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ABSTRACT

We propose using learning-to-rank for entity set expansion (ESE)
from unstructured data, the task of finding “sibling” entities within
a corpus that are from the set characterized by a small set of seed
entities. We present a two-channel neural re-ranking model, NESE,
that jointly learns exact and semantic matching of entity contexts
through entity interaction features. Although entity set expansion
has drawn increasing attention in the IR and NLP communities for
its various applications, the lack of massive annotated entity sets
has hindered the development of neural approaches. We describe
DBpedia-Sets, a toolkit that automatically extracts entity sets from
a plain text collection, thus providing a large amount of distant
supervision data for neural model training. Experiments on real
datasets of different scales from different domains show that NESE
outperforms state-of-the-art approaches in terms of precision and
MAP. Furthermore, evaluation through human annotations shows
that the knowledge learned from the training data is generalizable.
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1 INTRODUCTION

Corpus-based entity set expansion refers to the task of finding all
other entities in a given corpus that belong to the same seman-
tic class as a few seed entities. For example, given the input seed
set {Oslo, Amsterdam, Lisbon}, also referred to as a query, an ESE
algorithm is expected to output other capitals in Europe that are
mentioned in a given corpus. Set expansion is broadly useful for
a number of downstream applications, such as question answer-
ing [34], taxonomy construction [32], relation extraction [17], in-
formation extraction [13] and query suggestion [3]. We believe ESE
from plain text can provide guidance for knowledge base comple-
tion (KBC) [35]. The task is closely related to example-based search
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or query-by-example [43], which is a frontier of exploratory search
and analysis [19]. It is worth noting that there is a further line of
work where entity sets are expanded from structured data (e.g., Web
lists and knowledge bases) [14, 25, 41]. Such approaches cannot be
used for expansion of entities outside of knowledge bases.

Most corpus-based approaches [10, 20, 26, 27, 29, 31, 38, 39] are
based on the assumption of distributional similarity [12], which, in
the context of set expansion, can be interpreted in two ways: (1) ex-
act matching: textual contexts (e.g., n-grams and skip-grams) are
directly considered as features of entities; and (2) semantic matching:
context information is used to train distributed representations of
entities (embeddings) [8, 21–23]. Either exact or semantic matching
can be adopted to expand entity sets, though they both have limits.
The former finds sibling entities based on extraction of high-quality
textual patterns. An entity needs to share exact textual patterns
with at least one seed entity to be considered as an expansion can-
didate. On the other hand, in semantic matching models, entity
embeddings generated by different language representation models
tend to express different types of similarity, not reflecting only
entity sibling relations.

An unsupervised approach CaSE combining exact and semantic
matching techniques has shown significant improvements over
individual methods [39]. The core intuition is to search for semanti-
cally related entities that frequently share important contexts with
seed entities. We are interested in capturing such a hybrid process
with a neural model. We have two motivations. First, as an unsuper-
vised method, CaSE has made heuristic choices of parameters and
conversion functions in the context matching algorithm. Second,
we hypothesize that there exists a mapping from a general em-
bedding space to an entity embedded space, where high similarity
corresponds to close sibling relation.

We address three key challenges in designing a supervised neural
model for the set expansion problem.

Data. There is no publicly available standard dataset of reason-
able size for training and evaluation of ESE models. The issues
with evaluation of current models include: insufficient number
of testing entity sets and queries [15, 31, 38, 42], heavy focus
on frequent entities [31, 38] and on entities from selected top-
ics [15, 27, 31, 38, 39, 42]. We describe a toolkit, DBpedia-sets,
to extract potential training and test entity sets from any free text
corpus using the DBpedia knowledge base [1]1. DBpedia-sets au-
tomatically annotates entity mentions in plain text with an entity
linker [7] and groups entities from the same category together
based on structural entity relations in the knowledge base.

1 The toolkit and built datasets are publicly available at https://github.com/PxYu/NESE
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Feature space complexity. Current unsupervised methods based
on exact matching [27, 31, 39] adopt skip-grams as entity features,
which makes a sparse and high-dimensional feature space. We re-
visit the explicit vector space representation [18], which means using
unigrams in an entity’s contexts as entity features. The significant
advantage of unigrams over skip-grams for exact context match-
ing is that the entity feature dimension is greatly reduced, while
expansion effectiveness is not affected.

Generalizable embedding learning. For semantic matching, the
essence is to learn effective and generalizable entity representations
without resorting to entity knowledge outside a given corpus (e.g.,
encyclopedia). It is not feasible to train ESE-specific entity embed-
dings from scratch for lack of supervision data. Simply fine-tuning
pre-trained embeddings cannot update representations of entities
outside the training data. We propose using neural networks to
learn a “projection” of a pre-trained entity embedding space into an
optimal embedding space for the ESE task with limited annotated
data. The intuition is that an ESE-specific semantic space better
exhibits the sibling relation between entities.

We cast the ESE task as a learning-to-rank problem and pro-
pose a two-channel neural re-ranking ESE model, called NESE
(Neural Entity Set Expansion). A semantic matching channel and
an exact context matching channel are jointly trained to predict
the probability of set membership of an entity given seed entities.
Extensive experiments (§6) on three different corpora show that
NESE achieves statistically significant improvements over baseline
methods. NESE improves the expansion effectiveness in terms of
MAP up to 18% over the state-of-the-art models.

2 RELATEDWORK

Set Expansion from the Web (Online): Web-based methods for
set expansion [5, 34] extract entities from documents retrieved by
a search engine with respect to the query built from seed entities.
Such methods impose considerable run-time overhead and they
assume that top-ranked web pages contain other entities of the set,
which is not necessarily true. Most studies, including this one, thus
focus on expansion in the offline setting.

Set Expansion from Structured Data: The SEISA model [14]
expands a seed set using bipartite graphs built from lists extracted
fromweb pages andWeb search query logs in an iterative procedure.
The ESER model [41] and the NVSE model [25] both expand query
entities on knowledge bases, based on assuming deficiency (e.g.,
incompleteness and noisiness) of knowledge graphs. Such methods
have different applications from plain text based methods because
they use structured data as the source of information.

Set Expansion from Unstructured Data: Earlier works [26,
29, 33] are usually based on co-occurrence frequencies of entities.
Ghahramani and Heller [10] model set expansion as a Bayesian in-
ference problem. SetExpan [31] is an iterative bootstrapping model
where entities and their context features are arranged in a bipartite
graph. Two types of features are adopted: skip-grams and coarse-
grained entity types from Wikipedia. MCTS-PMSN [38] is another
bootstrapping model that learns entity and pattern embeddings
for pattern selection in a Monte Carlo tree search, but the learned
embeddings are dependent on entity sets. The CaSE model [39]
is a non-bootstrapping one-time ranking method, and has better
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Figure 1: Skip-gram and unigram features extracted for en-

tity “Hubble Space Telescope”.

scalability with large corpora. To score a candidate with respect to
a query, CaSE first constructs a candidate pool, and then leverages
candidate-query association strengths directly via embeddings and
indirectly via skip-grams. CaSE improves the accuracy of set expan-
sion by combining exact skip-gram matching with entity semantic
matching without resorting to any hints of entity relations other
than plain text. There are also works which focus on more specific
areas in ESE, such as multi-faceted queries [27], semantic drift [15],
and set name generation [42].

3 THE DBPEDIA-SETS TOOLKIT

We observed multiple problems in the evaluation datasets of exist-
ing works on the ESE task:

Human effort. Entity sets and evaluation queries are mainly con-
structed by human experts [27, 31, 38], an expensive and time-
consuming task for large datasets, and one that requires human
experts in different domains.

Corpus independence. Entity sets are collected independent of
text corpora. Often a large portion of entities in a set are not present
in a corpus, which makes the set not suitable for evaluation.

Bias. Entity sets are biased towards the most frequent entities
in the corpus, or entities of specific topics. For example, Shen et
al. [31] chose 20 queries from the 2,000 most frequent entities in
each benchmark corpus to evaluate their ESE algorithm. However,
expanding seeds from infrequent entity sets is the main motivation
of set expansion from text corpora. The evaluation entity sets used
by Rong et al. [27] are mainly related to geo-locations.

To address the above problems, we develop the DBpedia-Sets
toolkit to extract entity sets suitable for training and testing of ESE
models from a given corpus.DBpedia-Sets requires a plain text cor-
pus and some statistical constraints on desired entity sets as inputs.
The output is a series of entity sets that meet the constraints. Each
output entity set is essentially a (sub)set of entities in a Wikipedia
category2, hence the data is of high quality.

DBpedia-Sets consists of three main steps. First, entity mentions
within the text are identified. DBpedia Spotlight [7], a popular
DBpedia-based entity linker, annotates the corpus by replacing
entity mentions with the distinct surface names of entities to which
they are linked. Second, all potential entity sets within the corpus
are obtained. Queries written in the SPARQL Query Language [24]
are submitted to request entity categories in the knowledge graph
via the public SPARQL endpoint over the DBpedia dataset3. Each
entity can be associated with one or more categories. The union of

2 For example, https://en.wikipedia.org/wiki/Category:Winter_Olympic_sports
3 http://dbpedia.org/sparql
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all obtained categories for all entities in the corpus constitutes the
potential entity sets.

Third, statistical-based filters are applied to select entity sets
satisfying the specified constraints, which can be about (1) the
upper and lower limits of the size of entity sets; and (2) coverage of
set entities in the corpus, where a specified percentage of entities in
a set should have corpus frequencies higher than a specified value.
For all three corpora in our experiments (§6), the statistical-based
filter “all entity sets containing 10 to 100 entities, where at least 90%
of the entities appear at least 10 times in the corpus” is applied to
extract entity sets. The size constraint is to ensure entity sets with
large number of entities do not dominate the training of ESEmodels.
The coverage constraint makes sure that contextual information
about entities can be found in the corpus.

Note that the DBpedia knowledge base is only used to build
training and evaluation data, and the learned models can be ap-
plied without requiring a knowledge base. The process of extracting
entity mentions from the corpus does not necessarily require an
entity linker, because noun phrases [30] are widely adopted to ap-
proximate entity mentions [31, 39]. The proposed sample collection
procedure aims to acquire accurate labels from knowledge base to
supervise training and evaluation of ESE models. The learned ESE
model can also be used for expansion of entity seeds that are not
available in a knowledge base, as shown in Section 6.3.

4 ENTITY CONTEXT FEATURE

Context-based ESE methods [27, 31, 38, 39] extract features from
entities’ contexts (sometimes referred to as “patterns”) with the
idea that entities sharing similar context features are more likely to
be members of the same entity set. Rong et al. [27] proposed to use
skip-grams as entity features for set expansion, where a skip-gram is
defined as a short span of text around entity mention. They claimed
that skip-grams impose strong positional constraints on the context
and thus appropriate filtering and sampling based on these features
can recover sibling relationsmore precisely. Subsequent ESEmodels
naturally followed this approach [31, 38, 39]. For example, features
in CaSE are extracted by sliding a 4-term window over the 6-term
span centered at each entity mention such that four skip-gram
features are extracted from each entity mention in the corpus. An
example of extracted features is shown in Figure 1.

The alternative entity feature is the explicit vector space represen-
tation [18], that is, to simply use unigrams around entity mentions
as features. This approach has the advantage of a lower-dimensional
feature space, since there are far fewer distinct words than distinct
skip-grams in a corpus. A comparison of the number of skip-gram
and unigram features for different datasets is presented in Table 1.

Set expansion models based on skip-gram features are biased
towards sets of highly frequent entities, because exact matching
based on multi-term sequences is much more restrictive than that
based on single terms. Using unigram context features increases
the chance of entities being matched so that recall is improved. We
show in Section 6.2 that using unigram features can significantly
reduce the number of queries for which no correct entities are
retrieved at top-100 position (recall@100=0). On the other hand,
terms matched with skip-gram features usually have the same
part-of-speech, which is particularly useful in the task of term set

expansion [20] and building a thesaurus from plain text [11, 28].
However, ESE models can approximate entity mentions with noun-
phrases. We demonstrate that there is no statistically significant
difference in terms of MAP performance of CaSE with either skip-
gram or unigram features. This finding shows that unigram features
can be as effective as skip-gram features for the ESE task. Due to the
aforementioned advantages of unigram features over skip-grams,
we extract unigram features from entity contexts for our ESEmodel.

5 NEURAL SET EXPANSION MODEL

5.1 Task Formulation

Entity set E = {e1, e2, · · · , e |E |} refers to a complete set of entities
extracted from a corpus that can be categorized under one semantic
class. An example in the AP89 corpus is {Lithuania, Norway, Estonia,
Iceland, Sweden, Denmark, Finland, Latvia, Russia} from the entity
set “Northern European countries”. Query q refers to the initial set
of n seed entities sampled from an entity set as input. Given a query
q with n entities sampled from entity set E and a text corpus, the
goal of an ESE model is to accurately retrieve other entities in the
corpus that belong to E (i.e., E−q). Instead of considering all entities
in the corpus as candidates, our proposed model re-ranks the top-
100 results from an unsupervised candidate generator method.4

5.2 Input Representation

We encode each query or candidate entity with two features: a
pre-trained entity embedding and a unigram feature vector. Entity
embeddings are continuous vectors of length leb that embed all
entities in a latent space. As discussed in Section 4, we extract uni-
gram features from contexts of entity mentions in text and build a
unigram feature vector for each entity occurring in the corpus. Uni-
gram feature vectors are continuous vectors of length luf, equalling
the size of unigram vocabulary. We choose a window of 6-term span
centered at an entity mention as its context (Figure 1). Formally,
for all in-corpus entities CE and the unigram vocabularyU , we cal-
culate matrix S |CE |× |U | in which Si j corresponds the association
strength between entity ei and unigramuj . The association strength
can be estimated in different ways. Intuitively, Si j should increase
as the frequency of uj in the context of ei increases, and should
decrease as the number of entities that co-occur with unigram uj
increases. For this purpose, we choose the positive pointwise mutual
information (PPMI) metric [2, 6, 18]:

Si j = max(PMI(ei ,uj ), 0),

PMI(e,u) = log
P(e,u)

P(e)P(u)
= log

freq(e,u)|corpus|
freq(e)freq(u)

,
(1)

where |corpus| is the total number of words in the corpus, freq(e,u)
is the frequency of u occurring in the context of e , and freq(e) and
freq(u) are the corpus frequencies of e and u, respectively.

Padding and random permutation of inputs. We assume
a maximum number of entities in queries, because in practical
settings, it is very unlikely that users will provide numerous entity
seeds to be completed. The maximum number is set to 5 in the
experiments of this study, though our model can be trained for any
maximum query length. Queries with less than 5 entities are first

4 Pilot experiments regarding the first-step ranker are described in Section 6.1.
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Figure 2: The NESE re-ranker that jointly learns semantic and exact context matching from data.

padded. Then, five query and possibly pad entities are randomly
permuted. A candidate entity is then appended to the end.

5.3 NESE Architecture

The proposed NESE model consists of two components, one for
matching entities based on their embeddings, and one based on
their context features extracted from text. The two components are
referred to as semantic matching and exact matching models respec-
tively. The intuition in the design of both components is that only
the similarity of a candidate with seed entities is not fully indicative
of set membership. This is because entities in different entity sets
have various degrees of closeness, which can be characterized by
query-query interactions. Our model is thus designed to operate
on both query-query and query-candidate similarities.

The semantic matching model expands queries by entities
that are most semantically similar. We assume that there exists a
linear mapping from the pre-trained entity embedding space to
another embedding space, where the similarity of entities from the
same semantic class is more apparent. To model linear mapping,
we employ a learnable weight matrix W ∈ Rleb×leb and each en-
tity embedding x is transformed to Wx. Next, interaction matrix
between any pairs of seed and candidate entities is obtained by
calculating cosine similarities between transformed entity repre-
sentations. The interaction matrix is then concatenated into one
vector fs. A masking vector fm is built by checking which input
elements equal to the padding element, multiplying it by itself, and
then flattening it. By taking the Hadamard product of fs and fm, all
non-valid similarity values due to the padding are set to zero in the
final fs.

Exact matching model tries to match entities based on the
similarity of their contexts in the given corpus. Unigram features
are extracted from entities’ contexts and constitute the input of
this model. Similar to the semantic matching, an interaction matrix
between seeds and the candidate entity is built by computing their
pairwise cosine similarities, and the output is the masked similarity
vector fe.

Either semantic or exact matching model can be independently
applied for the ESE task by adding a classification component on
top of their outputs such as a linear layer. However, to fully utilize
all features, we combine the two components and jointly train them
for the ESE task. Specifically, masked pairwise similarity vectors
from two components, fs and fe, are first min-max normalized and
are then combined using the Hadamard product. A multi-layer per-
ceptron (MLP) is adopted to predict the set-membership probability
of a candidate entity given the combined features. We show that the
exact matching model can help the training of semantic matching
model which has many more parameters to be learned.

An ESE model should be invariant under permutation of entities
in the query. The only order-sensitive part of the NESE model is
the vector of pairwise similarities. Theoretically, using a summa-
tion or an average operator instead of pairwise similarity makes
the model fully invariant to input permutations [40]. However, an
inner representation based on summed or averaged query entity
representations does not fully capture interactions between entities.

5.4 Model Training

Figure 2 illustrates how to calculate the set-membership probability
zi of one candidate ci given query q. Repeating the process for all
candidates c for q, a ranked list of candidate entities is obtained.
We have ground-truth labels (relevance judgement) by consider-
ing candidate entities that belong to the entity set that query q
is sampled from as relevant and others as non-relevant. For train-
ing of NESE, we compare the obtained ranking of candidates with
ground-truth labels using the ListNet [4] loss function. This loss
function is based on estimating a probability distribution for a list
of scored entities, indicating the probability of different rankings.
The probability distribution can be estimated using permutation
or top-1 probabilities. Because of the computational complexity of
permutation probabilities, we use top-1 probabilities following the
original model.



Table 1: Statistics of training and test data.

Datasets AP89 WaPo Wiki

# sentences 1.60M 22.6M 43.3M
# skip-gram features 4.1M 14.2M 57.1M
# unigram features 0.12M 0.57M 2.20M
# kept unigram features 16,225 42,813 86,471
# entity sets 66 121 200
avg. # entities per set 18.3 18.9 19.8
avg. # training queries per fold 8,730 14,430 23,946
# test queries 1,980 3,630 6,000

6 EXPERIMENTS

6.1 Experimental Design

Benchmark datasets.We use three text collections for evaluation:
(1) AP89 is a TREC collection of 84,678 news articles published
by the Associated Press in 1989. (2) WaPo is the Washington Post
Corpus by TREC, which contains 608,180 news articles and blog
posts from January 2012 to August 2017. (3) Wiki is the English
Wikipedia dump of June 2019, where non-article pages such as “list
of”, redirect, and disambiguation pages are removed. The DBpedia-
sets toolkit is applied on each corpus to extract and select entity sets.
The toolkit generates 4,127 sets for Wiki corpus, and we randomly
sampled 200 of them for efficiency. All generated entity sets from
AP89 and WaPo are kept.

From each entity set E withm entities, some training and test
queries are sampled. For each query length n ∈ {3, 4, 5}, we ran-
domly sample n entities from the set E to form a training query
for min{

(m
n
)
, 100} times. The reason for setting an upper limit on

the number of samples per set is to prevent large entity sets from
dominating the training data. Entities in E which are not sampled
for a query are labeled as 1 in training samples. For negative sam-
ples, we randomly choose 40% of incorrect entities retrieved by the
initial ESE model that generates candidate entities. The reason for
not using all negative samples is discussed in Section 6.4. Similarly,
for each query length n ∈ {3, 4, 5}, min{

(m
n
)
, 10} test queries are

sampled from the set E. Fewer number of test queries are sampled
from each entity set due to the quite long run-time of some baseline
models. It also prevents evaluation metrics averaged on the query
level from being biased towards large entity sets.

For each corpus, obtained entity sets are randomly divided into
5 folds. In each run, training queries in three folds are used to train
the model, test queries in a fourth fold for monitoring training
and early stopping, and test queries in the final fold for testing
the performance of the learned model. Note that this means that
a given entity set E is never used for both training and testing.
Five runs generate results for test queries sampled from all entity
sets. Test queries for baselines that do not need training are the
combination of test queries sampled from all folds. Statistics of
datasets is reported in Table 1.

Baselines.We divide comparable corpus-based ESE models into
three categories, and select the most effective methods in each
category as baselines for evaluation. 1) Semantic matching ap-

proaches.We acquire GloVe and BERT embeddings of all entities

Table 2: Recall@100 of candidate generation methods.

Dataset AP89 WaPo Wiki

Query length 3 4 5 3 4 5 3 4 5

GloVe .283 .318 .345 .386 .422 .449 .505 .534 .560
BERT .611 .618 .631 .510 .516 .532 .444 .463 .472
CaSE-skip .421 .432 .445 .495 .505 .517 .551 .568 .583
CaSE-uni .418 .428 .444 .476 .484 .498 .569 .583 .597

in each corpus annotated by DBpedia-Sets, where each entity is
regarded as a word. GloVe5 embeddings are trained by setting the
window size and maximum number of training iterations to 10 and
30, respectively. The output embedding vectors are of dimension
100. A BERT embedding of each entity is obtained by averaging the
contextualized representations of all its occurrences in a corpus.
We use “bert-base-uncased” version of pre-trained BERT from the
Transformers library [36]. BERT embeddings are 768-dimensional.
A k-NN classifier based on cosine similarity of candidates and av-
erage of seeds’ embeddings is then used to rank the candidates.
2) Exact matching approach. We use the released implementa-
tion of SetExpan [31] for evaluation6. 3) Hybrid approach. We
use the released implementation of CaSE for evaluation7. The orig-
inal work uses skip-gram features for exact matching. Here, we
experiment with both skip-gram features (CaSE-skip) and unigram
features (CaSE-uni), following the discussion in Section 4. For the
distributed entity representations, we adopt locally trained GloVe
embeddings. 4) Feature-based learning-to-rank.We also report
the results of AdaRank [37] for the ESE task where the input con-
sists of human-engineered features. To have a fair comparison, we
build features by computing cosine similarities between each pair
of entities in a given query and candidate sample, where entities are
represented by pre-trained embeddings (BERT on AP89 and WaPo,
GloVe on Wiki), unigram context feature vectors, or both. We re-
spectively refer to these models asAdaRank-emb,AdaRank-uni,
and AdaRank-cmb. We train separate models for each length of
input query as the model does not support inputs of various lengths.
AdaRank is a listwise learning-to-rank framework that is capable of
directly optimizing IR metrics. In this re-ranking task, we optimize
MAP@100.

Candidate generation. The criteria for selecting candidate gen-
eration model among baseline methods include high recall value
and run-time efficiency. SetExpan is excluded from consideration
because of slow runtime. Recall@100 values of other baseline meth-
ods for test queries on different datasets are listed in Table 2. Given
the results, we adopt BERT as candidate generator for AP89 and
WaPo, and CaSE-uni for Wiki.

Evaluation metrics. The baseline and proposed ESE models
retrieve a ranked list of entities with respect to a query. The queries
in test data are evaluated using Mean Average Precision at top
100 entities (MAP@100), and precision at top-20 entities (P@20).
Statistical significant tests are performed using the two-tailed paired
t-test at the 0.05 level.

5 https://github.com/stanfordnlp/GloVe 6 https://github.com/mickeystroller/SetExpan
7 https://github.com/PxYu/entity-expansion
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Table 3: Performance of different ESE models on different corpora. Strongest baselines on each dataset are underlined (AP89,

WaPo: BERT, Wiki: CaSE-uni). †: statistically significant (95% confidence interval) improvements compared to the strongest

baseline. ∆: NESE’s relative improvement over the strongest baseline.

Dataset AP89 (34.8M tokens) WaPo (395M tokens) Wiki (928M tokens)

Metrics MAP@100 P@20 MAP@100 P@20 MAP@100 P@20

Query length 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5

GloVe .110 .123 .128 .101 .108 .104 .167 .179 .183 .161 .160 .157 .231 .250 .259 .214 .216 .210
BERT .262 .270 .267 .227 .212 .208 .235 .234 .239 .211 .203 .196 .180 .186 .187 .174 .169 .161

SetExpan .154 .153 .153 .120 .121 .119 .171 .172 .165 .172 .168 .162 .220 .217 .217 .201 . 195 .188

CaSE-skip .174 .183 .183 .148 .147 .143 .206 .196 .196 .205 .188 .184 .249 .248 .248 .227 .216 .205
CaSE-uni .168 .181 .179 .152 .153 .146 .204 .195 .195 .200 .185 .180 .254 .253 .254 .231 .219 .208

AdaRank-uni .223 .245 .256 .217 .220† .217† .238 .240 .247† .226† .223† .218† .213 .264† .267† .206 .237† .230†

AdaRank-emb .227 .245 .259 .217 .210 .203 .235 .232 .238 .211 .202 .197 .260 .273† .282† .239† .237† .232†

AdaRank-cmb .227 .246 .256 .218 .220† .215 .238 .242† .247† .226† .225† .219† .259 .270† .280† .239† .236† .230†

NESE-uni .241 .252 .256 .230 .227† .220† .242 .246† .248† .232† .228† .218† .249 .264† .268† .240† .237† .231†

NESE-emb-nt .236 .250 .261 .207 .200 .201 .225 .230 .236 .202 .197 .193 .261 .273† .281† .239† .238† .230†
NESE-emb .206 .206 .212 .192 .182 .178 .217 .217 .222 .201 .196 .192 .217 .228 .235 .213 .210 .203
NESE-nt .244 .253 .277† .231 .226 .224† .246† .248† .266† .234† .229† .224† .260 .270† .281† .239† .240† .232†

NESE .273† .283† .291† .240† .237† .231† .264† .268† .282† .253† .247† .240† .272† .288† .293† .252† .246† .239†

∆ +4.2% +4.8% +9.0% +5.7% +11.8% +11.1% +12.3% +14.5% +18.0% +19.9% +21.7% +22.4% +7.1% +12.8% +15.4% +9.1% + 12.3% +14.9%

NESE settings.We removed unigrams that co-occur with less
than 5 entities when building the unigram context features. This
greatly improves storage and run-time efficiency without com-
promising performance. NESE is implemented with the PyTorch
Framework. On AP89 and WaPo, we use BERT as pre-trained em-
beddings (leb = 768), and on Wiki we use GloVe as pre-trained
embeddings (leb = 100). Two hidden layers (6 and 3 nodes) are
applied with 20% probability of dropout in the prediction MLP. Sto-
chastic optimization method Adam [16] is applied with learning
rate 0.001 for mini-batch style training. Batch size is set to 64. The
maximum number of training epochs is set to 20.

Ablation study.We perform an ablation study by leaving out
one of the main components of the NESE model at each time. The
obtained variants of the model are (1) NESE-uni: the NESE model
using only the exactmatching component based on unigram context
features; (2) NESE-emb: the NESE model using only the semantic
matching component based on linearly transformed entity embed-
dings; (3) NESE-emb-nt: the NESE-emb variant minus the linear
transformation module; and (4) NESE-nt: the full NESE model
without the linear transformation module.

6.2 Results and Analysis

Table 3 summarizes the performance of baseline and proposed
models for the ESE task on each dataset using different evaluation
metrics. Following, we discuss the reported results in details.

k-NN in embedding space. The performance of GloVe im-
proves as the corpus size grows. This behavior is expected because
the larger the corpus, the more reliable the estimation of entity em-
beddings by GloVe. In contrast, the expansion performance based
on BERT embeddings decreases as the size of text corpus increases,
which is consistent with previously reported results [39]. As BERT
is trained on massive text corpus, it stores large amount of world
knowledge such that it compliments the lack of entity contextual

information on smaller corpora. On the other hand, theWiki corpus
covers multiple domains and by averaging different representations
of an entity from its different contexts, we lose contextual entity
representations especially for ambiguous entities. This can cause
the low performance of BERT on the Wiki corpus.

Exact matching models. SetExpan, AdaRank-uni, and NESE-
uni expand seed entities based on exact matching of entities’ textual
context. Comparing their results in Table 3 shows the latter two
significantly outperform SetExpan which is a strong unsupervised
model. NESE-uni performs better than AdaRank-uni especially for
queries of length 3 which are harder for every model to expand.

Skip-gram v.s. unigram context features. Results of CaSE-
uni and CaSE-skip show that there is no statistically significant
difference between the performance of using unigram or skip-gram
features based on any evaluation metric. However, by using uni-
gram instead of skip-gram as entity context feature, the percentage
of test queries with zero recall@100 decreases from 6.76% to 5.19%
on AP89, from 0.94% to 0.03% on WaPo, and from 2.13% to 0.82%
on Wiki. This observation shows that unigram features are more
suitable for expansion of queries with infrequent entities.

Analysis of the NESEmodel. As shown in Table 3, NESE con-
stantly outperforms strong baselines over all corpora in terms of all
evaluation metrics. In terms of MAP@100 (P@20), we obtained up
to 9.0%, 18.0%, and 15.4% (11.1%, 22.4%, and 14.9%) improvements
over the strongest baseline on AP89, WaPo and Wiki, respectively.

Comparing the results of NESE-emb-nt and NESE-emb models,
we can observe that the linear transformation in the former overfits
the training data and does not generalize as well as NESE-emb-nt.
However, when we combine semantic matching with exact context
matching, the model with linear transformation (NESE) generalizes
better. Therefore, we can infer the following: (1) there does exist
a linear mapping from a general entity embedding space to one
that better exhibits the sibling relation among entities, given that



Table 4: MAP@30 for the human evaluation experiment.

Sets NBA teams TV channels European capitals

Query q1 q2 q3 q4 q5 q6
GloVe .625 .673 .059 .125 .050 .313
CaSE-uni .656 .647 .178 .254 .524 .454
NESE .733 .733 .254 .313 .551 .524

NESE shows statistically significant improvements over NESE-nt
consistently; and (2) the exact matching channel plays the role of
regularization and restricts the learning process of transformation
matrix W to a more generalizable direction.

We also examine two pairs of models [AdaRank-uni&NESE-uni]
and [AdaRank-emb & NESE-emb-nt]. In each pair, two models take
the same inputs but are trained with different algorithms. NESE-
based methods consistently perform on par or even better across
different query lengths, with the additional benefit of handling
variable-length queries compared to AdaRank-based models. In
particular, NESE-uni significantly outperforms AdaRank-uni on
short queries. We believe that this is because NESE-uni is trained
using queries of different lengths which results in more training
samples than those for AdaRank-uni.

Effect of query length. Intuitively, longer queries lead to more
accurate ranked lists because of less ambiguous input. In terms
of MAP, the performance of embedding-based models (GloVe and
BERT) and supervised models (AdaRank and NESE) improve as
query gets longer, while the performance of context matching mod-
els (SetExpan and CaSE) stays stable. Therefore, NESE aligns better
with intuition and achieves higher relative improvements over base-
lines on longer queries.

Finally, we conclude that the reasons for the superior perfor-
mance of NESE are: (1) learning a transformation layer that maps
pre-trained GloVe entity embeddings to another space for ESE;
(2) using unigram context features which allows better generaliza-
tion of the transformation layer; (3) diversified matching patterns
from variable-length queries ensures stronger generalization; and
(4) DBpedia-sets generates high-quality supervision.

6.3 Ranking Noun Phrases

We also study how the trained model generalizes to entities out-
side a knowledge base. AutoPhrase [30] is first used to extract
noun phrases from the Wiki corpus as an approximation of en-
tity mentions. Since noun phrases have pre-trained embeddings
and unigram features from their mentions in text similar to entity
mentions obtained by a knowledge base, the trained NESE can be
directly applied to rank noun phrases given noun phrase queries.
Noun phrases are hard for automatic evaluation, because an entity
can be expressed in different noun phrase forms. Therefore, we
perform human evaluation in this experiment.

We first select three concept sets that are not in the training
data of Wiki. The sets we choose are NBA teams, TV channels and
European capitals. Two queries are formulated in each concept set.
We gather the top-30 retrieved noun phrases for each query from
GloVe, CaSE-uni and NESE. We present the sample queries to three
volunteers, who are familiar with those three topics, and let them
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Figure 3: Left: distribution of ListNet loss and AP under dif-

ferent percentages of positive samples. Right: PCC between

different losses and AP varies with the percentage of posi-

tive samples.

judge if the retrieved noun phrases belong to the topic. To avoid
confusion, we also present the topic names, and allow volunteers
to look for external information from the Web. The Fleiss’ multi-
rater agreement measure [9] κ are 0.96, 0.60 and 0.71 for the three
sets, respectively. We regard noun phrases with two or three votes
as correct answers and measure MAP@30. Finally, the results are
shown in Table 4. This shows that NESE generalizes to entities out
of KB and yields competitive performance.

6.4 Impact of Unbalanced Training Set

In theory, ranking loss and ranking metrics should be negatively
correlated. However, in our experiments, we sometimes observe
contradictory phenomena, which brings unwanted randomness to
model training. One challenging property of our data is that the
ratio of relevant entities to the number of candidate entities is small.
Based on this observation, we hypothesize that the correlation
of listwise ranking loss to AP is directly influenced by the ratio
of positive and negative samples in ranked lists. To validate our
hypothesis, we conduct the following simulation experiment. With
a truth list of l ones and (100 − l) zeros, 100 real numbers in the
[0, 1] interval are randomly generated as probabilities of relevance,
and the ranking loss and AP of this prediction list are calculated. By
repeating this step 50,000 times, we are able to acquire a statistically
significant relationship between AP and ranking loss by calculating
the Pearson correlation coefficient (PCC). The above two steps are
collectively referred to as one “run”. We sweep l , the number of
correct entities in the 100 ground-truth data for each query, from
5 to 95 in increments of 5, and execute one run for each l value.
Therefore, we get the PCC of ranking loss and ranking performance
under different ratios of positive and negative samples.

We also experiment with weighted binary cross entropy loss
(BCE loss), which is often applied when ranking with binary rele-
vance judgments is considered as binary classification:

L(y(q), z(q);θ ) = −
∑
i

(
wpy

(q)
i log z(q)i + (1 − y

(q)
i ) log(1 − z

(q)
i )

)
,

wherewp is the positive weight, making it possible to trade off recall
and precision by adding weights to positive examples. We setwp
empirically to the reciprocal of the positive-negative ratio, which
balances the number of positive and negative samples in the data.
The experimental results are shown in Figure 3. PCC with larger
absolute value indicates stronger correlation.



We conclude from the results that ListNet loss and weighted
BCE loss have a strong correlation with AP when the percentage of
positive samples in candidate entities is between 20% and 80%. The
two losses behave similarly when the candidate list is dominated
by negative samples and very differently when the candidate list
is dominated by positive examples. After verifying our hypothesis,
we chose to randomly discard a subset of negative samples for
each query in the training data, so that the proportion of positive
samples in the data lies in the desired [20%,80%] interval. This
sampling of negative candidate entities is performed when training
the AdaRank and the NESE model, but not during inference time.

7 CONCLUSION AND FUTURE WORK

In this study, we consider the ESE task as a listwise learning to rank
retrieval problem, and propose a two-channel neural re-ranking
model, NESE. The semantic and exact matching channels generate
pairwise similarities of entity embeddings using learned mapping
and explicit entity representations, respectively. NESE is trained
and evaluated with queries sampled from entities set obtained by
DBpedia-Sets toolkit from three corpora. Extensive experiments
show that NESE achieves statistically significant improvement over
state-of-the-art baseline methods. Human annotation experiment
confirms that NESE generalizes to entities outside knowledge base.

For future work we would like to perform sentence selection for
generating query-aware BERT representation for entities.
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