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Abstract 

Protein-protein interactions are involved in a wide range of cellular processes. These 

interactions often involve intrinsically disordered proteins (IDPs) and protein binding domains. 

However, the details of IDP binding pathways are hard to characterize using experimental 

approaches, which can rarely capture intermediate states present at low populations. SH3 domains 

are common protein interaction domains that typically bind proline-rich disordered segments and 

are involved in cell signaling, regulation, and assembly. We hypothesized, given the flexibility of 

SH3 binding peptides, that their binding pathways include multiple steps important for function. 

Molecular dynamics simulations were used to characterize the steps of binding between the yeast 

Abp1p SH3 domain (AbpSH3) and a proline-rich IDP, ArkA. Before binding, the N-terminal 

segment 1 of ArkA is pre-structured and adopts a polyproline II helix, while segment 2 of ArkA 

(C-terminal) adopts a 310 helix, but is far less structured than segment 1. As segment 2 interacts 

with AbpSH3, it becomes more structured, but retains flexibility even in the fully engaged state. 

Binding simulations reveal that ArkA enters a flexible encounter complex before forming the fully 

engaged bound complex. In the encounter complex, transient nonspecific hydrophobic and long-

range electrostatic contacts form between ArkA and the binding surface of SH3. The encounter 

complex ensemble includes conformations with segment 1 in both the forward and reverse 

orientation, suggesting that segment 2 may play a role in stabilizing the correct binding orientation. 

While the encounter complex forms quickly, the slow step of binding is the transition from the 

disordered encounter ensemble to the fully engaged state. In this transition, ArkA makes specific 

contacts with AbpSH3 and buries more hydrophobic surface. Simulating the binding between 

ApbSH3 and ArkA provides insight into the role of encounter complex intermediates and 

nonnative hydrophobic interactions for other SH3 domains and IDPs in general. 
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Author Summary 

Complex cellular processes are mediated by interactions between proteins, and to 

determine how these interactions affect cellular function and binding kinetics we often must 

understand the protein binding pathway. Many protein interaction domains, such as the SH3 

domain, bind to intrinsically disordered proteins in a coupled folding and binding process. Using 

molecular dynamics simulations, we find that the binding of the disordered ArkA peptide to the 

yeast Abp1p SH3 domain proceeds through a flexible, disordered encounter complex before 

reaching a stable fully bound state. The encounter complex is stabilized by nonspecific long-range 

electrostatic interactions and nonspecific hydrophobic interactions between the peptide and 

domain. Our simulations highlight the important role of hydrophobic interactions in the entire SH3 

binding process: both nonspecific hydrophobic contacts in the encounter complex and specific 

hydrophobic contacts in the fully bound complex. The encounter complex could be key to 

understanding the functional behavior of SH3 domain interactions because the encounter complex 

forms very quickly and the transition to the fully bound state is slower. In cells, an SH3 domain 

may form an encounter complex quickly and nonspecifically with many potential binding partners, 

allowing it to search for the correct recognition sequence before completing the binding process. 

Introduction 

Protein-protein interactions are involved in most cellular processes, especially cellular 

signaling. These interactions often involve binding of small protein domains to intrinsically 

disordered proteins (IDP), but unlike long-lived complexes typically involving larger and stronger 

interfaces, the binding pathways for these interactions are not always well understood [1-3]. 

Regions of disorder are now known to be present in between 25% and 41% of eukaryotic proteins, 
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and can exhibit functional diversity by having multiple interaction partners [4]. IDPs also tend to 

bind with lower affinity to their partners than folded proteins, with fast association and dissociation 

[3,5-7]. This fast binding and unbinding, along with the fast turnover rates of IDPs within cells, 

allows for regulation of processes that require rapid responses [8]. Despite fast on and off rates, 

IDP binding interactions must still be very specific in order to relay signals accurately, which may 

require more complex binding landscapes [3,5,6,9,10]. To fully understand how IDPs bind their 

partners, how their binding is modulated by different cellular contexts, and how changes to the 

binding process can be used to regulate function, it is essential to go beyond analyzing the final 

bound state and instead characterize the complete binding pathway and associated kinetics. 

IDPs often bind to folded proteins through a pathway that takes place in at least two steps 

[11-15]. Binding typically begins with the creation of an encounter complex ensemble when the 

IDP “dances” on top of its partner domain before transitioning to a more structured fully engaged 

bound state through a process of induced-fit folding [13,15-19]. IDPs are well suited to quickly 

form this initial encounter complex because they generally adopt a more extended conformational 

ensemble and therefore have a larger capture radius than folded proteins of the same length [20]. 

Electrostatic interactions have been shown to often drive the formation of encounter complex 

ensembles and can even accelerate association beyond the diffusion limited rate, predominantly 

by electrostatic orientational steering [5,11,13,21-23]. Additionally, if one segment of the IDP 

possesses more intrinsic pre-folded structure, binding may proceed starting with this segment and 

then extending to the rest of the sequence which folds upon interaction with the partner protein 

[11,24]. Thus, pre-formed secondary structure can improve affinity and influence the binding 

pathway, including the nature of intermediate states [25,26], but too much structure can slow 

binding without improving affinity [11,27]. Additionally, the ability of IDPs to form nonnative 
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contacts during binding, and the presence of significant disorder even after binding can also be 

important for IDP function [20,27,28]. This underscores the importance of understanding the 

interactions at play during the binding process as well as in the fully engaged final complex. 

In addition to the nature of the intermediate states in the binding pathway, the location of 

the transition state in the pathway dictates the binding kinetics and is therefore critical to function. 

The transition state for binding can either precede or follow the encounter complex intermediate 

[5]. Fast-binding proteins are canonically thought to bind in a diffusion-limited manner, and 

therefore experience a rate determining transition state that precedes the encounter complex [5]. 

In other cases, when electrostatic attraction enhances binding, binding can proceed completely 

downhill, without a free energy barrier [29,30]. However, weaker IDP complexes with short 

lifetimes may exhibit binding kinetics that are different in nature from higher affinity complexes 

[31], and a few IDPs have been shown to associate quickly to form an encounter complex followed 

by a slower transition to the fully engaged complex [14,17,19,32-37]. Because of their fast binding 

and dissociation rates and short-lived intermediate states, IDP binding often appears as two-state 

in NMR [38-40] and stopped-flow experiments [41-43]. Due to experimental challenges, for many 

IDPs the specific binding pathway, including the nature of binding intermediates and the timescale 

of their formation, is still unknown.  

Computer simulations have been a valuable tool for examining the binding pathway at 

temporal and spatial resolutions that cannot be obtained through experiments. Initially, coarse-

grained molecular dynamics (MD) simulations based on the topology of the fully engaged complex 

indicated that the initial step in the binding process for IDPs might often be the formation of a 

flexible encounter complex [13,37,44-50]. Another strategy to simulate IDP binding and 

characterize the encounter complex with limited computational power has been to conduct 
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atomistic MD using an advanced sampling algorithm [51], such as multicanonical MD [52]. More 

recently, advancements in both hardware and the accuracy of force fields have enabled unbiased 

atomistic MD simulations of IDP binding on the microsecond timescale [53]. Those unbiased MD 

simulations that have explicitly examined the IDP binding pathway generally reveal a fast initial 

association between the IDP and its partner, followed by a slower evolution into the fully engaged 

complex [23,54-58]. However, the details of the binding pathway, including the nature of 

intermediates in the binding process, has yet to be determined for most IDPs and their binding 

partners. 

One common IDP binding domain is the SH3 domain. It is conserved through more than 

one billion years of evolution from yeast to humans, and frequently occurs in protein-protein 

interaction modules, often involving cellular signaling, assembly, or regulation [59]. SH3 domains 

bind disordered proline-rich target peptides that usually contain a PxxP motif, where x can be any 

residue [60,61]. This PxxP motif forms a polyproline type II (PPII) helix in the bound complex 

and is flanked by specificity elements, which often include positively charged lysine or arginine 

residues [59,62]. The PxxP motif, which is pseudo-palindromic, has been observed to bind the 

SH3 domain surface in two different orientations (class I and class II) depending on the location 

of positively charged residues either N or C terminal to the PxxP motif (+xxPxxP or PxxPx+) 

[63,64]. Despite very similar binding motifs and bound structures, SH3 domains perform a wide 

variety of different functions in different contexts that require specific binding interactions and 

biophysical properties [65-67]. Understanding the SH3 domain-peptide binding process may help 

to reveal the mechanism for the functional diversity of SH3 domains and serve as a model for 

understanding binding properties of extended IDPs. 
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Previous studies of proline-rich peptides binding to SH3 domains indicated that fully 

engaged bound complexes often exhibit conformational exchange between different bound states 

[39,40,68]. However, information about the binding pathway is more limited, as NMR experiments 

on SH3 domains often indicate two-state binding, possibly due to fast exchange of an encounter 

complex with either the fully engaged bound state or the unbound state [23,38-40]. One study of 

SH3-peptide binding found that the transition state for binding is stabilized by long-range 

electrostatic interactions; however, there is less electrostatic enhancement to the binding rate than 

for folded proteins, which form more short-range electrostatic interactions in the transition state 

[31]. Simulation studies of the C-CRK N-terminal SH3 domain binding to a proline-rich peptide 

have also indicated that electrostatic interactions are important for the formation of the highly 

dynamic encounter complex, which transitions to the fully engaged complex when the PPII helix 

locks into the hydrophobic grooves of the binding site [21,23,56]. However, these results are 

somewhat in contrast to the picture that hydrophobic interactions are most important for stabilizing 

the encounter complex for IDPs [17], and the authors of these studies did not try to quantitatively 

show that an encounter complex is an intermediate to binding or assess the different types of 

intermolecular interactions in the encounter complex across many independent binding 

simulations [23,56,69]. Therefore, it is still not clear that SH3 domains form a metastable 

electrostatic encounter complex, or whether the transition state for SH3 binding occurs before or 

after the formation of such an encounter complex.  

We have used all-atom molecular dynamics (MD) simulations to characterize the initial 

binding interaction between an SH3 domain of yeast Actin Binding Protein 1 (Abp1p) and ArkA, 

a disordered region of the yeast actin patch kinase, Ark1p. Abp1p is involved in assembly of the 

actin cytoskeleton through localization of cortical actin patches, actin organization, and 
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endocytosis [70,71]. While several other sequences are known to bind the Abp1p SH3 domain 

(AbpSH3), ArkA is the partner with the highest affinity for the domain [72]. The structures of 

AbpSH3 alone and bound to ArkA (Fig 1A) have been solved by x-ray crystallography and NMR, 

respectively [70,72]. We focus on the binding of a 12-residue truncation of ArkA (residues Lys(3) 

to Lys(-8)) that binds AbpSH3 with a Kd of 1.7 µM and is comprised of an N-terminal segment 

containing the PxxP motif and an adjacent C-terminal segment containing key specificity elements 

(we use a standard numbering system for peptide positions based on [63], as shown in Fig 1B) 

[72].  

 

Fig 1. Description of system studied. A) Surface view of AbpSH3 bound to ArkA from NMR 

[72], showing the two binding surfaces (SI (red) and SII (blue)) with bound ArkA in gray (seg1), 

magenta (Lys(-3)) and green (seg2). The NMR structure was determined with a longer 17-residue 
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ArkA sequence (residues 6 through -10) [73], but only the shorter ArkA sequence is displayed.  

The N and C-termini are labeled. B) Sequence of ArkA used in all simulations with seg1 shown 

in black, the central lysine in magenta, and seg2 in green. The capping groups on the C and N-

terminal ends are also shown.  

AbpSH3 has the typical SH3 fold with a five-stranded -sandwich and long RT-loop, 

which is involved in ArkA binding [72]. The 12-residue ArkA peptide contains three Lys residues 

(Fig 1B), giving it a net positive charge, while the AbpSH3 domain has a net negative charge of -

12. Thus, electrostatic attraction contributes to the affinity between the peptide and domain. ArkA 

can be described as two segments (seg1 and seg2) where seg1 is the N-terminal proline-rich end 

and seg2 is the C-terminal segment (Fig 1B). The proline-rich seg1 interacts with AbpSH3 in the 

typical class II orientation, with a PxxPx+ sequence that forms a PPII helix with each Px well 

packed into a groove [72]. The region of AbpSH3 which binds to the PxxP motif is referred to as 

surface I (SI) (Fig 1A). The C-terminal seg2 forms a 310 helix in the NMR structure and makes 

contacts on a region of AbpSH3 distinct from SI, referred to as surface II (SII) (Fig 1A). The 

conserved Lys(-3) serves as the dividing residue between seg1 and seg2, and binds between SI and 

SII in a negatively charged ‘specificity pocket’, packing against a Trp side chain [72]. Previous 

NMR experiments have shown that seg1, containing the PxxP motif, can bind to AbpSH3 without 

seg2, but it does not fully engage the binding surface [40]. Seg2 alone, on the other hand, shows 

no detectable binding by NMR titration [40]. The role of each segment in the full binding pathway 

has not previously been investigated. 

Using MD simulations, we found that ArkA initially forms a heterogeneous encounter 

ensemble, followed by the tight binding of seg1 and seg2 in the correct orientation with the 

formation of specific contacts (Fig 2). Significantly, ArkA forms many nonnative contacts in this 



 10 

encounter ensemble, but they are restricted to the canonical highly acidic binding surface of the 

AbpSH3 domain. Seg1 is largely pre-structured in a PPII helix and only needs to lock into the 

grooves of SI to bind, while seg2 is more conformationally flexible. The PPII helix in seg1 can 

bind in a reverse orientation in the encounter complex, and seg2 may be important for stabilizing 

the correct orientation of ArkA on the binding surface. Nonspecific hydrophobic and long-range 

electrostatic interactions stabilize the encounter complex, while specific hydrophobic interactions 

form only on transition from the encounter complex to the fully engaged state. Our simulations 

show that step 1 of binding is more than an order of magnitude faster than the overall association 

rate determined by NMR relaxation dispersion experiments. Our binding model also explains the 

greater influence of hydrophobic interactions on binding compared to long-range electrostatic 

interactions, which likely only affect step 1 of the binding pathway. Overall, we have gained an 

understanding of the different interactions of the two ArkA peptide segments with AbpSH3 along 

the binding pathway. This provides insights for how binding of this common interaction domain 

in other proteins may be tailored to meet their specific functional needs. 
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Fig 2. Proposed ArkA-AbpSH3 binding model. Two-step binding pathway with ArkA shown 

as a line and AbpSH3 as a circle. The heterogeneous encounter complex is proposed as an 

intermediate state between the unbound state and fully engaged complex. The forward and reverse 

rate constants for each step are labeled. 

Methods 

MD Simulations  

 MD simulations were run on four constructs: ArkA bound to AbpSH3 (bound simulations), 

ArkA alone (unbound simulations), ArkA binding to AbpSH3 (ArkA binding simulations), and 

ArkA seg1 binding to AbpSH3 (seg1 binding simulations). The bound simulations were all started 

from the lowest energy NMR structure of ArkA bound to AbpSH3 (PDB: 2RPN) [72]. Before 

running the simulations, the ArkA sequence was truncated to the 12-residue (Fig 1B) construct 

and a capping acetyl group was added to the ArkA N-terminus. Two different starting structures 

were used to initiate the unbound simulations. One starting structure was from the NMR structure 

of ArkA bound to AbpSH3 and the other was a fully extended peptide. For the ArkA and seg1 

binding simulations, the peptide construct was placed at least 10 Å from AbpSH3 to ensure that 

the peptide and domain were not interacting at the beginning of the binding simulations 

(simulations were run with a non-bonded cutoff distance of 9 Å for the direct space sum). For the 

binding simulations, the starting structure of both ArkA and seg1 came from the ArkA unbound 

simulations, and the AbpSH3 structure came from the unbound crystal structure (PDB: 1JO8) [70]. 

The effective concentration of the protein in our simulations was around 4 mM (S2 Table), which 

is close to the experimental concentration of 1 mM. In all constructs, ArkA or seg1 were edited to 
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have a capping acetyl group on the N-terminus (ACE) and a capping amide group on the C-

terminus (NHE); except the bound simulations, which only have the acetyl group. 

All simulations were run on Amber 16 using the Amber ff14SB forcefield [74], and the 

binding simulations were run with dihedral angle modifications that improve accuracy for the 

energy barrier between cis and trans states of the peptide bond [75]. The CUDA version of pmemd 

in Amber 16 was used to run the simulations on GPUs [76]. All simulations were solvated with 

TIP3P-FB water [77]. The bound simulations were solvated such that the edge of the box was at 

least 9 Å from any peptide or protein atom. Binding simulations were solvated with the edge at 

least 12 Å from any peptide or protein atom and adjusted to have an equal volume. The unbound 

simulations were solvated with water 15 Å from the edge of the peptide. The box dimensions are 

summarized in S3 Table. Salt ions were added to neutralize each system: 10 sodium ions for the 

seg1 binding and bound simulations, 9 sodium ions for the ArkA binding simulations and 3 

chloride ions for the unbound simulations.  

All systems were subject to two rounds of energy minimization of 1000 steps, where the 

first 500 steps were steepest descent and the second 500 steps conjugate gradient. The systems 

were then subject to heating from 100 to 300 K (40 ps with harmonic restraints with a force 

constant of 10 kcal/mol), and equilibration (50 ps with harmonic restraints with a force constant 

of 10 kcal/mol). All constructs, except the unbound simulations, were equilibrated again for 200 

ps without restraints. Independent simulations were started with new random velocities. Bonds to 

hydrogen were constrained using the SHAKE algorithm during all simulations. The particle-mesh 

Ewald procedure was used to handle long-range electrostatic interactions with a non-bonded cutoff 

of 9 Å for the direct space sum. 
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The unbound simulations were run using temperature Replica Exchange MD [78]. 48 

replicas were simulated using the NVT ensemble with temperatures from 290.00 - 425.00 K with 

geometric spacing to achieve similar exchange probabilities for all replicas (S1 Table)  [78]. Each 

replica was equilibrated without restraints for 500 ps. The simulations were run with an integration 

step every 2 fs and coordinates stored every 25 ps. Three independent simulations from both an 

extended peptide and the conformation in the NMR structure were run for at least 125 ns each, 

resulting in a total of 1.15 s of simulation at 300 K. The first 50 ns of each simulation was 

removed before analysis, resulting in 0.850 s of simulation data used in the ArkA unbound 

ensemble.  

The bound and binding simulations were run using the NPT ensemble at 300 K with a 

Monte Carlo barostat, new system volumes attempted every 100 steps, an integration step every 2 

fs, and coordinates stored every 10 ps. The number and length of all simulations are summarized 

below (Table 1). The replica exchange simulations were run on the XSEDE resource Xstream [79], 

as well as a local cluster, and all other simulations were run on a local cluster.  
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Table 1. Summary of simulations run. 

Construct # of simulations  
Length analyzed per 

simulation (ns) 

Total length 

analyzed (s) 

Unbound ArkA 

2 100 

0.849 

1 75 

1 200 

1 249.3 

1 125 

Bound ArkA 5 1832 9.16 

Binding ArkA 50 1000 50 

Binding seg1 50 500 25 

  

Simulation Analysis 

To analyze the trajectories, the AmberTools 16 package was used to measure dihedral 

angles, distances, secondary structure, solvent accessible surface area, hydrogen bonds, and salt 

bridges [76]. In house Python scripts were used for additional analysis. Error bars and standard 

deviations were calculated by computing independent values from each independent simulation 

and taking the standard deviation of those values. 
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Sampling Completeness. The running average of secondary structure per residue was used as a 

measure of completeness of sampling for the unbound simulations (S2 Fig). The autocorrelation 

time between replicas was also calculated to ensure the replicas were exchanging as expected (S3 

Fig) [80]. 

Structural analysis of ensemble. Dihedral RMSD of ArkA from the NMR structure was 

calculated as described by Kreiger et al. for backbone dihedral angles [81]. The distance between 

the binding surface of AbpSH3 and ArkA was defined by the average of seven pairwise ArkA-

AbpSH3 contact distances between 𝛼 carbons where the SH3 domain residue changes chemical 

shift upon ArkA binding (S1 Fig) [40]. ArkA seg1 lacks three of these pairs, so the remaining four 

were used, in both cases this is called the binding surface distance. The dihedral angles were used 

to calculate the polyproline II helix (PPII) content as described by Masiaux et al. [82]. Residue 

distances were calculated based on the center of mass for each residue in ArkA and AbpSH3, and 

8 Å was used as the cutoff distance to define a contact. Contact maps were created based on the 

percentage of the simulation during which residue contacts were made. Contact maps that describe 

a subset of the simulated ensemble (encounter, forward, reverse, seg2 only, encounter other, or 

unbound) were created based on the percentage of that subset that is making a contact. 

The data from the binding simulations were divided into unbound, encounter complex, and 

fully engaged based on the binding surface distance (Table 2). The definition of the fully engaged 

complex was based on a binding surface distance less than 11.5 Å because the bound simulations 

had a binding surface distance less than 11.5 Å in 98% of the simulated ensemble. There is a clear 

free energy barrier between the fully engaged state and the encounter complex based on a 

population histogram from our binding simulations (S17 Fig). However, in our simulations, there 

appears to be no free energy barrier between the unbound state and the encounter complex, 
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indicating that formation of the initial encounter complex is downhill in free energy. We still 

wanted to define the encounter complex separate from the unbound state in order to characterize 

this intermediate state to binding, so we chose the encounter complex definition to be between 

11.5 and 23 Å binding surface distance. This definition of the encounter complex captures the 

states that are most populated along the binding surface distance reaction coordinate (S17 Fig), 

and also excludes states where ArkA has no contacts with the SH3 domain (S18 Fig), which exist 

at binding surface distances greater than 23 Å, defined as unbound. Within the encounter complex 

ensemble, four categories were defined based on contacts between ArkA and AbpSH3 (Table 2). 
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Table 2. Categories in binding simulations. 

Binding 

Interaction 
Contacts 

Unbound Binding surface distance > 23 Å 

Fully engaged Binding surface distance < 11.5 Å 

Encounter 

Complex 
11.5 Å < binding surface distance < 23 Å 

Encounter 

forward 
K(3) to AbpSH3 8, 9, or 10 and K(-3) to AbpSH3 33, 35, or 36 

Encounter 

reverse 
K(-3) to AbpSH3 8, 9, or 10 and K(3) to AbpSH3 33, 35, or 36 

Encounter seg2 

only 

K(-3) to AbpSH3 33, 35, or 36 

and K(-8) to AbpSH3 14, 15,16,17 or 49 or L(-7) to AbpSH3 32, 33, 36, 49  

and not forward or reverse 

Encounter other All other structures  

 

The ArkA simulated ensembles were divided into natively folded conformations and 

nonnative conformations based on a histogram of the ArkA dihedral RMSD from the unbound 
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simulations. The first minimum in the histogram, at 33.7 was used as a cutoff (S10 Fig). All ArkA 

conformations with a dihedral RMSD less than 33.7 are considered to have a native conformation, 

and those with a dihedral RMSD greater than 33.7 are considered to have a nonnative 

conformation. For the seg1 dihedral RMSD, a cutoff of 38.1 was used to define the native and 

nonnative conformations (S9 Fig). 

Long-range electrostatic interactions between ArkA and AbpSH3s were analyzed by 

calculating the distance between the charged groups of the positively charged residues (N of Lys) 

on ArkA and the negatively charged residues (C of Asp and C of Glu) on AbpSH3. The 

calculation was performed on the ArkA binding simulations and bound simulations. A 10-Å cutoff 

distance was used to define an electrostatic interaction. An in-house python script was used to 

calculate the percentage of time each electrostatic interaction was present and the average number 

of electrostatic interactions present simultaneously for each simulation. An interaction had to be 

present in one of the simulations for at least 10% of the ensemble to be included in the results. 

Hydrophobic contacts were selected from those hydrocarbon groups that are closest 

together in the NMR structural ensemble (2RPN) [72]. Contacts were defined based on a 6 Å cutoff 

distance between hydrocarbon groups. Hydrogen bonds were counted when the distance between 

the acceptor atom and donor heavy atom was less than 3 Å and the angle between the acceptor 

atom, donor hydrogen, and donor heavy atom was greater than 135. Similarly, salt bridges were 

counted when the distance between the heavy atoms of the charged groups was less than 3 Å and 

the angle between the oxygen atom, hydrogen, and nitrogen was greater than 135. 
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SH3 domain dipole moment. The net dipole of the AbpSH3 domain was calculated using the 

Protein Dipole Moments Server administered by the Weizmann Institute Department of Structural 

Biology [83] by uploading the crystal structure of the domain (PDB: 1JO8) [70]. 

Calculation of kon and k1. The time constant, 𝜏, for binding of ArkA and seg1 to AbpSH3 is 

related to the rate constant, kon or k1, and the concentration of protein and peptide by the equation 

𝑟𝑎𝑡𝑒 =  𝑘[AbpSH3][ArkA] (1) 

where k is either kon or k1. kon is the rate constant for complete binding to the fully engaged complex, 

while k1 is the rate constant for formation of the encounter complex. The volume of the boxes 

varied slightly between the two ArkA constructs, so the concentrations and rates were slightly 

different (S2 Table).  

If the AbpSH3 concentration is held constant, then the transition from unbound to either 

the encounter complex or the fully engaged complex can be treated as a first-order reaction, so the 

binding time follows a Poisson distribution [84,85]. The binding time constant, 𝜏, was calculated 

from a fit of the empirical cumulative distribution function to the theoretical cumulative 

distribution function (TCDF) [85], 

𝑇𝐶𝐷𝐹 = 1 − 𝑒
−𝑡
𝜏 , (2) 

where 𝑡 is time of the simulation when binding occurs. Since we observed some overlap in the 

distribution of binding surface distances for fully engaged and encounter complexes, we used a 

more stringent definition of binding for identifying transitions between states. To go from the 

encounter complex to the fully engaged complex we required that the binding surface distance be 
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below 10.5 Å for at least 1 ns, and to go from unbound to encounter we required it to be below 21 

Å for 1 ns. 𝜏 was then used to calculate the binding rate constant,  

𝑘 =
1

[AbpSH3]𝜏
. (3) 

The standard deviation in calculation of k1 was determined using the bootstrap method, but we 

could not determine a standard deviation for kon because not all simulations reached the fully 

engaged state.  

Our simulations were performed without salt present (aside from neutralizing ions), while 

the experimental rate constants were measured with 100 mM NaCl and 50 mM phosphate, which 

could affect the binding rate, particularly for the formation of the encounter complex, which is 

partially driven by electrostatic interactions. 

To determine the number of transitions from the encounter complex, we used a similar 

method and required that the binding surface distance be above 25 Å for at least 1 ns for the 

transition from encounter complex to unbound to be counted in order to make sure that we only 

counted true transitions out of the encounter complex free energy minimum (S17 Fig). 

Experimental 

The AbpSH3 protein and ArkA peptide were produced as previously [40]. A set of 15N Carr-

Purcell-Meiboom-Gill (CPMG) relaxation dispersion experiments were recorded on 1 mM 15N 

labeled domain with ~9% bound to unlabeled peptide in 50 mM phosphate, 100 mM NaCl, pH 7.0 

at 10 ºC. The data were collected at two different static magnetic field strengths (500 and 800 

MHz) generating a series of 2 x 21 2D 1H-15N correlation maps measured as a function of CPMG 
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frequency (S20 Fig). The spectra were processed using standard approaches and the program 

chemex [86,87] assuming a 2-state reaction [40,88], which has been applied to a few other domains 

[31,38]. Global fitted values of kex and pbound were extracted (224 s-1 and 0.08) from these data. A 

value of koff was subsequently calculated (206.5 s-1) using the equation  

𝑘off = (1 − 𝑝bound)𝑘ex. 

A value of kon (1.21 x108 M-1 s-1) was then calculated from the Kd value of 1.7 M [40] using the 

expression koff/Kd. 

Results & Discussion 

ArkA disorder when unbound & bound 

We first sought to characterize the structural ensemble of the unbound ArkA peptide to 

help determine how the intrinsic structural propensities of ArkA contribute to binding. In order to 

determine the structural ensemble of the unbound ArkA peptide, we simulated the 12-residue 

ArkA alone using REMD [78] (unbound simulations). The completeness of sampling was 

examined using the running averages of 310 helix, bend, and turn structure, as well as end-to-end 

distance (S2 Fig). The efficiency of exchange between the replicas was confirmed by determining 

that the autocorrelation time for the replica temperature (time constant 7-10 ns) was well below 

our simulation time (S3 Fig). The structural ensemble of ArkA simulated alone shows that it is 

behaving as a disordered peptide with both the end-to-end distance and dihedral angle RMSD 

sampling multiple states that are different from the NMR reference structure (Fig 3A).  
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 Fig 3. Characterization of unbound, bound, and encounter ensembles. A) Conformational 

ensemble of unbound ArkA from REMD simulations. End-to-end distance is the distance between 

the C and N-terminal ends of ArkA and dihedral angle RMSD is calculated for ArkA with the 

lowest energy NMR structure (2RPN) as the reference [72]. Darker shading indicates a larger 

fraction of the total ensemble, as indicated by the color bar. B) Overlay of 13 randomly selected 

ArkA conformations from unbound simulations with seg1 residues Pro(2) to Pro(-2) backbone 

aligned. C) Overlay of 15 randomly selected ArkA conformations from bound simulations with 

the SH3 domain aligned. D) Overlay of 38 randomly selected ArkA conformations in the encounter 

complex from ArkA binding simulations with the SH3 domain aligned.  AbpSH3 SI is shown in 

red and SII in blue. ArkA is shown in in gray (seg1), magenta (Lys(-3)) and green (seg2). 
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We also ran simulations starting from the NMR bound structure of ArkA to compare its 

structure when fully engaged with AbpSH3 (bound simulations) (Fig 3C). NMR experiments have 

shown that in the fully engaged state ArkA seg1 adopts a PPII helix and seg2 is often in a 310 helix 

(S5 Fig) [72]. In both the alone and bound simulations, seg1 of ArkA is largely structured with the 

majority of time spent in a PPII helix, while seg2 is less structured (Fig 4). Even in the bound 

simulations seg2 is only in a 310 helix 35% of time, indicating that the majority of the diversity in 

ArkA secondary structure occurs in the seg2 region. Contact maps between ArkA and AbpSH3 

also show that the entire peptide is more flexible in the bound simulations than the NMR structures 

indicate. Both segments of ArkA have fewer contacts with AbpSH3 in the simulated ensemble 

than the NMR ensemble, especially seg2 (S7 Fig). 

 

Fig 4. Quantifying bound and unbound secondary structure. Fraction of time each ArkA 

residue spends in PPII Helix (A) or 310 Helix (B) during the bound and unbound simulations. The 

one letter codes for ArkA residues are included on the x-axis. The shaded region represents the 

standard deviation between independent simulations. 
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ArkA binds via an encounter complex intermediate 

After determining the conformational ensemble of the unbound ArkA peptide, we wanted 

to characterize the binding pathway by running ArkA binding simulations. To start the 1-s ArkA 

binding simulations, we chose five structures with differing values of dihedral RMSD and end-to-

end distance (S8 Fig) and used these to initiate 50 independent binding simulations (10 from each 

structure) as indicated in Table 1. This ensured that the binding simulations would not be biased 

by a single starting ArkA conformation. We also ran binding simulations with the shorter seg1 

peptide (seg1 binding simulations), which contains the PxxP motif that is relatively structured, to 

examine the different roles of seg1 and seg2 in binding (S1 Text). 

In the ArkA binding simulations, we found that an initial encounter complex forms quickly 

before ArkA transitions more slowly to a fully engaged state (S1 Movie and S2 Movie). As 

described in the methods, the fully engaged state was defined as a structure where the binding 

surface distance is below 11.5 Å, while we defined the encounter complex as having binding 

surface distance between 11.5 Å and 23 Å. In the binding simulations, ArkA passes through the 

encounter complex (Fig 5A-B) before reaching the fully engaged state. Interestingly, in some of 

the independent simulations ArkA forms an encounter complex, then dissociates before rebinding 

(Fig 5A), while in others it quickly reaches the same fully engaged state observed in the bound 

simulations (Fig 5B). In the seg1 binding simulations we similarly observed the formation of an 

initial encounter complex, followed by either unbinding and rebinding, or transition to a stable 

fully engaged bound state (S11 Fig), while in the bound simulations, the complex remains in the 

fully engaged state 98% of the time (Fig 5C). 
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Fig 5. Time traces of binding and bound simulations. Distance between ArkA and the binding 

surface of AbpSH3 for the first half of two example ArkA binding simulations (A, B) and one 

bound simulation (C). The black lines correspond to our definition of the encounter complex (23 
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Å) and the fully engage complex (11.5 Å). In the ArkA binding simulations, the largest box 

dimension is 80 Å (S3 Table) and the maximum AbpSH3 domain diameter is 33 Å. Center of mass 

distances between ArkA and the SH3 domain range from 11 to 64 Å in the binding simulations, 

while binding surface distances range from 9 to 67 Å. In the bound simulations, the binding surface 

distances range from 8 to 16 Å. 

The ArkA encounter complex is a heterogeneous ensemble that includes nonnative 

interactions 

To further examine the nature of the encounter complex, we projected the data onto 

coordinates corresponding to native backbone folding (dihedral RMSD) and binding (pairwise 

binding surface distance) (Fig 6). In the binding simulations, ArkA samples many states with 

different degrees of native folding and binding before reaching the fully engaged and native folded 

state found in the lower left of the plot (Fig 6A, blue rectangle). In particular, the encounter 

complex ensemble is a highly heterogeneous state, as shown in Fig 3D, and 57% of the ArkA 

binding ensemble occupies the encounter complex without forming the native ArkA fold (Fig. 

6A), indicating that ArkA does not need to be already preformed in the native conformation before 

interacting with AbpSH3, consistent with an induced-fit binding mechanism. However, in 20% of 

the binding ensemble ArkA has a native fold but is still in the encounter complex. This indicates 

that, at times, ArkA may first adopt a native fold and then reorient and dock into the fully engaged 

state in a conformational selection mechanism. Multiple steps and potential pathways to binding 

may exist within the encounter complex ensemble. Additionally, Fig 6B confirms that the bound 

simulations stay fully engaged but do rarely (4% of the ensemble) sample nonnative conformations 

that are different from the NMR structure (unfolded and fully engaged in Fig 6B). We only observe 
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two brief instances, totaling to less than 2% of the ensemble, where the complex transitions to the 

encounter complex and back to the fully engaged state in one of the five bound simulations. 

 

Fig 6. ArkA states sampled during binding and bound simulations. Distance between ArkA 

and the binding surface of AbpSH3 graphed against the ArkA backbone dihedral angle RMSD 

for ArkA binding simulations (A) and bound simulations (B). Darker shading indicates a larger 

fraction of the total ensemble, as indicated by the color bar. Colored boxes partition the ensemble 

into four states: folded and fully engaged (blue), unfolded and fully engaged (green), folded and 
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encounter (red), unfolded and encounter (cyan). In this figure, folded refers to the native NMR 

structure fold (dihedral RMSD less than 33.7), and unfolded refers to a nonnative conformation 

different from the NMR fold (dihedral RMSD greater than 33.7). Percentages indicate the 

occupancy of each state in the overall simulated ensemble. In the ArkA binding simulations, 8% 

of the ensemble is in the unbound state, which is not shown on the plot. 

Contact maps also illustrate the heterogeneous nature of the encounter complex ensemble 

(Fig 7). In the encounter ensemble, ArkA makes nonnative contacts which are not seen in the 

bound simulations. These contacts are mainly on the two binding surfaces (SI and SII), indicating 

that electrostatic orientational steering guides the positively charged ArkA to interact with the 

correct surface of the domain, though not necessarily with native contacts. This is explained by 

the presence of a net dipole moment on the SH3 domain of 242 Debyes, with the negative end of 

the dipole located at the binding surface and the positive end on the opposite side of the domain, 

as has been observed for other SH3 domains [89]. In the encounter complex, seg1 forms more 

contacts (9 on average) with the binding surface than seg2 (6 on average). 
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Fig 7. Contact maps between AbpSH3 and ArkA. Contact maps of the fully engaged state from 

the bound simulations (A) and the encounter complex ensemble from the binding simulations (B). 

The shade of the square indicates the fraction of the ensemble with that contact. The red and blue 

squares along the AbpSH3 residue index show which amino acids are in SI and SII, respectively. 

The black line indicates the separation of seg1 and seg2, and the single letter amino acid codes are 

included for ArkA and the residues in SI and SII. Several contacts are formed part of the time in 

the encounter complex but are not occupied at all in the bound simulations, indicating that 

nonnative contacts are part of the encounter complex ensemble. On average in the encounter 

complex, seg1 is in contact with 9 SH3 domain residues, while seg2 is in contact with 6 residues. 

ArkA K(-3) is in contact with 2 SH3 domain residues on average in the encounter complex, 

consistent with its role as an important central residue for binding. 

The nonnative contacts on the binding surface that are formed in the encounter complex 

are consistent with ArkA binding in reverse in part of the encounter ensemble (Fig 8). In general, 

SH3 domains depend on the PxxP motif to bind, and as this is a pseudo-palindromic motif, reverse 

binding for seg1 on SI is not surprising. To further examine the conformational states in the 

encounter complex, we broke the encounter complex into four categories (defined in the methods, 

Table 2): forward, reverse, seg2 only, and other (Table 3). The reverse structures are found in the 

part of the encounter ensemble that has a binding surface distance higher than 15 Å (Fig 6A), while 

the forward structures are found at binding surface distances less than 15 Å, as expected. The 

encounter complex contact map (Fig 7) shows that seg1 interacts more with the binding surface 

overall than seg2. Furthermore, Table 3 shows that the encounter complex is twice as likely to 

sample a state with seg1 engaged in the correct orientation on SI than a state with only seg2 

engaged in the correct place on SII. Together, this indicates that seg1 likely binds before seg2. 
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Seg2 may be needed to ensure specific forward binding since seg2 does not interact with the 

domain when ArkA binds in reverse (Fig 8). Both the ArkA and seg1 binding simulations exhibit 

forward and reverse binding, showing that in the encounter complex the two segments behave 

somewhat independently. However, the ArkA encounter complex ensemble is much more complex 

and heterogeneous than that of the short seg1 peptide (S12 Fig), and ArkA samples the forward 

state less often than the seg1 peptide (Table 3), indicating that this short peptide may not give an 

accurate representation of how that segment behaves as part of the longer sequence. 

 

Fig 8. Forward and reverse representations of ArkA during binding. Snapshots from MD 

simulation showing both the forward and reverse orientations of ArkA that are possible during 

binding. ArkA is shown in the stick representation with seg1 in grey, seg2 in green, and K(-3) in 

magenta. AbpSH3 SI is shown in red and SII in blue. The double headed arrow signifies that the 

ArkA orientation can flip during a simulation.  
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Table 3. Percentage of the encounter complex ensemble in each category for ArkA and seg1 

simulations. 

 
Forward Reverse Seg2 only  Other 

Encounter ArkA 9.6 8.7 3.9 77.7 

Encounter seg1 24.5 18.7 NA 56.9 

 

Although the percent of the encounter complex ensemble that is in the forward and reverse 

encounter is about the same (Table 3), 33 of the 50 individual binding simulations sampled forward 

encounter at some point in the simulation, compared to only 15 that sampled the reverse encounter. 

We found that generally, when the encounter complex enters the forward encounter state it does 

not change orientation; however, sometimes ArkA spins around and shifts over to go from forward 

to reverse (2 times out of 31) or reverse to forward (4 times out of 15) without entering the unbound 

state in between (S3 Movie). The encounter complex is in dynamic exchange between different 

predominantly nonnative conformations and contacts, including the forward and reverse 

orientation of the peptide (Fig 3D). This dynamic exchange may help to prevent the encounter 

complex from being trapped in off-pathway states for binding, such as a reverse encounter 

complex. 

The nonspecific, disordered encounter complex that we characterize from our simulations 

is similar to encounter complexes seen previously in MD simulation studies of the proline-rich Sos 

peptide binding to the c-Crk N-SH3 domain [21,23,56]. Ahmad et al. performed very short binding  
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simulations where the Sos-SH3 domain complex formed very rapidly, and they identified three 

binding modes, including forward and reverse orientations of the PPII helix on the binding surface 

[21]. Because these binding modes formed very quickly, they likely represent different 

conformations within the encounter complex ensemble, rather than fully engaged states of the 

complex. In our simulations we have been able to sample the encounter complex ensemble more 

extensively and quantify the occupancy of different conformational states within this ensemble. 

Ahmad et al. also identified a binding mode where the Sos peptide interacts with the c-Crk N-SH3 

domain at a new binding surface [21]; however, our simulations do not show any evidence that the 

ArkA peptide interacts significantly with a surface of the AbpSH3 domain other than the canonical 

binding surface. The nonnative interactions of ArkA with the AbpSH3 binding surface we observe 

in the encounter complex ensemble are similar to the alternate states observed by Yuwen et al. in 

simulations characterizing a mutant c-Crk N-SH3 domain interacting with the Sos peptide 

(designed to imitate the encounter complex) [56]. With our comprehensive analysis, it now seems 

likely that a diverse encounter complex ensemble that includes nonnative interactions may be 

characteristic of the binding between proline-rich peptides and SH3 domains. 

Long-range electrostatic interactions stabilize the encounter complex 

Because of the complementary charges of ArkA and AbpSH3 and previous studies that 

focused on electrostatic interactions, we chose to particularly examine the role that long-range 

electrostatic interactions play in the encounter complex. We measured the intermolecular 

electrostatic contacts present in the encounter complex ensemble and in the fully engaged ArkA-

AbpSH3 complex. While the long-range electrostatic contacts present in the encounter complex 

ensemble are more diverse (nonspecific) than those in the bound simulations (Fig 9), the average 

number of electrostatic contacts in the encounter complex ensemble at any given time is very 
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similar to the average number in the bound simulations (Table 4). Thus, the main favorable 

contribution of the positively charged ArkA peptide interacting with the negatively charged 

AbpSH3 binding surface is gained upon formation of the encounter complex rather than upon 

transitioning from the encounter to the fully engaged state. 

Fig 9. Long-range electrostatic interactions are non-specific in the encounter complex and 

specific in the bound simulations. Frequency of particular long-range electrostatic interactions 

in the ArkA encounter complex (blue bars on the left) and ArkA bound simulations (orange bars 

on the right). The large labels indicate the ArkA residue involved in the long-range electrostatic 

interaction and the small labels indicate the AbpSH3 residue. Error bars represent the standard 

deviation between independent simulations. 
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Table 4. Average number of long-range electrostatic contacts for different states. 

 
Bound 

simulations 

ArkA binding simulations 

Fully 

engaged 
Encounter Unbound 

Average number of ArkA-AbpSH3 

long-range electrostatic contacts 
5.7  0.3 6  1 5  1 2.0  0.8 

Previous studies of SH3 binding have also found that electrostatic interactions are 

important for the formation of the complex [89]. MD simulations of the Sos peptide binding to c-

Crk N-SH3 were able to specifically identify electrostatic interactions that occur in the encounter 

complex, including nonnative contacts, although they did not quantify these interactions [21,23]. 

Experimental studies of the viral NS1 peptide binding to the CrkII N-SH3 domain indicate that 

electrostatic contacts are important for specific binding, and that flexibility in the fully engaged 

state allows increased electrostatic stabilization as multiple interactions form as part of the 

ensemble of bound states [68,89]. Our simulations indicate that a diversity of different electrostatic 

contacts, each present in only part of the ensemble, is even more characteristic of the ArkA-

AbpSH3 encounter complex than the fully engaged complex. The heterogeneity, or ‘fuzziness’, of 

the encounter complex ensemble is important, as there can be multiple pathways from this fuzzy 

encounter state to the fully engaged complex [37]. Electrostatic interactions can enhance this 

effect, not only stabilizing the encounter complex, but also lowering the free energy barrier to 

transition between basins and transition to the fully engaged state [13,37]. As many of the ArkA-

AbpSH3 encounter complex electrostatic contacts do not form at all in the fully engaged ensemble, 
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it is also important that none are strong enough interactions to trap the complex in a conformation 

incompatible with transitioning to the fully engaged state. 

Hydrophobic and short-range interactions are nonspecific in the encounter and specific in 

the fully engaged complex 

Since simulations indicate that long-range electrostatic interactions are already formed in 

the ArkA-AbpSH3 encounter complex, we sought to identify what energetically favorable changes 

occur upon transitioning from the encounter complex to the fully engaged state. By measuring the 

solvent accessible surface area of the complex, we found that in the encounter complex part of the 

SH3 domain binding surface is buried (Fig 10A) because ArkA forms transient nonspecific 

hydrophobic interactions with the binding surface. However, in transitioning to the fully engaged 

complex, the ArkA PPII helix packs into the grooves in SI, and native contacts that are largely 

absent in the encounter ensemble form between hydrophobic sidechains at the interface (Fig 10C). 

This buries more of the binding surface, which transitions from ~50 to ~45 to ~40 nm2 solvent 

exposed surface area as the complex transitions from unbound to the encounter complex to the 

fully engaged complex (Fig 10A). 
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Fig 10. Solvent accessibility and specific intermolecular interactions for ArkA-AbpSH3 

complex. A) Average solvent accessible surface area (SASA) of the ArkA-AbpSH3 system in the 

bound simulations (first bar) and binding simulations, by state of the complex.   B) Occupancy of 

the P(2) to Y54 hydrogen bond in the bound simulations and ArkA binding simulations by state 

of the complex. C) Specific hydrophobic contacts between ArkA and the AbpSH3 binding surface 

in the fully engaged state and the encounter complex. D) Occupancy of the K(-3) to E17 salt bridge 

in the bound simulations and ArkA binding simulations by state of the complex. Error bars 

represent the standard deviation between independent simulations. 
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Additionally, in transitioning from the encounter complex to the fully engaged complex, 

one to two specific short-range hydrogen bond or salt bridge interactions appear (S14 Fig). In 

particular, in the bound simulations, there is one hydrogen bond, from the ArkA P(2) carbonyl 

oxygen to the AbpSH3 Y54 side chain hydroxyl group, that is present more than any others, in 

88% of the simulated ensemble (Fig 10B). We also found that a short-range electrostatic salt bridge 

forms between ArkA K(-3) and AbpSH3 E17 in 82% of the bound simulations (Fig 10D). These 

specific, short-range interactions are rarely formed in the encounter ensemble, indicating that they 

may also to help to stabilize the fully engaged state and prevent unbinding. Previous mutation 

studies have found that mutating K(-3) or P(2) causes a large reduction in binding affinity of ArkA 

[72], possibly in part due to disruption of the salt bridge or hydrogen bond that these residues form. 

The K(-3) mutation had the largest effect on binding affinity [72], which may also be in part due 

to its specific hydrophobic interactions in the fully engaged complex (Fig 10C). The other mutation 

that caused a significant reduction in binding affinity was L(-7) [72], which is a hydrophobic 

residue that is also buried when the fully engaged complex forms in our simulations (Fig 10C), 

indicating the importance of these specific hydrophobic interactions. While the encounter complex 

is characterized by nonspecific electrostatic and hydrophobic interactions, the fully engaged 

complex requires more specific and complete hydrophobic contacts between ArkA and the 

AbpSH3 binding surface and is additionally geometrically constrained by the formation of a 

specific hydrogen bond and salt bridge. 

ArkA-AbpSH3 two-step binding model 

Putting together all of our data from the binding simulations, we can form a picture of how 

ArkA binding to AbpSH3 proceeds (Fig 2). Initially the ArkA peptide is (orientationally) steered 

by long-range electrostatic attraction to the AbpSH3 binding surface and forms a metastable 
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encounter complex (step 1). This encounter complex is stabilized by transient and nonnative 

interactions, including long-range electrostatic interactions and partially engaged hydrophobic 

contacts, but the binding surface is still partially solvated, especially SII. Even before formation 

of the encounter complex, seg1 of ArkA is pre-folded into a PPII helix, and in the encounter 

complex it often forms nonspecific hydrophobic interactions with SI and nonnative hydrogen 

bonds, although part of the peptide is still solvated in any given conformation, and the P(2) to Y54 

hydrogen bond and K(-3) to E17 salt bridge are essentially absent. The seg1 PPII helix can interact 

with SI of AbpSH3 in either the forward or reverse orientation in the encounter complex, but the 

reverse orientation requires that seg2 interact with solvent rather than SII of AbpSH3. From the 

forward state of the encounter complex, ArkA-AbpSH3 can transition to the fully engaged state 

through a zippering process [5], burying hydrophobic sidechains and displacing more solvent, 

particularly on seg2 and SII, and forming the P(2) to Y54 hydrogen bond and K(-3) to E17 salt 

bridge (step 2). This transition also coincides with seg2 of ArkA becoming a bit more structured, 

although it is clear that the fully engaged state is still in dynamic exchange, consistent with 

previous co-liner chemical shift perturbation measurements [40]. The AbpSH3 binding pathway 

that we have characterized (Fig 2) is similar to that proposed for the c-Crk N-SH3 domain [21,23], 

although our simulations provide more sampling of individual binding trajectories, allowing us to 

quantitatively characterize the presence of different conformational states and long and short range 

interactions that are present in the encounter complex ensemble. In combination with previous 

studies, our results indicate that this pathway may be a common binding progression for proline-

rich peptides binding to SH3 domains. 

ArkA intrinsic structure affects the binding pathway 
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Even in the fuzzy encounter complex ensemble, seg1 of ArkA is largely folded into a PPII 

helix, exhibiting a binding strategy also employed by other IDPs, where one segment with pre-

formed structure can dock into place first, followed by the coupled folding and binding of more 

flexible segments [5,7,11,25,26,48]. Polyproline sequences are especially well adapted to this 

strategy as PPII helices are rigid, allowing them to project from folded parts of a larger full length 

protein, and hydrophobic yet also highly soluble in water [5]. This involvement of pre-formed 

structure in the binding pathway is useful for modulating the entropy change on binding by tuning 

the degree of structure present in the unbound state [5,24]. Sequence changes that change the PPII 

propensity but maintain the same fully-engaged SH3 complex could be a mechanism to tune the 

association rate, affinity, and specificity of the interaction for different cellular functions. Seg2 of 

ArkA is more flexible and therefore less likely to form the first tight interactions with the AbpSH3 

binding surface. Modulating the amount of intrinsic 310 helix structure in seg2 would be unlikely 

to affect the peptide binding affinity [25], since this segment also remains quite flexible in the fully 

engaged complex. 

Binding rates probed by NMR and MD simulations 

Using NMR CPMG experiments, we determined that the ArkA peptide binds quickly, on 

the s timescale, at our experimental concentrations (Table 5) [40]. In the binding simulations, 

ArkA generally reached a stable state in the 1 s of simulation time, but often this state was part 

of the metastable encounter complex rather than the fully engaged state. Based on the 9 simulations 

(out of 50) that did reach the fully engaged state, we calculated a binding rate constant, kon, which 

we compare to the experimental binding rate (Table 5). Our simulations show that binding happens 

on a similar timescale to the binding rates measured by NMR. However, the kon value from our 
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simulations is imprecise because most simulations remained in the encounter complex (panel A in 

S16 Fig), and we are only able to definitively state that our simulations are not inconsistent with 

the rate constants determined by NMR. We can more precisely calculate a rate constant, k1, for 

step 1 of binding (Fig 2), since all simulations reached the encounter complex (panel B in S16 

Fig). Step 1 occurs more than an order of magnitude more rapidly than the complete binding 

process. This extremely rapid k1 indicates that k2 could be quite low and still result in the fast kon 

observed experimentally. For example, using this value of k1, a rough approximation of k-1 from 

our simulations (2.6  107 s-1), and the experimental value of kon, we can calculate k2 based on the 

steady-state approximation for a two-step reaction. If we approximate k-2 = 0, kon is given by 

𝑘𝑜𝑛 =
𝑘2𝑘1

(𝑘−1 + 𝑘2)
 , 

and we can solve for k2 in terms of kon: 

𝑘2 =
𝑘−1𝑘on

(𝑘1 − 𝑘on)
 . 

Based on this calculation, we find that k2 is 6.8  105 s-1. This corresponds to a timescale for step 

2 of about 1 s, which is similar to the timescale of binding for a single ArkA molecule at our 

experimental SH3 domain concentration (~8 s). 

Table 5. Binding rate constants for ArkA and seg1 determined from binding simulations and 

NMR experiments. 
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Kon k1 

Construct 
Simulations 

used 
Simulations (s-1 M-1) NMR (s-1 M-1) Simulations (s-1 M-1) 

ArkA 50  1 s 6  107 * 1.21 0.07  108 4.8  0.6  109 

seg1 50  500 ns 5  107 * Not performed 9  1  109  

* The precision of the values of kon based on simulations cannot be estimated from the small 

number of times binding in the fully engaged state was observed. 

Although our simulations clearly show a two-step binding process for ArkA-AbpSH3, 

previous kinetics experiments on SH3 domains have shown rapid binding consistent with a 

diffusion-limited process that occurs in a single step, enhanced by electrostatic steering [43]. The 

Fyn SH3 domain binds its peptide partner with a kon of 1.03  108 s-1 M-1 [38], c-Crk N-SH3 binds 

Sos with a kon of 2  109 s-1 M-1  [23], and the CrkII N-SH3 binds JNK1 with a kon of 1.06  108 s-

1 M-1 and NS1 with a kon of 1.1  1010 s-1 M-1 [89] (all with salt concentrations similar to or slightly 

lower than our experiments). However, SH3 binding peptides are IDPs, which makes the 

theoretical diffusion limited rate more difficult to calculate than for ordered proteins, and some 

IDPs seem to exceed the upper limit for binding [43,90]. One study of a disordered region of 

PUMA binding to Mcl-1 found that an association rate that at first seemed to be diffusion limited 

in fact showed a temperature dependence for kon, indicating an energy barrier in the association 

process, and therefore two-step binding [43]. In our simulations, the diffusion limited association 

rate with an electrostatic enhancement is captured by k1; however, the overall association rate, kon, 

also depends on step 2 in our binding model (Fig 2). 
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In our simulations, step 1 (formation of the encounter complex) happens about two orders 

of magnitude more rapidly than the overall binding process, indicating that the transition state for 

binding occurs after the formation of the encounter complex. In fact, initial formation of the 

encounter complex appears to be a downhill process with respect to free energy, as measured along 

the binding distance reaction coordinate (S17 Fig). Although the step 1 rate depends on the 

concentration of peptide and SH3 domain, the number of transitions out of the encounter complex 

to either the unbound (reverse of step 1) or fully engaged state (step 2) is independent of 

concentration, and therefore easier to compare directly, so we focused on comparing these 

transitions. In our 50 independent simulations of ArkA binding, we observe 51 transitions from 

the encounter complex to the unbound state and only 9 from the encounter complex to the fully 

engaged state. This indicates that the encounter complex is approximately 5 times more likely to 

transition to the unbound state than to the fully engaged state. Although in our simulations the 

unbound state does not appear to be a stable minimum on the free energy landscape, in the cellular 

environment, transition to the unbound state would be part of a transition between different 

protein-protein interactions, such as ArkA interacting with another part of the larger Ark1p protein. 

Our simulations indicate that when ArkA has formed an encounter complex with AbpSH3, it is 

still more likely for it to unbind and begin interacting with something else than to proceed to the 

fully engaged state. 

Our simulation result showing that the rate limiting step for ArkA binding to AbpSH3 

occurs after the encounter complex formation contrasts with previous experimental data that 

indicate a two-state binding process [40]. Typically, when a single association rate is observed for 

a two-step binding reaction, it indicates that step 2 is very fast compared to step 1 [7], but this does 

not appear to be the case for SH3 domain binding based on this and other simulation studies where 
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the encounter complex forms more quickly than the fully engaged state [23,69]. In fact, in our 

simulations, step 1 of binding actually proceeds downhill, consistent with other studies of 

electrostatically enhanced binding [29,30]. Other MD simulation studies of IDP binding have also 

revealed encounter complexes that form quickly, followed by a slower transition to the fully 

engaged complex [50,54,58]. One alternative explanation for the apparent two-state binding is that 

the encounter complex is only present at a very low population (< 0.5%), and therefore not 

detectable by NMR [38].  

The role of the encounter complex and hydrophobic interactions in binding kinetics and 

function 

Our two-step binding model (Fig 2) that includes a fuzzy encounter complex stabilized by 

nonspecific hydrophobic and electrostatic interactions followed by formation of native contacts in 

the fully-engaged complex is observed in simulations of other IDP binding proteins, including 

other SH3 domains [21,23],  the PDZ domain [54], self-binding proteins [57], and the TAZ1 

domain [50]. IDP complexes that lack strong charge complementarity, such as pKID and KIX, are 

similar, but rely mainly on nonspecific hydrophobic interactions to stabilize the encounter complex 

[48]. The presence of a metastable encounter complex intermediate in the binding pathway allows 

nonnative interactions to play an important role in the binding process. The nonspecific encounter 

complex can form quickly, and nonnative, transient interactions (both electrostatic and 

hydrophobic) allow the encounter complex to remain flexible and avoid being trapped in a state 

that is off-pathway for complete binding. In this binding model, hydrophobic interactions are 

critical in both the encounter and fully engaged complexes. While long-range electrostatic 

interactions only form during step 1 of binding and then remain essentially constant, hydrophobic 

interactions are critical to steps 1 and 2, forming nonspecifically in the transition to the encounter 
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complex and specifically, to bury more surface area, when transitioning to the fully engaged 

complex. If binding only occurred in one step, mutations that affect hydrophobic interactions 

would only affect the dissociation rate, and not association rate of the peptide. However, with our 

two step binding model, we predict that hydrophobic interactions affect the stability of both the 

encounter complex and fully engaged state, and therefore play a role in determining the overall 

association rate. 

The central role of hydrophobic interactions in SH3 binding was also observed by Meneses 

and Mittermaier [31]. They find that electrostatic rate enhancement of binding to the Fyn SH3 

domain is minimal since long-range electrostatic interactions do not significantly increase the 

association rate compared to hydrophobic interactions. In our model (Fig 2), hydrophobic 

interactions form during both reaction steps and could have large effects on the association rate as 

well as the dissociation rate. This is consistent with the differences in CrkII N-terminal SH3 

binding by the virus protein NS1  and the endogenous binding partner JNK1 observed by Shen et 

al. [89].  While the increased binding affinity and higher association rate of NS1 has been attributed 

to its higher positive charge [89], NS1 also contains more hydrophobic residues than JNK1, 

particularly within the PxxPx+ motif, which likely also has an effect on association since 

hydrophobic interactions enhance the formation of the encounter complex and fully engaged 

complex. 

The encounter complex would likely play an important functional role in SH3 binding in 

the cellular context. Competition between binding partners may need to be tuned by modulating 

the encounter complex to determine which interaction will be dominant, as in the case of CITED2 

competing with HIF-1 to bind TAZ1 [91]. CITED2 forms an encounter complex with TAZ1 

while HIF-1 is bound, which allows it to completely displace HIF-1 even though both partners 
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have similar affinities to TAZ1. There is evidence that AbpSH3 can form an intramolecular 

interaction with a proline-rich sequence of the Abp1p protein, which may inhibit binding of other 

partners [92].  The formation of an encounter complex in this case, may allow the competition 

between binding partners to be tuned as necessary for function, instead of being dictated only by 

their relative affinities. The transient interactions of the SH3 encounter complex may also be 

critical when SH3 domains need to locate a small proline-rich binding motif within a longer 

disordered protein segment. The domain could rapidly associate with (positively charged) 

disordered sequences, while the interaction remains fuzzy enough to allow rearrangement or even 

translation of the SH3 domain along large stretches of disordered sequence until the specific PPII 

partner segment can align with the binding surface and lock into the fully engaged state. This 

search process may resemble a transcription factor searching an elongated DNA strand for its 

promotor site. Thus, the encounter complex we have characterized in this study is likely an 

important functional intermediate in the binding pathway of this ubiquitous protein interaction 

domain. 

Conclusions 

Through examination of ArkA-AbpSH3 binding by MD simulations and NMR 

experiments, we have created a two-step binding model that includes the formation of a 

heterogeneous encounter complex stabilized by transient, nonspecific hydrophobic and 

electrostatic interactions.  ArkA samples many states with different degrees of folding and binding 

before reaching the fully engaged state, though contacts with the domain are limited to the 

canonical highly acidic binding surface. The fuzziness of the encounter complex ensemble allows 

multiple paths to the fully engaged state, driven by specific hydrophobic interactions and a key 
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hydrogen bond and salt bridge rather than long-range electrostatics. The PxxP motif in seg1 is 

preformed in a PPII helix, which locks into the hydrophobic grooves of SI in a zippering 

mechanism during step 2 of binding. The more disordered seg2 may prevent the peptide from 

binding in reverse as a result of the pseudo-palindromic PxxP motif in seg1. While encounter 

complex formation is diffusion limited and enhanced by electrostatic orientational steering, the 

transition to the fully engaged state is slower and relies on specific hydrophobic interactions and 

short-range electrostatic interactions. In the cellular context, rapid formation of the encounter 

complex stabilized by transient, nonspecific interactions could allow SH3 domains to search for 

proline-rich motifs within disordered sequences. Our binding model and encounter complex 

characterization give insights into the mechanism that SH3 domains use to perform a wide variety 

of functions. Future studies of AbpSH3 thermodynamics and kinetics would further elucidate the 

different roles for electrostatic and hydrophobic interactions in the binding pathway.  
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S1 Text. Seg1 binding results. 
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S1 Table. Temperatures (in Kelvin) used in the unbound ArkA replica exchange simulations.  

S2 Table. Summary of volume, concentration, and binding frequency for the two binding 

simulations. 

S3 Table. Summary of water box dimensions for each simulated system. 

S1 Fig. Pairwise distances used in the determination of whether the encounter simulation has 

reached the bound state. The pairs in red and magenta where used for both the seg1 and ArkA1 

simulations and the cyan pairs where added for the ArkA simulations. The distances were 

determined based on the SH3 residues whose chemical shifts where used to determine binding in 

NMR experiments. The pairwise binding surface distance in the NMR structures ranges from 7.25 

to 7.62 Å. 

S2 Fig. Running averages of measures used to determine convergence of REMD simulations. 

ArkA structural measures plotted vs. simulation time for each of the independent REMD 

simulations. The first 50 ns of each independent simulation was removed before analysis. 

S3 Fig. Representative autocorrelation of replica state index graph, for one simulation, 

showing that the replica exchange was exchanging as expected and the number of replicas 

was sufficient. 

S4 Fig. Overlay of the 20 ArkA conformations from the NMR (2RPN) ensemble with the 

SH3 domain aligned [72]. 

S5 Fig. Percentage of time each ArkA residue is spending in PPII Helix or 3-10 Helix in the 

NMR ensemble (2RPN) [72]. 
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S6 Fig. Binding surface distance and dihedral angle RMSD for NMR structures (2RPN) 

[72]. The distance between ArkA and the binding surface of AbpSH3 is graphed against the 

dihedral angle RMSD for the bound simulations with the 20 NMR structures shown as red x’s. 

The NMR structures all have low binding surface distances, but cover a range of different 

dihedral angle RMSD values. Darker shading indicates a larger fraction of the total bound 

simulation ensemble, as indicated by the color bar. 

S7 Fig. Contact maps of the fully engaged state from the NMR ensemble (2RPN) and 

bound simulations. The darker squares indicate more of the ensemble with that contact. The red 

and blue squares along the AbpSH3 residue index show which amino acids are in SI and SII, 

respectively. The black line indicates the separation of seg1 and seg2, and the single letter amino 

acid codes are included for ArkA and the residues in SI and SII. 

S8 Fig. Starting structures for ArkA binding simulations. The conformational ensemble of 

unbound ArkA from the REMD simulations is plotted in terms of end-to-end distance and 

dihedral angle RMSD, with starting structures for ArkA binding simulations indicated by blue 

circles. End-to-end distance is the distance between the C and N-terminal ends of ArkA and 

dihedral angle RMSD is calculated only for ArkA with the lowest energy NMR structure (2RPN) 

as the reference [72]. 

S9 Fig. Histogram of dihedral RMSD based on only the seg1 dihedral angles from the 

unbound simulation ensemble. The vertical line at 38.1 indicates the cutoff that was 

determined between the two states (native and nonnative conformations). 



 57 

S10 Fig. Histogram of dihedral RMSD for the full ArkA peptide from the unbound 

simulation ensemble. The vertical line at 33.7 indicates the cutoff that was determined between 

the native folded and nonnative states. 

S11 Fig. Distance between seg1 and the binding surface of AbpSH3 over time for an 

example seg1 binding simulation. The black lines correspond to our definition of the encounter 

complex (23 Å) and the fully engage complex (11.5 Å). 

S12 Fig. Distance between seg1 and the binding surface of AbpSH3 graphed against the 

dihedral angle RMSD for seg1 binding simulations. Darker shading indicates a larger fraction 

of the total ensemble, as indicated by the color bar. Colored boxes partition the ensemble into 

four states: folded and fully engaged (blue), unfolded and fully engaged (green), folded and 

encounter (red), unfolded and encounter (cyan). 

S13 Fig. Solvent accessible surface area (A) and occupancy of the P(2) to Y54 hydrogen 

bond (B) for the seg1-AbpSH3 complex in different states. The first bar on the plot represents 

the solvent accessible surface area in bound simulations. Error bars represent the standard 

deviation between independent simulations. 

S14 Fig. Average number of hydrogen bonds (or salt bridges) between AbpSH3 and the 

ArkA peptide for ArkA (A) and seg1 (B) in the bound simulations (first bar) and binding 

simulations by state of the complex. Error bars represent the standard deviation between 

independent simulations. 

S15 Fig. Specific hydrophobic contacts between the seg1 peptide and the AbpSH3 binding 

surface in the fully engaged and encounter complexes. Hydrophobic contacts were selected 
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from those hydrocarbon groups that are closest together in the NMR structural ensemble (2RPN) 

[72]. Contacts were defined based on a 6 Å cutoff distance between hydrocarbon groups. Error 

bars represent the standard deviation between independent simulations. 

S16 Fig. Fit of TCDF curve (red line) to time to formation data (blue circles) for the fully 

engaged ArkA complex (A) and for the ArkA encounter complex (B) from ArkA binding 

simulations. These fits were used to determine kon and k1 respectively. 

S17 Fig. Population histogram of binding surface distance from ArkA binding simulaitons. 

States left of the vertical line at 11.5 Å are classified as fully engaged. States between the vertical 

line at 11.5 Å and the one at 23 Å are classified as the encounter complex. States right of the 

vertical line at 23 Å are classified as unbound. There is a clear population decrease between the 

fully engaged and encounter complexes, indicating a free energy barrier. It is important to note 

that these binding simulations do not fully sample the fully engaged state or the barrier between 

fully engaged and encounter, so this histogram cannot be considered an equilibrium ensemble. 

There is no clear barrier between the unbound state and encounter complex, indicating that 

formation of the encounter complex from the unbound state is downhill in free energy. Within 

the encounter complex, the binding surface distance reaction coordinate reveals two populations. 

The population between 11.5 and 15 Å is 32% of the entire encounter complex ensemble and 

contains almost all of the forward encounter states (67.1% other, 28.9% forward, 4.0% segment 

2 only). The population between 15 and 23 Å is 68% of the encounter complex ensemble and 

contains all of the reverse encounter states (82.7% other, 12.8% reverse, 2.8% segment 2 only, 

0.6% forward). 
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S18 Fig. Fraction of frames with intermolecular contact between ArkA and AbpSH3 by 

binding surface distance. The blue bars represent the fraction of frames that have at least one 

intermolecular contacts between ArkA and AbpSH3 at each bin along the binding surface 

distance reaction coordinate. The vertical black line at 11.5 Å represents the division between the 

fully engaged and encounter complex states, while the vertical black line at 23 Å represent the 

division between the encounter complex and the unbound state. While 100% of the fully engaged 

structures and 99.9% of the encounter complex structures have at least one intermolecular 

contact between ArkA and AbpSH3, 34% of the unbound structures have no contacts between 

ArkA and AbpSH3. 

S19 Fig. Occupancy of the K(-3) to E17 salt bridge for the seg1-AbpSH3 complex in 

different states. The first bar on the plot represents the salt bridge occupancy in bound 

simulations. Error bars represent the standard deviation between independent simulations. 

S20 Fig. NMR 15N CPMG relaxation dispersion data for the amide signals of 21 AbpSH3 

residues at 500 (triangles) and 800 (squares) MHz. The top of each plot is labeled with the 

residue number, and 36s and 37s refer to the tryptophan sidechain NH groups. 

S1 Movie. Example simulation of initial ArkA binding to the AbpSH3 domain. 

S2 Movie. Example simulation of  initial ArkA binding to the AbpSH3 domain. 

S3 Movie. Simulation of ArkA changing orientation from forward to reverse in the 

encounter complex. 
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