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Perception of lipo-chitooligosaccharides by the bioenergy crop Populus
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ABSTRACT
Populus sp. is a developing feedstock for second-generation biofuel production. To ensure its success as 
a sustainable biofuel source, it is essential to capitalize on the ability of Populus sp. to associate with 
beneficial plant-associated microbes (e.g., mycorrhizal fungi) and engineer Populus sp. to associate with 
non-native symbionts (e.g., rhizobia). Here, we review recent research into the molecular mechanisms that 
control ectomycorrhizal associations in Populus sp. with particular emphasis on the discovery that 
ectomycorrhizal fungi produce lipochitooligosaccharides capable of activating the common symbiosis 
pathway. We also present new evidence that lipo-chitooligosaccharides produced by both ectomycor
rhizal fungi and various species of rhizobia that do not associate with Populus sp. can induce nuclear 
calcium spiking in the roots of Populus sp. Thus, we argue Populus sp. already possesses the molecular 
machinery necessary for perceiving rhizobia, and the next step in engineering symbiosis with rhizobia 
should be focused on inducing bacterial accommodation and nodule organogenesis. The gene Nodule 
INception is central to these processes, and several putative orthologs are present in Populus sp. 
Manipulating the promoters of these genes to match that of plants in the nitrogen-fixing clade may be 
sufficient to introduce nodulation in Populus sp.
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Global climate change is an immediate threat to society and 
will pose an even more significant threat to future generations 
unless immediate action is taken to mitigate greenhouse gas 
emissions by transitioning to renewable energy sources.1,2 

Biofuels provide the benefit of both reducing carbon dioxide 
emissions and sequestering atmospheric carbon into the soil.3 

Critics argue that feedstocks for first-generation biofuels can 
lead to the displacement of crops for human consumption. 
Fortunately, second-generation biofuels (e.g., lignocellulosic 
materials from herbaceous, hardwood, and softwood crops) 
that do not displace crops are becoming equally viable biofuel 
options.4

Populus sp. is a leading woody biomass feedstock because it 
grows rapidly, can be cultivated on marginal lands, has 
a relatively high cellulose but low ash and extractive content, 
and is relatively easy to harvest, handle and store.5 The gen
omes of Populus deltoides, P. euphratica, P. trichocarpa, and the 
hybrid P. tremula x alba have been sequenced,6–8 and many 
Populus species can be readily transformed, including those 
with sequenced genomes.9,10 These breakthroughs enabled 
transgenic Populus lines that are less recalcitrant to plant cell 
wall deconstruction and saccharification but still perform well 
in field conditions.11 Additionally, Populus sp. associates with 
beneficial soil microorganisms (e.g., mycorrhizal fungi), which 
increase its biomass production potential on marginal lands.12 

To capture the potential of microbial symbionts to enhance 
Populus sp. biomass production, we must expand our under
standing of the molecular mechanisms that facilitate Populus 

sp. interactions with beneficial microbes. Doing so could allow 
us to potentially engineer more efficient mycorrhizal associa
tions and novel associations with nitrogen-fixing rhizobia for 
which Populus sp. is not a native host.

Mycorrhizal fungi are filamentous, soil-dwelling microor
ganisms that engage in mutualistic associations with the roots 
of nearly 90% of all terrestrial plant species.13 Populus sp. can 
engage in the two most ecologically and economically essential 
types: arbuscular mycorrhizal (AM) and ectomycorrhizal 
(ECM) associations.14,15 Due to the agricultural significance 
of AM associations, they have been studied more extensively 
than ECM associations. The known molecular mechanisms 
regulating AM associations have been thoroughly summarized 
in recent reviews.16–19 Although less is known about the mole
cular mechanisms regulating ECM associations, much has 
been discovered and reviewed previously.20–22 Here we only 
highlight the most recent advances in our understanding of the 
ECM association between Populus sp. and the model ECM 
fungus Laccaria bicolor, with particular emphasis on the role 
of lipo-chitooligosaccharides (LCOs) in the ECM 
establishment.

Many of the recent advances in our understanding of the 
Populus–L. bicolor symbiosis began with genomic studies. 
Analysis of 45 ECM fungal genomes (including L. bicolor) 
showed that ECM fungi possess fewer genes encoding plant 
cell wall-degrading enzymes than ancestral wood-decaying 
fungi.23,24 Using transcriptomics, Veneault-Fourrey et al. 
observed that different types of carbohydrate-active enzymes 
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are expressed by L. bicolor during various colonization stages.25 

One of these, GH5-CBM1, has been shown to promote 
colonization.26 These findings highlight how evolution has 
shaped the genome of ECM fungi such that they have primarily 
retained the carbohydrate-active enzymes necessary for manip
ulating the cell wall of their host plant to facilitate ECM 
development.

The analysis of the L. bicolor genome specifically led to the 
discovery and functional characterization of the small secreted 
peptide (SSP) MiSPP7, which plays a crucial role in ECM 
development.27–30 Additional mycorrhiza-induced SSPs have 
since been identified, including MiSSP7.631 and MiSSP8,32 

involved in the early stages of mycorrhiza development in 
Populus sp. Intriguingly, Populus sp. also produces SSPs that 
are upregulated during its association with L. bicolor.33 These 
studies on SSPs highlight a rich molecular dialog between the 
host plant and fungal symbiont that coordinates the early 
development of the mutualistic association.

Similarly, both Populus sp. and L. bicolor release small RNAs 
that probably target genes in their symbiotic partner.34 The func
tional characterization of these small RNAs will likely provide 
exciting insights into the role of small RNAs in other plant– 
microbe interactions.35 Additionally, phytohormones play 
a considerable role in plant–microbe interactions,36 and the 
ECM symbiosis is no exception. Basso et al. (2020) recently eval
uated the concentrations of phytohormones in ECM roots and the 
impact of their exogenous application on the development of the 
Populus–L. bicolor symbiosis.37 They found that jasmonate, gib
berellin, salicylate, and ethylene signaling play multifaceted roles in 
the establishment of this symbiosis.

Identifying small-molecule signaling pathways involved in 
ECM symbioses has remained elusive until recently. A G-type 
lectin receptor-like kinase PtLecRLK1 was recently found to 
mediate Populus interaction with L. bicolor.38 Surprisingly, 
when expressed in the non-ECM host Arabidopsis, PtLecRLK1 
confers the ability for a shallow Hartig net-like structure to form, 
providing the first evidence for the potential to engineer host 

compatibility with ECM fungi in crop plants that cannot associ
ate with mycorrhizal fungi. We found that, like AM fungi and 
rhizobia, the ECM fungus L. bicolor produces LCOs.39 In com
patible host plants, AM fungi and rhizobia use LCOs to activate 
the “common symbiosis pathway” (CSP).40 Similarly, we found 
that the LCOs produced by L. bicolor activate the CSP in Populus 
and that components of the CSP are necessary for the full 
establishment of this ECM association.39

It is important to note that some ECM hosts (e.g., Pinus and 
Picea) have lost critical components of the CSP.20 Therefore, 
the CSP cannot be required for all ECM associations. However, 
we recently reported that LCOs are produced by Pinus and 
Picea fungal symbionts41 that may activate alternate non-CSP 
pathways in host plants or play roles beyond plant-fungal 
interactions. The presence of LCO-specific receptors in the 
model plant Arabidopsis thaliana,42 which like Pinus and 
Picea also lacks components of the CSP, indicates the existence 
of a CSP-independent signaling pathway for LCOs in plants. 
Beyond Pinus and Picea ECM fungal symbionts, we reported 
that nearly all filamentous fungi, including many diverse ECM 
fungi, produce LCOs, and that exogenous application of LCOs 
affects fungal development.41 Intriguingly, the structure of 
LCOs produced by the Pinus symbiont H. cylindrosporum is 
similar to those produced by L. bicolor.41 As such, we hypothe
sized that LCOs produced by H. cylindrosporum could activate 
the CSP in the non-host Populus spp.

To test this hypothesis, we followed the methods described 
in Cope et al.39 to evaluate nuclear calcium spiking at the roots 
of Populus tremula x alba clone 717 in response to a suspension 
of H. cylindrosporum hyphal segments. We observed 105 nuclei 
across four root segments and found that 68 of them exhibited 
spikes in nuclear calcium concentration. Among these spiking 
nuclei, the mean number of spikes that occurred within 20 min
utes of treatment with the hyphal suspension was 4.4 ± 0.4 
(Figure 1a). For comparison, the Populus symbiont L. bicolor 
induced calcium spiking an average of 6.3 ± 0.4 times in 90 of 
118 nuclei from four independent root segments (Figure 1b). 

Figure 1. Summary of Ca2+ spiking in Populus tremula x alba clone INRA 717-1-B4 roots in response to ectomycorrhizal fungal hyphae. Representative plots of Ca2+ 

spiking in response to hyphae fragments from three species of ectomycorrhizal (ECM) fungi, Hebeloma cylindrosporum, Paxillus ammoniavirescens, and Laccaria bicolor or 
a mock treatment (water). The ratio of spiking nuclei to total nuclei observed is indicated for each treatment.
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Also, we tested if Paxillus ammoniavirescens, another species of 
ECM fungi that colonizes Populus sp. and produces LCOs,41 

could also induce calcium spiking. We observed that it did, 
although not as strongly as L. bicolor or H. cylindrosporum (21/ 
63 spiking nuclei in three independent roots with an average of 
3.9 ± 0.4 spikes in 20 min.; Figure 1c). No spiking was observed 
in nuclei from mock-treated roots (Figure 1d). These findings 
suggest that LCOs produced by ECM fungi that colonize 
Populus sp. and those that do not are both capable of activating 
the CSP. Accordingly, we propose that host-compatibility in 
ECM associations with Populus sp. is not determined by 
changes in LCO decorations.

Based on this conclusion, we must ask what regulates the 
difference in plant reactions to LCO producing symbionts and 
LCO producing non-symbiotic fungi or bacteria? LCO- 
induced calcium spiking in Populus sp. requires the same 
CSP components as legumes,39 so it can be presumed that 
Populus sp. recognizes LCOs via the LYK/LYR receptor hetero
dimer conserved in most land plants.16,18 Discovering how 
Populus sp. discriminates between microorganisms may be 
the key to expanding its symbiotic potential.

In most host plants, rhizobia enter the root via trichoblasts 
(root hairs) and AM fungi via atrichoblasts. We would assume 
that AM fungi show this same preference in Populus sp.; how
ever, we have demonstrated that both epidermal cell types 
respond to LCOs in Populus sp.39 Therefore, the difference 
between Populus sp. and rhizobial host plants is not due to 
a lack of expression of the CSP in trichoblasts. The simplest 
explanation for different responses to symbiotic and non- 
symbiotic LCO producers would be differences in substitutions 
present in the LCO molecule that alter receptor-binding 
dynamics. This discrimination is observed in the response of 
legumes to rhizobia, where the presence of sulfate groups can 
cause the LCOs to trigger root hair curling in some species but 
not others.41 However, AM fungi appear to release a broad 
cocktail of LCOs with diverse substitutions, likely to enable 
a broad host range. Still, the conserved calcium spiking 

response seems to be activated by sulfated or non-sulfated 
LCOs in all tested species, though some difference in binding 
specificity is observed.39,43,44 To ensure that rhizobia did not 
possess any undetected substitution that controlled the host 
range, we applied LCOs from two species of rhizobia with 
diverse substitutions (Sinorhizobium meliloti 2011 and 
Rhizobium sp. IRBG74)45,46 to Populus tremula x alba clone 
717 roots, which produced a calcium spiking response indis
tinguishable from that of chemically synthesized LCOs or 
germinated spore exudates from AM fungi (Figure 2).39

Roots treated with Rhizobium sp. IRBG74 or S. meliloti 
LCOs exhibited an average of 8.5 ± 0.6 and 11.8 ± 0.6 spikes 
per nuclei, respectively (Figure 2a-figure 2b). Those Rhizobium 
sp. IRBG74-derived LCOs continued to produce a strong 
response at 10−8 M (8.1 ± 0.6 spikes in 20 minutes; Figure 3), 
which would be expected as Populus tremula x alba 717 exhi
bits a preference for non-sulfated LCOs.39 These responses are 
much lower than those seen in legumes, which produce cal
cium spikes in trichoblasts in response to as little as 10−14 

M LCOs, likely due to changes in the receptor dissociation 
constant.43

Several other hypotheses have been proposed to explain 
symbiont/non-host discrimination. First, all microorganisms 
release multiple microbe-associated molecular patterns 
(MAMPs), and integrating several pathways could tailor the 
response. Based on work in other species (including 
Arabidopsis, tobacco, tomato and rice) we would expect 
Populus sp. to recognize bacteria via peptidoglycan, lipopoly
saccharides, exopolysaccharides, and flagellin.47 It could differ
entiate between LCO producing bacteria and symbiotic fungi 
via a combinatorial perception of LCOs and other MAMPs. To 
test this, we applied cultures of both rhizobia species, pre- 
treated with host-derived inducers of LCO production, to 
Populus tremula x alba 717 roots. We observed a calcium 
spiking response in roots exposed to Rhizobium sp. IRBG74 
(an average of 5.6 ± 0.2 spikes per nuclei within 20 minutes; 
Figure 2c), but a weaker response to S. meliloti (4.08 ± 0.2 

Figure 2. Summary of Ca2+ spiking in Populus tremula x alba clone INRA 717-1-B4 roots in response to rhizobia. Representative plots of Ca2+ spiking in response to 10–7 

M LCOs from Rhizobium sp. IRBG74 and Sinorhizobium meliloti 2011 or the live bacteria (grown in VMM for 2 days with their activatory flavonoids, resuspended to an 
OD600 of 1.0 in an N/P/carbon depleted broth). The ratio of spiking nuclei to total nuclei observed is also indicated for each treatment.
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spikes, though only 10% of nuclei showed at least 3 spikes; 
Figure 2d). Thus, we can conclude that rhizobial MAMPs do 
not inhibit the pre-symbiotic signaling via the common sym
biosis pathway (CSP) in Populus sp. In Rhizobium sp. IRBG74, 
LCO production is triggered by the basal flavonoid naringenin, 
which poplar produces, so this initial signaling interaction 
could occur in nature. Further casting doubt on the multiple 
signals hypothesis, we have recently shown no apparent differ
ence in LCO structures between many symbiotic and patho
genic fungi,41 the latter of which would be evolutionarily 
incentivized to minimize any difference in structural 
modifications.

Alternate explanations for symbiont discrimination include 
that the symbiont is more ‘forceful’ than often thought, sup
pressing host immunity via a battery of effectors and 
phytohormones,27,48–50 while an immune response suppresses 
symbiotic signaling for non-compatible symbionts. The broad 
host range of the Glomeromycotina is not what we would 
expect from a pathogenic fungus, but this could be due to the 
benefits of symbiosis selecting against the evolution of host 
resistance to the symbionts broad range effectors. There may 
also be symbiotic signals that we are as yet unaware of, such as 
the putative signals that trigger the D14L pathway in rice,51 that 
must combine with the output of calcium spiking to allow 
symbiosis. One possible ‘signal’ could be the penetration appa
ratus (hypopodium) size, which has been observed to be smal
ler in the Glomeromycotina than in pathogenic fungi and 
could thus lead to a different mechanical stimulation.52,53 

However, it is unclear what would prevent a pathogen from 
evolving to replicate this if it was the only determinant.

The global nutrient status of the plant is known to regulate 
both fungal and bacterial symbioses; thus, in nutrient-replete 
conditions, LCO or other MAMP receptors are either inactive 
or trigger immune responses, and under nutrient-depleted 
conditions, they activate calcium spiking and the CSP. MAMP- 
triggered immunity is suppressed by a combination of CSP 
signaling (in response to LCO, chitooligosaccharides and – at 
least in legumes – peptidoglycans) and symbiont 
effectors.27,43,54 This suppression of MAMP-triggered immu
nity is a risk (forcing the plant to rely on effector-triggered 

immunity). Still, the nutritional benefits of symbiosis may be 
worth it when the plant has abundant carbon but low nutrient 
availability. Under this model, rhizobia produce the factors 
needed to induce the CSP in plants outside the nitrogen- 
fixing clade (NFC), but these plants lack coordination of the 
right gene set to allow proper infection or development of 
a root nodule. One apparent issue with this hypothesis are 
the examples of bacteria entering via crack entry (which 
could occur in any plant) and then forming infection structures 
directly into cortical cells using much of the same genetic 
machinery as Glomeromycotina fungi. As yet, there is no 
evidence that this occurs outside members of the NFC, sug
gesting there must be additional gating factors. 
Exopolysaccharides may play this role, as species-specific exo
polysaccharides and putative exopolysaccharide receptors 
(LjEPR3/MtLYK10) are important for infection thread pro
gression and bacterial survival inside the nodule.55,56 

However, the Medicago and Lotus systems show notable differ
ences, which may imply that these systems are a recent 
improvement to the RNS in these lineages, and more research 
is needed into the role of exopolysaccharides in basal RNS.

Understanding how Populus sp. distinguishes between 
LCO-producing microsymbionts and non-symbionts is crucial 
for engineering novel symbioses with nitrogen-fixing bacteria 
in this model system. Nitrogen-fixing symbiosis involves creat
ing a nodule, a de novo root organ, which is the site for nitrogen 
fixation and has evolved within the NFC, which includes the 
orders Fabales, Fagales, Cucurbitales, and Rosales.57,58 Root 
nodule symbiosis (RNS) offers the most efficient mode of 
symbiotic nitrogen fixation.59 With an ever-increasing demand 
for crop yield, nitrogen-fixing cereals are a “Holy Grail” for 
synthetic biologists.60 One approach for achieving this goal is 
through engineering RNS in cereals.57,59,61 However, due to the 
phylogenetic distance of cereals from the NFC, the engineering 
has to be an iterative process involving intermediate species.57 

Populus sp. are members of the Malpighiales, much closer 
relatives to the NFC than monocotyledonous or Solanaceous 
crops (Angiosperm Phylogeny Website). Moreover, sequenced 
Populus sp. carry orthologs of the genes known to be required 
for the RNS.62 Combined with amenability to genetic manip
ulations, these traits make Populus sp. a promising proof-of- 
concept model for introducing the RNS to new hosts.

Studies focused on nodulation in legumes have shown that 
the calcium spiking induced by LCOs is decoded by a calcium 
and calmodulin-dependent kinase (CCaMK), which further 
activates a suite of transcription factors, including Nodule 
INception (NIN).58,63–66 NIN is a central regulator of bacterial 
accommodation and nodule organogenesis in both the rhizo
bia and Frankia nodule symbioses. Its absence is tightly corre
lated to loss of the symbiosis.62 Like Populus sp., Eudicot 
species outside the NFC have NIN orthologs, whereas mono
cots do not.67 Recent studies have identified RNS-specific 
innovations in the cis-regulatory regions of NIN that arose 
within the NFC, suggesting promoter manipulation may be 
sufficient to introduce nodulation in Populus sp. without the 
need for the introduction of large transgene modules.67,68 

Although Populussp. does not produce nodules, various 
Rhizobium species have been found as endophytes in Populus 
via metagenomic or isolation approaches.69–71

Figure 3. Summary of Ca2+ spiking in Populus tremula x alba clone INRA 717-1-B4 
roots in response to Rhizobium sp. IRBG74 LCOs (10–8 M). Representative plot of 
Ca2+ spiking in response to 10–8 M LCOs from Rhizobium sp. IRBG74. The ratio of 
spiking nuclei to total nuclei observed is also shown.
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We have previously demonstrated that Populus responds to 
LCOs produced by its ECM and AM symbionts.39 Here, we 
have shown that Populus has a similar response to LCO- 
producing fungi and bacteria with which no beneficial interac
tions have been observed. While we cannot rule out that such 
interactions are occurring unobserved in nature, this seems 
unlikely. This apparent inability to distinguish between LCO- 
producing organisms in the initial stages of the interaction, 
even if other MAMPs are available from live bacteria or fungi, 
challenges our current understanding of the CSP. This para
digm shift also presents opportunities, as the barrier to artifi
cially expanding CSP-dependent symbioses to new host species 
may be less challenging than previously thought.
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