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A B S T R A C T

Well-calibrated agricultural system model with many parameters is critical for optimized agriculture manage-
ment and decision making. Here, Root Zone Water Quality Model (RZWQM) was calibrated automatically using
Coordinate Descent (CD) algorithm against measured data from a fully irrigated corn field in terms of yield, plant
height, leaf area index, evapotranspiration, and soil water content. Fifty-six soil hydraulic and three crop
parameters were calibrated. The CD calibrated model was validated against data from adjacent deficit irrigated
field. Average R2 (Coefficient of Determination) measure was found to be 0.77 (against 0.74 for prior works) and
average ME (Model Efficiency) was 0.64 (against 0.61 for prior works). Once calibrated, fertilization and irri-
gation decisions were optimized so that farm profit is maximized. Three global optimization methods, namely,
Differential-Evolution, Basin-Hopping, and Particle-Swarm and two local optimization methods, namely,
Sequential-Least-Square and Constrained-optimization-by-linear-approximation were implemented. These
methods increased the yield by 7% and profit by 10% as compared to what was applied in the field.

1. Introduction

Agricultural food production is key to sustaining the humanity, and
precision agricultural is a mechanism to make agriculture efficient by
providing site-specific agricultural resource management (e.g., irriga-
tion, fertilization, pest-control, etc.) to be able to avoid over-application
and under-utilization, and loss to environment, leading to pollution.
Key to precision agriculture is knowing the current ‘state’ of the pro-
duction system, namely, the soil, plant, and environmental conditions,
and using those states to make site-specific prescription decisions. For
instance, within our own group, subsurface in-situ moisture and salinity
sensor based on impedance spectroscopy was developed by Pandey
et al. (2014). An in-situ electrophoresis based microfluidic nutrient
sensor was developed Xu et al. (2017) for detecting NO3− and SO4− in
soil solution sample. The microfluidic sensor developed by Ali et al.
(2017) senses and quantifies nitrate ions in soil samples. Volatile or-
ganic compounds like ethylene and methanol are sensed by fiber optic
gas sensor reported by Tabassum et al. (2017a). The sensor developed
by Tabassum et al. (2017b) identify gas species like ethylene, methanol,
and ammonia in a complex gas mixture. To know the location of sensor

buried in soil, received signal strengths from sensor are analyzed using
maximum likelihood method by Sahota and Kumar (2016). The col-
lection of these state data enables a high-fidelity calibrated model that
then supports optimized decision-making required for the agricultural
production system.

Parameter estimation of agriculture system model, also known as
model calibration, is the process of finding values for influential model
parameters so the model predicted results is reasonably close to ob-
served data. Calibrated agriculture models are used to understand the
effect of climate change and farm management decision on agriculture
production. There are many statistical measures which quantify the
degree of fit between model predicted and observed values. No agri-
culture model fits perfectly with the data since a model is an approx-
imate abstraction of a complicated natural process and secondly ob-
served data has measurement errors. Calibration works by adjusting the
parameters within a range that is physically possible and comparing
with the observed data. Model calibration is also required because not
all parameters are directly measured. Also, characteristics of a field
changes with time and space, so calibration needs to be done at regular
time interval even at each spatial location. Calibrating model against
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measured data from field sites would provide a high-fidelity description
of the field.

Agriculture system models many underlying processes, e.g., soil
moisture/temperature/macro-nutrients/ions/pesticides, plant biomass/
roots, soil evaporation and plant evapotranspiration, surface flows,
management, and climate (radiation, temperature, pressure, humidity,
precipitation, wind, CO2 level, etc.) information. Some of the agri-
culture system (crop-soil) models are RZWQM (Root Zone Water
Quality Model) (Ahuja et al., 2000), APSIM (Agricultural Production
Systems sIMulator) (Keating et al., 2003), and DSSAT (Decision Support
System for Agrotechnology Transfer) (Jones et al., 2003). Each process
has its corresponding set of mathematical equations relating input and
output variables, and involving several parameters. All the agronomic
processes are interlinked, and so their governing equations are also
coupled. Thus, one needs to study the complete system and estimate
parameters of the full system model by fitting to the data.

For a complex agriculture system possessing multiple modules, it
has large number of equations and parameters. Accordingly, the mea-
sured outputs are also of different types (e.g., plant biomass versus soil
moisture level). Given this, finding the right combination of parameter
values is a challenging problem as the underlying system is nonlinear
and high (order of 100 parameters) dimensional leading to a huge
search space. As discussed below in Section 1.1, Root Zone Water
Quality Model (RZWQM) has been autocalibrated with PEST using
limited numbers of parameters. For instance, Malone et al. (2010) ca-
librated (around 20 parameters) organic matter transformation coeffi-
cients, lateral hydraulic gradient, root growth factor, pore size dis-
tribution index and hydraulic conductivity curve slope in RZWQM
using PEST by fitting yield and nitrate concentration in drain flow. The
problem is further complicated by the fact that two or more different set
of parameter values can give the same goodness of fit. In such a case,
domain expertise is required to choose a preferred one. The Co-
ordinated Descent based approach, described in later Section, may be
useful to calibrate complicated agricultural models with large numbers
of parameters such as RZWQM.

Building on the work first reported by Bhar et al. (2018) at the
ASABE meeting, in this work, we employ Coordinate Descent algorithm
by Wright (2015) to calibrate RZWQM. Coordinate Descent is a popular
algorithm in Machine learning community for solving optimization
problem with many variables. For instance, Friedman et al. (2007,
2010), Wu and Lange (2008) have used Coordinate Descent variant for
L1-penalized regression (lasso) problem where number of variables (of
the order thousand) exceeds number of observations. Hsieh et al.
(2008) used a Coordinate Descent method for training large linear SVM
(Support Vector machine). This is the first application of Coordinated
Descent in an agricultural modeling. The data for the calibration and
validation is taken form experiment conducted by USDA-Agriculture
Research Service in northeastern Colorado in 2010 by Trout (2016).
The calibration is done using the data from a fully irrigated field and
validation is done using an adjacent deficit irrigated field in the same
time period. Its improved accuracy is shown in comparison to a prior
tuning performed by a domain expert in (Qi et al., 2016). Once we have
the calibrated model, decisions are made as how much fertilizer and
irrigation water needs to be applied for maximizing farm profit where
profit is defined as simply the selling price of produce minus the cost of
fertilization and irrigation.

The yield of a crop depends on the weather, soil properties and crop
cultivar, and fertilization and irrigation. Of these, fertilization and ir-
rigation can be controlled by a farmer for a given crop cultivar. The
yield increases with the increase in fertilizer and irrigation amounts,
but only up to a point. Afterwards, the yield saturates, and in some
cases, the yield may decrease because excess fertilizer and water can be
harmful to the plants. So, applying more inputs beyond a point might
incur costs to a farmer without improving the yield. Excess fertilizer
and irrigation adversely affect environment too by way of N pollution
through runoff and leaching. In this work, we have used the calibrated

RZWQM model to determine the recommendations for fertilizer (Urea
Ammonium Nitrate UAN) and irrigation amount which would help
maximize the profit per hectare of the farm.

Rest of the paper is organized as follows. We review related works
on parameter estimation of agriculture models in Section 1.1, and
management of fertilizer and irrigation application guidelines in
Section 1.2. We conclude Section 1 by mentioning our motivations for
this work. Sections 2.1, 2.2 and 2.3 cover the Materials of this paper,
while Sections 2.4 and 2.5 report the Methods: 2.1 describes the agri-
culture model, Root Zone Water Quality Model (RZWQM) that we ca-
librate; the automatic calibration procedure, Coordinate Descent Al-
gorithm, is described in Section 2.2; the description of the field dataset
with which the model is calibrated and validated is described in Section
2.3; software integration and setup for the calibration of RZWQM using
Coordinate Descent is described in Section 2.4; and finally the usage of
the calibrated model for finding optimum fertilizer and irrigation ap-
plication is mentioned in Section 2.5. Results are presented and dis-
cussed in Section 3. Section 4 provides Conclusion and future work.

1.1. Related works in agriculture model calibration

One way of parameter estimation is to focus on only a subset of
processes at a time. This kind of calibration may be suitable in lab or
greenhouse setting. Soil hydraulic parameters in lab are estimated by
measuring soil water content and water potential at different time
during wetting of soil and evaporation from soil. Hence, they are
though accurate are very time consuming and tedious. For instance, in
(Tamari et al., 1993), soil hydraulic conductivity is estimated in la-
boratory by measuring soil water content and water potential head at
different time during evaporation of water from soil sample using
gamma attenuation and tensiometer. Masrouri et al. (2008) gives a
comprehensive review of laboratory methods, their pros and cons, for
estimating hydraulic parameters. Around five soil hydraulic parameters
are calibrated from the water retention curve obtained by water in-
filtration and evaporation experiments in lab. The number of para-
meters in a complete agricultural system model is large (of the order of
hundred) though, and so researchers approach the calibration process
by generally fixing many of the parameters whose values are available
in literature or easily measured to their default values (these para-
meters are expected to not change), and calibrate only the sensitive
parameters as in (Tremblay and Wallach, 2004) where fourteen crop
parameters from STICS (Simulateur mulTIdiscipli-naire pour les Cul-
tures Standard) model (Brisson et al., 2003) were calibrated. Calibra-
tion can be done manually as done by Saseendran et al. (2010) where in
seven crop genetic coefficients were estimated first by calibrating
against soil moisture then phenology, biomass, and yield. Qi et al.
(2016) calibrated many soil hydraulic parameters manually. Calibra-
tion is also done through computer program as done by Xi et al. (2015)
to calibrate 6 crop parameters of RZWQM using modified Particle
Swarm Optimization, Nolan et al. (2010) and Fang et al. (2010) to
calibrate around 15 RZWQM parameters using PEST (Doherty 1994)
software. PEST uses gradient based procedure to give local minima. A
user of PEST can choose an objective function according to their liking
and sometimes the optimized parameters have no real field meaning.
Another software package that automates genotype parameters’ cali-
bration is GENCALC (Genotype Coefficient Calculator) (Hunt et al.,
1993). The coefficients are determined in a sequence with those that
relate to phenological aspects being determined first. GENCALC was
used by Anothai et al. (2008) to calibrate a model for peanut cultivars.
Calibration can also be categorized as offline, i.e., fitting the model to
the entire experimental data in one go, or online where model para-
meter are updated when new data is available. Offline methods are
more common. All the calibration methods cited above are offline.
Kalman filters (Brown and Hwang, 1992), which is an algorithm that
uses noisy observations over time and produces accurate estimate of
unknown as time progresses, and their extensions are popular for online
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estimations. For instance, parameters like recharge rate and transmis-
sivity of ground water flow was estimated by Hendricks and Kinzelbach
(2008). In (Gove and Hollinger, 2006), four photosynthesis parameters
were estimated through Kalman filter. Linear Kalman filter was used to
calibrate RZWQM drainage component by Jiang et al. (2018). Kalman
filter requires the process equations, and the error distribution of
measurement model to be Gaussian. It is very difficult to use Kalman
filter for calibrating more than ten parameters. Such offline or online
parameter estimation is also referred to as data assimilation. For offline
estimation, standard regression techniques (Seber and Wild, 2003) are
used. Also, global optimization techniques like Simulated Annealing
(Goffe et al. 1994) and Particle Swarm Optimization (Kennedy, 2011)
are used by Mavromatis et al., (2001) and Xi et al. (2015). These po-
pulation-based techniques need long runtime for large number of un-
known variables. Another parameter estimation approach is estimating
in sequence a set of parameters, using different types of observations.
Ma et al. (2011) while calibrating RZWQM2′s parameter sequentially,
the recommended order proposed was: soil water, soil nutrients, plant
growth, and lastly, pesticide. A sequential optimization method must
keep in mind that a certain observation may depend on several para-
meters and not just a single parameter. Guillaume et al. (2011) also
estimated the parameters sequentially for the STICS model. Bayesian
method (Gelman, 2013) is also used for parameter estimation. The
method starts with a prior probability distribution of the parameters,
and then updates the parameters’ distribution using the measurements.
As an example, in (Jones et al., 2011), a Bayesian parameter estimation
procedure was used to estimate eleven soybean cultivar specific para-
meters in DSSAT model. Tremblay and Wallach (2004) used ridge re-
gression, in a form corresponding to the Bayesian method, to estimate
parameters in STICS model. Bayesian methods requires domain expert
to select a prior and requires high computational cost for models with
large number of parameters. Table 1–18 on page 57 of (Ma et al., 2011)
lists comprehensive references on RZWQM2 calibration, along with the
parameters calibrated and the observations used. Readers interested in
more in-depth mathematical background for agriculture model cali-
bration can refer the book by Brun et al., (2006).

1.2. Fertilizer and irrigation application guidelines

Fertilizer and irrigation application is crucial for optimum crop
growth and farm profit. Optimization for fertilizer and irrigation cannot
be done in isolation as fertilizer uptake by crop depends on soil
moisture level. Too much water would drain the fertilizer and too little
would make root uptake unattainable. Farmers follow general guide-
lines, some of which are mention in this section.

Optimum fertilizer application amount and timing for maize have
been explored by many researchers. In (Blackmer, 1997), rate of N
(Nitrogen) needed is given for scenarios when all N is applied pre-plant
or before emergence for different cropping scenarios, like continuous
corn, corn-soybean rotation, corn-on-manured-soil, etc. Recommenda-
tion for farmers who wish to split their N application between pre-plant
and in-season are also given. Soil sample tests, to measure plant
available N before pre-plant and in-season (when crop is 6 in. tall), also
play a role in deciding how much N to apply. Majority of N required by
Maize is between V8 (8 leaves on corn) and VT (complete visibility of
tassel) growth stages (Hanway, 1966): Adequate N during this period is
essential for good yield. One-third of plant N requirements must still be
met by uptake during the reproductive period otherwise pollination
would be hampered. Also, applying N multiple times, including the
time of maximum crop uptake, mitigate the risk of N loss due to heavy
rain and subsequent N runoff and leaching.

Irrigation is also critical for farming, especially for places where
natural precipitation is not enough for crop growth. Full benefit of N
application can be realized when water is also present in correct
amount. Too little moisture would prevent N uptake by plant and excess
water will take N away from plant roots, increase chances of plant

disease, and disturb oxygen balance near roots as shown by Irmak et al.
(2008). The needed irrigation amount depends on the growth stage of
the plant, weather condition, and soil properties. Grant et al., (1989)
and Goyal (2012) has shown that maize is more sensitive to water stress
during tasseling, silking, and grain filling stages. According to Kranz
et al. (2008), plant demand of water is less in initial growth stage be-
cause of small leaf area transpiring less water. Water demand increases
linearly and is maximum at Tassel and silking stage. The demand then
drops slowly till maturity. Weather conditions like low humidity, high
radiation and wind increases evapotranspiration and plant water de-
mand increases. Soil property as well affects how irrigation should be
done. For instance, sandy soil requires more frequent water application
with less quantity each time because sandy soil possess high hydraulic
conductivity. Clay soil allows larger irrigation interval because of
higher water holding capacity. Optimal irrigation scheduling is ex-
plored by Mbamalu and Yigezu (2016) by considering the in-
stantaneous root depth, soil moisture, leaching and soil moisture de-
pletion rate. Varying treatments based on different soil moisture
depletion were applied. For clay soil it was found that 120% of the
recommended value of 0.55 soil moisture depletion gave best water use
efficiency. Stress happens when soil water is less than 50% of plant
available water (Panda et al., 2004; Rhoads and Yonts, 1991). Ac-
cording to Panda et al. 2004, irrigation could be scheduled at 45%
maximum allowable depletion of available soil water during non-cri-
tical stages of growth of maize in sandy loam soils in order to maximize
above ground biomass and water use efficiency.

Motivation and Goal: As seen in related works Section 1.1, most prior
works have calibrated around 20 parameters through computer algo-
rithm, a small subset of the total number of parameters in an agri-
cultural model. To attain higher modeling accuracy, in this work, we
calibrate RZWQM’s 8 soil hydraulic parameters at 7 soil layers (total
56), and additionally 3 crop growth parameters (brining the overall
total to 59). To solve this, we employ Coordinate Descent algorithm,
shown to be promising in large scale optimization (Nesterov, 2012;
Hsieh et al., 2008; Wu and Lange, 2008; Friedman et al., 2007;
Friedman et al., 2010). Fertilizer and irrigation prescription are given to
farmers as approximate guidelines to increase their yield and profit. The
prescription can be further optimized taking into account the state of
the field and weather. This motivates to optimize fertilizer and irriga-
tion application by using RZWQM calibrated to the field (at Greeley,
CO). From the results section we validate that fertilizer and irrigation
application can be improved by 7–10%.

2. Materials and methods

2.1. The model: Root Zone water Quality model (RZWQM)

RZWQM (Ahuja et al., 2000) is an agricultural system simulator
developed by USDA (United States Department of Agriculture) scientist.
It is a one-dimensional (vertical direction) model of an agriculture
production system that simulates one crop at a time and evolves on a
daily time step. Some of the core inputs to RZWQM are the crop cultivar
and their genetic coefficient, weather or meteorological data like daily
radiation, minimum and maximum temperature and precipitation, soil
information like hydraulic, physical, chemical and heat properties,
management practices like irrigation, fertilizer, tillage, planting and
pesticide application. Some of the outputs of RZWQM are soil water,
Nitrogen, pesticide, organic matter content, N losses (to runoff,
leaching, denitrification), plant N uptake, evapotranspiration, water
losses (runoff, seepage, drainage/tile flow),soil temperature, plant
height, biomass, yield, leaf area index (LAI), phenology. The model can
accommodate up to ten soil horizons. For a more complete list of
RZWQM inputs, outputs and parameters, readers are encouraged to
refer Ma et al. (2012).

The modules of RZWQM are soil water balance, soil nutrient,
equilibrium soil chemistry, potential evapotranspiration, surface energy
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balance and heat transfer module, pesticide processes module, plant
growth and management practices module. The modified Brook-Corey
equations (Brooks and Corey, 1964) describe the soil water retention
curves in RZWQM. The Green-Ampt equation models infiltration during
rainfall or irrigation, and the Richards equation models the soil water
redistribution, with plant water uptake and tile drainage as sinks. Es-
timated plant water uptake is limited by potential transpiration calcu-
lated from Shuttleworth-Wallace potential evapotranspiration (PET)
module (Shuttleworth and Wallace, 1985). The soil nutrient (Nitrogen)
module divides organic N into five pools, i.e., fast, and slow residue
pools and fast, intermediate, and slow humus pool. The microbes are
divided into three pools, namely, aerobic heterotrophs, autotrophs, and
anaerobic heterotrophs. The microbes transfer and decompose matter
from different N pools. Each pool has a fixed C:N ratio. The module
simulates mineralization, immobilization, urea hydrolysis, nitrifica-
tion/denitrification, ammonia volatilization and microbial growth as
first or zero order reactions. The soil chemistry module simulates the
long-term effects of agriculture management on soil pH and salinity.
The module includes cations and anions like H+, Ca2+, Mg2+, Na+,
NH4

+, Al3+ ,SO4
2−, CO3

2−, OH−, NO3
−, and Cl− and simulates dis-

solution and precipitation of partially soluble salts through solubility
equations. Adsorption-desorption of cations in solution and on the soil
surface are simulated through ion exchange equations. The con-
vective–dispersive heat equation is solved for heat transfer in soil. The
crop growth module simulates above and below ground biomass, yield,
leaf area, crop height, phenology, water, and N uptake from soil. Each
of these modules’ processes are model through coupled differential or
difference equations and implemented in Fortran programming lan-
guage. For more details regarding the model, the readers are en-
couraged to explore the literatures by Ahuja et al. (2000) and RZWQM
team (Hanson et al., 1998). RZWQM has many parameters which must
be properly estimated to simulate an agriculture field (Hanson et al.
1999).

2.2. The calibration Algorithm: Coordinate Descent

Coordinate Descent (CD) (Wright, 2015) finds a local optimum of a
multivariate objective function by successive optimization along co-
ordinate directions or coordinate hyperplanes. Optimizing of many
variables simultaneously is a complex problem. CD breaks a complex
problem into smaller simpler problems. In the simplest variant of CD,
only one variable is adjusted at a time. But a group of variables can also
be adjusted at a time. This variant of CD is known as Block Coordinate
Descent (BCD). In the simplest form of CD, the order of choosing the
variables for optimization remains fixed from one global iteration to
next. But in randomized CD, the order of choosing the variables is
random in each global iteration. The pseudo code of different variant of
CD are given below. The multivariate objective function is detonated by
f(x), x is an N-dimensional vector with xi being the ith component of
x,x0 is the initial value and ‘←’ is the assignment operator.

Algorithm 1. (Simple CD method).

1. Initialize x ← x0

2. for i = 1 through N

3.
←

≤ ≤

xx f
x

LL x UL

argmin ( )i
i

i i i
4. Repeat Steps 2 & 3 until termination condition meet

In the simple Coordinate Descent of Algorithm 1, the objective
function is minimized with respect to the N variables, sequentially, in a
cycle. In step 3 of Algorithm 1, the ith component of x is varied while
other components are fixed. The value of xi that minimizes f(x) is used
to update xi. The range of variation of xi can be bounded by lower and

upper limits (more generally by a set of constraints). Each component
variable can have its own set of constraints. The terminating condition
can be that there is no substantial improvement in the objective value in
the consecutive cycles. Algorithm 1 is generalized to obtain Algorithm 2
for Block Coordinated Descent.

Algorithm 2. (Block CD method).

1. Initialize x ← x0

2. Create B blocks each with S variables
3. for i = 1 through B

4.
←

≤ ≤

xx f
x

LL x UL

argmin ( )i
i

i i i
5. Repeat Steps 3 & 4 until termination condition met

In a Block Coordinate Descent method of Algorithm 2, in each cycle
instead of searching along a line (a one-dimensional space) as in
Algorithm 1, the search is performed along a hyperplane (a multi-di-
mensional space). Here, B is number of blocks with each block Bican
having Ni variables. Here, xi is a vector whose components are elements
of Bi, and the constraints bound the vector of variables from above and
below.

In the randomized Coordinate Descent method, the order of the
variables optimized is randomly chosen in each cycle. Both Algorithm 1
and 2 above can be randomized. The randomized version of Algorithm
1 is given next in form of Algorithm 3. In the present work, this variant
of Coordinate Descent method is used. In the method below, Seqn is a
random sequence of first N natural numbers obtained by the ‘jumble’
operation. Step 3 iterates N variables according to the order present in
Seqn.

Algorithm 3. (Randomized CD method).

1. Initialize x ← x0

2. Seqn ← jumble(1,…,N)
3. for i in Seqn

4.
←

≤ ≤

xx f
x

LL x UL

argmin ( )i
i

i i i
5. Repeat steps 2, 3 & 4 until termination condition met

2.3. The field dataset

We used the dataset from a field experiment conducted on USDA-
ARS Limited Irrigation Research Farm near Greeley, Colorado by Trout
and Bausch (2017) in the year 2010. There multiple time series ob-
servations of different types of outputs were recorded. Fig. 1 shows the
experimental site in Greeley, CO. Note the different plots for different
crops and treatment. We consider only maize with full and deficit ir-
rigation. The same figure also shows the drip irrigation system to apply
controlled amount of water to the field. Corn was planted on 12th May
2010 and harvested on 19th Oct 2010. Fertilizer as urea-ammonium-
nitrate (UAN) was applied at planting and then applied through irri-
gation water throughout the growing season. Different irrigation
treatments were applied, of which only two are of interest in this work,
namely, (i) irrigation treatment to meet 100% of potential crop Eva-
potranspiration (ETc) requirements and (ii) to meet 55% of ETc re-
quirements. Total N applied was 146 kg N ha−1 for both treatments.
The timing and amount of N applied by Trout and Bausch (2016) was
according to recommendation by Davis and Westfall (https://extension.
colostate.edu/topic-areas/agriculture/fertilizing-corn-0–538/). For the
100% or full treatment, irrigation was applied every three to seven days
based on the estimated amount of crop water used (i.e. actual ET) based
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on a daily reference ETo, crop coefficient, rainfall, and soil water deficit
(Allen et al., 1998).

In this work, the calibration data from fully irrigated plot in the year
2010 was used. The 7 types of outputs that were recorded are given
below in bullets. Among these the 4th output below was recorded at 7
different depths. Biomass, Yield and Harvest Index were measured only
once at time of harvest.

• plant height,

• evapotranspiration (ET),

• leaf area index (LAI),

• soil water content (SWC) at seven different soil depths,

• biomass,

• yield, and

• harvest index.

ET data was collected daily in the growing season from May through
October. Other outputs were recorded approximately on a weekly basis.
Soil moisture was measured with neutron moisture meter (CPN-503
Hydroprobe, InstroTek, San Francisco, CA) as shown in left picture of
Fig. 2(c). DeKalb brand 52–59 (VT3) maize seed was planted with John
Deere Maxiplex planter at 81,000 seeds per Hectare on 12th May 2010
at a 0.76 m interrow spacing. Irrigation applications were measured
with turbine flow meters (Badger Recordall Turbo 160 with RTR
transmitter). Irrigation application were controlled by and recorded
with Campbell Scientific CR1000 data loggers. In Fig. 2(b), Bowen
Ratio Energy Balance, BREB, system was used to measure maize eva-
potranspiration (actual ET). The weather station in Fig. 2(a) measured
meteorological values like humidity, wind speed, temperature, etc.
Plant height was measured throughout the season with measurement
rod to the top of the leaf canopy. Leaf Area Index, LAI, was estimated by
measuring the length and width of each leaf on five plants and

multiplying the average leaf area (m2) per plant by the plant population
per m2. Crop canopy ground cover was measured at noon with digital
camera from a nadir view six meters above ground surface as seen in
Fig. 2(d). Above ground biomass was measured before harvest. 10–15
corn plants were cut 2 cm above ground, ears removed, and remaining
stover dried in oven at 60 °C for two days and weighed. Similarly, ears
were dried, grain removed from cobs and both components re-dried and
weighed. Harvest index was calculated as the ratio of dry grain weight
to total above ground biomass. Grain yield was measured by harvesting
the ears by hand. Grain moisture content at harvest was measured with
a Dickey-John GAC500-XT Moisture Tested. Yield was converted to dry
weight by accounting 15.5% moisture content.

2.4. RZWQM calibration using coordinate descent and its software setup

In this work, the third variant of Coordinate Descent method
(Algorithm 3) has been used. It was observed while calibrating, that the
randomized Coordinate Descent provided better results. In a Block
Coordinate Descent, many tunings need to be done like size of blocks
and partitioning. Block partitioning has exponential number of choices
in the number of variables. Also, two blocks can have overlapping
variables. Because of this added complexity, randomized variant of the
simple Coordinate Descent algorithm was used in this work.

In our case, calibration of RZWQM was performed by varying the
parameters and comparing with the objective function. The variable x
mentioned in Algorithm 3 would correspond to the parameters that
needs to be calibrated. The objective function, defined next, is such that
the error between the model predicted values and field observations are
minimized.

The soil hydraulic parameters characterize the water retention
curves (relation between water content and potential). The eight hy-
draulic parameters for each of the 7 layers calibrated are:

Fig. 1. Aerial view of 16 Hectare of Greeley, Colorado, USDA experimental site (left); Irrigation control, monitoring system and turbine flow meters (middle); Drip
irrigation pipes in field (right). Taken from (Trout, 2016).

Fig. 2. (a) Weather Station, (b) Bowen Ratio Energy Balance meter, (c) Neutron Moisture Meter, and (d) High clearance reflectance tractor taking canopy ground
cover image. Taken from (Trout, 2016).
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• bubbling pressure,

• pore size distribution index,

• saturated hydraulic conductivity,

• residual water content,

• saturated water content,

• field capacity at 1/3 bar,

• field capacity at 1/10 bar, and

• wilting point.

The model divides the soil depth of 200 cm into seven layers. Each
of the seven layers have the above mentioned eight parameters. Apart
from these 56 soil parameters, three maize crop parameters were also
calibrated. Those are:

• Phylochron interval (development time taken for elongation of
successive leaf),

• maximum plant height at maturity, and

• plant biomass at half of maximum height.

Thus, a total of 59 parameters were calibrated in the present work.
The objective function is defined to minimize the weighted sum root
mean square errors over the different types of field outputs. Also, since
the units of different outputs are different, each root mean square error
value was multiplied by a normalizing factor. Similar objective function
has been used in prior works by Xi et al. (2015) and Xi et al. (2017). The
expression for the objective function xf ( ) is as follows.

∑=
∑ −

=

=xf γ
m o p o

No of obs of type i
( ) ·

{ ·( )/ }

( . . )i type of
outputs

i
j
No of obs of type i

i ij ij ij1
. . 2

(1)

Here γi is the normalizing factor defined as the ratio of mean of the
measured outputs of type i = plant height and the mean of the measured
outputs of type i. oij and pij are the jth observed versus model predicted
values of the data type i. Note pij is the model-predicted output from the
RZWQM model. The different outputs that we used have been listed
earlier in this section. The ‘intensity’ of an error is relative to its actual
value, and relative to the maximum value. Therefore, to equalize the
weightages among all the errors, each error (oij - pij) is normalized by
(mi/oij), where mi is the maximum of all the observations of data type i.
The expression in (1) above is the objective function f(x) mentioned in
the previous section. Rewriting (1) in the form of the objective function
xf ( ) of Algorithm 3, we obtain:

∑=
∑ −

=

=x
x

f γ
m o RZWQM o

No of obs of type i
( ) ·

{ ·( ( ) )/ }
( . . )i type of

outputs

i
j

No of obs
of type i

i ij ij ij1

. .
2

(2)

Here, the optimization variable x is a vector of 59 dimensions that
represents the parameters to be calibrated, whereas RZWQM(x) is an
external call to the RZWQM with model parameters x to simulate the
model and provide the predicted outputs pij. With the objective function
defined in eqn. (2), the calibration is done according to Algorithm 3 of

the previous section. Tables 1 gives the starting values of the para-
meters x0 that we chose for our randomized Coordinate Descent algo-
rithm. This initial value of the parameters have been taken from the
work by Qi et al. (2016), where the same set of parameters were cali-
brated manually against the same field data. The upper and lower limit
of the range of variation was set to be ± 10% of the starting value. The
starting value of the parameters is critical, as otherwise the minimiza-
tion method might find a local minimum. Hence, an educated initial
guess is required, and can be obtained from experts such as Qi et al.
(2016).

The Coordinate Descent algorithm of third variant in Section 2.2 is
implemented within the R programming language (Team, 2013). To
evaluate the objective function in (2), command line interface of
RZWQM is invoked from R code through system() function. RZWQM
can be run from GUI and through command line as well. In our case
though, RZWQM is run through the command line interface. The
command is argument to the system() function in R. To change the soil
parameters, entries in the rzwqm.dat file are changed at the appropriate
places. To change the crop growth parameters, the entries in the
mzcer040.cul file are changed. Once these files are changed, RZWQM is
run by executing RZWQMrelease.exe (located in bin folder of RZWQM
installation) in the command line. Many outputs are generated and
logged in several output files, but only two files are required in our
case. From the COMP2EXP.OUT file, simulated plant height, evapo-
transpiration, leaf area index, yield, biomass, and harvest index are
obtained. Simulated soil water content of seven layers are obtained
from LAYER.PLT output file. In this file, the soil water content (SWC)
values are given at discrete soil depth. For instance, for layer 1, that
ranges from 0 to 15 cm depth in the field experiment, LAYER.PLT gives
simulated SWC at six depths, namely, 1, 2, 4, 7, 11, and 15 cm of depth.
To simulate the field measured SWC of layer 1, weighted average of
these six (at 1, 2, 4, 7, 11 and 15) simulated SWC values is used. Si-
milarly, for the other six soil layers, weighted average of the discrete
SWC values is used to simulate SWC. Files, namely, mzcer040.cul,
COMP2EXP.OUT and LAYER.PLT are located within the RZWQM sce-
nario, that is equivalent to working directory or workspace in a pro-
gramming language integrated development environment.

The R program and the RZWQM model are run on the same desktop
computer, with the configurations shown in Table 2.

When performing the optimization to determine the model para-
meters using Coordinate Descent of Algorithm 3, the optimize() function
of R is used in Step 4. This function internally uses Golden Section
search to find the minima. It is observed that two iterations of
Coordinate Descent attain the near optimality. The objective value does
not improve much after the second iteration.

Table 1a
Starting or initial values of 56 (8 parameters × 7 layers) soil hydraulic parameters for the CD algorithm.

Layer(m) Bubbling
Pressure(m)

Pore size
distribution
index

Saturated
hydraulic
cond. (cm/hr)

Residual water
content(m3 m−3)

Saturation water
content(m3 m−3)

Field capacity at
1/3 bar(m3 m−3)

Field capacity at
1/10 bar(m3 m−3)

Wilting
point(m3 m−3)

0.0–0.15 0.35974 0.222 2.0 0.035 0.437 0.280 0.355201 0.140
0.15–0.30 0.43786 0.222 5.0 0.035 0.437 0.291 0.369646 0.145
0.30–0.60 0.35045 0.180 5.0 0.035 0.437 0.303 0.367829 0.170
0.60–0.90 0.26719 0.160 5.0 0.035 0.408 0.283 0.336971 0.170
0.90–1.20 0.25814 0.184 5.0 0.035 0.408 0.267 0.325575 0.150
1.20–1.50 0.24350 0.189 4.0 0.035 0.389 0.251 0.30645 0.140
1.50–2.00 0.26212 0.177 4.0 0.035 0.389 0.261 0.314774 0.150

Table 1b
Starting or initial values of three crop growth parameters for the CD algorithm.

Phylochron interval(deg.
day)

Max. height at
maturity(m)

Biomass at ½ max. height
(gm)

50 2.70 30
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The software setup is given in Fig. 3. The outputs from the field like
soil water content, LAI and plant height are given to the Coordinate
Descent within the R program. The program repeatedly calls RZWQM
which is mimicking the field scenario. In each call, the parameters in
rzwqm.dat and mzcer040.cul files are modified. These parameter files
serve as input to RZWQM. The Coordinate Descent program stops when
the weighted root mean square error does not decrease any further.

Two or more different set of parameter values can give the same
goodness of fit. A way to resolve this issue is to validate the perfor-
mance of the calibrated model by comparing model predicted values to
a data set in a different scenario. For instance, in our work, we have
used fully irrigated treatment data to calibrate the model and deficit
irrigated treatment data to validate the model. The deficit irrigated plot
was adjacent to the fully irrigated plot so that it can be reasonably
assumed that the soil parameters, amount of rainfall, sunlight and fer-
tilizer added in the two cases were very similar (if not the same). The
only thing different was the amount of irrigated water.

To measure goodness of calibration and validation, the fit between
the observed and the simulated values of output type i was determined
using the coefficient of determination (Ri

2) and Nash-Sutcliffe model
efficiency (MEi). They are defined as follows in (3a).
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where ni is number of data pairs or observation of output type i,O P¯ and ¯i i
are mean measured and simulation predicted values respectively of
output type i, and Oij and Pij are jth measured and predicted values re-
spectively of output type i. R2 varies from −1 to 1. Closer the R2 value
to 1, the better is the fit. ME varies from negative Infinity to 1. Closer
the ME value is to 1, the better is the fit.

Once the parameters are optimized i.e. RZWQM is calibrated to the
field and is a representation of the field, the calibrated RZWQM model
is used in finding the optimum application of water and fertilizer. This
is done by a second phase application of Python program, namely, the
‘Optimum application program’. Python was used in second case phase
because of availability of many optimization libraries and quick pro-
cessing time. This program also repeatedly calls RZWQM but now the
water and fertilizer inputs are changed in each iteration rather than the
model parameters. This phase is explained in next section along with
the algorithms used for finding the optimum application.

2.5. Algorithms for optimum fertilization and irrigation

There exists tradeoff between yield and cost of agricultural inputs.
This trade-off can be captured using a simple economic cost for the net
profit:

= × − ×

+ ×

Profit (yield unit price) (fertilizer amount fertilization cost

irrigation amount irrigation cost) (4)

Note, this cost is from a farmer’s perspective, which accounts for
cost of fertilization, and so it is expected that excess application of it
will not be optimal. In case there is a corresponding penalty/tax for N
losses, this can be captured explicitly by subtracting the ‘amount of N
loss’ times ‘penalty rate for N pollution’. Further, in order to validate
and compare with prior work, we resort to field and weather data from
the year 2010 at Greeley, Colorado (Trout and Bausch, 2017), and also
keep the same application days: We vary the amount of fertilizer and
irrigation application at the same days as in the experiment conducted
in Trout and Bausch (2017). The corresponding optimization space is
significantly large, 18-dimensional: the fertilization was done six times
in the growing season, while the irrigation was done twelve times in
Trout and Bausch (2017). Also, the nonlinear nature of the governing
equations makes the optimization problem further complex.

In order to solve the proposed complex profit optimization problem,
three global optimization techniques were used and compared, namely,
Differential Evolution (DE) (Storn and Price, 1997), Basin Hopping
(BH) (Wales and Doye, 1997), and Particle Swarm optimization (PSO)
(Kennedy, 2011). Also, two other optimization techniques that may
only find a local optimum, namely, Sequential Least Square Program-
ming (SLSQP) (Kraft, 1988) and Constrained Optimization By Linear
Approximation (COBYLA) (Powell, 1994), were also tried. These
methods are numerical, owing to the non-availability of any closed-
form solution, yet they explore the solution space efficiently, yielding a
near optimum application prescription that maximizes the farm profit
of equation (4). All the python implementation of these five techniques
are available as Python packages.

DE is a stochastic global optimization method. It is an instance of
evolutionary algorithms, such as Genetic Algorithm. DE can be used to
optimize functions that are non-differential and non-continuous. It
maintains a population of candidate solutions subject to iterations of
mutation, recombination and selection. Each population member is
characterized by its fitness (profit in this work). For each member, its

Table 2
Software system environment configuration.

Operating System Windows 10, 64 bit

System Model Dell OptiPlex 9010
Processor Intel i7 3.4 GHz
Memory 8 GB
RZWQM2 Ver. 3.00.00
R Ver. 3.4
RStudio Ver. 1.0.143

Fig. 3. Overall Software architecture.
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next generation is constructed. If next generation member has better
fitness, then it replaces the parent. The next generation of a member is
created from three other randomly chosen members (say x,y and z). The
new member is value of x plus scale factor times difference between y
and z. The process continues over enough generations to reach con-
vergence close to the global optimal solution. BH too is a stochastic
global optimization method. It was first applied in chemistry to find
stable molecular configuration with lowest energy. Typically, there are
many local optimum molecular configuration. Briefly, the steps of BH
are: choose an initial point, compute a local minimum using any local
optimization method, apply a random perturbation to the coordinates
of the local minimum (perturbation should be sufficiently large to es-
cape from local minima), compute next local minimum, compare the
local minima with the previous, and select the better. PSO is a sto-
chastic technique inspired by social behavior of bird flocking in search
of food. PSO is initialized with a group of random particles (candidate
solutions). It searches for the optimum by updating through iterations.
In every iteration each particle’s velocity and position is updated by
following two best values. First is the position of the best solution the
particle itself has achieved so far. Second is the best solution attained so
far by any particle in the swarm.

Population based evolutionary algorithms can provide near op-
timum solution, but they are quite computationally expensive. Keeping
this in mind, we also tried two local optimization methods, SLSQP and
COBYLA. SLSQP is known to be an efficient computational method to
solve general nonlinear programming with equality and inequality
constraints. The optimization is done iteratively starting with a vector
of initial values. The (k + 1)th value is sum of kth value and product of
search direction and step length. Both search direction and step length
are adapted in every iteration. The search direction is evaluated by a
quadratic programming sub problem. The sub problem is formulated as
quadratic approximation of the Lagrange function (objective function
minus sum of scaled constrained functions) of the constrained optimi-
zation problem. COBYLA minimizes objective function subject to con-
straints. The method works by linearly approximating the objective and
constraint function. For a number N of the optimization variables, the
approximation is done by a linear interpolation at N + 1 points. These
interpolation points are like the vertices of a simplex. A parameter Rho
controls the size of the simplex. For each Rho, the method finds a good
set of variables’ values, then it reduces the Rho value and simplex size.
The method, unlike summing each constraint into a single penalty
function, considers each constraint individually when calculating the
change to the variables.

For arriving at the optimization results, the price of corn per bushel
was taken to be $4 from Johanns (2011). A bushel of shelled corn
weighs 56 lbs (South Dakota State Univ. Extension). Neglecting 15%
moisture content, a bushel of corn weighs 47.3 lbs (or 21.45 kg) by dry
weight. This translates to $0.186 per kg of dry corn cost. This value was
used in eq. (4) for the yield price of corn. In the expression for profit, eq.
(4), it is supposed that the cost of fertilizer UAN32 is $251/ton ac-
cording to (DTN Retail Fertilizer Trends). This rate translates to
$0.86 kg−1 of N that we used in eq. (4) toward fertilization cost. Half of
the N in UAN is supplied by Urea. One-fourth N is supplied by nitrate N
and the remaining one-fourth N supplied by Ammonia. Irrigation cost
comprises of cost of water and cost of pumping water and delivering to
crops. We have supposed cost of water and cost of pumping to be both
$30 per acre feet based on Farm and Ranch Irrigation Survey (Table 22
and 20) by USDA (NASS, 2008). An acre foot corresponds to 325,851
gallons of water. The unit of amount of irrigation in the expression for
profit in (4) is in cm. A cm of irrigation in a hectare of field is 26,417.2
gallons of water. This translates to $4.86/cm as cost of irrigation in Eq.
(4).

While running the optimization, the fertilization variables were
given an upper bound of 48 kg N ha−1 and lower bound of
0.4 kg N ha−1, and the irrigation variables were provided an upper
bound of 7 cm and lower bound of 0.1 cm. The optimizers were run

with the default settings for their internal parameters. The optimization
was run in Python ver3.7 programming language, that has built in
packages for the optimization methods used.

3. Results and discussion

This Section is divided into three Subsection. Section 3.1 has the
results and discussion of RZWQM calibration using Coordinate Descent
and Section 3.2 has the results and discussion of optimum fertilizer and
irrigation application and Section 3.3 has the discussion encompassing
more general remarks.

3.1. Results on calibration and validation of RZWQM with field data

Table 3 gives the R2 and ME values for the manually calibrated
parameters by Qi et al. (2016) versus the proposed Coordinate Descent
method. The average R2 values for Coordinate Descent method is better
than the manual method. It can be seen that the Coordinate Descent
performs similar to manual calibration on ME measure, but it has about
3% improvement on R2 measure. Plus being automated, no expert gui-
dance required for the Coordinated Descent. Calibration is done with
data from fully irrigated field. The calibrated parameters’ value are
given in Tables 4,.

Table 5 gives the validation result of the calibrated parameters.
Once the model is calibrated, it is validated on a scenario different from
the training or calibrating data. This scenario was the deficit irrigated
field of the same year 2010. This field was situated adjacent to the fully
irrigated field. The same maize cultivar was grown. Even though the
deficit irrigated field was located adjacent to the field whose data was
used for calibration, there can be variation in the soil parameters. To
account for this minor change in parameters, five parameters of the
RZWQM model are again adjusted with deficit irrigation field data.
Remaining parameters’ value are same as learned from the full irriga-
tion data. The work by Qi et al. (2016) also adjusted those parameters
using deficit irrigation data before validating. Table 6 gives the adjusted
or calibrated parameters of the five soil hydraulic parameters using the
deficit irrigation field data. Again, the calibration was done using Co-
ordinate Descent method. The validation performance in Table 5 shows
improvement of about 4 – 5% of R2 and ME using CD over manual
method. In the Coordinate Descent (CD) optimization, the parameters
were varied±10% from their initial value. Increasing the ranges
to± 20% and±30% did not improve the model calibration, while the
time required for CD convergence increased.

3.2. Results on optimized fertilization and irrigation using calibrated model

The optimization of fertilization and irrigation application was

Table 3
Goodness of fit comparison of manual vs CD automated calibration using full
(100% of ETc) irrigation data.

Manual CalibrationQi et al. (2016) Coordinate Descent

Output Types i R2 ME R2 ME

Plant Height 0.99 0.97 0.99 0.95
ET 0.83 0.75 0.84 0.78
LAI 0.94 0.92 0.95 0.88
SWC 1 0.40 0.39 0.40 0.33
SWC 2 0.55 0.44 0.58 0.49
SWC 3 0.81 0.76 0.83 0.77
SWC 4 0.87 0.76 0.90 0.81
SWC 5 0.79 0.62 0.83 0.58
SWC 6 0.74 0.72 0.70 0.56
SWC 7 0.66 0.65 0.79 0.78
SWS 0.88 0.88 0.90 0.86
Average 0.77 0.71 0.79 0.71
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performed to compare the profits against the experimental applications
in Greeley Colorado by Trout and Bausch (2017), that used UAN32
(Urea Ammonium Nitrate) as N fertilizer. The fertilizer were applied by
dissolving through drip irrigation. Irrigation was roughly applied on a
weekly basis whereas fertilization was applied according to re-
commendation by Davis and Westfall (https://extension.colostate.edu/
topic-areas/agriculture/fertilizing-corn-0–538/). The results of dif-
ferent optimization methods to maximize the profit are summarized
below in Tables 7 and 8, whereas Table 10 lists the profits.

Table 7 gives amount of N applied in kg per hectare for the field
experiment at Greeley, CO (Trout and Bausch, 2017), versus the pro-
posed amounts by the different optimization methods we examined.

Total N applied in the field site at Trout and Bausch (2017) was
145 kg N ha−1. The two better performing evolutionary methods, DE
and PSO, applied more N towards the early stages and negligible at
later stages. All optimization method except for BH and COBYLA re-
quired less N but gave more profit (see Table 10 for profits). The best
possible saving in fertilization of about 20% was found by DE.

Table 8 gives the recommended amount of irrigation to be applied
at the given dates for the different optimization methods, while the
actual amount applied to the field is mentioned in Column labelled
Trout and Bausch (2017). The total irrigation prescription given by
different methods are slightly greater than field applied of 36.58 cm in
Trout and Bausch (2017), with DE offering the smallest increment of
1.8%. Table 9 gives the rainfall amount in 2010 growing season. Fig. 4
consolidates Tables 8 and 9 (irrigation and rainfall) for visualization,
with the X-axis marked with the dates and the growth stages.

Table 10 tabulates the yield, total N and irrigation applied in the
growing season by different methods, profit, and the number of
RZWQM model runs required for all the cases. All the five profit opti-
mization methods gave an increase in yield and profit compared to
Trout and Bausch (2017), with best yield increase of 8% offered by PSO,
resulting in 10% increase in profit. Therefore, we recommend the

Table 4a
Coordinate Descent Calibrated hydraulic parameters’ value from full irrigation dataset.

Layer(m) Bubbling
Pressure(m)

Pore size
distribution
index

Saturated
hydraulic cond.
(cm/hr)

Residual water
content(m3 m−3)

Saturated water
content(m3 m−3)

Field capacity
at 1/3 bar(m3

m−3)

Field capacity
1/10 bar(m3 m−3)

Wilting
point(m3 m−3)

0.0–0.15 0.32071 0.242 1.883 0.0351 0.426 0.310 0.394 0.155
0.15–0.30 0.46879 0.235 5.290 0.0363 0.423 0.323 0.410 0.160
0.30–0.60 0.36785 0.190 4.870 0.0350 0.445 0.336 0.408 0.188
0.60–0.90 0.26074 0.160 5.068 0.0356 0.398 0.315 0.373 0.188
0.90–1.20 0.27825 0.193 5.129 0.0340 0.398 0.296 0.361 0.166
1.20–1.50 0.26704 0.200 4.102 0.0332 0.386 0.278 0.340 0.155
1.50–2.00 0.25529 0.185 4.086 0.0322 0.388 0.289 0.349 0.166

Table 4b
Coordinate Descent Calibrated crop growth parameters’ value from full irriga-
tion dataset.

Phylochron interval(deg.
day)

Max. height at
maturity(m)

Biomass at ½ max.
height(g)

52.747 2.76998 26.753

Table 5
Comparison of manual vs CD automated validation using deficit (55% of ETc)
irrigation data.

Manual CalibrationQi et al. (2016) Coordinate Descent

Outputs R2 ME R2 ME

Plant Height 0.98 0.60 0.98 0.35
ET 0.84 0.73 0.86 0.77
LAI 0.90 0.88 0.91 0.89
SWC 1 0.27 0.26 0.29 0.22
SWC 2 0.52 0.40 0.57 0.54
SWC 3 0.50 0.32 0.58 0.37
SWC 4 0.73 0.60 0.78 0.63
SWC 5 0.90 0.86 0.89 0.84
SWC 6 0.91 0.75 0.94 0.79
SWC 7 0.80 0.54 0.80 0.79
SWS 0.84 0.84 0.87 0.84
Average 0.74 0.61 0.77 0.64

Table 6
Coordinate Descent Calibrated parameters’ value for deficit irrigation.

Layer(m) Bubbling
Pressure
(m)

Pore size
distribution
index

Field
capacity at
1/3 bar(m3

m−3)

Field
capacity at
1/10 bar
(m3 m−3)

Wilting
point(m3

m−3)

0.0–0.15 0.32999 0.318 0.270 0.367 0.115
0.15–0.30 0.37849 0.275 0.292 0.382 0.136
0.30–0.60 0.33252 0.220 0.307 0.385 0.159
0.60–0.90 0.25905 0.214 0.273 0.344 0.140
0.90–1.20 0.32171 0.207 0.282 0.356 0.144
1.20–1.50 0.37323 0.151 0.319 0.375 0.197
1.50–2.00 0.53577 0.089 0.370 0.413 0.265

Table 7
Amount of fertilizer N applied per hectare (kg N ha−1) for different methods in
2010 growing season.

Date Trout and Bausch
(2017)

DE BH PSO SLSQP COBYLA

5/24/2010 22.4 46.4 22.4 25.2 22.0 30.8
6/23/2010 22.4 20.0 25.6 45.6 22.0 31.6
7/9/2010 22.4 35.2 23.2 48.0 22.0 34.8
7/21/2010 22.4 10.4 18.4 0.4 22.0 18.8
8/3/2010 22.4 4.0 26.4 0.4 22.0 17.2
8/16/2010 33.6 0.4 34.4 0.4 33.2 27.6
Total 145.6 116.4 150.4 120.0 143.2 160.8

Table 8
Amount of irrigation (in cm) applied for different methods in 2010 growing
season.

Date Trout and Bausch
(2017)

DE BH PSO SLSQP COBYLA

6/11/2010 0.63 0.63 1.23 0.1 0.61 1.35
6/23/2010 3.04 2.01 3.44 6.56 3.75 3.69
6/29/2010 3.01 3.25 2.61 4.12 2.94 3.36
7/8/2010 3.07 4.34 3.27 2.13 3.73 3.27
7/16/2010 3.19 1.41 3.78 3.06 3.9 3.0
7/21/2010 3.01 6.64 3.4 3.16 3.72 3.57
7/28/2010 4.22 2.47 4.02 0.1 4.2 3.91
8/3/2010 4.02 3.09 3.82 7.0 4.45 4.19
8/16/2010 3.86 0.63 3.26 0.1 3.88 3.88
8/20/1010 2.51 1.44 2.31 4.09 2.45 2.65
8/25/2010 3.01 4.8 2.81 0.29 3.71 3.03
9/1/2010 3.01 6.56 3.4 7.0 3.27 3.36
Total 36.58 37.27 37.35 37.71 40.61 39.26
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irrigation and fertilizer application strategy generated by the PSO
method. We observe that judiciously applying water and fertilizer has
the potential to increase profit and yield without requiring significant
extra fertilizer and water. Table 10 also gives the number of RZWQM
model runs required by each optimization methods. This is indicative of
the time required to run an optimization method. Runtime depends on
the computer hardware configuration and the optimization algorithm.
DE and PSO that gave the better results in terms of profit and yield
required larger processing times. In contrast, the local optimizers
SLSQP and COBYLA were faster but worse in terms of optimality.

We also calculated the nitrogen and water stress levels at various
growth stages under different optimizers, as listed in Table 11. There is
no stress initially, and it progressively increases as the crop matures,
which is to be expected since the goal is to optimize the profit. At
maturity, development ceases, so to maximize the profit less resources
get prescribed by different optimization methods.

3.3. Discussion

The 10% increase in profit is promising given that nearly 2/3rd of
US farms operate on a margin of less than 10% after accounting for the
government subsidies (Hoppe 2014). Fine tuning the default parameter
values of the optimization methods could further improve yield and
profit. It turns out that each cycle of Coordinate Descent takes nearly
2.5 hrs. This is primarily because at each iteration, the R optimizer
needs to make numerous calls to the RZWQM simulator to explore
different candidate parameter values. These consume lots of I/O time in
passing the data back and forth between the two programs, R and
RZWQM, and is unavoidable. To speed-up the overall computations,
one could implement the model-simulation and optimization within a
same programing language.

Ma et al. (2012) used the PEST parameter estimation tool available
in RZWQM to calibrate the same hydraulic parameters in RZWQM and
same field dataset as used in this work. The corresponding R2 and ME
values (Table 10 of Ma et al. 2012) are lower than the manual cali-
bration in Qi et al. (2016) which in turn is lower than those from our CD
approach (meaning CD is superior to all). It should also be remarked
that fitting outputs sequentially (first fit height, then ET and so on), as

done by Saseendran et al. (2010), Ma et al.(2011) and Guillaume et al.
(2011), performed worse than fitting all the different types of outputs
(plant height, ET, LAI, SWC) at the same time using equation (1). Also
note that many complex processes (like close interaction of soil organic
matter with atmosphere, effect of root growth, variability of radiation,
surface residue reactions, etc.) occur near the top/boundary surface
that are not fully modeled in RZWQM yet. This explains the relatively
poorer fit of soil water content at level 1 (as seen from the relatively
lower R2 and ME values in Table 3 and 5).

4. Conclusion and future work

In this work, an automated, sensor-data driven agricultural model
calibration method, involving Coordinated Descent (CD), was proposed
for model calibration and calibrated model used for fertilization and
irrigation prescription. The method was used successfully to calibrate a
total of 59 parameters of a RZWQM model of an agricultural field in
Greeley, Colorado (Trout and Bausch, 2017), completely automatically,
without needing any expert input. Yet it was able to improve a pre-
viously optimized model by a further around 4%. The proposed method
can be easily scaled to calibrate more number of parameters if addi-
tional types of field measurements become available. The runtime of
the method can be significantly improved if the RZWQM model and the
calibration program are coded in the same programming platform. This
is because the system() calls and file read/write take up extra time.
Running of the model too takes time and it is hoped that refactoring the
RZWQMmodel code from legacy programming language like Fortran to
Python would improve runtime. This would require porting the two, the
RZWQM simulator and the R-based optimizer, in a same platform.
Currently, those are coded separately. RZWQM in Fortran and cali-
bration program in R language.

We further used the calibrated model for fertilizer and irrigation
prescription through a profit maximization formulation, and performed
the nonlinear optimization using three global and two local optimiza-
tion algorithms, and compared the results with the one used in Trout
and Bausch (2017). The optimization variables chosen here were 6
fertilizer and 12 irrigation application days as in Trout and Bausch
(2017). The comparison showed about 7% improvement in yield and
about10% improvement in profit could be realized when compared to
the treatment provided in the experimental data of Trout and Bausch
(2017). As with calibration, the time required for the heuristic algo-
rithms performing nonlinear optimization can also significantly be
improved by integrating the optimization routine and modeling equa-
tions in the same programming platform.

In the current optimization work, the application dates of fertilizer
and irrigation were taken be the same as in the experimental setting by
Trout and Bausch (2017). Future work can explore how to optimize the
extended problem of optimizing both the amounts and the days of ap-
plications efficiently. The fertilizer and water prescription optimization
can further be made more efficient employing machine learning.
Training data would be used based on history of weather versus pre-
scription. The approach would be empirical (as opposed to model-
based), but computationally much fast, allowing obtaining an initial
estimate, prior to a model-based refinement if needed. Also in this
work, the fertilizer and water prescriptions were computed offline. It
would be interesting to develop a runtime version where the offline

Table 9
Precipitation (cm) between planting and harvest.

Date Rain Date Rain Date Rain

5/11/2010 2.01 6/12/2010 2.36 8/3/2010 0.05
5/12/2010 0.79 6/13/2010 0.96 8/4/2010 0.08
5/14/2010 0.15 6/14/2010 0.13 8/9/2010 3.15
5/15/2010 0.15 6/19/2010 0.15 8/13/2010 0.05
5/16/2010 0.33 6/26/2010 0.41 8/16/2010 0.1
5/18/2010 1.35 7/4/2010 1.55 8/19/2010 0.33
5/19/2010 0.05 7/8/2010 0.08 8/23/2010 0.36
5/20/2010 0.02 7/10/2010 0.02 8/25/2010 0.02
5/26/2010 0.08 7/11/2010 0.02 9/23/2010 0.02
5/29/2010 0.02 7/14/2010 0.51 10/1/2010 0.18
6/6/2010 0.2 7/16/2010 0.08 10/12/2010 0.61
6/8/2010 0.08 7/20/2010 0.02 10/16/2010 0.1
6/10/2010 0.1 7/22/2010 0.1
6/11/2010 3.63 7/30/2010 1.75

Table 10
Yield and Profit per Hectare for different optimization methods.

Trout and Bausch (2017) DE BH PSO SLSQP COBYLA

Yield(kg ha−1) 9987.1 10732.1 10319.5 10783.7 10325.2 10734.1
Total N applied(kg N ha−1) 145.6 116.4 150.4 120.0 143.2 160.8
Total irrigation applied(cm) 36.58 37.27 37.35 37.71 40.61 39.26
Profit($ ha−1) 1554.6 1714.2 1608.4 1719.2 1600.0 1666.8
No. of Model Runs – 4449 31,486 4055 56 233
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decisions would be updated as and when new data arrives.
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