical capabilities and suggest
targets for future improvements of SIMS analysis. Our tests indicate that the current SIMS
analytical precision for in situ oxygen isotope measurements is sufficient to allow for
temperature-time path recovery with thermal resolution of 25-50 °C and temporal
resolution of 2-3 million years.

Keywords: Fast Grain Boundary; temperature-time path; oxygen isotopes; inversion
thermal history

1. INTRODUCTION

Magmatic and tectonic events produce distinctive temperature variations in the
crust (e.g., England and Thompson, 1984). Recognizing past magmatic or tectonic events,
especially in regions with significant erosion, poor exposure, or protracted and complicated
geologic histories, often hinges on recognizing their thermal effects in the rock record.
Many minerals gain or lose constituents by mass diffusion in response to changing
temperature. Some minerals can therefore reflect crustal thermal history in the spatial
pattern of elements or isotopes that results from thermally activated diffusive mass
redistribution. Providing that these spatial patterns - i.e., elemental or isotopic zoning -
can be recognized and measured within a mineral (or minerals), they will represent a time-
integrated record of the thermal conditions experienced by the minerals’ host rock.
Recognizing and measuring diffusion-induced intragrain zoning are non-trivial tasks (e.g.,
Eiler et al,, 1995; Bindeman et al., 2008; Watts et al., 2012; Stearns et al., 2015; Rubin et al.,
2017), as is deconvolving the thermal history that such zoning represents (e.g., Eiler et al,,
1995; Storm and Spear, 2005; Smye and Stockli, 2014; Watson and Cherniak, 2015).

Oxygen, the most abundant element in Earth, has three isotopes (1¢0, 170, and 180)
that partition between minerals based on temperature and bulk rock composition (e.g.,
Urey, 1947; Chacko et al. 2001). The 180/160 ratio - 5180, when normalized to a standard of



known 180 /160 - of coexisting minerals and fluids have long been used to uniquely
constrain rock crystallization temperature, assuming that the phases in question reached
isotopic equilibrium (e.g., Urey, 1948; Jenkin et al. 1994; Valley, 2001; Holder et al. 2018).
More recently, geochemists have exploited the time dependence of diffusive oxygen isotope
exchange between phases to constrain the rates of temperature change in rocks (e.g.,
Farver, 1989; Jenkin et al., 1991; Eiler et al. 1992). It is now possible to measure 3180 in
many minerals with high precision and high spatial resolution by secondary ion mass
spectrometry (SIMS) (e.g., Valley and Kita, 2009; Kita et al. 2010), providing a means to
detect 6180 variations produced by thermally activated diffusion.

In this contribution, we describe a numerical implementation of the Fast Grain
Boundary (FGB) model (Eiler et al., 1993, 1992), which can be used to interpret rock
thermal histories from oxygen isotope zoning preserved within one or more minerals of a
rock sample (Fig. 1). The new FGB implementation has been updated and expanded from
the original version developed by Eiler et al. (1994) and reported in this journal more than
25 years ago. The FGB model describes the closed-system, diffusive exchange of oxygen
isotopes between minerals within a rock in response to temperature variations and the
oxygen isotopic zoning that develops within each mineral as a result of the exchange. The
reincarnation of the FGB program can be used either to fit a thermal history to measured
oxygen isotope data through forward modeling or can perform statistically rigorous
inversion of measured oxygen isotope data to back out a range of possible thermal
histories.

The new FGB implementation described here shares similarities with at least four
other well-known and widely used numerical thermochronology modeling tools - the
multi-diffusion domain (MDD) model of Lovera et al. (1997, 2002) and Harrison et al.
(2005), HeFTy of Ketcham (2005), and QtqT of Gallagher (2012), as well as with an
iterative Markov Chain Monte Carlo modeling approach developed by Smye et al. (2018).
FGB is, however, distinct from HeFTy, QtqT, MDD, and the MCMC of Smye et al. (2018) in a
few important ways. First and foremost, whereas existing models describe primarily
diffusion of trace elements (e.g., Ar, He, Pb), FGB describes the diffusive exchange of
isotopes of oxygen, a major element in all silicate and oxide minerals on Earth. Models of
trace element diffusion, first by Dodson (1986, 1973) and then by many subsequent
workers (e.g., Cherniak, 1993; Smye and Stockli, 2014; Warren et al., 2012), employ a
constant, zero-concentration grain boundary condition to simulate loss of the diffusant to
an essentially infinite-sink reservoir outside the grain. To first order, this is an appropriate
model for diffusion of structurally insignificant trace elements in many minerals, but it is
not realistic for the case of major-element diffusion, in which a large fraction of the total
mass of the system is diffusing. Major-element diffusion is only possible if mass balance is
maintained within a closed system, such that oxygen lost from one mineral is taken in by
another mineral. In FGB, this mass balanced oxygen isotope exchange occurs in response
to, and is modulated by, an evolving grain boundary condition (non-zero, temperature-
dependent, and time-dependent).

Another unique characteristic of FGB arising from the need to maintain mass
balance is that FGB models a rock system, rather than a single phase within a rock. Primary
user inputs to build a model are the mineral phases present, the mineral modes, the
mineral grain sizes, and a whole-rock 6180 value. The exchange equilibria and kinetics are



defined through oxygen isotope equilibrium fractionation factors (as a function of
temperature) and oxygen diffusivity parameters for all phases. An equilibrium or near-
equilibrium fluid phase may be modeled implicitly as part of the rock system by user
selection of “wet” diffusivity parameters for mineral phases. The FGB model outputs are
also holistic in the sense that the program either predicts diffusive oxygen isotope zoning
for every mineral phase in the rock system (Fig. 2), or it can simultaneously invert the
measured oxygen isotope zoning in multiple phases to constrain the thermal history.

FGB further differs from existing models in that it has the potential to constrain a
continuous thermal history over a wide range of temperatures, including in the high
temperature range (~500-800 °C). Oxygen diffusivity is different in every mineral phase
and thus each mineral will transition from rapid to very slow (unmeasurable) oxygen
diffusion over a different temperature range, analogous to the thermochronology concept
of the partial retention zone or PRZ (e.g., Wolf et al., 1998). Diffusive oxygen isotope zoning
in a given mineral thus provides a continuous thermal history over the mineral’s particular
PRZ. If oxygen isotope zoning develops in several minerals with overlapping PRZs - a
realistic scenario in a multi-phase rock and, in fact, required for intragrain oxygen isotope
exchange (Eiler et al., 1992) - then inversion of the zoning in all phases can constrain a
continuous time-temperature history that extends from the PRZ of the mineral with the
lowest oxygen diffusivity down through the PRZ of the mineral with the highest oxygen
diffusivity. For comparison, MDD can also constrain a continuous thermal history but over
a limited temperature range between ~400-150 °C, depending on the exact domain-size
distribution in a given K-feldspar grain or grains (e.g., Harrison et al., 2005). HeFTy and
QtQT models can be used to constrain thermal histories over a large range of temperatures,
but much of this range, and especially the higher temperature part of the range, is
constrained by a few, discrete T-t points provided by thermochronometers like U-Pb in
monazite (e.g., Kirkland et al,, 2017).

Finally, FGB differs from HeFTy, QtqT, and MDD in that it is a geospeedometry tool
that provides information about durations and rates of thermal events but is not
intrinsically linked to absolute geologic time. Because oxygen isotopes are stable, their
abundances do no vary as a function of time through radioactive decay. In order to anchor
the thermally induced diffusion of oxygen to a date, the minerals in which oxygen isotope
zoning is recorded must be related through careful textural analysis to minerals that act as
geochronometers. In many rocks, at least one mineral can be utilized both for oxygen
isotope geospeedometery and for geochronometry - e.g., K-feldspar or titanite - providing
a close link between the thermal history and absolute dates.

This contribution describes updates to the FGB code and its approach to thermal
history inversion from oxygen isotope zoning data. We detail two examples of synthetic
thermal histories and their recovery through inversion, as well as one example from a
small natural data set. We also use FGB to explore how the choice of rock sample and
analytical improvements could increase the resolution of thermal histories retrieved from
inversion.

2. THEORY/METHOD
2.1 The Fast Grain Boundary Model & Its Forward Implementation
2.1.1 The Fast Grain Boundary conceptual model

The Fast Grain Boundary model describes the diffusive exchange of oxygen between

multiple phases within a rock volume. Oxygen isotope exchange is driven by a system’s



attempt to reach thermodynamic equilibrium, but it is achieved through specific
mechanisms and at a finite rate and is thus governed by kinetics. The underlying behavior
is modeled by Fick’s first and second laws of mass diffusion, which relate diffusant flux and
temporal variations in diffusant concentration, respectively, to spatial gradients in
diffusant concentration (e.g., Crank, 1975).

The FGB model is based on the idea that oxygen diffusion through mineral
structures is slow compared to oxygen diffusion along mineral grain boundaries (Fig. 3).
Thus, grain boundaries achieve and maintain isotopic equilibrium, but grain interiors may
not. Oxygen-isotope zoning may develop within a mineral grain in response to the
variations in the equilibrium 8180 concentration that is imposed at a grain’s boundary (Fig.
3). Diffusion of oxygen through a mineral structure governs oxygen flux and flux rate into
or out of a particular phase, whereas equilibrium isotope partitioning determines how the
isotopes of oxygen are distributed (via grain boundaries) amongst phases. The closed
system mass balance requirement of the system translates to a flux balance imposed at the
mineral grain boundaries: at any given time, the total amount of oxygen lost to the grain
boundary region by diffusion must equal the total amount of diffusive oxygen uptake into
mineral grains. The balance imposed at the grain boundary between oxygen flux and
oxygen isotope partitioning allows construction of a matrix of equations that couples
volume diffusion through multiple phases to time-varying equilibrium conditions.

2.1.2 The updated Fast Grain Boundary numerical model

The numerical implementation of the FGB forward model, as laid out originally by
Eiler et al. (1994) and updated by Bonamici (2013), are briefly reviewed here and in more
detail in the Supplemental Materials. Figure 4 shows relations between the physical rock
system and model equations. Diffusive exchange of oxygen between mineral phases in the
model rock is driven by temperature variations, which are imposed through finite time
steps and the time-temperature relationship, T(t), set by the user. At each time step, the
temperature is updated through the T(t) function, as are the temperature-dependent
equilibrium fractionations, 4i,j(T), and diffusivity, D(T), for each mineral (Fig. 4). Oxygen
diffusivities for each mineral are calculated by the Arrhenius relation. The program then
solves for concentration profiles (ci, concentration as a function of distance from core to
rim of a mineral grain) in each mineral using a one-dimensional Crank-Nicholson finite
difference scheme with spherical or cylindrical diffusion geometry and a grain boundary
5180 fixed at the equilibrium 6180 value determined in the previous time step. Spatial steps
in the finite difference grid in each mineral are ~0.5-20 um. Time steps are small
compared to the total model run duration (typically in the range 1,000 - 10,000 yrs) and
satisfy the Fourier stability criterion. The 3180 flux is calculated for a given time step for a
given mineral with a discretized version of Fick’s first law. Mass balance is then imposed on
the system by requiring that all fluxes from all minerals sum to zero for a given time step.
The equilibrium fractionation equations provide m-1 constraints for calculating the
equilibrium oxygen isotope concentrations for a set of m minerals at a given temperature.
The final mth constraint is provided by the mass flux balance. Then all fractionation and flux
equations are solved simultaneously for updated equilibrium grain boundary 680 values:
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Thus, diffusivities, mineral 8180 zoning profiles, grain-boundary equilibrium fractionations,
and flux mass balance are updated with each time step and evolve on the same timescale.

The new FGB code is implemented in a combination of Python and C in order to
maintain accessibility and to improve speed. It now also features a GUI to make it more
user friendly. Other than the coding language, the major differences between the new and
original FGB forward model codes are 1) the ability to implement a multi-segment thermal
history with any number of cooling, heating, or isothermal steps, and 2) interactive tables
for rapid look-up of experimental fractionation factors and diffusivity parameters, and 3) a
fully analytical solution for calculating oxygen isotope flux and grain boundary equilibrium
isotopic partitioning at each time step of the simulation. Figure S1 shows a comparison of
the output from the original Fortran code and the current Python/C code, demonstrating
comparability of results. The user’s guide to running the new FGB program is included as
part of the supplemental materials and is available on GitHub (see Computer Code
Availability) for download along with the new FGB code.
2.2 Inverting the Fast Grain Boundary Model

The inversion of oxygen isotope zoning profiles from one or more minerals grains
can be treated as a non-linear optimization problem, solving iteratively with the
Levenberg-Marquardt (LM) algorithm (Supplemental Materials). The addition of a
regularization (smoothing) term, |8||[Lm||3, to the standard least squares formulation
(Aster et al., 2018) prevents overfitting of noisy natural oxygen-isotope zoning datasets:

min 3 (CZ00) 4 gllumlE (eq.2)

In this equation, G(mi) are forward modeled mineral 6180 profiles for a set of model inputs,
m; d; is are actual observed 6180 profile values; oiare the errors on the 5180 data (see
below); fis a smoothing parameter; L is a roughening matrix (see also Supplemental
Materials). We use second-order Tikhonov regularization, which penalizes solutions based
on the roughness of the second derivative of m (Supplemental Materials). A multi-start
approach is used to ensure that the solutions are true global minima and not local
entrapments. This is determined by rerunning the inverse solver with many different initial
solutions, and then comparing all the final solution errors. If there are many equally good
solutions (similar errors), then the structure of these solutions is compared to find general
trends and make statements about persistent features, such as reheating events.

The FGB program can accept any number of data files corresponding to the diffusive
profiles for multiple grains or minerals in a sample. Additionally, if multiple samples are
taken from the same region and can be assumed to have experienced the same thermal



history, the program allows these to be combined to more accurately recover the shared
thermal history.

Errors (oi) or “noise” used in FGB modeling are the total external analytical
uncertainties of SIMS 5180 measurements, as monitored by bracketing measurements of
standard materials. For instance, in the real dataset modeled below (section 3.2), the
uncertainty assigned to a 6180 measurement is the standard deviation of measurements of
periodically repeated WiscSIMS quartz standard UWQ-1 (Kelly et al., 2007). The
reproducibility of a well-known standard value encompasses uncertainties arising from
counting statistical errors, random instrumental performance fluctuations, systematic
instrumental bias, and random compositional variations in imperfect natural materials.
Uncertainties on the equilibrium fractionation factors and diffusivity parameters are not
propagated through the FGB modeling, nor are uncertainties resulting from regularization.
Users may reduce the effect of uncertainties in equilibrium fractionation factors by using
the Vho et al. (2019) internally consistent database of fractionation factors for FGB model
construction (Fig. S2).

2.3 Synthetic datasets

Several synthetic datasets are modeled using the LM approach in order to probe the
amount of thermal information that can be recorded by and recovered from oxygen isotope
zoning (Supplemental Materials). For tests of synthetic datasets, we create a forward model
with a known thermal history, select a subset of data points, add noise to the data points,
and then run the inverse model to assess thermal history recovery. For each sample
scheme, two to four separate noise realizations are generated, and each realization is run
18 times, starting each time from different initial T-t path guess, for a total of 36 to 72
models. The appropriate f smoothing parameter for a given set of tests is determined
based on initial L-curve tests (Supplemental Materials; section 4.1) and is fixed. For
synthetic data sets, these values are small and range from 0.0056 to 0.02455
(Supplemental Materials). Unless otherwise noted, the synthetic datasets are 'measured’
with similar analytical spacing (12 um) and with similar levels of noise (£0.14%0 1SD), as
the real titanite dataset (Supplemental Materials). The spacing and analytical uncertainties
of the real dataset are commonly achievable for in situ oxygen isotope analysis with
current SIMS instrumentation and analytical reference materials. These synthetic scenarios
provide context for inverse solutions from the real titanite 5180 data. We explore how the
analysis spacing and analytical errors affect the inverse solutions in more detail in the
Discussion section.

3. RESULTS
3.1 Summary of inversion results for synthetic data

The synthetic datasets were constructed to test two geologically relevant scenarios
- alinear (dT/dt = constant), monotonic cooling history, simulating uninterrupted cooling
following orogenic uplift, and a reheating event imposed on a monotonic cooling history, as
if orogenic uplift were followed by a magmatic intrusion event.

Inversion of a simple linear cooling T-t path recovers thermal histories that
fluctuate about the true history, with alternating cooling and nearly isothermal path
segments, but that overall decrease monotonically and at an average rate similar to the true
linear cooling rate (Figs. 5A). Decreasing the noise level to 20% of the expected analytical



error produces thermal histories with smaller fluctuations, showing both average and
instantaneous cooling rates similar to the true linear cooling rate (Figs. 5B).

Inversion of a thermal spike superimposed on a linear cooling history consistently
recovers solutions that show a heating event (Fig. 6). The recovered heating spike is
generally broader (1.5-5x longer in duration) and somewhat lower (~25-75°C) than the
true heating spike, with these peak distortions showing a correlation such that broader
peaks are lower and narrower peaks are higher. The timing and duration of an early
heating event (Fig. 6A,B) are recovered more accurately and precisely than the timing and
duration of a mid-period or late heating event (Figs. 6C-F). Reducing the analytical
uncertainties by half improves recovery of the heating spike timing and the linear cooling
segments modestly but does not improve recovery of the heating spike peak (6B,D,F).

In summary, inspection of the synthetic reheating thermal histories (Fig 6) shows
that the inversion solver constrains the timing of the heating event somewhat better at
lower SIMS analytical uncertainty than is currently available. Nonetheless, comparison of
the linear cooling (Fig. 5) and the reheating (Fig. 6) solutions indicates that, at both the
current and hypothetical higher levels of analytical precision, the solver can clearly
distinguish thermal histories that involve reheating events from those that do not.

3.2 Inversion of real oxygen isotope zoning data from Adirondack titanite

FGB inversion was also tested with real data from Bonamici et al. (2014), who
reported intragrain oxygen isotope data from the mineral titanite from the Adirondack
Mountains, NY. A subset of the investigated titanite grains were determined to show
isotopic zoning formed by diffusion and were forward modeled in an earlier version of the
FGB program (Fig. 1). The oxygen isotope zoning profiles were measured in titanite from a
metasyenite host rock comprising primarily alkali feldspar, quartz, and augite, with lesser
amounts of titanite and iron oxides (Bonamici et al., 2014). Without evidence for a more
complex cooling history, Bonamici et al. (2014) fit the oxygen isotope zoning data using
simple linear cooling paths, such as those shown in Figure 5. A combination of regional
metamorphic constraints and the best model fits suggested cooling from a peak
temperature of ~700 °C down to ~500 °C in 2-5 million years (Bonamici et al., 2014).
These findings have been used to design both the synthetic and real-data tests for the FGB
inversion, providing reasonable starting and ending temperatures, as well as the model
durations for the tests.

Oxygen isotope diffusion profiles were measured in several real titanite grains,
which are inferred to have shared the same thermal history based on their geologic
relations (Bonamici et al., 2014). Combining four diffusion profiles from two different
grains results in 102 data points, which are used to reconstruct a discretized, 17-point
time-temperature history via inversion. Model results for the real data converge to a nearly
linear cooling history for all 18 initial T-t guesses (Fig. 7). Changes in the T-t path slope
hint at possible short-lived episodes of more rapid cooling, but there are no indications of
reheating events in the samples’ history.

4. DISCUSSION

Synthetic and real data presented above establish that the FGB inversion can
recover thermal history information from oxygen isotope zoning and, to a first order,
distinguish some details within the thermal history. In order to better understand what



information FGB can retrieve and how the resolving power of the models can be improved,
we perform additional tests to evaluate the sensitivity of FGB to certain model parameters.

The test procedure follows the approach used for the synthetic thermal histories
tests reported in section 3.1 - create a forward model with a known thermal history, select
a subset of data points, add noise to the data points, and then run the inverse model to
assess thermal history recovery. For each sample scheme, four separate noise realizations
are generated, and each realization is run starting from 18 different, random initial-guess
T-t paths, for a total of 68 models. The B smoothing parameter is fixed at 0.02455 as
described above.

4.1 Effects of regularization on thermal history recovery

To understand the effect of the smoothing parameter, (3, on the thermal history
recovery, we can compare models run with intentionally low 3 and “ideal” 3 values (Fig. 8).
Models run with intentionally low 3 produce an array of T-t paths that have similar shapes
(Fig. 8A). These T-t paths correctly reproduce the height and duration of the early heating
spike, but they do not agree on its timing. Models run with the optimal 3 parameter (based
on the L-curve topology) (Fig. 8B) show good convergence, with all T-t paths overlapping
to place the heating at the correct time; however, the modeled heating spike is both lower
and wider than the true spike (Fig. 8C). This result demonstrates the expected trade-offs
for regularization: Sensitivity of the model to noisy data is decreased, but some resolution
in the recovered T-t paths is lost as the regularization parameter is increased. In as much
as natural oxygen isotope data are commonly noisy (see sections 3.1, 4.2) and the timing of
a thermal event is often of greater value to geologic interpretation than its absolute
magnitude, we conclude that the regularization approach is appropriate.

4.2 Effects of SIMS sampling and analytical uncertainties on thermal history recovery

Two key questions for the FGB inverse modeling revolve around the fundamental
ability of secondary ion mass spectrometry oxygen isotope measurements to constrain
unique thermal histories. One of these questions is where the most thermal information is
preserved in a diffusive oxygen isotope zoning profile. The other is whether the
uncertainties on the SIMS measurements are sufficiently small to resolve detailed thermal
information in the zoning profile.

Because regularization is built into the inverse model, the question of where
thermal information is stored in a profile cannot be addressed directly through minimizing
the estimated model covariance matrix. Instead, we test hypothetical analytical schemes
with different measurement distances (i.e., spacing between SIMS analysis pits), different
measurement locations (i.e., near grain margins versus grain centers), and measurement
precisions (i.e., isotope analysis uncertainties) to track the behavior of the inverse model as
a function of these analytical parameters (Fig. 9). The first four analysis schemes utilize the
current state-of-the-art for analytical spacing and uncertainty for a 10-pm SIMS analysis of
5180 (Kita et al., 2009). The subsequent four analytical schemes explore the potential
improvements to inverse thermal history recovery that might be achieved through closer
analytical spacing, different analysis locations, and/or higher precision oxygen isotope
measurements.

The first analytical scheme tests measurements on a single side of the oxygen
isotope diffusion profile near the grain margin (Figs. 94, S5). The inversion generally
retrieves a heating event early in the T-t history and an approximately linear cooling trend
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later in the T-t history but does not strongly constrain the height of the heating event or its
duration. Only one acceptable model solution shows no reheating event at all.

The second analytical scheme tests a smaller set of measurements spanning only
part of the isotope gradient but on both sides of the diffusion profile (Figs. 9B, S6). Because
the isotope profile is symmetric, this effectively cuts the number of measurements in half
and reduces their uncertainty by a factor of V2. Again, while most solutions recover an
early heating event, the height and duration of the heating event are not well constrained,
and the model produces more variable results for the second half of the T-t history. Two
acceptable model solutions show no reheating event at all.

For analytical scheme 3, measurements are taken near the center of the isotope
profile (Figs. 9C, S7). This scheme nicely recovers the height and duration of the heating
event in almost all acceptable model solutions; however, the timing of the reheating event
is very poorly constrained, and no portion of the linear cooling trend is correctly recovered.

Analytical scheme 4 combines measurements taken near the grain margin with
measurements near the grain center (Figs. 9D, S8). The resulting T-t histories show some
improvement over the solutions for scheme 1 in their ability to more consistently recover
the peak reheating temperature and the reheating duration. This suggests that Scheme 1
stopped just short of measuring 5180 values most representative of the grain core. Thus,
SIMS analyses that sample 6180 representative of the grain center ensures the best
recovery of peak thermal conditions. However, several of the acceptable solutions -
especially those for noise realization 1 - show a combination of somewhat low peak
reheating temperatures and secondary reheating events, rather than the correct linear
cooling.

Analytical schemes 5 through 8 test scenarios mirror the placement of SIMS
measurements in schemes 1 through 4 but with closer analytical spacing or improved
analytical precision, or both. Broadly, comparing the first four sampling schemes to the
second four sampling schemes, more of the acceptable T-t paths converge and overlap for a
given noise realization in schemes 5-8 (with the exception of scheme 6, discussed below).
This improved convergence indicates that higher sampling density and better analytical
precision decrease the sensitivity of the inversion results to the initial-guess T-t path.

Inspection of the individual schemes provides additional insights into the model
performance. The closer analysis spacing in scheme 5 yields consistent solutions that tend
to place the reheating event early and recover the correct reheating duration but still
sometimes underestimates the peak reheating temperature (Figs. 9E, S9). The more closely
spaced, high-precision measurements at the grain center in scheme 6 (Figs. 9F, S10) do not
improve on the solutions recovered with more widely spaced and less precise grain-center
analyses in scheme 3 (Figs. 9C). This is consistent with the previous conclusion that grain
centers primarily preserve information about the earlier, higher-temperature parts of
thermal histories and little information about the later, lower-temperature parts of thermal
histories. Thus, improved SIMS analytical precision and sampling density are of little use if
the portion of the diffusion profile with the most thermal information near the grain
margin is not sampled. The high-precision sampling scheme 7 consistently recovers the
early timing of the reheating event and constrains reheating duration but commonly
underestimates the peak reheating temperature (Figs. 9G, S11). Thus, scheme 7 is a modest
improvement on scheme 1 (Fig. 9A). Similarly, scheme 8 (Fig. 9H) offers a modest
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improvement on scheme 4 (Fig. 9D), showing more consistent recovery of the early timing
of the reheating event, as well as fewer and smaller spurious secondary reheating events.

The natural titanite data modeled in section 3.2 were collected using analytical
parameters closely resembling those of the scheme 1 and scheme 4 synthetic tests (Figs.
9A, 9D). Considered in light of the synthetic test results, we have a high confidence that the
nearly monotonic cooling history recovered for these samples is accurate and that there
were no significant thermal fluctuations during the temperature-time interval preserved in
the natural titanite 5180 data.

4.3 Non-uniqueness in the in the inverse problem for 7-t histories

Total diffusive mass flux for a given mineral depends primarily on the amount of
time the mineral spends in its partial retention zone (PRZ) - the range of temperatures
where diffusion is an efficient mechanism of mass transport at the scale of the mineral
grain. Diffusion is very efficient at temperatures on the high end of the PRZ and becomes
exponentially less efficient with decreasing temperature. As such, similar diffusive fluxes,
and thus similar diffusion profiles, can be achieved by a little time spent at higher
temperature or a longer time spent at lower temperature. Consequently, inversions of
diffusion data can fall into global, but flat-bottomed minima, where model solutions are
insensitive to several model parameters that one might hope to constrain.

In the synthetic tests presented here (Figs. 6, 9), this non-uniqueness in the inverse
problem is likely the reason that the best model results can only constrain the timing of the
reheating events to within ~2-3 million years of its true position. Spurious fluctuations in
the modeled T-t histories may reflect the combination of non-uniqueness in the diffusion
problem and noise in the 3180 data used for inversion. Nonetheless, it should be noted that
resolution of thermal events on the scale of 2 million years can be useful and, in many
cases, represents a large improvement over existing constraints on thermal histories for
many geologic terranes.

4.4 Fluid, microstructure, and applicability of the FGB diffusion model

The FGB model assumes that the rock microstructure is fixed and that all oxygen
isotope exchange within a rock system occurs via diffusion over the modeled time period.
This is unrealistic for rocks experiencing reactions and/or fluid-assisted, deformation-
assisted, or static recrystallization, during which the breaking and reforming of bonds
facilitates oxygen isotope exchange (e.g., Cole and Chakraborty, 2001). Reaction- and
recrystallization-induced changes to the topology of the grain-boundary network should
have little or no effect on fast oxygen isotope transport and rapid 8180 equilibration along
grain boundaries (e.g., Farver and Yund 1991), provided that the grain boundaries
maintain interconnectivity. Eiler et al. (1995) demonstrated that even in coarse-grained,
water-poor rocks, rapid (effectively instantaneous) grain-boundary 8180 equilibration was
achieved at the scale of a hand sample. Recrystallization that reduces grain size and
increases grain boundary area will only increase the rate of grain boundary equilibration.
More importantly for applying the FGB model, changes in grain size and shape during
reactions and recrystallization can alter the diffusion domain size and shape, affecting the
rate of isotope exchange between grain interiors and grain boundaries, as well as the
diffusion profiles that develop. Thus, careful characterization of the rock microstructure
and analysis of overall mineral zoning patterns is required to determine whether intragrain
oxygen isotope zoning can be credibly modeled with FGB.
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5. CONCLUSIONS

1) The Fast Grain Boundary model can be inverted to recover time-temperature paths from
oxygen isotope zoning in minerals. The temporal and thermal resolution of the inverted T-t
histories will be fundamentally limited by non-uniqueness in the diffusion equations;
however, tests of the FGB inversion suggest that details in the T-t histories of geological
samples can be recovered at a resolution of 2-3 million years and within 25-50 °C.

2) For the purposes of inverse thermal history modeling, the greatest amount of thermal
history information is preserved in the oxygen-isotope gradients toward grain margins, but
sampling of grain interiors is necessary to locate thermal maxima (if any) experienced by
samples.

3) Inversion of 8180 zoning profiles from real Adirondack titanite grains show a monotonic
cooling history with no significant thermal perturbations.

4) Inverse modelling tests suggest that thermal history recovery will be most improved by
careful placement of SIMS 8180 measurements and slightly improved by better SIMS
analytical precision. Ideally, SIMS 5180 measurements should extend from grain rim to
grain center with the closest possible spacing for the best-constrained inversion results.
When combined with a careful sampling strategy, a 2x reduction of the SIMS analytical
uncertainty will reduce spurious modeled T-t path fluctuations. A reduction in SIMS
analytical uncertainties will be most accessible through development of high-precision
microanalytical standards for 6180, as standard reproducibility is currently the major
contributor to SIMS 880 analytical uncertainty (Valley and Kita, 2009).
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https://github.com/gkropf/FastGrainBoundary-DiffusionSolver. The FGB code is written in
Python and C; it can be run on any personal computer with Python 3 and the tkinter,
numpy, scipy, matplotlib, pandas, glob, and os packages. We recommend the Anaconda
distribution of Python 3.7, which includes all of these packages. Questions about the code
and availability can be directed to Gabriel Kropf via Github or to corresponding author
Chloé Bonamici at the Department of Geoscience, University of Wisconsin-Madison,
Madison, WI 53706; telephone +1 (608) 263-7754; email: bonamici@wisc.edu.
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A. HIGH-TEMPERATURE EQUILIBRIUM
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boundaries and grain
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B. POST-COOLING
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Figure 3. Cartoon illustrating the oxygen isotope zoning that develops in mineral grains as a
result of diffusive oxygen flux in response to changing temperature in the Fast Grain
Boundary model. Arrows in top diagram show that diffusion is fast along grain boundaries
and much slower within grain interiors.
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Figure 4. Schematic diagrams showing how oxygen isotope flux and oxygen isotope
equilibrium fractionation are coupled in the Fast Grain Boundary model. (A) Diagram
demonstrating the flux balance calculation at the grain boundary. (B) Schematic diagram of
distance versus concentration showing the spatially discretized representation of an
oxygen isotope zoning profile with the grain boundary node concentrations determined by
equilibrium oxygen isotope fractionations. Upper concentration profile shows a mineral
that loses 180 with decreasing temperature. The lower concentration profile shows a
mineral that gains 180 with decreasing temperature.
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Figure 5. Inverse model solutions for a simple synthetic linear cooling history with (A) full
noise (typical 1s analytical errors for SIMS oxygen isotope analysis) and (B) 20% of full
noise. Black dashed line is the true cooling history. Color curves are the model-recovered
T-t paths. Regularization collapses similar solutions so that the 36 acceptable solutions (18
per noise realization) in each panel overlap and appear as only two T-t paths.
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Figure 6. Inverse model solutions for a synthetic data sets that include a heating spike
during cooling. (A,B) Early heating spike with 100% and 50% of current SIMS analytical
uncertainty, respectively. (C,D) Middle-period heating spike with 100% and 50% of current
SIMS analytical uncertainty, respectively. (E,F) Late heating spike with 100% and 50% of
current SIMS analytical uncertainty, respectively. Black dashed lines are the true cooling
histories. Color curves are acceptable model-recovered T-t paths. Each set of models
includes four noise realizations and 18 random starts for each realization. Only accepted
solutions (those with total misfit <1% above the minimum misfit for all model solutions)
are shown. Regularization collapses similar solutions so that the 36 acceptable solutions
(18 per noise realization) in each panel overlap and appear as fewer T-t paths. See
Supplemental Material for details of accepted solutions.



19

750 1 100 4

~

o

o
L

80 1

(2]

a

o
L

60 A

Temperature (°C)

40 1

20 - | EEE Total objective value
500 = Weighted sum of squared errors

, , T O O |
0 1

2 3 4 5 1 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18
Time (m.y.) Model Runs
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analytical uncertainty on thermal history recovery. For each test, inset schematically shows

the SIMS analysis locations and uncertainty with the spacing and length of red bars,
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respectively. (A) Scheme 1: sampling one side of profile with 12-um spacing and current
analytical precision (£0.14%o0 1SD). (B) Scheme 2: partially sampling both sides of profile
with 12-um spacing and current analytical precision (£0.14%o). (C) Scheme 3: sampling
center of profile with 12-pm spacing and current analytical precision (*0.14%o). (D)
Scheme 4: sampling one side and center of profile with 12-pm spacing and current
analytical precision (£0.14%o). (E) Scheme 5: sampling one side of profile with 6-um
spacing and current analytical precision (£0.14%o). (F) Scheme 6: sampling center of
profile with 6-um spacing and 50% of current analytical precision (£0.07%o). (G) Scheme
7: sampling one side of profile with 12-um spacing and 50% of current analytical precision
(¥0.07%o0). (H) Scheme 8: sampling one side and center of profile with 12-pm spacing and
50% of current analytical precision (£0.07%o). Black dashed line is the true cooling history.
Colored lines are acceptable model-recovered T-t paths. Each set of models includes four
noise realizations and 18 random starts for each realization. Only accepted solutions (those
with total misfit <1% above the minimum misfit for all model solutions) are shown.
Regularization collapses similar solutions so that the 72 acceptable solutions (18 per noise
realization) in each panel overlap and appear as fewer T-t paths. See Supplemental
Material for details of accepted solutions.
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SUPPLEMENTAL MATERIALS

A. Details of the updated Fast Grain Boundary numerical model

Diffusive exchange of oxygen between mineral phases in the model rock is driven by
temperature variations, which are imposed through finite time steps and the time-
temperature relationship, T(t), set by the user. At each time step, the temperature is
updated through the T(t) function, as are the temperature-dependent equilibrium
fractionations, 4:,j(T), and diffusivity, D(T), for each mineral (Fig. 4). The equilibrium
oxygen isotope fractionation between two minerals (generically designated i and h) is
calculated as

—n= 8180; — 6180}, ~ Ai_p + Bion e + Ciopn = (eq. A1)
i-h i h i—h i~h i~h 72 q.

where 4, B, and C are experimentally determined fractionation factors for oxygen isotope
exchange between the two minerals (e.g., Chacko et al., 2001; Vho et al.,, 2020). In the FGB
program, all fractionations (A’s) are referenced to a common phase, usually quartz when

present. Oxygen diffusivities for each mineral are calculated by the Arrhenius relation

\Di(T) = Do,ie_(%), (eq. A2)

where the preexponential factors, Do (m?/s), and activation energies, Q (J/mol), for each
phase are experimentally determined (e.g., Cole et al., 2001; Farver, 2010). The program
then solves for concentration profiles (c;, concentration as a function of distance from core
to rim of a mineral grain) in each mineral using a one-dimensional Crank-Nicholson finite
difference scheme with spherical or cylindrical geometry in the matrix form

1 [ Czlf1+1 ] grain boundary value
k+1 k K k
ke 142 —x Cio keiy + (1= 21)c)’y + kej3
—k  1+2k —K S | kel + (=200 + kel
—Kk 142k _1K et ey + (1= 26)cf_q + Ky
] C{ff:l | L grainboundary value
(eq. A3)

where |K = DAt/2(Ax)? a factor that that must be less than % to prevent spurious
oscillations; lkj is the concentration (6180) at the jth node in the mineral i at the kth time
step; and “grain boundary value” is the flux-modulated equilibrium grain boundary 5180
value determined by solving equation A7 in the previous time step (Fig. 4B). Spatial steps
in the finite difference grid in each mineral are ~0.5-20 um. Time steps are small
compared to the total model run duration (typically in the range 1,000 - 10,000 yrs),
resulting in values of k much less than %.

The 6180 flux is calculated for a given time step for a given mineral with a
discretized version of Fick’s first law:




A i Cn Cn
‘/i = —D; A)Cc D; % (eq. A4)

L

where the concentration difference is the 56180 difference between the grain boundary node
and first interior node of the mineral (Fig. 4A). Mass balance is then imposed on the system
by requiring that all fluxes from all minerals sum to zero for a given time step:

P xiAivili =0 (eq. AS)

Flux for each mineral i is weighted by the product of the mineral volume fraction in the
rock, yi, the surface area of the mineral, 4;, and the oxygen density in the mineral, 1. The
equilibrium fractionation equations (eq. A1) provide m-1 constraints for calculating the
equilibrium oxygen isotope concentrations for a set of m minerals at a given temperature.
The final mth constraint is provided when the mass/flux balance constraint above is
formulated as:

'Zl 1 XiA lVl Cln 1) Zl 1 XiA; Vl( Cln) (eq. A6)

Then all fractionation and flux equations are solved simultaneously for updated
equilibrium grain boundary 8180 values:

- (k+1)-
1o=1 0 0T 21—2
10 -1 .. 0|len 1-3
: : = : . (eq. A7)
1 il | e
Ly ky e k) m k™
L Cmn

Calculations in equations Al through A7 occur for each time step after model
initialization so that grain-boundary equilibrium fractionations, mineral 5180 zoning
profiles, and flux balance are updated on the same timescale.
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Figure S1: Graphical comparison of FGB model results with the original Fortran code (Eiler
et al., 1994) versus the MATLAB code (Bonamici, 2013), which is the basis of the Python/C
code of this study. Example is a hypothetical amphibolite rock composition at the end of a
45 m.y. model run with a T-1/t linear cooling history. (A) All mineral profiles at the same
scale. (B)-(E) Mineral profiles at different, expanded scales showing the details of the
model fits.
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B. Inverse approach - the Levenberg-Marquardt algorithm

Assuming a forward model, G, that accepts a vector of model inputs, m, and
produces a vector of data outputs, d, the inverse problem, of finding model inputs given
data outputs, can be expressed as the optimization problem (Aster et al., 2018):

min T, (L0274)° (eq.B1)

Oj

In the general case, G is non-linear and its inverse may have many solutions. To prevent the
overfitting of noise in data, a regularization term is added to the optimization problem:

}mi" 2iz1 (@)2 + B, (Lm); (eq. B2)

To select the optimal smoothing parameter, 3, that balances data fit and model
smoothness, L-curves are computed by running the inverse solver with progressively

larger values of S, plotting the error [|G(m) - dll2 versus the solution smoothness ||Lml|?,
and selecting the f value at the kink of the L-curve (Fig. S1).
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Figure S3: Example of L-curve used to choose optimal smoothing parameter.

The roughening matrix, L, can be constructed to penalize first or second order derivatives
of the model vector m. We apply us the second-order Tikhonov regularization approach

where Lm is proportional to the second derivative of m and the roughening matrix is:
1 -2 1

= (matrix 1)

1 —2 1
This regularization approach has the added benefit of collapsing many possible solutions of

the inverse problem to a single best solution when the data do not entirely constrain the
model (Aster et al., 2018).



In the absence of an analytical solution for the general inverse optimization problem
(nonlinear G), we use the iterative Levenberg-Marquardt (LM) algorithm. A vector valued
function, F, is defined according to eq. 1 and 2, where o represents the uncertainty in the

data measurement dj:

_ Gm)i—d;

fi (eq. B3)

'f1('m)'

| fom)
F = (Lm), (eq. B4)

| (L)

The LM algorithm starts with an initial solution and iteratively updates this solution by
solving eq. 5 for Am, and then adding Am to the current solution:

(J(m®)7J(m®) + p2L7L + A1) Am = —J ()" (6(m®) — d) — F2LTLm®), (eq. BS)

where

m&+D = m® 4 Am (eq. B6)

J is the Jacobian of F. The parameter £ is a tuning parameter that controls the inverse
solver’s priority for model smoothness. The parameter A ensures convergence and is
updated at each iteration depending on whether or not the solution is getting better. The
LM algorithm has the advantage of converging where gradient descent method would but
also has quadratic convergence under appropriate assumptions (Aster et al.,, 2018).



C. Applying the Levenberg-Marquardt Algorithm in Python and C

With the user setting model parameters related to rock mineralogy and texture and
equilibrium fractionation factors and diffusivity parameters drawn from experimental
databases, the FGB inverse solver attempts to recover the time-temperature history of a
rock sample from the oxygen isotope diffusion profiles within grains from the sample.
Because the LM algorithm is an iterative method, it requires an initial solution, and thus the
first step is to propose and discretize a time-temperature history (Fig. S2). The actual input
is a vector of temperatures, m, corresponding to the temperature at each of the equally
spaced time-periods. A linear interpolator is then used to create a continuous time-
temperature history.
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Figure S4: Example of the discretized model input.

The actual solution is assumed to be a linear interpolator between a finite number of points
equally spaced apart. The user provides the initial guess T-t history in the form of a csv file
formatted with times in the first column and corresponding temperatures in the second
column. The LM algorithm is then applied with the vector of temperatures as the model
input vector m. At each model iteration, the temperature values in the second column are
are updated by solving equation 5. If the error improves during an iteration, A is multiplied
by a factor of 1/8. Otherwise, it is doubled. The A term is used to ensure convergence when
the condition numbers of the matrices become large, as is often the case with quadratic
methods and poor initial guesses (Aster et al., 2018).



D. Generating synthetic data for testing inverse model

Before applying the inverse algorithm to real world data, it is evaluated on
simulated data to determine what features it is capable of recovering. The overall process is
to start with a known time-temperature history, run the forward model, keep only a sample
of the data points from the output, add noise to these data points, and then run the inverse
solver on this noisy data. The sample of forward output that is kept and fed into the inverse
solver is shown in Figures S3 and S4. The level of noise is chosen to match the current
analytical uncertainty of SIMS oxygen isotope measurements (+0.14%o 1 SD). This has
been done for several different simulated temperature-time histories discussed in this
manuscript.
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Figure S5: (A) Simulated temperature-time history with early heating spike superimposed
on a linear cooling trend input into the FGB forward model. (B) Oxygen isotope zoning
profile predicted by the FGB forward model for the mineral titanite in a simulated rock
(blue dashed curve) and the sampling of data points from the zoning profile that are saved
as input for inverse modeling (points). Points labeled G(m); are the forward model output
and points labeled di are the values that has been obscured with noise and then stored for
inversion tests.
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Figure S6: Examples of simulated datasets with different numbers and spatial distributions
of isotope measurements that mimic real titanite datasets.
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Figure S14: Inverse model solver results for sampling scheme 8, using four different noise
realizations and 18 initial guess solutions for each realization. Lefthand column plots show
T-t paths for acceptable solutions. Righthand column plots show total objective function
values for each noise realization. Solutions with total objective values >1% above the
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