MCP REVIEW Special Issue: Glycoproteomics

Recent Advances in Analytical Approaches for
Glycan and Glycopeptide Quantitation

Authors
Daniel G. Delafield, and Lingjun Li

Correspondence Graphical Abstract
lingjun.li@wisc.edu

. Isotopic Labelin Isobaric Labelin
In Brief P g e g
Recent years have seen an e
explosion in novel strategies for
quantitative glycomics and
glycoproteomics. Whether
through metabolic incorporation

MS?

This review highlights the recent
innovations in labeling methods,
label-free strategies, acquisition
modes, and bioinformatic tools
for glycan and glycopeptide
quantitation, while providing

.
of stable isotopes, deposition of
custom isotopic labels, or high-
throughput isobaric chemical
tags, these numerous novel
strategies provide ease of
access to glycomic and
glycoproteomic investigation.

MS?
critical evaluations and technical Metabolic Labeling Label-Free

considerations to enable
effective analysis.

Highlights

¢ Novel glycomic applications of label-free, metabolic, isotopic, and isobaric labeling quantitation
e Informatic tools for investigative quantitative glycomics

e Critical considerations for entry or expansion of quantitative glycomics

¢ Introduction of synthetically facile, cost-effective labeling technology

2021, Mol Cell Proteomics 20, 100054

© 2021 THE AUTHORS. Published by Elsevier Inc on behalf of American Society for Biochemistry and
Molecular Biology. This is an open access article under the CC BY license (http://creativecommons.org/
licenses/by/4.0/).

https://doi.org/10.1074/mcp.R120.002095


mailto:lingjun.li@wisc.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1074/mcp.R120.002095
http://crossmark.crossref.org/dialog/?doi=10.1074/mcp.R120.002095&domain=pdf

MCP REVIEW

Check for
updates

Special Issue: Glycoproteomics

Recent Advances in Analytical Approaches for
Glycan and Glycopeptide Quantitation

1,27

Daniel G. Delafield'® and Lingjun Li

Growing implications of glycosylation in physiological
occurrences and human disease have prompted intensive
focus on revealing glycomic perturbations through abso-
lute and relative quantification. Empowered by seminal
methodologies and increasing capacity for detection,
identification, and characterization, the past decade has
provided a significant increase in the number of suitable
strategies for glycan and glycopeptide quantification.
Mass-spectrometry-based strategies for glycomic quan-
titation have grown to include metabolic incorporation of
stable isotopes, deposition of mass difference and mass
defect isotopic labels, and isobaric chemical labeling,
providing researchers with ample tools for accurate and
robust quantitation. Beyond this, workflows have been
designed to harness instrument capability for label-free
quantification, and numerous software packages have
been developed to facilitate reliable spectrum scoring. In
this review, we present and highlight the most recent ad-
vances in chemical labeling and associated techniques for
glycan and glycopeptide quantification.

Continuous developments of analytical strategies enable
advancements that illuminate the roles in which post-
translational modifications (PTMs) act to influence organism
maturation, physiological processing, and immune response.
While all members of this class of protein decorators are
recognized for their alteration of protein function and contri-
bution to proteomic diversity (1), no PTM is considered as
complex or highly dynamic as that of glycosylation (2). The
downstream products of enzymatic construction and depo-
sition of carbohydrate moieties—glycans—onto a nascent
backbone (2), glycoproteins present significant challenges in
analysis due to their high degree of structural and composi-
tional complexity (2), ionization inefficiency (3), low abundance
(4), and the unique phenomena of macro- and micro-
heterogeneity (2). Mass spectrometry (MS)-based glycomics
has benefited greatly from advances in sample preparation
protocols (5), enrichment strategies (6-8), and instrumental
capabilities (fragmentation, data-dependent and data-
independent acquisition (DIA), parallel reaction monitoring
(PRM) etc.) (9, 10), which now provide broad access to the
glycoproteome.

As aresult of these advances, targeted glycomic research
continuously expands the implication of glycosylation in
physiological processes such as cell signaling (11-14),
host-pathogen interaction (15-18), and immune response
(11, 19-21), with significant revelations provided in
connection to human disease. Recent evaluations demon-
strating the importance of glycosylation in neurodegenera-
tive diseases (22, 23), diabetes (24, 25), and cancer (26-28)
promote further interest in glycomic investigation to reveal
potential biomarkers and unambiguous symptomatic protein
profiles. As focus shifts from glycomic discovery and char-
acterization to that of glycan expression levels and minute
perturbations in site occupancy, the need for robust and
efficient glycan and glycopeptide quantitative strategies
steadily grows. In response to this demand, the last decade
has seen a surge in reports detailing novel chemical-
labeling-based and label-free strategies built on both data-
dependent and data-independent acquisition for quantita-
tive glycomics (Fig. 1). The previous review by Mechref et al.
(29) provides a detailed discussion of the seminal reports
paving the way for recent innovations, which may be
explored in supplement to the strategies outlined herein.
Discussed below are the most recent advances in metabolic
incorporation, isotopic and isobaric chemical labeling, label-
free approaches, and software for quantitative glycan and
glycopeptide analysis.

GLYCAN QUANTITATION

As glycoconjugate function is shown to be impacted by
glycan structure and composition, enzymatic or chemical
release of glycans provides direct access to profiling altered
glycan expression while enabling structural and compositional
characterization. Considering the ever-present challenges in
glycan analysis such as ionization inefficiency, highly hydro-
philic character, glycosidic bond lability, and presence of
negative charge, effective glycan quantitation may be ach-
ieved through strategies that offer reprieve from these ail-
ments while providing facile labeling and reduction in spectral
complexity.
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Fic. 1. Graphical representation of quantitative glycomics and glycoproteomic analyses. Glycomic evaluations, as discussed here, may
take place at either the glycan or glycopeptide level and pursued through incorporation of stable isotopes, deposition of isotopic labels for MS'
level quantification, isobaric labeling for MS?2 level quantitation, or label-free comparison. Both data-dependent and data-independent acqui-
sition are effectively employed for glycome or glycopeptide detection with numerous software tools available to perform identification and

quantitative analysis.

Isotopic Labeling

Glycan quantification at the MS' level is an attractive
prospect due to broad access to higher resolution instru-
mentation and the reduced considerations of selectivity bias in
data-dependent acquisition (DDA) experiments. Relative

quantitation in this manner is often achieved through labeling
of glycans in “heavy” and “light” channels to produce a
consistent mass difference (i.e., >1 Da). In order to avoid
retention time differences between constituents of each
channel and increase quantitative accuracy, heavy and light
labels are engineered through the incorporation of stable
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isotopes, such as 2C and '3C. 2-aminobenzoic acid (2-AA) is
a classic glycan label, often employed for its fluorescent
properties in UV-based experiments (30) and was adapted for
isomer-specific quantitative glycomic evaluations (31). The
well-characterized labeling strategy, commercial availability of
isotopologues, and complete separation of isotopic enve-
lopes—necessary to avoid peak overlap and inaccurate
quantitation—make this strategy well-suited for facile quanti-
tation. The importance of envelope separation was reinforced
in the preliminary report of glycan reductive isotopic labeling
(GRIL) (32), which employed aniline isotopologues to stabilize
sialic acid linkages, eliminate negative charge, and distinguish
isotopic envelopes. GRIL was later employed for glycan
analysis through porous graphitic carbon (PGC) LC-MS, which
enabled liquid-phase resolution of biantennary sialylated gly-
cans (33, 34). CID fragmentation was shown to provide
antennae-specific fragmentation, further indicating the ability
to quantify differential expression of isomeric glycans. Addi-
tionally, Walker et al. established a method labeling glycan
with isotopic hydrazide tags (35), INLIGHT (36), which echoes
the importance of envelope separation to eliminate inaccurate
isotope correction or quantitation. This method was validated
against glycan standards and those extracted from human
plasma, demonstrating quantitative accuracy across four or-
ders of magnitude.

As an alternative to carbon isotopes, glycans may be
labeled with heavy oxygen ('80) when enzymatic release is
performed in the presence of heavy water. First reported by
Tao and Orlando (37), the mechanism of glycan release with
PNGase F results in a terminal amine group at the glycan
reducing end, which is then replaced with a hydroxyl group
after spontaneous hydrolysis. When released in heavy water,
glycans will express a 2 Da mass shift over unlabeled coun-
terparts. This method has been further applied (38) and is
advantageous in that it requires no synthesis or treatment with
commercial isotopologues and that labeling efficiency is at or
near 100%, depending on the purity of heavy water available.
However, considering sample complexity and the unavoidable
overlap of isotopic envelopes when labeled/unlabeled pairs
are separated by only 2 Da, Cao et al. (39) developed a
strategy for glycan reducing end dual isotopic labeling (GRE-
DIL), which provided an additional 1 Da mass shift through
NaBH,/NaBD, reduction of glycans.

Beyond heavy carbon and oxygen, the incorporation of
deuterium has been widely reported in quantitative glycomics
experiments. As glycan permethylation (40) is routinely
employed to reduce the high hydrophilicity of glycans and
increase ionization efficiency prior to LC-MS analyses, early
reports demonstrate simple workflow adaptation using iodo-
methane isotopologues to produce three labeling channels
through light, medium, and heavy methyl labels (i.e., CHs,
CD2H, CDg) (41). The same research group later expanded this
workflow into an eight-plex labeling strategy that included
additional heavy carbon isotopes (42). Early reports of

deuterium-based isotopic tags were provided by Bowman and
Zaia, who first assessed multiple novel compounds for tetra-
plex labeling (43) and later applied them for glycan and
glycosaminoglycan quantitation (44). Numerous other
deuterium-based isotopic labeling strategies have been
employed: derivatization with phenyl-methyl-pyrazole (PMP)
has been employed to produce a one-pot dual-channel la-
beling strategy for matrix-assisted laser desorption/ionization
(MALDI)-based quantitation of O-glycans (45, 46), which was
also adapted for in-gel labeling without significant sample loss
(47); stabilization and quantitation of sialic-acid-containing
glycans was promoted through a solid-phase p-toluidine la-
beling strategy (48); duplex stable isotope labeling (DuSIL) was
developed to discriminate neutral and sialylated glycans
without the need for synthesis (49-51); isomer-specific
quantitation of sialic-acid-containing glycans was achieved
through Glycoqueing, which enabled sialoglycan stabilization,
isomer-specific elution order, and boosted MS signal (52); and
quantitation by mutant enzyme reaction stable isotope label-
ing (QMERSIL) facilitated glycan release and labeling in a
single step (53). Other methods for MS' level quantitation are
reported by Yang et al., (54) who employed a metal chelating
agent (p-NH»-Bn-DOTA) and rare earth metals to provide a
10 Da mass shift and near 100% labeling efficiency, and the
quantification of N-glycan types presented by Li et al. (55) that
couples endoglycosidase digestion with channel labeling to
provide an enrichment-friendly three-plex labeling strategy
composition.

Due to the significant sample handling necessary for glycan
purification, derivatization, labeling, and cleanup prior to
electrospray ionization (ESl)-based MS experiments, Chen
et al. conceived a strategy that leverages the salt-tolerant,
facile nature of MALDI-based glycan analysis while elimi-
nating the ion suppression that stems from sample
complexity. Combining glycans after labeling with light/heavy
HDEAT (2-hydrazino-4,6-bis-(diethylamino)-s-triazine)—which
provides a 20 Da mass shift between species, HILIC separa-
tion was employed to deliver a liquid trace onto a MALDI plate.
After matrix application, the liquid trace could be analyzed
directly to identify N-glycans. The spatial distribution of gly-
cans on the MALDI plate could be reconstructed into a base
peak chromatogram to provide retention time of glycan spe-
cies. This method reports significantly improved performance
for glycan quantitation with higher sensitivity, reproducibility,
and accuracy compared with MALDI alone and may be further
expanded to multiplexed experiments (56).

Of particular note are strategies that reduce sample
handling and associated loss by employing cellular machinery
to facilitate glycan labeling, combining features of both
metabolic and isotopic labeling. A pioneering study of this
kind was provided by Kudelka et al., (57) who introduced
cellular O-glycome reporter/amplification, CORA. This meth-
odology involves the supplementation of cell culture media
with paracetylated benzyl-a-N-Acetylgalactosamine (GalNAc-
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Fic. 2. Overview of isotopic labeling with cellular O-glycome
reporter/amplification (ICORA). Cells undergoing condition A are
incubated with Ac3GalNAc-BnH7 while cells undergoing condition B
are incubated with Ac3GalNAc-BnD7. Ac3GalNAc-Bn crosses the
plasma membrane, is de-esterified in the cytosol, taken up into the
Golgi apparatus, and modified by endogenous glycosyltransferases to
produce light H7 or heavy D7 labeled Bn-O-glycans before being
secreted into the media. Media from the two conditions is mixed
together and heavy and light Bn-O-glycans are purified, per-
methylated, and analyzed by mass spectrometry. A 7 Da mass shift
distinguishes the light and heavy O-glycans, enabling quantification of
shifts in relative abundance and comparison of O-glycans in condition
A versus condition B. Reprinted from Kudelka et al. (58) with permis-
sion from the author.

% intensity

Bn), which is extended into a mature glycans by endogenous
glycosyltransferases. Because the reducing end of the glycan
is blocked by the benzene group, these glycans are not acted
on by oligotransferases, rather being excreted from the cell
and escaping degradation. The benzene group also facilitates
simple purification using reversed-phase cartridges for effi-
cient MS analysis of the O-glycome constituents. This method
was further developed to enable relative quantitation by
employing light/heavy GalNAc-Bn in the method dubbed
ICORA, isotopic labeling with cellular O-glycome reporter/
amplification (58) (Fig. 2). Highlights of this method include
complete discrimination of isotopic envelopes through a 7 Da
mass shift, high levels of persistence found in Bn-protected

glycans, and the ability to evaluate O-glycome perturbations
in response to altered growth conditions. Though this method
does not mitigate any of the challenges in glycan analyses
(e.9., MS/MS of low abundance species, structural assign-
ment, or accuracy of MALDI versus ESI) and is not broadly
useful beyond MS due to the weak absorbance of the benzene
ring, this method does provide a rigorous example of how
“classic” metabolic incorporation of stable isotopes and azide
sugars may be employed for glycan amplification and quan-
titation—an idea expanded much further in quantitative
glycopeptide experiments (vide infra).

Metabolic Incorporation

Though isotopic labeling is successfully employed for MS'
level comparison of glycans, the questions of labeling effi-
ciency, as well as reagent synthesis, cost, and availability
remain. As an alternative, several researchers have turned to
the classic strategy stable isotopic labeling of amino acids in
cell culture (SILAC), which significantly reduces concerns over
labeling efficiency while retaining the ability to perform relative
quantitation and offering a means to discern glycome lifetime
and stability.

IDAWG, isotopic detection of amino sugars with glutamine
(59), is one of a few seminal reports on the feasibility and
accuracy of metabolic incorporation for relative quantitation.
Though discussed in depth in the previous review (29), briefly,
heavy nitrogen was introduced to cell culture in the form of
"SN-glutamine, which provided near-complete labeling of
glycosylation sites and aminosugars across the observed
proteome. This method demonstrates the reliability of meta-
bolic incorporation for glycosite and glycan quantification, as
well as how media treatment can be used to evaluate further
synthesis or degradation of aminosugar-containing glycans in
response to cellular behavior. This idea was further expanded
by two groups who sought to comprehensively quantify the
glycome and glycoproteome through combining metabolic
incorporation and isotopic labeling. Yang et al. (60) accom-
plished characterization of bladder cancer cell lines (KK47,
YTS1, J82, T24) against a normal bladder mucosa cell line
(HCV29). This report employed SILAC labeling for proteomic
quantification while combining lectin microarrays and sialy-
lated glycan derivatization with heavy/light aniline to
comprehensively quantify glycan expression levels. Further
expansions of combinatorial methods are provided in the
report of solid-phase extraction of N-linked glycans and
glycosite-containing peptides (NGAG) by Sun et al. (61). This
method employs sequential elutions after tryptic peptides
have been complexed with aldehyde-functionalized resin
beads. In the first pass, lysine side chains are protected
through guanidination prior to derivatization of acidic species
(sialic acid and aspartic acid) with aniline, which is followed by
PNGase F treatment to release N-glycans. The released gly-
cans were then labeled with iTRAQ, isotopic tags for relative
and absolute quantitation, prior to LC-MS identification and
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quantitative analysis. In the second pass, the newly formed
aspartic acid residues that result from glycan release are then
cleaved by Asp-N treatment, eluted, and quantified after
combining with heavy-labeled glycosite-containing peptides
from SILAC treatment. Using the NGAG method to analyze
OVCAR-3 Cells, 85 unique glycan compositions and 2044
glycosite-containing peptides were identified, offering com-
plementary coverage to that of the previously reported SPEG
methodology (62) of the same group. These methods present
an efficient strategy for quantifying the glycome and glyco-
proteome through metabolic incorporation of stable isotopes,
providing an avenue of expansion, which has since been
greatly explored in quantitative glycopeptide experiments.
However, given the lack of suitable stable isotopes that may
be incorporated and the increasing spectral complexity when
numerous isotopes are present, these mass-difference ex-
periments are fundamentally limited by the number of chan-
nels that may be analyzed at any one time. As such, great
benefit may be found in employing the strategy of mass-
defect-based chemical labels.

Mass Defect

While isotopic labeling and metabolic incorporation impart a
mass shift of >1 Da—mass-difference, mass-defect-based

strategies impart mDa mass shift. As such, MS" mass spectra
are significantly less complex than in mass difference exper-
iments, redundant sampling is avoided because all labeled
ions are selected for fragmentation in the same MS? isolation
window, and quantification at the MS' level is retained,
reducing the concerns over precursor coisolation. Early
implementations of such strategies using CHsl and CH,DI
have been reported (63, 64), but few reports exist over recent
years. One example provided by Chen et al. was the suc-
cessful application of mass defect dimethyl pyrimidinyl orni-
thine (DiPyrO) (65), an amine reactive tag, for quantitative
glycomics (66) (Fig. 3). This study successfully quantified
glycan expression differences between B-cells of healthy and
acute lymphoblastic leukemia and demonstrated dynamic
linearity across two orders of magnitude. This study provides
two notable observations: i) increasing instrumental resolution
will facilitate immediate expansion of DiPyrO beyond three
demonstrated labeling channels and i) employing amine
reactive tags for glycan quantitation is a promising path that
can be widely explored. This latter notion was explored by
Feng et al. (67) in the development of mass-defect isobaric
multiplex labeling reagents for carbonyl-containing compound
(MdSUGAR) tags. This three-channel approach was built upon
the simple three-step synthesis of the original SUGAR tags
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Fic. 3. Top, DiPyrO labeling of glycosylamine; Red dots represent heavy isotopic atoms (*°N,'0) in the light DiPyrO tag; blue dots
represent heavy isotopic atoms (?Hg) in the heavy DiPyrO tag. Bottom, workflow for the relative quantification of DiPyrO-labeled N-glycans
illustrating the microenvironment. Adapted from Chen et al. (66) with permission.
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(68) (see below), providing a 23.8 mDa mass shift between
channels and labeling at both the reducing end and on sialic
acid residues for stabilization. Beyond the significant repro-
ducibility demonstrated when analyzing standard and com-
plex samples, the MS? fragmentation spectra revealed
complete y glycan fragment series with the mdSUGAR tag
attached with additional tagged b ions found in sialylated
glycans. This improved fragmentation series compared with
unlabeled species allows for greater confidence during glycan
annotation and structural assignment. These approaches
represent a facile strategy for glycan labeling, with excellent
accuracy and dynamic range that can be employed in sce-
narios where instrument resolving power is limited. Further
expansion of these tags may prove useful in highly multi-
plexed experiments that seek to exploit rapidly evolving ca-
pabilities of novel instrumentation.

Isobaric Labeling

In order to avoid explosions in spectral complexity and the
need for slower, higher-resolution MS’ scans, numerous re-
ports have explored the utility of glycan quantitation at the
MS? level. By employing isobaric labels—each of which has
an identical overall mass but a reporter ion region of unique
mass—collision-based dissociation allows for relative quanti-
tation to proceed through the comparison of reporter ion
abundance.

At the time of last review, isobaric labeling strategies for
glycan quantitation were only just emerging. iART, isobaric
aldehyde reactive tags, was an early report of MS? based
quantitation, employing a simple synthesis strategy to create
two labeling channels. This method demonstrated significant
improvements in glycan sensitivity postderivatization as well
as reliable quantitation when applied to quantifying the gp120
subunit of the HIV envelope (69). The same researchers later
expanded this underlying strategy in developing a four-plex
labeling strategy by developing quaternary amine containing
isobaric tag for glycans, QUANTITY (70). This method was
originally validated using N-glycans released from human
serum and CHO cell lines, which revealed relative quantitation
of 90 and 159 N-glycans, respectively. Later, QUANTITY was
employed for simultaneous quantitation of N- and O-glycans
through sequential release and labeling techniques (71).
Concurrent with these studies, numerous strategies were
established for glycan quantitation using commercial tandem
mass tags (TMT). Though glycoTMT, a carbonyl reactive tag
for N-glycan quantitation, was reported early (72), broad
applicability was demonstrated through the use of the amine
reactive tags, aminoxyTMT (73-77). Notably, Zhong et al. (74)
demonstrated baseline resolution of TMT-labeled high-
mannose glycans through capillary electrophoresis, while CE-
TWIM-MS (capillary electrophoresis—traveling wave ion
mobility-mass spectrometry) was able to distinguish isomers
of sialylated O-glycans in human milk. Chen et al. (76) later
established the improved quantitative accuracy of N-glycans

using MultiNotch MS?® triggered by the presence of Y, glycan
ions. These recent reports indicate the utility of isobaric la-
beling for deep glycomic quantitation; however, the in-
efficiency of multistep syntheses presented by iART and
QUANTITY, as well as the high cost of commercial TMT labels,
often places these workflows out of reach. In remedy to this,
Feng et al. (68) developed Isobaric Multiplex Labeling Re-
agents for Carbonyl-Containing Compound (SUGAR) tags
(Fig. 4). This report details a simple, three-step synthesis of
SUGAR isotopologues with ~70% overall yield, and two-step
labeling for near 100% labeling efficiency of all N-glycans
tested. As well, the low cost of the reagents employed makes
this an attractive strategy that may be readily implemented in
numerous research settings. Finally, in addition to the effi-
ciency and quantitative accuracy, SUGAR tags demonstrated
significantly improved glycan fragmentation in CID/HCD-
based experiments for more accurate structural and compo-
sitional assignment. Considering these numerous de-
velopments over recent years, isobaric labeling is seen as an
effective strategy for glycan quantification, which is likely to be
further expanded with improvements in instrument resolution
and need for increased sample throughput.

Fluorescence Labeling

Fluorescence and absorbance-based labeling strategies
were methods of significant interest prior to the heavy devel-
opment of MS-based technology and MS-suitable sample
preparations. However, fluorescence labeling is still employed
due to the relative ease of glycan derivatization, the reduced
need for intensive sample cleanup, and the reduction of
sample loss via reduced sample handling. A notable
improvement in glycan labeling efficiency was reported by
Lauber et al., (78) where they demonstrated that commercial
RapiFluor-MS can label glycans in under 5 min compared with
the >1 h found strategies mentioned above. RapiFluor-MS
also facilitated quantitative recovery of glycans during
cleanup, facilitated sensitive fluorescence, and quantitative
accuracy in ESI-MS experiments. In the effort to reduce the
limitations surrounding single-channel measurements of
fluorescence-based strategies, Rana et al. (79) developed a
three-channel sensing system that employs unique fluores-
cent proteins to generate a multiplex output. Utilizing gold
nanoparticles with a glycan recognizing functional ligand, this
strategy proved useful in rapidly and quantitatively comparing
human cell types according to their surface glycan profiles.

Label-Free

Rapidly evolving instrumental capabilities present a unique
path toward quantitative glycomics. An ideal approach to
quantitative experiments is the incorporation of an internal
standard, but this method is not widely employed due to the
complexity of glycan synthesis and the lack of commercial
isotopic glycan standards. iGlycoMab, an isotope-labeled
monoclonal antibody, was recently developed through '°N
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permission.

metabolic incorporation. As heavy nitrogen will be incorpo-
rated into the aminosugars of the single glycosylation site on
the Fc region, glycans released from this standard protein can
serve as an internal isotopic standard in glycomics experi-
ments. This strategy was successfully employed by Zhou and
others, indicating the feasibility of isotopic glycans as internal
standards (80). An alternative strategy using the incorporation
of exogenous standards was also validated for glycan quan-
titation (81). As data suggests that molar responses for per-
methylated glycans are relatively uniform, investigators spiked
in permethylated malto-series glycans at known concentra-
tions for absolute quantification of N-glycans. These two
previous reports are unique strategies for glycan quantifica-
tion, but both state the need for a complete N-glycan standard
series for more accurate, reliable, and broadly useful experi-
ments. Given the unavailability of isotope-encoded glycan
standards, a premium is placed on methods capable of ac-
curate quantitation while reducing dependence on internal
standards. To this end, numerous reports have validated
significant increases in analytical sensitivity and quantitative
accuracy when employing parallel and multiple reaction
monitoring.

MS Reaction Monitoring

With rapidly expanding access to instrumentation capable
of deciphering highly complex mixtures, alongside the
appreciation of reliable and reproducible instrument perfor-
mance, a growing number of investigators have sought to
exploit instrument capabilities for absolute and relative
quantitation. Rapidly gaining favor in the area of glycan anal-
ysis are selected, parallel, and multiple reaction monitoring
(SRM, PRM, and MRM). Though each has been successfully
employed for glycomic quantitation, MRM analyses have
gained favor in glycoproteomics (82) due to more precise

quantitation (83), high analytical reproducibility, better signal-
to-noise ratios, and increased dynamic range (84). In-depth
description of reaction monitoring concepts and consider-
ations may be read elsewhere (85, 86). In brief, MRM, which is
often implemented on triple quadrupole (QQQ) instrumenta-
tion, involves scanning of glycans in the first quadrupole, CID
fragmentation in the second, and scanning of transitions (i.e.,
fragments of precursor masses) in the third quadrupole. User
control over valid precursor and transition masses results in a
highly selective and sensitive method for glycan identification.
Noting that transition signal response is directly related to
analyte concentration, iterative analyses of standard mixtures
can be employed to develop calibration curves of transition
abundance. After analysis of unknown sample mixtures, these
curves are used to provide absolute abundance of targeted
analytes. The targeted nature and considerable effort needed
to establish effective MRM workflows limit their utility in high-
throughput experiments, but these techniques are widely
useful in glycan biomarker and protein characterization
studies (85).

Of the numerous reports employing reaction monitoring,
Lebrilla and colleagues have been instrumental in developing
novel methods for MRM analysis of mono- and oligosaccha-
rides. For example, Hong et al. (87) detailed the ability to
perform label-free absolute quantitation of human milk oligo-
saccharides (HMOs) and leverage 2’-fucosylation concentra-
tion to profile samples from secretors and nonsecretors. Of
note, this method established quantitative accuracy across
five orders of magnitude and displayed femtomole sensitivity,
rearticulating the benefits of targeted MRM analyses. Later, Xu
et al. (88) expanded on this approach and demonstrated that
differences in retention time between monosaccharide iso-
mers can be leveraged to create dynamic multiple reaction
monitoring methods—a concept discussed in detail in later
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TaABLE 1

Comparisons of labeling strategies for glycan quantitation

Type

Method name

Pros

Cons

Metabolic incorporation/ ICORA (58)

isotopic labeling

Isotopic labeling

Isotopic labeling

Isotopic labeling

Mass defect

Mass defect

Isobaric labeling

Isobaric labeling

Isobaric labeling

Dimethyl labeling

Isotopic
permethylation (42)

Custom tags (e.g., PMP-,
Gerard’s reagent P-,
aniline-based etc.)

DiPyrO (66)

mdSUGAR (67)

QUANTITY (70)

T™MT

SUGAR (68)

Improved reporting signal through
increased O-glycan abundance,
increased enrichment efficiency,
optimal labeling efficiency

Low-cost reagents, facile labeling, slight
increase in glycan hydrophobicity

Significant improvements in glycan
hydrophobicity and ionization
efficiency, eight-channel multiplexing

Highly customizable, effective in
bespoke tagging workflows,
stabilization of sialic acid residues,
fixing of permanent positive charges

Greatly reduced spectral complexity,
elimination of redundant sampling,
precursor coisolation does not affect
quantification, amine reactive tag (may
be applied to glycans, peptides, and
proteins)

Labeling at glycan reducing end and on
sialic acids, improved glycan
fragmentation compared with
commercial tags

Improved fragmentation and reporter ion
signal, high labeling efficiency.
Quaternary amin imparts permanent
positive charge

Commercial quality control, well-
characterized protocols, eight-channel
multiplexing, fits within Thermo
“ecosystem”

Improved b/y glycan fragment series for
identification, synthesized in three
high-yield steps, near 100% labeling
efficiency, higher reporter ion signal for
quantitation

Only validated for O-glycans, time-
restrictive, growth conditions must be
carefully monitored

Limited throughput (low multiplexing
capacity)
Toxicity of iodomethane reagents

Concerns over labeling efficiency, need
for optimization and method design

Low multiplexing capacity (3-channels),
requires higher-resolution MS' scans,
current instrumentation outperforms
multiplexing capacity

Carbonyl-reactive tags are not as flexible
in peptide and protein quantification,
offer three-channel multiplexing

Requires multistep synthesis, offers four-
channel multiplexing

Cost-preventative

Offers four-plex multiplexing

sections. In addition to these fundamental reports, Xia et al.
(89) provided an early entry through their analysis of N- and O-
glycans for diagnosis of congenital disorders. Later Tao et al.
(90) reported a penta-HILIC-SRM-MS for the separation and
identification of 2,3/2,6 sialic-acid-containing N-glycan iso-
mers, and Tsai et al. (91) established a protocol for N-glycan
biomarker discovery in hepatocellular carcinoma (HCC). MRM
has also been used in combination with glycan permethylation
to quantify 88 N-glycans from only 5 nl of human blood (92).
Finally, Orlando et al. (93) have pursued absolute N-glycan
quantitation of biotherapeutic antibodies, and Mank et al. (94)
expanded on the earlier reports of HMO analysis to provide
structural selectivity. These reports are among those that
signal increasing interest in label-free, instrument-dependent
methodologies for glycomic quantitation. Though the benefits
and drawbacks of these strategies must be carefully weighed
against those mentioned for chemical labeling, future in-
novations in the area of MS reaction monitoring and

instrument efficiency could pave the way for a gradual shift
toward confident and reliable label-free analyses.

Critical Evaluations and Considerations

Numerous strategies have been developed for glycan
quantitation, presenting unique benefits and drawbacks that
must be considered prior to implementation. A guiding
consideration should include relative sample complexity and
need for throughput. In low-complexity experiments where
throughput is not needed (i.e., analyzing no more than two
samples), isotopic labeling is an effective strategy that may be
customized to fit individual needs. Isotopic labeling reveals
greater benefits when employing tags that increase glycan
hydrophobicity and ionization efficiency or impart positive
permanent charge. As sample complexity increases, mass-
defect-based isotopic labeling strategies may be imple-
mented to offer reprieve from precursor coisolation and
spectral complexity while also providing slightly higher
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throughput. In high-throughput investigative experiments, if
samples are relatively simple and MS1 level quantification is
possible, eight-plex glycan permethylation would be of use
due to the significant increases in glycan hydrophobicity for
LC separations and improved ionization efficiency. However,
isobaric labeling is undoubtedly the method of choice in high-
throughput, high-complexity experiments as quantitation is
pursued in tandem with identification at the MS2 level. If
seeking to perform analyses at this level, channel multiplexing,
synthetic capacity, and cost will be the guiding factors. A brief
summary of highlighted methods may be found in Table 1. No
matter the application, the techniques presented above pro-
vide achievable avenues to those seeking to perform quanti-
tative glycomic analyses.

GLYCOPEPTIDE QUANTITATION

Direct glycan analysis after enzymatic or chemical release
enables understanding of the heterogeneity found within a
given glycoproteome while providing the best opportunity for
structural and compositional interrogation. In pursuit of
comprehensive glycoprotein characterization, glycan analysis
is limited by the elimination of protein localization as no glycan
can be related to a modification site without intensive exper-
imental control. To this end, analysis of intact glycopeptides
retains site-specific information while enabling modest eluci-
dation of the attached glycan. Though traditionally limited due
to low abundance within proteolytic mixtures and poor ioni-
zation efficiency, glycopeptide analyses have benefited
greatly from recent advances in sample preparation (95-97),
enrichment strategies (98-100), and instrumental functionality
(101-1083). Enabled by broad access to the glycoproteome,
revealing deviations at the glycan, modification site, and
protein level are of immediate interest in the effort to provide a
more comprehensive view that helps to elucidate the role of
glycosylation in physiological processes and human disease.
As the following reports exercise analysis of glycosylated
peptides and deglycosylated peptides, clear distinction has
been provided to avoid confusion. Discussion of “glycopep-
tides” refers strictly to glycosylated species, and all references
involving release of glycans prior to analysis are noted as
“deglycosylated peptides.”

Metabolic Incorporation

As SILAC experiments involving the incorporation of heavy
amino acids—traditionally heavy lysine and arginine—during
protein translation, glycopeptide quantitation through metabolic
incorporation is widely accessible. This approach was taken in
early reports that detailed the utility of DIA of sequential isolation
windows (SWATH-MS) for glycopeptide quantitation (104). DIA
analyses will be discussed further in subsequent sections, but
this initial report demonstrated the sensitivity and reproducibility
gained during application. Further application of heavy amino
acids was reported by Poljak et al., (105) who used enzymatic

cleavage and PRM of glycopeptides to quantitation the N-
glycosylation machinery in yeast, though this method did not
provide evaluation of glycan expression levels. While the appli-
cability of incorporating isotopic labels is plainly seen across
proteomics, significant contributions to glycopeptide analysis
have come through the development of methods that combine
efficient enrichment and complete labeling. Though the
following methods enable quantitation through isotopic labels,
they are presented here for their unique implementation of
metabolic azide sugar incorporation.

Due to the facile, highly selective nature of copper-catalyzed
cycloaddition of terminal alkynes and azides (106, 107) (i.e.,
click chemistry), numerous groups have employed this reaction
to label, enrich, and quantify glycopeptides. A benchmark
study, isotope-targeted glycoproteomics (IsoTaG), demon-
strated the ability to incorporate azide-containing sugars into
nascent glycans (108-110). This azide sugar was then ligated to
an acid-labile, isotopically labeled biotin tag with a terminal alkyl
group for glycopeptide enrichment with streptavidin beads. The
biotin tag was then cleaved, leaving behind the isotopic group,
which could then be used for targeted mass spectrometry due
to the characteristic mass shift against isotopic partners. The
combined efficiencies of azide sugar incorporation and biotin-
streptavidin enrichment presented a powerful strategy for
quantitative glycomics and glycan/glycopeptide enrichment.
Though this method has difficulty in complete characterization
of N-glycans—due to the unpredictable composition of sialic-
acid-containing glycopeptides—the authors successfully
elucidated 32 N-glycopeptides with additional 156 partial as-
signments and completed characterization of more than 500 O-
glycopeptides. The shortcomings in N-glycopeptide detection
were addressed in a later study that incorporated alkyne-sugars
rather than azido-sugars, which facilitated greater access to N-
and O-glycopeptides alike with 156 and 578 confident identi-
fications, respectively (111). A key benefit of employing IsoTaG
is the accompanying software, IsoStamp (112), which aids in
spectral deconvolution and quantitation. Such benefits are
replicated in the study from Qin et al. (113) that detailed O-
glycopeptide analysis through isotope-tagged cleavable linker
(isoTCL) and quantitation using MaxQuant. Though quantitative
accuracy was still achieved, manual confirmation of heavy/light
pairs must be performed, bolstering the value of IsoTag and
IsoStamp that eliminate the need for validation. Finally, in order
to eliminate the harsh solution conditions associated with acid-
labile chemical probes, a photocleavable biotin tag for O-
GlIcNAcylated glycopeptide quantification was developed by Li
et al. (114). This study localized 419 and 276 O-GIcNAcylation
sites from sorafenib-sensitive and sorafenib-resistant HepG2
cells, respectively, 262 of which were not previously reported.

Isotopic Labeling

Following the trend seen in glycan analyses, isotopic la-
beling is a method of choice in glycopeptide quantitation due
to the well-characterized nature of numerous peptide labeling
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strategies. As dimethyl labeling is a highly facile method for
peptide derivatization and employs reagents that are not cost-
preventative, numerous reports detail the utility of dimethyl
labeling in lower-throughput relative glycopeptide quantitation
experiments (115, 116). Novel applications include the asso-
ciation of altered glycopeptide glycosylation profiles with
pancreatic cancer (117), glycoproteomic profiling in triple-
negative breast carcinomas through analysis of deglycosy-
lated peptides (118), quantitative comparisons of sialic-acid-
containing glycopeptides in human embryotic and neural
stem cells (119), and employing deglycosylated peptides to
determine changes in site occupancy rates between normal
liver and hepatocellular carcinoma (HCC) liver tissues (120).
Further development of this strategy has been seen in the
employment of diethyl labeling of glycopeptides (121-123),
which reduces retention time differences and quantitation er-
rors by replacing and incorporating heavy carbon in place of
deuterium.

Though chemical labeling strategies such as dimethyl la-
beling are facile in nature, reagent purity and labeling effi-
ciency are persistent factors that reduce the overall efficiency
and accuracy of glycomic quantitation. However, in search of
avenues for isotope incorporation with high efficiency and no
need for intensive synthesis, researchers have capitalized on
the mechanism of proteolytic cleavage to incorporate more
advantageous stable isotopes, such as '0. A novel strategy
for '80 stable isotope labeling (TOSIL) of deglycosylated
peptides was presented by Liu et al. (124) and later adapted
for use in complex samples (125). By performing trypsin
digestion in the presence of heavy water, the newly formed C
terminus will be labeled with two 0 atoms. PNGase F
treatment of the formed peptides will result in additional "0
atom being incorporated during the transition of the Asn
modification site to Asp. This strategy was employed for ac-
curate quantitation of glycosylation profiles between innovator
and biosimilar antibodies (126). Though this method retains no
glycan-specific information, the authors employed selective
lectin enrichment prior to glycan release to generate glyco-
peptide subgroups to evaluate topical modification changes.
Validated in comparisons of normal and HCC liver cells, this
method demonstrated high quantitative accuracy across the
dynamic range and complete isotopic envelope separation. To
evaluate the utility of the original TOSIL method for N-glyco-
proteome quantitation, Liu et al. (127) employed TOSIL in
tandem with lectin microarrays to reveal potential biomarkers
in HCC metastasis.

In addition to these innovations, numerous groups have
developed novel chemical tags useful for glycopeptide label-
ing, which are easily translated to quantitative experiments
after synthesizing the deuterium isotopologue. For example,
Kurogochi and Amano (128) employed benzoic acid N-suc-
cinimidyl ester to enhance ionization efficiency of glycopep-
tides in MALDI-based quantitative experiments, while Pabst
et al. (129) later determined galactosylation and sialylation

patterns in Immunoglobulin G (IgG) glycopeptides in both ESI
and MALDI regimes through derivatization with succinic an-
hydride. As routine proteolytic digestion involves reduction of
disulfide bonds and protection through alkylation, reports
have detailed the utilization of these processes for direct
peptide labeling. Kim et al. (130) conceived the use of isotope-
coded carbamidomethylation to label deglycosylated peptide
species in tandem with free thiol protection, while Zhao et al.
(131) employed isotopic dithiothreitol to label O-glycosylation
sites after beta-elimination to produce deglycosylated pep-
tides. These are attractive methods for peptide quantification
as it does not involve subsequent sample handling or cleanup
beyond those used in routine digestion workflows. Validated
strategies such as these provide a litany of facile labeling
strategies for relative glycopeptide quantitation but are
inherently limited by low channel number and the inability to
facilitate absolute quantitation. In remedy, recent reports have
demonstrated the utility of isotopic internal standard peptides
for absolute quantitation and novel application.

First, Zhu et al. (132) reported a strategy to determine ab-
solute quantitation of glycosite occupancy in experiments
using deglycosylated peptide abundance compared with
isotope-coded synthetic peptides. Noting deamidation of Asn
residues is shown to occur spontaneously during sample
preparation and therefore skew quantitative comparisons of
deglycosylated peptides, this work synthesized isotopic
deglycosylated peptide partners. This allowed site occupancy
to be reliably quantified by subtracting the concentration of
nonglycosylated protein from total protein concentration.
Later, Roy et al. (133) reported a strategy for absolute quan-
titation of IgG subclasses by synthesizing isotopic glycopep-
tides using Asn-GlcNAc residues that display no difference in
retention time from glycopeptides produced during digestion.
This method could be readily expanded due to the flexibility of
peptide synthesis and accuracy of internal standard calibra-
tion. Finally, Nilson et al. (134) reported a method to quantify
the recently reported amyloid-f (Ap) glycopeptide as well as
unmodified A in cerebrospinal fluid. Though A glycopeptide
contains a rare Tyrosine O-glycosylation (Tyr-GalNAc) and
internal standards require intensive derivation prior to peptide
synthesis, the report accurately quantifies differences in gly-
cosylated Ap-15 and Ap-17 fragments across 20 Alzheimer’s
disease patients and 20 nondemented controls. As synthetic
peptide production evolves and the reliability and accuracy of
multi- and parallel-reaction monitoring strategies continue to
improve, these reports are likely to serve as a basis for broad
absolute glycopeptide quantitation.

Isobaric Labeling

The multiplexing capacity of isobaric peptide labeling pro-
vides a high degree of experimental accuracy and throughput
in quantitative proteomic investigations. Traditional methods
such as isobaric tags for relative and absolute quantitation
(TRAQ) and tandem mass tags (TMT) have been widely
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employed for glycoproteomic profiling in various biological
samples. Among these, iTRAQ has been utilized for N-glyco-
peptide analyses in neurodegenerative diseases (135) and
cardiac hypertrophy (136), analyzing glycopeptides to profile
the glycoproteome of human tear fluid (137), and interrogating
deglycosylated peptides to reveal dynamic glycoprotein
regulation in maize seedlings (138), representing the utility of
iTRAQ to further glycomic experimentation. TMT has seen
even greater utility in quantitative experiments as they have
been applied to evaluate glycopeptide perturbations in HCC
patient plasma (139), pancreatic cancer serum (140), aggres-
sive prostate cancer cell lines (141) and urinary profiles of
prostate cancer patients (142), human cell surfaces (143),
cerebrospinal fluid (144) (glycopeptides and deglycosylated
peptides), and PNGase F-resistant N-glycopeptides (145), as
well as the evaluation of glycopeptide enrichment strategies
(146) via direct analysis through ETD (147) and strategies for
simultaneous phosphopeptide and glycopeptide quantitation
(148). iTRAQ and TMT are attractive strategies for those
seeking reliable relative glycopeptide quantitation, with added
benefits of well-documented workflow, commercial availabil-
ity, and quality control. However, the steep cost of these
commercial reagents makes them unsuitable for use during
method development or exploratory studies and is not
amenable to bespoke method alteration. Recently, a prom-
ising alternative was presented that allows for a significant
reduction in cost, facile in-house synthesis, and a high degree
of flexibility for method experimentation.

N,N-dimethyl leucine (DiLeu) isobaric tags were originally
presented in 2010 by Xiang et al. (149) as a novel four-plex
strategy for quantitative proteomics. With commercial
leucine as the starting material, each reporting channel is
synthesized in no more than two simple reactions, each of
which employs commonly available reagents—emphasizing
cost-efficiency. Due to the comparable performance when
evaluated against iTRAQ, DiLeu was expanded to a five-plex
platform for absolute quantitation (iDiLeu) (150) and an eight-
plex relative quantitation strategy that maintained the overall
ease of synthesis from the original report. DiLeu was further
developed to facilitate 12-plex relative quantitation (151), uti-
lizing mass-defect principle and higher-resolution instrumen-
tation that is becoming more readily available, and this
strategy was then coupled with dimethyl labeling, producing
an effective 24-channel strategy for relative quantitation (152).
DiLeu isobaric labels have been evaluated in a number of
proteomic and peptidomic experiments (150, 152-155) and
have also been developed into an absolute quantitation
strategy. Hybrid offset-triggered multiplex absolute quantifi-
cation (HOTMAQ) combines four-plex iDiLeu with 12-plex
isobaric tags to create an internal calibration curve at the
MS1 level in tandem with identification of peptides at the MS2
level (156) (Fig. 5). This strategy provides up to a 12-fold in-
crease in throughput during absolute quantitation
experiments.

Of interest, DiLeu tags were recently applied for site-specific
characterization and quantitation of N-glycopeptides in
PANC1 pancreatic cancer and PKM2 knockout breast cancer
cells (157). As sialylated glycans are known to be upregulated
in various cancers and show distinct expression across life-
time, this study provided an early report on the most efficient
strategy for sialylated N-glycopeptide extraction and enrich-
ment. Method validation in PANC1 experiments revealed 1067
N-glycopeptides, 311 glycosites, and 88 glycan compositions
from 205 glycoproteins. Quantitative evaluations of PKM2
cells provided evidence that N-glycosylation signaling path-
ways are tightly regulated by cellular metabolism, with 484 N-
glycopeptides quantified and 81 showing significant changes
in expression. As this method offers comparable performance
to the hallmark commercial methods of TMT and iTRAQ, as
well as providing an avenue for mass-defect-based prote-
omics (65), development and employment of DilLeu isobaric
labels are a beneficial strategy for accurate, cost-effective
proteomic and glycoproteomic quantitation with great room
for further implementation.

Label-Free and MS Reaction Monitoring

While a small number of reports detail the implementation of
mathematical modeling to facilitate accurate, label-free
quantitation of glycopeptides—such as that detailed by
Mayampurath et al. (158)—glycopeptide quantitation has
benefited greatly from the implementation of PRM and MRM.
Similar to strategies implemented for glycan analyses, reac-
tion monitoring of glycopeptides does offer high quantitative
accuracy and improved sensitivity, but requires deeper
consideration. MRM analysis requires effective ionization of
glycopeptides and the production of reproducible, quantifiable
fragments. As hydrophilic glycans reduce the overall ionization
efficiency and the heterogeneity of glycosylation divides the
intensity of glycopeptides across several glycoforms (86),
enrichment strategies are often required to improve detect-
ability against complex peptide backgrounds and avoid loss of
minor glycoforms within the mixture (159). However, these
strategies have not prevented the successful implementation
of MRM for numerous novel investigations. Of note, MRM has
enabled successful quantification of differential expression of
IgG subclass glycosylation (160), haptoglobin glycoforms
(161, 162), and core fucosylation (163) in liver disease, profile
changes in galactosylation and sialylation in rheumatoid
arthritis (RA) patients (164) quantify glycoproteins in esoph-
agus disease (165), reveal alterations in murine immunoglob-
ulin glycoforms (166), characterizing the function and
importance of UDP-GIcNAc transporter (167), and quantitation
of Golgi-resident glycosylation enzymes from cultured human
cells (168). In addition, researchers have also detailed
methods for glycopeptide quantitation in a range of human
biofluids such as human serum (169, 170) and liver cancer
plasma (171). Pinpointing some standouts, Srikanth et al.
provided a quantitative method that combined 80 labeling
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Fic. 5. Schematic illustration for the HOTMAQ method. A, synthetic peptides are labeled with four-plex iDiLeu at different concentrations
and spiked into 12-plex DiLeu-labeled analytes. B, labeled peptides are detected with identical chromatographic elution profiles as five pre-
cursor ion clusters. The iDiLeu labeled-synthetic peptides are used to generate internal calibration curves to quantify the total amount of
multiplexed target peptides. iDiLeu d0-labeled synthetic trigger peptides and multiplexed Dileu-labeled target peptides are separated in MS'
spectra by a mass offset of 4.01 Da, which enables synthetic trigger peptides to initiate quantitative analysis of target peptides via MS?
regardless of target peptide precursor abundances. C, real-time MS? analysis of d0-labeled synthetic peptides by matching MS2 spectrum to a
product mass inclusion list unambiguously triggers fragmentation of 12-plex DilLeu-labeled target peptides in a predefined monitoring window.
Acquisition parameters alternate between a low-resolution scan for monitoring dO-labeled trigger peptides and a high-resolution scan for
quantifying 12-plex DiLeu-labeled target peptides. Fragment ions of 12-plex DiLeu-labeled target peptides are selected for synchronous pre-
cursor selection (SPS)-MS® analysis. D, the relative abundance of each 12-plex DilLeu-labeled peptide is accurately determined by targeted
SPS-MS3 acquisition at a resolving power of 60K (at m/z 200). The absolute amounts of target peptides are quantified by integrating the total
amount obtained using the standard curve. Adapted from Zhong et al. (156) with permission.

and MRM, Jian et al. (172) established the feasibility of top-
down glycoprotein characterization when protein length is
short, Hammura et al. (173) detailed a method to both syn-
thesize and quantify rare bisecting N-glycans in therapeutic
antibodies, and van der Burgt et al. (174) implemented a
strategy to quantify sialic acid linkage isomers of prostate-
specific antigen (PSA). The later study also provides a

topical comparison of various analytical methods for linkage
isomer analysis on the basis of throughput, robustness,
quantification ability, recognition of glycoforms, and isomer
separation, which may be of interest to some readers.

In addition to these above reports, Lebrilla and coworkers
have developed strategies to expand the use of MRM for
glycopeptide analysis. Offering numerous reports of MRM

12 Mol Cell Proteomics (2021) 20 100054

SASBMB



Advances in Glycan and Glycopeptide Quantitation

analysis that identify and quantify immunoglobulin classes
(i.e., IgG, IgA, IgM) and their glycosylation profiles (175, 176),
as well as quantify site-specific glycosylation in recombinant
antibody drugs (177), this group has also provided accurate
quantitation of human milk protein glycoforms (178) and
evaluated the differential expression of serum glycoproteins to
serve as biomarkers in ovarian cancer (179). Furthermore,
improvements in implementing dynamic multiple reaction
monitoring (dMRM) have been reported. Although conven-
tional MRM analyses are highly specific, minimizing the ail-
ments surrounding coeluting peptides that may cause ion
suppression and fail to identify low-abundance analytes,
monitoring specific targets and transitions over the entire
chromatographic timeframe severely reduces the number of
analytes that may be quantified. As such, Li et al. (180) hy-
pothesized that retention time may be leveraged to reduce the
time spent searching for selected precursor and transition
masses, thereby increasing the number of novel species
quantified. Employing multienzyme standard protein digestion
to produce smaller glycopeptides and increase sample
coverage, this strategy first employed orbitrap-based analysis
of enriched glycopeptides that were identified by Byonic (vide
infra). In addition to the identified glycopeptides, the authors
imputed missing values for undetected species by generating
in silico transition masses and predicting retention time ac-
cording to the relative hydrophobicity of the glycopeptides.
Using the retention times, precursor masses, and unique
transitions of all identified and suspected analytes to build a
dMRM method, the authors were able to quantify nearly 700
glycopeptides in a single 50-min LC run, which was then
validated on human serum samples. With low femtomolar
limits of detection and quantification, this method illustrates
the utility of MRM for complex sample quantification and the
ability to accommodate higher throughput. Taken together,
the specificity, enhanced sensitivity, and uncompromised
quantification accuracy of MRM are an attractive strategy for
glycopeptide and glycoprotein quantitation with much room
left for novel innovation and application.

As typical limitations in glycopeptide detection and identi-
fication include low concentration of glycopeptides within
proteolytic mixtures and poor ionization efficiency, many
glycopeptide species are overlooked and not selected for MS/
MS fragmentation in DDA experiments. For this reason, DIA
has gained steady traction in broad proteomic and glyco-
proteomic experiments for its ability to expand profiling depth
and select low-lying precursor masses, offering potential
remedy to the low-throughput of MRM analyses (181). Typical
DIA experiments such as SWATH-MS (i.e., sequential window
acquisition of all theoretical fragment ion spectra mass
spectrometry) require user definition of m/z windows to be
used for fragmentation. As most peptides are found within 400
to 1250 m/z, common practice is to set consistent window
sizes (~25-36 m/z) over this range. However, due to the large
mass addition of glycans, glycopeptides are not evenly

distributed along this range and are concentrated between
950 and 1200 m/z. As such, Zhou and Schulz (182) validated a
more effective strategy, GP-SWATH that narrows selection
window width across the glycopeptide region to provide more
accurate and robust glycopeptide detection and quantifica-
tion. A notable limitation in DIA analysis is the deconvolution
of tandem MS spectra as DIA experiments commonly lose
precursor information, making identification of posttransla-
tionally modified peptides a challenge—especially for O-gly-
copeptides. Offering alleviation of this ailment, Ye et al. (183)
recently established Glyco-DIA, a strategy to provide
enhanced O-glycopeptide identification and quantitation. As
illustrated in Figure 6, this method constructs spectral libraries
from numerous DDA experiments, which can be expanded in
silico to provide missing values. Evaluation of this methodol-
ogy revealed significantly improved performance of O-glyco-
peptides in direct analyses with even greater benefit in runs
performed after enrichment. Though the authors state limita-
tions in this method such as biasing toward abundant O-gly-
copeptides in DDA experiments, Glyco-DIA may be rapidly
expanded for O-glycoproteome coverage and tailored for in-
dividual, targeted analyses.

Software Advances

Accurate glycopeptide annotation is dependent on efficient
glycan and peptide fragmentation, as the high compositional
complexity of all glycans and the challenges in glycosite
assignment of O-glycans can easily be misinterpreted and
result in false identifications. Though few studies have evalu-
ated the efficacy of decoy glycopeptide databases (184-187),
numerous advances have been made in developing open-
source and commercial software capable of adept peptide
annotation and quantitative comparisons. Premier Biosoft In-
ternational provided early access into spectral deconvolution
for glycan analysis. Touting a robust relational database of
glycans and glycoproteins, support for MALDI and ESI file
formats, glycopeptide qualitative analysis, built-in functionality
to process TMT-based quantitative information, and the ability
to assign glycan structure from MS" data, SimGlycan remains
a relevant and effective tool for glycomic investigation. Bern
et al. (188) (Protein Metrics) introduced Byonic in 2012 for
peptide and protein identification, which remains a premier
method for glycopeptide identification. Following suit, Protein
Metrics later introduced Byologic to facilitate an identification/
quantitative analysis pipeline, which has been validated in a
number of glycopeptide studies (189, 190). As these licensed
commercial software packages may be cost-preventative and
not widely employed by individual users, open-source alter-
natives have been reported. LaCyTools (191) and Glyco-
peptideGraphMS (192) are python-based utilities that have
reported improved glycopeptide identification and quantita-
tion, while GPSeeker (116) facilitates structural N-glyco-
proteomics by integrating previously reported software from
the same research group (193-195). SugarQb (145, 196) was
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Reprinted from Ye et al. (183) with permission from the author.

developed to provide glycan and glycopeptide insights within
the Proteome Discoverer (Thermo) environment. An alternative
to working within Proteome Discoverer is presented by
Maxwell et al. (197) in their development of GlycReSoft.
Building on their validated strategy for targeted glycan ana-
lyses, Manatee (198), GlycReSoft implements a data decon-
volution algorithm to enable the rapid extraction and
confidence scoring of glycan and glycopeptide identifications
in both supervised and unsupervised analyses. In addition,
GlycReSoft provides a user-friendly web-based application
that can also leverage distributed computation to accommo-
date broad search space. The same research group later
validated novel tools for increased glycomic profiling (199,
200), which utilized knowledge of biosynthetic pathways to
improve glycan feature recognition. Finally, Integrated Glyco-
Proteome Analyzer (I-GPA) enables global characterization of
site-specific structural features and reliable, automated label-
free quantitation (201).

One freely-accessible alternative that has gained much
attention is pGlyco (202) and its latest iteration, pGlyco 2.0
(203). As the initial software was a useful tool for glycopeptide
spectra deconvolution, the authors state the need for expan-
sion due to the existing limitations in high-throughput tools for
peptide and glycan identification, the inability of current soft-
ware to provide built-in manual interpretation and validation,
and most notably, the lack of robust quality control and FDR
estimation that drastically underperform in adjacent bio-
informatic tools. The latter point is echoed by Park et al. (201),
who provided topical comparisons of FDR approximations
through GlycoFragWork (204), GP Finder (205), Sweet-Heart
(206), and GPS (207). Further, as stepped collisional energy

(SCE) dissociation was nascent at the time of publication but
was shown to outperform single regime (i.e., CID, HCD, and
ETD) and hybrid fragmentation modes (i.e., ETciD and EThcD),
pGlyco 2.0 provided early access to using SCE for broad
glycopeptide analysis. pGlyco 2.0 validated an improved FDR
estimation through isotope-based and entrapment-based
strategies. Complete details of these strategies may be read
within (203), but performing database searches of the same
data (i.e., yeast cell lysate digest) using pGlyco 2.0 provided
<1% FDR while Byonic resulted in >19%, and every identifi-
cation may be visually inspected in pGlyco 2.0 using the built-
in gLabel software. In terms of raw performance, five mouse
tissues (brain, heart, kidney, liver, and lung) were analyzed and
subjected to pGlyco searching, which revealed 10,009 site-
specific glycans on 1988 glycosites from 955 glycoproteins
with quantitation enabled through pQuant. pGlyco was then
used to re-evaluate the previously discussed NGAG dataset
(61) that used GPQuest as the search engine and revealed a
97% increase in glycopeptide identifications from the same
data. Though pGlyco 2.0 was not heavily utilized for O-
glycopeptide discovery, topical analyses of asialofetuin stan-
dard glycoprotein revealed reliable N- and O-glycopeptide
identifications, indicating analytical potential. Taken together,
pGlyco 2.0 presents a powerful, open-source option for robust
glycopeptide identification.

CONCLUSIONS AND FUTURE DIRECTIONS

The field of glycan and glycopeptide quantitation has
experienced tremendous growth over the past decade. Widely
accepted as an area of significant analytical challenge, the
numerous creative strategies demonstrated above have
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proven successful as they directly address areas of topical
concern in glycomic analyses. lonization efficiency may be
improved through glycan permethylation or by employing la-
bels that increase hydrophobicity or impart permanent posi-
tive charge. The need for effective enrichment was addressed
by methods that incorporate azide-containing sugars during
cell culture for use in click chemistry labeling experiments.
And instrumental functionality such as multiple reaction
monitoring and DIA alleviate consequences of low glycopep-
tide abundance within a proteolytic sample. However, though
these examples present significant advances in glycomic
analysis, many improvements are still needed.

As pursuit of quantitative glycomics increases, researchers
will be left searching for higher-throughput methodologies and
inevitably seek strategies for absolute quantitation. Methods
presented above will lay the foundation for these new tech-
niques, most likely seeing numerous strategies used in tandem,
such as the workflow demonstrated in HOTMAQ (156). Addi-
tionally, coverage of the glycome and glycoproteome will
benefit from improvements in sensitivity. Lower- and nanoflow,
chip-based technologies facilitate much greater signal
response from glycan and glycopeptide species and are likely
to be invaluable strategies moving forward. As well, capillary
electrophoresis is likely to see greater implementation in gly-
comics investigations, owing to the extremely low sample
consumption, ability to resolve isomeric mixtures and ultrahigh
resolution. Alternatively, researchers may choose to boost
glycan and glycopeptide abundance at the MS' level by using
methods more amenable to the labeling strategy employed,
such as that shown in BASIL (boosting to amplify signal with
isobaric labeling) (208). Finally, computational tools and soft-
ware capable of accurately deconvoluting and correctly
assigning glycomic observations will be an area of continual
need. Decoy database creation and implementation will see
greater utilization as quantitative glycomics gains popularity,
and resource bottlenecks (e.g., CPU processing speed and
available cores) must be alleviated as access to the glycome
increases.

Taken together, the field of quantitative glycomics is a
space rich in invention, novel implementation, and discovery.
Numerous labeling strategies have enabled facile, accurate
investigations of disease-relevant glycoproteins and are well
suited to uncover future biomarkers and discern symptomatic
protein profiles. The developments in instrumental capability
over the next several years are likely to provide greater
expansion in chemical labeling experiments and possibly
enable greater implementation of label-free quantitative stra-
tegies. But no matter the direction, quantitative glycomics and
glycoproteomics will remain an area of significant active focus
for years to come, with numerous challenges still to be pre-
sented and overcome.
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