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ABSTRACT  
This contribution presents a rewritten and expanded version of the Fast Grain 

Boundary (FGB) program (Eiler et al. 1994) with the motivation of adding to the 
geochemical tools available for reconstructing temperature-time (T–t) histories that inform 
studies of tectonics and crustal evolution. Both the original and the new FGB programs  
model the oxygen-isotope compositional evolution of a rock resulting from diffusive 
oxygen isotope exchange between minerals. The new FGB program is coded in Python and 
includes a graphical user interface. Additionally, C-compiled versions of the code are 
available that provide a 20x speedup of model calculations. The new implementation also 
allows for inversion of the FGB model to extract unbiased thermal histories from oxygen 
isotope data. The Levenberg-Marquardt (LM) algorithm is applied to search for cooling 
histories that maximize agreement between the model output and the measured oxygen 
isotope data. Tests with synthetic datasets show that the LM algorithm is able to 
distinguish between simple linear cooling and more complex thermal histories that include 
reheating events. Inversion of a natural oxygen isotope zoning dataset from titanite shows 
that, within the resolution of the models and data, the Adirondack Mountains sample 
location experienced rapid (30-70 °C/m.y.), monotonic cooling from 700 to 500 °C. We 
develop a heuristic guide to sampling and analytical approaches that improve the 
resolution of inversion solutions for current SIMS analytical capabilities and suggest 
targets for future improvements of SIMS analysis.  Our tests indicate that the current SIMS 
analytical precision for in situ oxygen isotope measurements is sufficient to allow for 
temperature-time path recovery with thermal resolution of 25-50 °C and temporal 
resolution of 2-3 million years.  
 
Keywords: Fast Grain Boundary; temperature-time path; oxygen isotopes; inversion 
thermal history 
 
 
1. INTRODUCTION 

Magmatic and tectonic events produce distinctive temperature variations in the 
crust (e.g., England and Thompson, 1984). Recognizing past magmatic or tectonic events, 
especially in regions with significant erosion, poor exposure, or protracted and complicated 
geologic histories, often hinges on recognizing their thermal effects in the rock record. 
Many minerals gain or lose constituents by mass diffusion in response to changing 
temperature. Some minerals can therefore reflect crustal thermal history in the spatial 
pattern of elements or isotopes that results from thermally activated diffusive mass 
redistribution. Providing that these spatial patterns – i.e., elemental or isotopic zoning – 
can be recognized and measured within a mineral (or minerals), they will represent a time-
integrated record of the thermal conditions experienced by the minerals’ host rock. 
Recognizing and measuring diffusion-induced intragrain zoning are non-trivial tasks (e.g., 
Eiler et al., 1995; Bindeman et al., 2008; Watts et al., 2012; Stearns et al., 2015; Rubin et al., 
2017), as is deconvolving the thermal history that such zoning represents (e.g., Eiler et al., 
1995; Storm and Spear, 2005; Smye and Stockli, 2014; Watson and Cherniak, 2015).  

Oxygen, the most abundant element in Earth, has three isotopes (16O, 17O, and 18O) 
that partition between minerals based on temperature and bulk rock composition (e.g., 
Urey, 1947; Chacko et al. 2001). The 18O/16O ratio – 18O, when normalized to a standard of 
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known 18O/16O – of coexisting minerals and fluids have long been used to uniquely 
constrain rock crystallization temperature, assuming that the phases in question reached 
isotopic equilibrium (e.g., Urey, 1948; Jenkin et al. 1994; Valley, 2001; Holder et al. 2018). 
More recently, geochemists have exploited the time dependence of diffusive oxygen isotope 
exchange between phases to constrain the rates of temperature change in rocks (e.g., 
Farver, 1989; Jenkin et al., 1991; Eiler et al. 1992). It is now possible to measure 18O in 
many minerals with high precision and high spatial resolution by secondary ion mass 
spectrometry (SIMS) (e.g., Valley and Kita, 2009; Kita et al. 2010), providing a means to 
detect 18O variations produced by thermally activated diffusion.  

In this contribution, we describe a numerical implementation of the Fast Grain 
Boundary (FGB) model (Eiler et al., 1993, 1992), which can be used to interpret rock 
thermal histories from oxygen isotope zoning preserved within one or more minerals of a 
rock sample (Fig. 1). The new FGB implementation has been updated and expanded from 
the original version developed by Eiler et al. (1994) and reported in this journal more than 
25 years ago. The FGB model describes the closed-system, diffusive exchange of oxygen 
isotopes between minerals within a rock in response to temperature variations and the 
oxygen isotopic zoning that develops within each mineral as a result of the exchange. The 
reincarnation of the FGB program can be used either to fit a thermal history to measured 
oxygen isotope data through forward modeling or can perform statistically rigorous 
inversion of measured oxygen isotope data to back out a range of possible thermal 
histories.  

The new FGB implementation described here shares similarities with at least four 
other well-known and widely used numerical thermochronology modeling tools – the 
multi-diffusion domain (MDD) model of Lovera et al. (1997, 2002) and Harrison et al. 
(2005), HeFTy of Ketcham (2005), and QtqT of Gallagher (2012), as well as with an 
iterative Markov Chain Monte Carlo modeling approach developed by Smye et al. (2018). 
FGB is, however, distinct from HeFTy, QtqT, MDD, and the MCMC of Smye et al. (2018) in a 
few important ways. First and foremost, whereas existing models describe primarily 
diffusion of trace elements (e.g., Ar, He, Pb), FGB describes the diffusive exchange of 
isotopes of oxygen, a major element in all silicate and oxide minerals on Earth. Models of 
trace element diffusion, first by Dodson (1986, 1973) and then by many subsequent 
workers (e.g., Cherniak, 1993; Smye and Stockli, 2014; Warren et al., 2012), employ a 
constant, zero-concentration grain boundary condition to simulate loss of the diffusant to 
an essentially infinite-sink reservoir outside the grain. To first order, this is an appropriate 
model for diffusion of structurally insignificant trace elements in many minerals, but it is 
not realistic for the case of major-element diffusion, in which a large fraction of the total 
mass of the system is diffusing. Major-element diffusion is only possible if mass balance is 
maintained within a closed system, such that oxygen lost from one mineral is taken in by 
another mineral. In FGB, this mass balanced oxygen isotope exchange occurs in response 
to, and is modulated by, an evolving grain boundary condition (non-zero, temperature-
dependent, and time-dependent). 

Another unique characteristic of FGB arising from the need to maintain mass 
balance is that FGB models a rock system, rather than a single phase within a rock. Primary 
user inputs to build a model are the mineral phases present, the mineral modes, the 
mineral grain sizes, and a whole-rock 18O value. The exchange equilibria and kinetics are 
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defined through oxygen isotope equilibrium fractionation factors (as a function of 
temperature) and oxygen diffusivity parameters for all phases. An equilibrium or near-
equilibrium fluid phase may be modeled implicitly as part of the rock system by user 
selection of “wet” diffusivity parameters for mineral phases. The FGB model outputs are 
also holistic in the sense that the program either predicts diffusive oxygen isotope zoning 
for every mineral phase in the rock system (Fig. 2), or it can simultaneously invert the 
measured oxygen isotope zoning in multiple phases to constrain the thermal history.  

FGB further differs from existing models in that it has the potential to constrain a 
continuous thermal history over a wide range of temperatures, including in the high 
temperature range (~500-800 °C). Oxygen diffusivity is different in every mineral phase 
and thus each mineral will transition from rapid to very slow (unmeasurable) oxygen 
diffusion over a different temperature range, analogous to the thermochronology concept 
of the partial retention zone or PRZ (e.g., Wolf et al., 1998). Diffusive oxygen isotope zoning 
in a given mineral thus provides a continuous thermal history over the mineral’s particular 
PRZ. If oxygen isotope zoning develops in several minerals with overlapping PRZs – a 
realistic scenario in a multi-phase rock and, in fact, required for intragrain oxygen isotope 
exchange (Eiler et al., 1992) – then inversion of the zoning in all phases can constrain a 
continuous time-temperature history that extends from the PRZ of the mineral with the 
lowest oxygen diffusivity down through the PRZ of the mineral with the highest oxygen 
diffusivity. For comparison, MDD can also constrain a continuous thermal history but over 
a limited temperature range between ~400-150 °C, depending on the exact domain-size 
distribution in a given K-feldspar grain or grains (e.g., Harrison et al., 2005). HeFTy and 
QtQT models can be used to constrain thermal histories over a large range of temperatures, 
but much of this range, and especially the higher temperature part of the range, is 
constrained by a few, discrete T–t points provided by thermochronometers like U-Pb in 
monazite (e.g., Kirkland et al., 2017).  

Finally, FGB differs from HeFTy, QtqT, and MDD in that it is a geospeedometry tool 
that provides information about durations and rates of thermal events but is not 
intrinsically linked to absolute geologic time. Because oxygen isotopes are stable, their 
abundances do no vary as a function of time through radioactive decay. In order to anchor 
the thermally induced diffusion of oxygen to a date, the minerals in which oxygen isotope 
zoning is recorded must be related through careful textural analysis to minerals that act as 
geochronometers. In many rocks, at least one mineral can be utilized both for oxygen 
isotope geospeedometery and for geochronometry – e.g., K-feldspar or titanite – providing 
a close link between the thermal history and absolute dates. 

This contribution describes updates to the FGB code and its approach to thermal 
history inversion from oxygen isotope zoning data. We detail two examples of synthetic 
thermal histories and their recovery through inversion, as well as one example from a 
small natural data set. We also use FGB to explore how the choice of rock sample and 
analytical improvements could increase the resolution of thermal histories retrieved from 
inversion. 
2. THEORY/METHOD 
2.1 The Fast Grain Boundary Model & Its Forward Implementation 
2.1.1 The Fast Grain Boundary conceptual model 
 The Fast Grain Boundary model describes the diffusive exchange of oxygen between 
multiple phases within a rock volume. Oxygen isotope exchange is driven by a system’s 
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attempt to reach thermodynamic equilibrium, but it is achieved through specific 
mechanisms and at a finite rate and is thus governed by kinetics. The underlying behavior 
is modeled by Fick’s first and second laws of mass diffusion, which relate diffusant flux and 
temporal variations in diffusant concentration, respectively, to spatial gradients in 
diffusant concentration (e.g., Crank, 1975).  

The FGB model is based on the idea that oxygen diffusion through mineral 
structures is slow compared to oxygen diffusion along mineral grain boundaries (Fig. 3). 
Thus, grain boundaries achieve and maintain isotopic equilibrium, but grain interiors may 
not. Oxygen-isotope zoning may develop within a mineral grain in response to the 
variations in the equilibrium 18O concentration that is imposed at a grain’s boundary (Fig. 
3). Diffusion of oxygen through a mineral structure governs oxygen flux and flux rate into 
or out of a particular phase, whereas equilibrium isotope partitioning determines how the 
isotopes of oxygen are distributed (via grain boundaries) amongst phases. The closed 
system mass balance requirement of the system translates to a flux balance imposed at the 
mineral grain boundaries: at any given time, the total amount of oxygen lost to the grain 
boundary region by diffusion must equal the total amount of diffusive oxygen uptake into 
mineral grains. The balance imposed at the grain boundary between oxygen flux and 
oxygen isotope partitioning allows construction of a matrix of equations that couples 
volume diffusion through multiple phases to time-varying equilibrium conditions. 
 
2.1.2 The updated Fast Grain Boundary numerical model 

The numerical implementation of the FGB forward model, as laid out originally by 
Eiler et al. (1994) and updated by Bonamici (2013), are briefly reviewed here and in more 
detail in the Supplemental Materials. Figure 4 shows relations between the physical rock 
system and model equations. Diffusive exchange of oxygen between mineral phases in the 
model rock is driven by temperature variations, which are imposed through finite time 
steps and the time-temperature relationship, T(t), set by the user. At each time step, the 
temperature is updated through the T(t) function, as are the temperature-dependent 
equilibrium fractionations, ∆i-j(T), and diffusivity, D(T), for each mineral (Fig. 4). Oxygen 
diffusivities for each mineral are calculated by the Arrhenius relation. The program then 
solves for concentration profiles (ci, concentration as a function of distance from core to 
rim of a mineral grain) in each mineral using a one-dimensional Crank-Nicholson finite 
difference scheme with spherical or cylindrical diffusion geometry and a grain boundary 
18O fixed at the equilibrium 18O value determined in the previous time step. Spatial steps 
in the finite difference grid in each mineral are ~0.5-20 µm.  Time steps are small 
compared to the total model run duration (typically in the range 1,000 – 10,000 yrs) and 
satisfy the Fourier stability criterion. The 18O flux is calculated for a given time step for a 
given mineral with a discretized version of Fick’s first law. Mass balance is then imposed on 
the system by requiring that all fluxes from all minerals sum to zero for a given time step. 
The equilibrium fractionation equations provide m-1 constraints for calculating the 
equilibrium oxygen isotope concentrations for a set of m minerals at a given temperature. 
The final mth constraint is provided by the mass flux balance. Then all fractionation and flux 

equations are solved simultaneously for updated equilibrium grain boundary 18O values: 
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.  (eq. 1) 

 
Thus, diffusivities, mineral 18O zoning profiles, grain-boundary equilibrium fractionations, 
and flux mass balance are updated with each time step and evolve on the same timescale.  

The new FGB code is implemented in a combination of Python and C in order to 
maintain accessibility and to improve speed. It now also features a GUI to make it more 
user friendly. Other than the coding language, the major differences between the new and 
original FGB forward model codes are 1) the ability to implement a multi-segment thermal 
history with any number of cooling, heating, or isothermal steps, and 2) interactive tables 
for rapid look-up of experimental fractionation factors and diffusivity parameters, and 3) a 
fully analytical solution for calculating oxygen isotope flux and grain boundary equilibrium 
isotopic partitioning at each time step of the simulation. Figure S1 shows a comparison of 
the output from the original Fortran code and the current Python/C code, demonstrating 
comparability of results. The user’s guide to running the new FGB program is included as 
part of the supplemental materials and is available on GitHub (see Computer Code 
Availability) for download along with the new FGB code. 
2.2 Inverting the Fast Grain Boundary Model  

The inversion of oxygen isotope zoning profiles from one or more minerals grains 
can be treated as a non-linear optimization problem, solving iteratively with the 
Levenberg-Marquardt (LM) algorithm (Supplemental Materials). The addition of a 
regularization (smoothing) term,  , to the standard least squares formulation 
(Aster et al., 2018) prevents overfitting of noisy natural oxygen-isotope zoning datasets:  

 

  (eq. 2)   

 
In this equation, G(mi) are forward modeled mineral 18O profiles for a set of model inputs, 
m; di is are actual observed 18O profile values; i are the errors on the 18O data (see 
below);  is a smoothing parameter; L is a roughening matrix (see also Supplemental 
Materials). We use second-order Tikhonov regularization, which penalizes solutions based 
on the roughness of the second derivative of m (Supplemental Materials).  A multi-start 
approach is used to ensure that the solutions are true global minima and not local 
entrapments. This is determined by rerunning the inverse solver with many different initial 
solutions, and then comparing all the final solution errors. If there are many equally good 
solutions (similar errors), then the structure of these solutions is compared to find general 
trends and make statements about persistent features, such as reheating events.  

The FGB program can accept any number of data files corresponding to the diffusive 
profiles for multiple grains or minerals in a sample. Additionally, if multiple samples are 
taken from the same region and can be assumed to have experienced the same thermal 
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history, the program allows these to be combined to more accurately recover the shared 
thermal history. 

Errors (i) or “noise” used in FGB modeling are the total external analytical 
uncertainties of SIMS 18O measurements, as monitored by bracketing measurements of 
standard materials. For instance, in the real dataset modeled below (section 3.2), the 
uncertainty assigned to a 18O measurement is the standard deviation of measurements of 
periodically repeated WiscSIMS quartz standard UWQ-1 (Kelly et al., 2007). The 
reproducibility of a well-known standard value encompasses uncertainties arising from 
counting statistical errors, random instrumental performance fluctuations, systematic 
instrumental bias, and random compositional variations in imperfect natural materials. 
Uncertainties on the equilibrium fractionation factors and diffusivity parameters are not 
propagated through the FGB modeling, nor are uncertainties resulting from regularization. 
Users may reduce the effect of uncertainties in equilibrium fractionation factors by using 
the Vho et al. (2019) internally consistent database of fractionation factors for FGB model 
construction (Fig. S2).  
2.3 Synthetic datasets 

Several synthetic datasets are modeled using the LM approach in order to probe the 
amount of thermal information that can be recorded by and recovered from oxygen isotope 
zoning (Supplemental Materials). For tests of synthetic datasets, we create a forward model 
with a known thermal history, select a subset of data points, add noise to the data points, 
and then run the inverse model to assess thermal history recovery. For each sample 
scheme, two to four separate noise realizations are generated, and each realization is run 
18 times, starting each time from different initial T–t path guess, for a total of 36 to 72 
models. The appropriate  smoothing parameter for a given set of tests is determined 
based on initial L-curve tests (Supplemental Materials; section 4.1) and is fixed. For 
synthetic data sets, these values are small and range from 0.0056 to 0.02455 
(Supplemental Materials). Unless otherwise noted, the synthetic datasets are ’measured’ 
with similar analytical spacing (12 µm) and with similar levels of noise (0.14‰ 1SD), as 
the real titanite dataset (Supplemental Materials). The spacing and analytical uncertainties 
of the real dataset are commonly achievable for in situ oxygen isotope analysis with 
current SIMS instrumentation and analytical reference materials. These synthetic scenarios 

provide context for inverse solutions from the real titanite 18O data. We explore how the 
analysis spacing and analytical errors affect the inverse solutions in more detail in the 
Discussion section.  
3. RESULTS 
3.1 Summary of inversion results for synthetic data  

The synthetic datasets were constructed to test two geologically relevant scenarios 
– a linear (dT/dt = constant), monotonic cooling history, simulating uninterrupted cooling 
following orogenic uplift, and a reheating event imposed on a monotonic cooling history, as 
if orogenic uplift were followed by a magmatic intrusion event. 
 Inversion of a simple linear cooling T–t path recovers thermal histories that 
fluctuate about the true history, with alternating cooling and nearly isothermal path 
segments, but that overall decrease monotonically and at an average rate similar to the true 
linear cooling rate (Figs. 5A). Decreasing the noise level to 20% of the expected analytical 
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error produces thermal histories with smaller fluctuations, showing both average and 
instantaneous cooling rates similar to the true linear cooling rate (Figs. 5B).  
 Inversion of a thermal spike superimposed on a linear cooling history consistently 
recovers solutions that show a heating event (Fig. 6). The recovered heating spike is 
generally broader (1.5-5x longer in duration) and somewhat lower (~25-75C) than the 
true heating spike, with these peak distortions showing a correlation such that broader 
peaks are lower and narrower peaks are higher. The timing and duration of an early 
heating event (Fig. 6A,B) are recovered more accurately and precisely than the timing and 
duration of a mid-period or late heating event (Figs. 6C-F). Reducing the analytical 
uncertainties by half improves recovery of the heating spike timing and the linear cooling 
segments modestly but does not improve recovery of the heating spike peak (6B,D,F).  

In summary, inspection of the synthetic reheating thermal histories (Fig 6) shows 
that the inversion solver constrains the timing of the heating event somewhat better at 
lower SIMS analytical uncertainty than is currently available. Nonetheless, comparison of 
the linear cooling (Fig. 5) and the reheating (Fig. 6) solutions indicates that, at both the 
current and hypothetical higher levels of analytical precision, the solver can clearly 
distinguish thermal histories that involve reheating events from those that do not.  
3.2 Inversion of real oxygen isotope zoning data from Adirondack titanite   

FGB inversion was also tested with real data from Bonamici et al. (2014), who 
reported intragrain oxygen isotope data from the mineral titanite from the Adirondack 
Mountains, NY. A subset of the investigated titanite grains were determined to show 
isotopic zoning formed by diffusion and were forward modeled in an earlier version of the 
FGB program (Fig. 1).  The oxygen isotope zoning profiles were measured in titanite from a 
metasyenite host rock comprising primarily alkali feldspar, quartz, and augite, with lesser 
amounts of titanite and iron oxides (Bonamici et al., 2014). Without evidence for a more 
complex cooling history, Bonamici et al. (2014) fit the oxygen isotope zoning data using 
simple linear cooling paths, such as those shown in Figure 5. A combination of regional 
metamorphic constraints and the best model fits suggested cooling from a peak 
temperature of ~700 C down to ~500 C in 2-5 million years (Bonamici et al., 2014). 
These findings have been used to design both the synthetic and real-data tests for the FGB 
inversion, providing reasonable starting and ending temperatures, as well as the model 
durations for the tests.  

Oxygen isotope diffusion profiles were measured in several real titanite grains, 
which are inferred to have shared the same thermal history based on their geologic 
relations (Bonamici et al., 2014). Combining four diffusion profiles from two different 
grains results in 102 data points, which are used to reconstruct a discretized, 17-point 
time-temperature history via inversion. Model results for the real data converge to a nearly 
linear cooling history for all 18 initial T-t guesses (Fig. 7). Changes in the T–t path slope 
hint at possible short-lived episodes of more rapid cooling, but there are no indications of 
reheating events in the samples’ history.  
4. DISCUSSION 
 Synthetic and real data presented above establish that the FGB inversion can 
recover thermal history information from oxygen isotope zoning and, to a first order, 
distinguish some details within the thermal history. In order to better understand what 
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information FGB can retrieve and how the resolving power of the models can be improved, 
we perform additional tests to evaluate the sensitivity of FGB to certain model parameters. 

The test procedure follows the approach used for the synthetic thermal histories 
tests reported in section 3.1 – create a forward model with a known thermal history, select 
a subset of data points, add noise to the data points, and then run the inverse model to 
assess thermal history recovery. For each sample scheme, four separate noise realizations 
are generated, and each realization is run starting from 18 different, random initial-guess 
T–t paths, for a total of 68 models. The  smoothing parameter is fixed at 0.02455 as 
described above.  
4.1 Effects of regularization on thermal history recovery 
 To understand the effect of the smoothing parameter, , on the thermal history 
recovery, we can compare models run with intentionally low  and “ideal”  values (Fig. 8). 
Models run with intentionally low  produce an array of T–t paths that have similar shapes 
(Fig. 8A). These T–t paths correctly reproduce the height and duration of the early heating 
spike, but they do not agree on its timing. Models run with the optimal  parameter (based 
on the L-curve topology) (Fig. 8B) show good convergence, with all T–t paths overlapping 
to place the heating at the correct time; however, the modeled heating spike is both lower 
and wider than the true spike (Fig. 8C).  This result demonstrates the expected trade-offs 
for regularization: Sensitivity of the model to noisy data is decreased, but some resolution 
in the recovered T–t paths is lost as the regularization parameter is increased. In as much 
as natural oxygen isotope data are commonly noisy (see sections 3.1, 4.2) and the timing of 
a thermal event is often of greater value to geologic interpretation than its absolute 
magnitude, we conclude that the regularization approach is appropriate. 
4.2 Effects of SIMS sampling and analytical uncertainties on thermal history recovery 

Two key questions for the FGB inverse modeling revolve around the fundamental 
ability of secondary ion mass spectrometry oxygen isotope measurements to constrain 
unique thermal histories. One of these questions is where the most thermal information is 
preserved in a diffusive oxygen isotope zoning profile. The other is whether the 
uncertainties on the SIMS measurements are sufficiently small to resolve detailed thermal 
information in the zoning profile.  

 Because regularization is built into the inverse model, the question of where 
thermal information is stored in a profile cannot be addressed directly through minimizing 
the estimated model covariance matrix. Instead, we test hypothetical analytical schemes 
with different measurement distances (i.e., spacing between SIMS analysis pits), different 
measurement locations (i.e., near grain margins versus grain centers), and measurement 
precisions (i.e., isotope analysis uncertainties) to track the behavior of the inverse model as 
a function of these analytical parameters (Fig. 9). The first four analysis schemes utilize the 
current state-of-the-art for analytical spacing and uncertainty for a 10-µm SIMS analysis of 
18O (Kita et al., 2009).  The subsequent four analytical schemes explore the potential 
improvements to inverse thermal history recovery that might be achieved through closer 
analytical spacing, different analysis locations, and/or higher precision oxygen isotope 
measurements.  

The first analytical scheme tests measurements on a single side of the oxygen 
isotope diffusion profile near the grain margin (Figs. 9A, S5). The inversion generally 
retrieves a heating event early in the T–t history and an approximately linear cooling trend 
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later in the T–t history but does not strongly constrain the height of the heating event or its 
duration. Only one acceptable model solution shows no reheating event at all.  

The second analytical scheme tests a smaller set of measurements spanning only 
part of the isotope gradient but on both sides of the diffusion profile (Figs. 9B, S6). Because 
the isotope profile is symmetric, this effectively cuts the number of measurements in half 
and reduces their uncertainty by a factor of √2. Again, while most solutions recover an 
early heating event, the height and duration of the heating event are not well constrained, 
and the model produces more variable results for the second half of the T–t history. Two 
acceptable model solutions show no reheating event at all.  

For analytical scheme 3, measurements are taken near the center of the isotope 
profile (Figs. 9C, S7). This scheme nicely recovers the height and duration of the heating 
event in almost all acceptable model solutions; however, the timing of the reheating event 
is very poorly constrained, and no portion of the linear cooling trend is correctly recovered. 

Analytical scheme 4 combines measurements taken near the grain margin with 
measurements near the grain center (Figs. 9D, S8). The resulting T–t histories show some 
improvement over the solutions for scheme 1 in their ability to more consistently recover 
the peak reheating temperature and the reheating duration. This suggests that Scheme 1 
stopped just short of measuring 18O values most representative of the grain core. Thus, 
SIMS analyses that sample 18O representative of the grain center ensures the best 
recovery of peak thermal conditions. However, several of the acceptable solutions – 
especially those for noise realization 1 – show a combination of somewhat low peak 
reheating temperatures and secondary reheating events, rather than the correct linear 
cooling.  

Analytical schemes 5 through 8 test scenarios mirror the placement of SIMS 
measurements in schemes 1 through 4 but with closer analytical spacing or improved 
analytical precision, or both. Broadly, comparing the first four sampling schemes to the 
second four sampling schemes, more of the acceptable T–t paths converge and overlap for a 
given noise realization in schemes 5-8 (with the exception of scheme 6, discussed below). 
This improved convergence indicates that higher sampling density and better analytical 
precision decrease the sensitivity of the inversion results to the initial-guess T–t path.  

Inspection of the individual schemes provides additional insights into the model 
performance. The closer analysis spacing in scheme 5 yields consistent solutions that tend 
to place the reheating event early and recover the correct reheating duration but still 
sometimes underestimates the peak reheating temperature (Figs. 9E, S9). The more closely 
spaced, high-precision measurements at the grain center in scheme 6 (Figs. 9F, S10) do not 
improve on the solutions recovered with more widely spaced and less precise grain-center 
analyses in scheme 3 (Figs. 9C). This is consistent with the previous conclusion that grain 
centers primarily preserve information about the earlier, higher-temperature parts of 
thermal histories and little information about the later, lower-temperature parts of thermal 
histories. Thus, improved SIMS analytical precision and sampling density are of little use if 
the portion of the diffusion profile with the most thermal information near the grain 
margin is not sampled. The high-precision sampling scheme 7 consistently recovers the 
early timing of the reheating event and constrains reheating duration but commonly 
underestimates the peak reheating temperature (Figs. 9G, S11). Thus, scheme 7 is a modest 
improvement on scheme 1 (Fig. 9A). Similarly, scheme 8 (Fig. 9H) offers a modest 
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improvement on scheme 4 (Fig. 9D), showing more consistent recovery of the early timing 
of the reheating event, as well as fewer and smaller spurious secondary reheating events.  

The natural titanite data modeled in section 3.2 were collected using analytical 
parameters closely resembling those of the scheme 1 and scheme 4 synthetic tests (Figs. 
9A, 9D). Considered in light of the synthetic test results, we have a high confidence that the  
nearly monotonic cooling history recovered for these samples is accurate and that there 
were no significant thermal fluctuations during the temperature-time interval preserved in 
the natural titanite 18O data. 
4.3 Non-uniqueness in the in the inverse problem for T–t histories 
 Total diffusive mass flux for a given mineral depends primarily on the amount of 
time the mineral spends in its partial retention zone (PRZ) – the range of temperatures 
where diffusion is an efficient mechanism of mass transport at the scale of the mineral 
grain. Diffusion is very efficient at temperatures on the high end of the PRZ and becomes 
exponentially less efficient with decreasing temperature. As such, similar diffusive fluxes, 
and thus similar diffusion profiles, can be achieved by a little time spent at higher 
temperature or a longer time spent at lower temperature. Consequently, inversions of 
diffusion data can fall into global, but flat-bottomed minima, where model solutions are 
insensitive to several model parameters that one might hope to constrain.  

In the synthetic tests presented here (Figs. 6, 9), this non-uniqueness in the inverse 
problem is likely the reason that the best model results can only constrain the timing of the 
reheating events to within ~2-3 million years of its true position.  Spurious fluctuations in 
the modeled T-t histories may reflect the combination of non-uniqueness in the diffusion 
problem and noise in the 18O data used for inversion. Nonetheless, it should be noted that 
resolution of thermal events on the scale of 2 million years can be useful and, in many 
cases, represents a large improvement over existing constraints on thermal histories for 
many geologic terranes. 
4.4 Fluid, microstructure, and applicability of the FGB diffusion model 
 The FGB model assumes that the rock microstructure is fixed and that all oxygen 
isotope exchange within a rock system occurs via diffusion over the modeled time period. 
This is unrealistic for rocks experiencing reactions and/or fluid-assisted, deformation-
assisted, or static recrystallization, during which the breaking and reforming of bonds 
facilitates oxygen isotope exchange (e.g., Cole and Chakraborty, 2001). Reaction- and 
recrystallization-induced changes to the topology of the grain-boundary network should 
have little or no effect on fast oxygen isotope transport and rapid 18O equilibration along 
grain boundaries (e.g., Farver and Yund 1991), provided that the grain boundaries 
maintain interconnectivity. Eiler et al. (1995) demonstrated that even in coarse-grained, 
water-poor rocks, rapid (effectively instantaneous) grain-boundary 18O equilibration was 
achieved at the scale of a hand sample. Recrystallization that reduces grain size and 
increases grain boundary area will only increase the rate of grain boundary equilibration. 
More importantly for applying the FGB model, changes in grain size and shape during 
reactions and recrystallization can alter the diffusion domain size and shape, affecting the 
rate of isotope exchange between grain interiors and grain boundaries, as well as the 
diffusion profiles that develop. Thus, careful characterization of the rock microstructure 
and analysis of overall mineral zoning patterns is required to determine whether intragrain 
oxygen isotope zoning can be credibly modeled with FGB. 
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5. CONCLUSIONS 
1) The Fast Grain Boundary model can be inverted to recover time-temperature paths from 
oxygen isotope zoning in minerals. The temporal and thermal resolution of the inverted T–t 
histories will be fundamentally limited by non-uniqueness in the diffusion equations; 
however, tests of the FGB inversion suggest that details in the T–t histories of geological 
samples can be recovered at a resolution of 2-3 million years and within 25-50 °C.   
  
2) For the purposes of inverse thermal history modeling, the greatest amount of thermal 
history information is preserved in the oxygen-isotope gradients toward grain margins, but 
sampling of grain interiors is necessary to locate thermal maxima (if any) experienced by 
samples.  
 
3) Inversion of 18O zoning profiles from real Adirondack titanite grains show a monotonic 
cooling history with no significant thermal perturbations.  
 
4) Inverse modelling tests suggest that thermal history recovery will be most improved by 
careful placement of SIMS 18O measurements and slightly improved by better SIMS 
analytical precision. Ideally, SIMS 18O measurements should extend from grain rim to 
grain center with the closest possible spacing for the best-constrained inversion results. 
When combined with a careful sampling strategy, a 2x reduction of the SIMS analytical 
uncertainty will reduce spurious modeled T–t path fluctuations. A reduction in SIMS 
analytical uncertainties will be most accessible through development of high-precision 
microanalytical standards for 18O, as standard reproducibility is currently the major 
contributor to SIMS 18O analytical uncertainty (Valley and Kita, 2009). 
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FIGURES 

 
Figure 1. Oxygen isotope variations (zoning) in titanite revealed by secondary ion mass 
spectrometry measurements collected along traverses across a titanite grain (black 
squares and error bars). Blue bands show Fast Grain Boundary forward model fits to the 
oxygen isotope data, assuming strictly monotonic linear cooling (dT/dt = constant).  
Acceptable cooling rates (in °C/m.y.) based on the linear cooling models are given in blue 
numbers, with the best-fit linear cooling rate in bold.  
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a n d m u c h sl o w e r wit hi n  g r ai n i nt e ri o r s.  
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Figure 5. Inverse model solutions for a simple synthetic linear cooling history with (A) full 
noise (typical 1s analytical errors for SIMS oxygen isotope analysis) and (B) 20% of full 
noise. Black dashed line is the true cooling history. Color curves are the model-recovered 
T–t paths. Regularization collapses similar solutions so that the 36 acceptable solutions (18 
per noise realization) in each panel overlap and appear as only two T–t paths.  
 

100% noise (± 0.14‰)

700

650

625

600

575

550

525

500

675

0 1 2 3 4 5
Time (m.y.)

T
e
m

p
e

ra
tu

re
 (

°C
)

A
20% noise (±0.028‰)

700

650

625

600

575

550

525

500

675

0 1 2 3 4 5
Time (m.y.)

T
e

m
p

e
ra

tu
re

 (
°C

)

B

Realization 1

Realization 2
Realization 3

Realization 4



18 
 

 

 
Figure 6. Inverse model solutions for a synthetic data sets that include a heating spike 
during cooling. (A,B) Early heating spike with 100% and 50% of current SIMS analytical 
uncertainty, respectively. (C,D) Middle-period heating spike with 100% and 50% of current 
SIMS analytical uncertainty, respectively. (E,F) Late heating spike with 100% and 50% of 
current SIMS analytical uncertainty, respectively. Black dashed lines are the true cooling 
histories. Color curves are acceptable model-recovered T–t paths. Each set of models 
includes four noise realizations and 18 random starts for each realization. Only accepted 
solutions (those with total misfit <1% above the minimum misfit for all model solutions) 
are shown. Regularization collapses similar solutions so that the 36 acceptable solutions 
(18 per noise realization) in each panel overlap and appear as fewer T–t paths. See 
Supplemental Material for details of accepted solutions.  
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Figure 7. Inversion results from for real titanite oxygen isotope zoning data from the 
Adirondack Mountains. Four 18O zoning profiles from two different grains were inverted 
jointly. (A) Model-recovered T–t paths from all 18 model runs with different random starts. 
Regularization collapses similar solutions so that the 18 acceptable solutions overlap and 
appear as only one T-t path. (B) Model misfits for each run. Dashed line shows the cut-off 
for an acceptable solution at 1% above the minimum misfit of all models. Errors in the 
models are essentially identical because of non-uniqueness of the error of the solution. 
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Figure 8. Comparison of model results for an early heating spike T–t history using low and 
ideal regularization (smoothing) parameters. (A) Model solutions for under-regularized 
problem with  = 0.004. (B) L-curve showing the relative positions of the  parameters 
used in regularization tests. (C) Model solutions for well-regularized problem with  = 
0.025. Black dashed line is the true cooling history. Color curves are model-recovered T–t 
paths. 
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Figure 9. Models of synthetic datasets testing the effects of SIMS analysis spacing and 
analytical uncertainty on thermal history recovery. For each test, inset schematically shows 
the SIMS analysis locations and uncertainty with the spacing and length of red bars, 
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respectively. (A) Scheme 1: sampling one side of profile with 12-µm spacing and current 
analytical precision (±0.14‰ 1SD). (B) Scheme 2: partially sampling both sides of profile 
with 12-µm spacing and current analytical precision (±0.14‰). (C) Scheme 3: sampling 
center of profile with 12-µm spacing and current analytical precision (±0.14‰). (D) 
Scheme 4: sampling one side and center of profile with 12-µm spacing and current 
analytical precision (±0.14‰). (E) Scheme 5: sampling one side of profile with 6-µm 
spacing and current analytical precision (±0.14‰). (F) Scheme 6: sampling center of 
profile with 6-µm spacing and 50% of current analytical precision (±0.07‰). (G) Scheme 
7: sampling one side of profile with 12-µm spacing and 50% of current analytical precision 
(±0.07‰). (H) Scheme 8: sampling one side and center of profile with 12-µm spacing and 
50% of current analytical precision (±0.07‰). Black dashed line is the true cooling history. 
Colored lines are acceptable model-recovered T–t paths. Each set of models includes four 
noise realizations and 18 random starts for each realization. Only accepted solutions (those 
with total misfit <1% above the minimum misfit for all model solutions) are shown. 
Regularization collapses similar solutions so that the 72 acceptable solutions (18 per noise 
realization) in each panel overlap and appear as fewer T–t paths. See Supplemental 
Material for details of accepted solutions.
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SUPPLEMENTAL MATERIALS 
 
 A. Details of the updated Fast Grain Boundary numerical model 

Diffusive exchange of oxygen between mineral phases in the model rock is driven by 
temperature variations, which are imposed through finite time steps and the time-
temperature relationship, T(t), set by the user. At each time step, the temperature is 
updated through the T(t) function, as are the temperature-dependent equilibrium 
fractionations, ∆i-j(T), and diffusivity, D(T), for each mineral (Fig. 4). The equilibrium 
oxygen isotope fractionation between two minerals (generically designated i and h) is 
calculated as 

 

 (eq. A1) 

 
where A, B, and C are experimentally determined fractionation factors for oxygen isotope 
exchange between the two minerals (e.g., Chacko et al., 2001; Vho et al., 2020). In the FGB 
program, all fractionations (’s) are referenced to a common phase, usually quartz when 
present. Oxygen diffusivities for each mineral are calculated by the Arrhenius relation 

, (eq. A2) 

 
where the preexponential factors, D0 (m2/s), and activation energies, Q (J/mol), for each 
phase are experimentally determined (e.g., Cole et al., 2001; Farver, 2010). The program 
then solves for concentration profiles (ci, concentration as a function of distance from core 
to rim of a mineral grain) in each mineral using a one-dimensional Crank-Nicholson finite 
difference scheme with spherical or cylindrical geometry in the matrix form 
 

    

(eq. A3) 
 
where , a factor that that must be less than ½ to prevent spurious 

oscillations;  is the concentration (18O) at the jth node in the mineral i at the kth time 

step; and “grain boundary value” is the flux-modulated equilibrium grain boundary 18O 
value determined by solving equation A7 in the previous time step (Fig. 4B). Spatial steps 
in the finite difference grid in each mineral are ~0.5-20 µm.  Time steps are small 
compared to the total model run duration (typically in the range 1,000 – 10,000 yrs), 
resulting in values of  much less than ½. 

The 18O flux is calculated for a given time step for a given mineral with a 
discretized version of Fick’s first law: 
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 (eq. A4) 

 
where the concentration difference is the 18O difference between the grain boundary node 
and first interior node of the mineral (Fig. 4A). Mass balance is then imposed on the system 
by requiring that all fluxes from all minerals sum to zero for a given time step: 
 

 (eq. A5) 

 
Flux for each mineral i is weighted by the product of the mineral volume fraction in the 
rock, i, the surface area of the mineral, Ai, and the oxygen density in the mineral, i. The 
equilibrium fractionation equations (eq. A1) provide m-1 constraints for calculating the 
equilibrium oxygen isotope concentrations for a set of m minerals at a given temperature. 
The final mth constraint is provided when the mass/flux balance constraint above is 
formulated as: 
 

 (eq. A6) 

 
Then all fractionation and flux equations are solved simultaneously for updated 
equilibrium grain boundary 18O values: 
 

.  (eq. A7) 

 
 Calculations in equations A1 through A7 occur for each time step after model 
initialization so that grain-boundary equilibrium fractionations, mineral 18O zoning 
profiles, and flux balance are updated on the same timescale.  
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Figure S1: Graphical comparison of FGB model results with the original Fortran code (Eiler 
et al., 1994) versus the MATLAB code (Bonamici, 2013), which is the basis of the Python/C 
code of this study. Example is a hypothetical amphibolite rock composition at the end of a 
45 m.y. model run with a T-1/t linear cooling history. (A) All mineral profiles at the same 
scale. (B)-(E) Mineral profiles at different, expanded scales showing the details of the 
model fits. 
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Figure S2: Graphical comparison of FGB forward models for a hypothetical amphibolite using ad 

hoc 18O fractionation factors (orange curves) and Vho et al.’s (2019) database of recalculated, 

internally consistent fractionation factors (blue curves). Modal percentages for each phase 

indicated next to the mineral label. Differences in predicted 18O would be indistinguishable by 

SIMS at current precision for all phases except magnetite. 
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B. Inverse approach – the Levenberg-Marquardt algorithm 
Assuming a forward model, G, that accepts a vector of model inputs, m, and 

produces a vector of data outputs, d, the inverse problem, of finding model inputs given 
data outputs, can be expressed as the optimization problem (Aster et al., 2018): 

 

  (eq. B1) 

 
In the general case, G is non-linear and its inverse may have many solutions. To prevent the 
overfitting of noise in data, a regularization term is added to the optimization problem: 
 

 (eq. B2) 

 
To select the optimal smoothing parameter, β , that balances data fit and model 
smoothness, L-curves are computed by running the inverse solver with progressively 

larger values of β, plotting the error ∥G(m) − d∥2
 versus the solution smoothness ∥Lm∥2, 

and selecting the β value at the kink of the L-curve (Fig. S1).  

 
Figure S3: Example of L-curve used to choose optimal smoothing parameter.  
 
The roughening matrix, L, can be constructed to penalize first or second order derivatives 
of the model vector m.  We apply us the second-order Tikhonov regularization approach 
where Lm is proportional to the second derivative of m and the roughening matrix is:  

 (matrix 1) 

This regularization approach has the added benefit of collapsing many possible solutions of 
the inverse problem to a single best solution when the data do not entirely constrain the 
model (Aster et al., 2018).  
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In the absence of an analytical solution for the general inverse optimization problem 
(nonlinear G), we use the iterative Levenberg-Marquardt (LM) algorithm. A vector valued 
function, F, is defined according to eq. 1 and 2, where σi represents the uncertainty in the 

data measurement di: 

 

  (eq. B3) 

 

  (eq. B4) 

 
The LM algorithm starts with an initial solution and iteratively updates this solution by 
solving eq. 5 for ∆m, and then adding ∆m to the current solution:  
 

,   (eq. B5) 

 
where 
 

  (eq. B6) 

 
J is the Jacobian of F. The parameter β is a tuning parameter that controls the inverse 
solver’s priority for model smoothness. The parameter λ ensures convergence and is 
updated at each iteration depending on whether or not the solution is getting better. The 
LM algorithm has the advantage of converging where gradient descent method would but 
also has quadratic convergence under appropriate assumptions (Aster et al., 2018).  
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C. Applying the Levenberg-Marquardt Algorithm in Python and C 
With the user setting model parameters related to rock mineralogy and texture and 

equilibrium fractionation factors and diffusivity parameters drawn from experimental 
databases, the FGB inverse solver attempts to recover the time-temperature history of a 
rock sample from the oxygen isotope diffusion profiles within grains from the sample. 
Because the LM algorithm is an iterative method, it requires an initial solution, and thus the 
first step is to propose and discretize a time-temperature history (Fig. S2). The actual input 
is a vector of temperatures, m, corresponding to the temperature at each of the equally 
spaced time-periods. A linear interpolator is then used to create a continuous time-
temperature history.  

 
Figure S4: Example of the discretized model input.  
 
The actual solution is assumed to be a linear interpolator between a finite number of points 
equally spaced apart. The user provides the initial guess T–t history in the form of a csv file 
formatted with times in the first column and corresponding temperatures in the second 
column. The LM algorithm is then applied with the vector of temperatures as the model 
input vector m. At each model iteration, the temperature values in the second column are 
are updated by solving equation 5. If the error improves during an iteration, λ is multiplied 
by a factor of 1/8. Otherwise, it is doubled. The λ term is used to ensure convergence when 
the condition numbers of the matrices become large, as is often the case with quadratic 
methods and poor initial guesses (Aster et al., 2018).  
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D. Generating synthetic data for testing inverse model 
Before applying the inverse algorithm to real world data, it is evaluated on 

simulated data to determine what features it is capable of recovering. The overall process is 
to start with a known time-temperature history, run the forward model, keep only a sample 
of the data points from the output, add noise to these data points, and then run the inverse 
solver on this noisy data. The sample of forward output that is kept and fed into the inverse 
solver is shown in Figures S3 and S4. The level of noise is chosen to match the current 
analytical uncertainty of SIMS oxygen isotope measurements (±0.14‰ 1 SD). This has 
been done for several different simulated temperature-time histories discussed in this 
manuscript.

 
Figure S5: (A) Simulated temperature-time history with early heating spike superimposed 
on a linear cooling trend input into the FGB forward model. (B) Oxygen isotope zoning 

profile predicted by the FGB forward model for the mineral titanite in a simulated rock 

(blue dashed curve) and the sampling of data points from the zoning profile that are saved 

as input for inverse modeling (points). Points labeled G(m)i are the forward model output 
and points labeled di are the values that has been obscured with noise and then stored for 

inversion tests. 

 

Figure S6: Examples of simulated datasets with different numbers and spatial distributions 

of isotope measurements that mimic real titanite datasets.  
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Figure S7: Inverse model solver results for sampling scheme 1, using four different noise 

realizations and 18 initial guess solutions for each realization. Lefthand column plots show 

T–t paths for acceptable solutions. Righthand column plots show total objective function 

values for each noise realization. Solutions with total objective values >1% above the 
lowest total objective value for the realization are rejected (gray bars to right, gray paths to 

left).  
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Figure S8: Inverse model solver results for sampling scheme 2, using four different noise 

realizations and 18 initial guess solutions for each realization. Lefthand column plots show 

T–t paths for acceptable solutions. Righthand column plots show total objective function 

values for each noise realization. Solutions with total objective values >1% above the 

lowest total objective value for the realization are rejected (gray bars to right, gray paths to 

left).  
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Figure S9: Inverse model solver results for sampling scheme 3, using four different noise 

realizations and 18 initial guess solutions for each realization. Lefthand column plots show 

T–t paths for acceptable solutions. Righthand column plots show total objective function 

values for each noise realization. Solutions with total objective values >1% above the 
lowest total objective value for the realization are rejected (gray bars to right, gray paths to 

left).  
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Figure S10: Inverse model solver results for sampling scheme 4, using four different noise 

realizations and 18 initial guess solutions for each realization. Lefthand column plots show 

T–t paths for acceptable solutions. Righthand column plots show total objective function 

values for each noise realization. Solutions with total objective values >1% above the 

lowest total objective value for the realization are rejected (gray bars to right, gray paths to 

left).  
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Figure S11: Inverse model solver results for sampling scheme 5, using four different noise 

realizations and 18 initial guess solutions for each realization. Lefthand column plots show 

T–t paths for acceptable solutions. Righthand column plots show total objective function 

values for each noise realization. Solutions with total objective values >1% above the 

lowest total objective value for the realization are rejected (gray bars to right, gray paths to 

left).  
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Figure S12: Inverse model solver results for sampling scheme 6, using four different noise 

realizations and 18 initial guess solutions for each realization. Lefthand column plots show 

T–t paths for acceptable solutions. Righthand column plots show total objective function 

values for each noise realization. Solutions with total objective values >1% above the 
lowest total objective value for the realization are rejected (gray bars to right, gray paths to 

left).  
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Figure S13: Inverse model solver results for sampling scheme 7, using four different noise 

realizations and 18 initial guess solutions for each realization. Lefthand column plots show 

T–t paths for acceptable solutions. Righthand column plots show total objective function 

values for each noise realization. Solutions with total objective values >1% above the 
lowest total objective value for the realization are rejected (gray bars to right, gray paths to 

left).  
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Figure S14: Inverse model solver results for sampling scheme 8, using four different noise 

realizations and 18 initial guess solutions for each realization. Lefthand column plots show 

T–t paths for acceptable solutions. Righthand column plots show total objective function 

values for each noise realization. Solutions with total objective values >1% above the 

lowest total objective value for the realization are rejected (gray bars to right, gray paths to 

left).  
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