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Abstract—Electronic money is the digital represen-
tation of physical banknotes enabling offline and online
payments. An electronic e-Cash scheme, termed PUF-
Cash was proposed in prior work. PUF-Cash preserves
user anonymity by leveraging the random and unique
statistical properties of physically unclonable functions
(PUFs). PUF-Cash is extended meaningfully in this
work by the introduction of multiple trusted third par-
ties (TTPs) for token blinding and a fractional scheme
to diversify and mask Alice’s spending habits from the
Bank. A reinforcement learning (RL) framework based
on stochastic learning automata (SLA) is proposed
to efficiently select a subset of TTPs as well as the
fractional amounts for blinding per TTP, based on the
set of available TTPs, the computational load per TTP
and network conditions. An experimental model was
constructed in MATLAB with multiple TTPs to verify
the learning framework. Results indicate that the RL
approach guarantees fast convergence to an efficient
selection of TTPs and allocation of fractional amounts
in terms of perceived reward for the end-users.

Index Terms—e-Cash, Physically Unclonable Func-
tions, Reinforcement Learning, Decision Making,
Trusted Third Parties.

I. INTRODUCTION

Electronic means of payments have spawned a hive of
economic and technical activity across the world. Recent
advances in distributed ledger technology (DLT) have led
to the emergence of cryptocurrencies and stable-coins.
Their enduring popularity suggests that alternative meth-
ods to standard banking solutions are desired in the mar-
ketplace. Electronic money (e-money) schemes based on
blind signatures and zero-knowledge proofs can imbue the
privacy-preserving aspects of DLT while enabling bilateral,
denetworked transactions. Often, such solutions rely on a
combination of hardware and software security principles
to protect the store of value and means of exchange during
periods of partial to absent connectivity. One such variant,
PUF-Cash, was conceived on the premise that physically
unclonable functions can provide the foundation on which
an e-Cash protocol can be constructed.

II. RELATED WORK

An electronic version of cash (e-Cash) must contend
with the two primary security challenges in digital cur-
rency, namely copy (double-spend) protection and coun-
terfeit protection. Chaum, Fiat, and Naor (CFN) explored
anonymous payments through blind signatures [1] in the

first e-Cash protocol [2]. CFN blind signatures are based
on RSA primitives, and a cut-and-choose shared secret
protocol for the coin exchange. CFN was intended for on-
line purchases, where the merchant could validate the coin
at the time of transaction, eliminating double-spending.
Batch RSA techniques were investigated by Schoenmaker
[3] to reduce storage and bandwidth requirements in CFN
transactions. Brands’ e-Cash protocol [4] further expanded
upon CFN by replacing the cut-and-choose proofs with
a variant of the Sigma protocol. The Sigma protocol
has gained renewed popularity as a zero-knowledge proof
scheme for various applications in distributed ledger tech-
nology (DLT) [5].

CFN e-Cash and variants, as conceived, represented
indivisible e-coins. By contrast, Okamato developed a
divisible e-Cash scheme, although coin division was re-
stricted to powers of two [6]. Camenisch, Hohenberger,
and Lysanskaya (CHL) leveraged Chaum and Okamato
to further a divisible e-Cash scheme that was more open
[7] [8]. Here, a pseudo-random function embedded within
Alice’s device could generate coins from a single seed.
CHL required the generation of zero-knowledge proofs
relying on Fujisaki-Okamoto commitments [9] to ensure
that generated coin values were bounded to the finite range
supplied by the Bank’s initial seed.

Existing e-Cash schemes rely either on factorization
or the discrete logarithm problem, both of which are
susceptible to Shor’s algorithm [10]. Recent forays into
quantum-hard electronic cash include the use of lattice-
based asymmetric key exchanges to implement blind sig-
natures [11], or tokens constructed on the super-position
of quantum states [12] [13].

III. THE PUF-CASH ELECTRONIC MONEY SYSTEM

PUF-Cash is an anonymous, electronic cash protocol
reliant on physically unclonable functions (PUFs) that
is usable in both online and offline contexts. PUF-Cash
does not rely on the properties of discrete logarithm or
factorization, and is therefore quantum-hard. Transactions
in PUF-Cash compare favourably to CHL: A 4096-bit
recommended prime length leads to a proof size of 60 KB
per signature. A complete cycle in CHL from withdrawal
to deposit for a typical $10 transaction consumes 126.5 KB
of data and is static, whereas a PUF-Cash transaction for
the same amount consumes 75.5 KB and is linear. This



work expands the original concept of PUF-Cash by intro-
ducing the idea of multiple Trusted Third Parties (TTPs).
Key contributions are the development of a reinforcement
learning (RL) model [14] to optimally select both the
subset of available TTPs based on network behaviour,
and the fractional division of workload to obfuscate Alice’s
spending behaviour from the Bank.

Fig. 1 outlines the entities involved in the PUF-Cash
protocol, the protocol steps denoted by directed arrows
and the sequence number captured in parentheses. The
Bank is responsible for issuing and redeeming currency,
represented as unitary indivisible tokens, the TTP is
responsible for blinding tokens, while Alice and Bob
constitute the payer and payee, respectively, in a single
transaction. The TTP, Alice and Bob are devices equipped
with a PUF. In PUF-Cash, the Hardware Embedded
Delay PUF (HELP) [15] in particular, is used, although
another PUF with suitable properties may be substituted.
The HELP PUF utilizes a challenge-response sequence to
authenticate, requiring a set of challenge-response pairs to
be stored during enrollment at the Bank. This set is stored
in two separate databases at the Bank: a labeled database
(where challenges are linked to devices) and an unlabeled
(anonymous) database. Note that the unlabelled database
records device responses to a set of challenges common to
all devices.

Enrollment is required to process transactions. The
TTP is first enrolled by recording a series of challenge-
response pairs for authentication within the labeled
database. Then, the TTP and the Bank establish a long-
lived shared secret for secure communications. Once TTP
enrollment is complete, end-user devices assigned to Alice
and Bob may be enrolled within the database. This is
a two-stage process: Two sequences of challenge-response
pairs, one set unique and linked to each device and a
second set common to all devices, are first recorded in
the labelled database. Then, unique responses from a
set of common challenges are recorded in the unlabelled,
anonymous database. Note that the labelled database
serves as an authentication source for a given registered
device, whereas the anonymous database establishes set
membership without revealing device and user identity.
A description of the enrollment process, including the
underlying operations, is presented in prior work [16].

A. The PUF-Cash Protocol

Devices can execute transactions once enrolled into the
system. All transactions follow the same steps, although
the timing is highly variable to support a wide variety
of payment options. For simplicity, it is assumed that the
Bank manages accounts denominated in local currency for
each end-user against which tokens are issued on a unitary
basis. The protocol proceeds as follows, with steps illus-
trated in Fig. 1. Explicit cryptographic details underlying
token creation, authentication and secure channel creation
are eschewed for brevity:
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Fig. 1: Steps of the PUF-Cash Protocol

(7) Alice

1) Alice requests funds against the balance of her ac-
count held at the Bank.

2) Upon request, the Bank issues unitary, immutable,
tokens, denoted as mq, against Alice’s account. The
Bank records these tokens in a list of open n; tokens
and forwards them to the TTD.

3) Once TTP acknowledges receipt, the Bank forwards
the tokens to Alice and debits her account.

4) At some point in time, Alice contacts the TTP to
blind her n; tokens. This blinding step is necessary to
protect Alice’s anonymity at the time of transaction.

5) The TTP receives Alice’s request and her n; tokens.
It then confirms a match between those supplied by
Alice and the ones issued by the Bank. For each
matched n; token, the TTP issues a corresponding ns
token, then decrements its list of open n; tokens and
transmits the newly created ns tokens to the Bank.
The token correspondence is not recorded.

6) Upon receipt of no tokens, the Bank updates its list
of blinded nsy tokens and sends an acknowledgement
to the TTP. Once acknowledged, the TTP forwards
the no tokens to Alice.

7) Alice identifies Bob as the payee, authenticates Bob
via Transport Level Security (TLS) and transfers
the requisite amount of ny tokens. The token count
is based on the amount owed to Bob and may be
different from the number blinded in Step 4.

8) Bob deposits the my tokens into the Bank. Upon
receipt, the Bank validates each no token against the
list of issued blinded tokens. Each token successfully
validated is credited to Bob’s account.

The system requires the participants to trust the follow-
ing axioms: (a) That the Bank does not leak information
between the labeled and unlabeled data-sets, and (b)
that the TTP does not record, share or leak correlating
information. If either axiom is violated, the Bank may be
able to link issued nq tokens to blinded no tokens, thereby
compromising Alice’s transactional anonymity. The secu-
rity profile of PUF-Cash and exploration of possible attack



vectors is captured in the prior work [16]. Note that it is
up to Alice to decide how many tokens were blinded in
Step 4. Also note that Bob may deposit nss from multiple
sources (not just Alice) in a single batch transfer to the
Bank at the time of deposit.

B. Transaction Timelines

In PUF-Cash, the timing between issuance (n; cre-
ation), blinding (ni to ne exchange), transaction, and
deposit /redemption, is highly variable. This property en-
genders great flexibility, enabling the protocol to support
a wide variety of payment strategies. In particular, it
was desirous from inception that the protocol support
both online and offline transaction scenarios. To that
end, two broad timelines are possible: An offline scenario
where there is limited or no connectivity during the actual
transaction (Step 7), and an online scenario where the end-
user device has access to a network, and by extension,
access to the Bank and the TTP.

Fig. 2 presents three timelines under consideration in
this work. In each timeline, the abscissa denotes time
intervals in units of days. An example time-slice of 14 days
is chosen for convenience of explanation. The occurrence of
protocol steps are denoted by event markers annotated by
the step number in parentheses. Steps executing in rapid
succession are captured in a single event with dependent
steps occurring sequentially. Note that Step (0) captures
enrollment, which may only occur once for the lifetime
of the device. A brief textual summary presented per
interval captures the action(s) pending at the end of the
interval. In Fig. 2, Timeline A captures the offline scenario:
Here, Alice withdraws n; tokens and subsequently blinds
them for transactable ny tokens on Day 6. Then, on Day
11, Alice transacts with Bob, transferring a portion of
her no tokens. On Day 14, Bob deposits the ny tokens
in the Bank. Similarly, Timeline B captures the online
scenario: Alice withdraws n; tokens on Day 4 and holds
them locally on her device. On Day 11, Alice transacts
with Bob, only converting a portion of her n; tokens to
ns tokens before the transfer. This approach is inherently
more secure from Alice’s perspective, as the n; tokens
cannot be stolen (Alice’s device is required to convert
them), and are recoverable if lost, since the Bank can
invalidate open n; tokens. However, Alice must be able
to connect to the TTP at the time of transaction for her
exchange with Bob to be successful. It can be observed
that the primary difference between Timelines A and B is
the timing of the blinding step, namely Step 4.

Let us consider Timeline C as an extreme variant of
Timeline B: Here, Alice holds a trusted device that is
registered at the Bank, but does not withdraw n; tokens,
preferring to store her funds at the Bank for safe-keeping.
In addition, Bob is a fully connected payee, such as a
merchant terminal or an online payment processor, that
deposits (and validates) no tokens as soon as they are
received. This scenario, although extreme on the surface,
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Fig. 2: Protocol Timelines

is likely to be the most common for in-store or online
purchases. Alice may consider this approach to be the
least risky if her PUF device is a custom IC embedded
within a smartphone, where platform security may not be
guaranteed. Under these conditions, all protocol steps will
occur in a very short timeframe (within seconds), exposing
Alice to a potential timing attack from the Bank, who may
be able to correlate the issuance of ny with the redemption
of no tokens to extract her transaction history.

Much of the risk in Timeline C stems from the fact that
a singular TTP is responsible for the token blinding step.
To thwart this attack and anonymize Alice’s transaction
history, multiple TTPs are proposed, such that each TTP
only processes a fraction of Alice’s tokens at any given
point in time. In this scenario, when Alice requests a
token exchange, the TTP will first request all of Alice’s ny
tokens from the Bank. Alice will then supply a fractional
set of ni tokens of her choosing for exchange, against
which the TTP will generate the equivalent ny tokens.
In addition, each TTP will have sufficient computational
capacity to serve multiple users concurrently, and further-
more, ny updates to the Bank will be batched. Under
these conditions, if sufficient users are interacting with the
system, individual exchanges will be obfuscated, making it
impossible for the Bank to discern Alice’s behaviour. The
optimal selection of TTPs will depend on a combination
of the per-TTP available computational capability and
prevailing network conditions.

IV. REINFORCEMENT LEARNING-BASED PUF-CASH
TRANSACTION

Towards diversifying and masking Alice’s spending
habits from the Bank, a distributed and autonomous
reinforcement learning-based mechanism is proposed, en-
abling Alice to select the TTPs and the corresponding
fractional amounts for a successful transaction. Alice (and
respectively each end-user in the PUF-Cash environment)
acts as a stochastic learning automaton (SLA) [14] mak-



ing optimal decisions about herself, i.e., to which TTPs
to offload fractions of her total amount, based on the
reaction, i.e., state, of the PUF-Cash environment [17].
Alice’s decision-making problem consists of two decision-
making layers. In the first layer, Alice decides to which
TTPs she will offload fractions of her total amount, while
in the second layer she decides the optimal fractions of the
total amount to be offloaded to each one of the selected
TTPs.

Let us denote as C = {1,...,¢,...,|C|} the set of end-
users in the PUF-Cash environment. The set of the avail-
able TTPs is T' = {ITP,,...,TTP, ..., TTPp}. Each

CPU cycl
TTP, has a computation capability Frrp, [ﬂ 7
unit operation

which was derived from our prototype system using
a set of Xilinx 7010 FPGAs on Digilent Cora boards
[18]. The "CPU cycles/unit operation” is the effort re-
quired to generate each random 16-byte n, token. The
communication distance of each end-user ¢ with each
TTP, is denoted as d.rrp,[m]. Furthermore, each end-
user possesses a finite quantity of tokens, denoted as
M., and can offload a fraction of them to a TTDP, i.e.,
ferrr,%. Alice can select N TTPs, ie., N < |T| to
distribute her n; tokens for conversion, thus her strategy
space at the first decision-making layer consists of vectors
STRs = [ITTPs,TTPg,...,TTPy], where s € S =
{1,...,8,...,]S|} and |S| is the total number of distinct
subsets of the N TTPs. Alice aims to minimize her com-
munication delay and therefore chooses one of these TTP
subsets that best meets this goal, likely achieved by choos-
ing TTPs that are in close proximity to her. She also takes
into consideration the current workload associated with
each TTP, choosing a subset that has sufficient computa-
tional capacity to process each of the fractional workloads
delivered to them. Based on the communication delay
(denominator of Eq.1) and the computational congestion
(numerator of Eq.1), both of which are broadcast by the
TTPs to the end-users, Alice determines a corresponding
personalized reward 7’5 S%R at the ite iteration of the SLA
algorithm in the first dec1s10n—mak1ng layer as follows.
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where |Cppp,| is the number of end-users offloading a
fraction of their amount to the T7TP;. The personal-
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0 < ffj’g’%Rs < 1 of end-user ¢ to select the strategy

STRs, i.e., the subset of TTPs to process her transaction.
Given the personalized reward probability, each end-user
acts as an SLA and determines her action probability

to reflect the reward probability

it it t it
vector Prit® — [Pr((;’l.e), .. Prézse%R ,..'.,Prgse%R‘s‘].
Similarly, the end-users’ action probabilities are deter-
mined based on the SLA update rule [17], as follows.

(ite+1)  (ite)

+brl g, (1= Prigly ), STR.=STR. (2a)

(ite+1) _ p (ite)
Pr = Pr . STRs

s,STRs s, STRs

(ite+1)  (ite)

prlite)  STR.#ASTR.

L(ite)
— b s,STRg’

<,1<+1) (u )
pr TRg = Pr r‘STR

s, STRg (2b)
where 0 < b < 1 is the learning parameter (for smaller
values of b the end-user explores more of the available
strategies). Eq.2a expresses the probability of selecting
the same strategy STRs in iteration ite, while Eq.2b
represents the probability of selecting a different strategy.
At each iteration of the SLA approach, the end-users
select a strategy, i.e. specific subsets of TTPs to process
their transaction amounts, and subsequently experience
the environment’s reaction, i.e. the communication delay
and computation congestion, both of which are captured
in the personalized reward probabilities. Over time, this
type of iterative learning process enables each end-user
to converge to the optimal selection of TTPs. It is noted
that the learning process associated with each end-user is
initialized such that all strategies STRg are equiprobable
of being selected.

After the convergence of the first decision-making layer,
each end-user ¢ has selected the most efficient combina-
tion of TTPs, i.e., STRE|. = [TTP4, TTP},..., TTPY].
Then, each end-user determines the fraction f.rr pf*% of
her nys that should be offloaded to each of the TTPs as a
means of achieving two goals, obfuscation and speed-up.
As per Timeline C in Section III-B, the TTPs in Alice’s
subset request all of Alice’s nys from the Bank at the point
of sale, and then each of the TTPs immediately converts a
fraction of them to mgs, which are then transmitted back
to the Bank. Other end-users will make similar requests
concurrently, therefore, obfuscation occurs by virtue of
each TTP processing multiple fractional requests for a
group of end-users. Alice also aims to leverage the available
parallelism associated with multiple TTPs to accelerate
her overall transaction. Here, it is again possible to use
SLA to derive a solution by defining a reward r(7tS€,r)R*|C
that each end-user experiences by offloading a fractional
amount f.rrpr - M. to the TTP! VITP; € STR!|c
in the iteration ite’ of the second decision-making layer,
which is defined as follows.

Z (f(ITTP*I\/I FTTP*)

(ite’) VTTP*ESTR:\C
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To simplify the problem, we define F discrete levels
of fractions, i.e., [forrps|1,. .\ ferrrslss- ) ferrps|F]
(e.g., [10%,20%, ...,100%)]). The strategy vector of end-

user ¢ is denoted as FRe g = [ferrpslss - s ferTP; 7l
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where f € {1,....F}, ferrplp + - + ferrprly = 1
and FR g represents one of the possible combination of
fractions of the total amount M, offloaded to the TTPs
included in the strategy STRZ|. that the end-user has
selected in the first layer and |F'R| is the total combina-
tions of fractions. Thus, each end-user acting again as a
stochastic learning automaton and given the reaction of

the PUF-Cash environment captured by the reward prob-
(ite’)

T
ability A(deT)RHC = = ©STRsle  determines the action
2 TSR 1)
probability vector Pr(l e) = [Pr, e prlte) | which

represents the probablhty of selectlng a specnilgﬁactlons
combination action Fre g, Vfr € {1,...,|FR|} to offload
her total amount to the pre-selected subset of TTPs. The
end-user’s action probability to select the same fractions’
combination in the next iteration of the decision-making
process is defined in Eq.4a, while the probability to select
a different strategy is given by Eq.4b.
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Pr =Pr o0 = sTR* | P Terfe f  fr # fr (4b)
] S

where 0 < b’ < 1 is the learning parameter. Again, each
end-user is initialized with equal probability of selecting a
combination of fractions from the available ones.

To summarize, end-users make autonomous decisions,
hidden from the Bank, by sensing the state of the PUF-
Cash environment. They first decide which subset of TTPs
will service their request, and then decide the fraction of
their ns to offload to each TTP in the subset.

V. RESULTS AND DISCUSSION

This section provides a detailed numerical evaluation
of the proposed reinforcement learning-based strategy in
terms of the overall framework’s operational efficiency and
performance. We consider C' = 1000 end-users perform-
ing transactions per timeslot, i.e., 1sec, |T| = 6 TTPs
in the system, where the TTPs’ computation capability

CPU cycles
is Frrp, = 356 ———
unit operation

de 7P, from the TTPs takes random values in the interval

. The end-users’ distance

[100,1000]m. For presentation purposes only and without
loss of generality, each end-user can select N = 3 TTPs
to offload fractions of her total number M, of nis, where
M, takes random values in the interval [100-20000] tokens,
and the learning parameters are b = b = 0.7. Also,
each end-user can offload discrete fractions f.rrpy|, €
[10%, 20%, . .., 100%] of her total amount. In the following
evaluation, we normalize the end-users’ distance from the
TTPs and the TTPs’ computation capability.

Fig.3 presents the convergence of the overall rein-
forcement learning-based framework to the most effi-
cient selection of strategies by the end-users. Specifically,
Fig.3a presents the convergence of the action probabilities
(Eq.2a,2b) of an typical end-user when selecting a subset
of TTPs from the available ones. The results reveal that
the probability of selecting one strategy converges to one,
while the probabilities of selecting any other strategy
converge to zero in 200 iterations (7.21 sec). Addition-
ally, Fig.3b presents the average of the end-user’s reward
probabilities as a function of the number of iterations
performed by the SLA algorithm when selecting the end-
users’ TTPs. The curve shows that the end-users average
reward probability increases as the end-users learn to
select the most efficient TTP subset, and converges to a
large value showing the efficiency of the end-users’ choice.
Moreover, Fig.3c shows the convergence rate of selecting
the fraction of the total amount to offload to each of the
TTPs in the selected subset. The results show that the
end-users converge quickly, i.e., 60 iterations (1.2 sec) to
their most efficient choice of fractions, while the average
reward probability of all the end-users converges to a large
value (Fig.3d).

Fig.4 illustrates the overall operation of the reinforce-
ment learning-based approach. Specifically, it is observed
that more end-users (Fig.4c) select the TTPs with higher
computation capability (Fig.4a) - in order to experience
decreased computation congestion - and smaller aver-
age distance (Fig.4b) - in order to experience decreased
communication delay - while they proportionally offload
fractions of their total amount (Fig.4d).

Finally, Fig.5 presents a comparative evaluation of the
proposed framework to other approaches. Fig. 5a compares
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the SLA-based TTPs selection to three alternatives, i.e.,
the end-users select N TTPs based on: (i) closer to them
(dain), (ii) that have the greatest computation capability
(Faaz), and (iii) randomly. The results illustrate that
the SLA-based selection of TTPs provides the greatest
average reward probability to the end-users across the two-
tier optimization. It can be observed that although (ii) is
second-highest from a rewards perspective, it is roughly
identical to a single TTP scenario and thus, offers the
least amount of obfuscation to Alice. The random selection
of TTPs appears to be the least successful, producing
persistently low rewards for end-users.

Fig.5bb presents a comparative evaluation among the
SLA-based selection of fractions of the total amount to
offload to the selected TTPs and four alternative scenarios,
where (i) the end-user offloads a random fraction greater
than 50% of the total amount to the TTP that has
the greatest computation capability (Far arese) or (ii) is
less distant (dar,nost) among the selected ones, while
the remaining amount is randomly allocated to the other
TTPs in the subset, (iii) the end-user offloads her total
amount to the TTP with the greatest computation capa-
bility (Fas an) or (iv) to the closest TTP (das ai) among
the selected ones. The results reveal that the SLA-based
selection of fractions of the total amount to be offloaded
to the selected TTPs provides the highest average reward
probability to the end-users. Also, the communication
delay, which is expressed through the end-users’ distance
from the TTPs, becomes the dominant factor to the end-
users’ perceived satisfaction when deciding on the fractions
to distribute to the TTPs, while the TTPs’ computation
capability plays a smaller role.

VI. CONCLUSION

In this paper, we proposed an improvement to PUF-
Cash by introducing multiple trusted-third-parties (TTP)
for obfuscating Alice’s transaction history from the Bank
in rapid withdrawal and spend scenarios. A reinforcement
learning approach was proposed to optimize TTP selec-
tion and subsequent fractional splitting based on network
conditions and computational load. Both decision-making
layers are realized using stochastic learning automata,
where end-user devices make local autonomous decisions.
A numerical evaluation of the proposed strategy is pre-
sented in terms of the overall framework’s operational
efficiency and performance. Results suggest that the two-
tier RL SLA strategy, under representative conditions,
converges rapidly and guarantees convergence. Further-
more, the technique demonstrates the greatest average

reward probability per end-user, both in the selection of
TTPs and the fractional split per chosen TTP.
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