
Artificial Intelligence Empowered UAVs Data
Offloading in Mobile Edge Computing

Georgios Fragkos, Nicholas Kemp, Eirini Eleni Tsiropoulou
Dept. of Electrical and Computer Engineering

University of New Mexico
Albuquerque, NM, USA

gfragkos@unm.edu, nkemp@unm.edu, eirini@unm.edu

Symeon Papavassiliou
School of Electrical and Computer Engineering

National Technical University of Athens
Athens, Greece

papavass@mail.ntua.gr

Abstract—The advances introduced by Unmanned
Aerial Vehicles (UAVs) are manifold and have paved
the path for the full integration of UAVs, as intelli-
gent objects, into the Internet of Things (IoT). This
paper brings artificial intelligence into the UAVs data
offloading process in a multi-server Mobile Edge Com-
puting (MEC) environment, by adopting principles and
concepts from game theory and reinforcement learning.
Initially, the autonomous MEC server selection for par-
tial data offloading is performed by the UAVs, based on
the theory of the stochastic learning automata. A non-
cooperative game among the UAVs is then formulated
to determine the UAVs’ data to be offloaded to the
selected MEC servers, while the existence of at least
one Nash Equilibrium (NE) is proven by exploiting the
power of submodular games. A best response dynamics
framework and two alternative reinforcement learning
algorithms are introduced that converge to an NE, and
their tradeoffs are discussed. The overall framework
performance evaluation is achieved via modeling and
simulation, in terms of its efficiency and effectiveness,
under different operation approaches and scenarios.

Index Terms—UAV Data Offloading, Mobile Edge
Computing, Reinforcement Learning, Game Theory

I. Introduction

The rise and evolution of 5G networks, as well as
the latest release of 6G white paper setting the research
challenges for wireless intelligence [1], have focused the
interest of the research community on the communication,
computing, and control of billions of connected devices,
mainly placed on the scene by the explosion of the Internet
of Things (IoT). Within this setting, multiple heteroge-
neous devices with diverse computational and communi-
cation capabilities are expected to exchange and process
large amount of data in an autonomous manner. Artificial
Intelligence (AI) has emerged as a powerful tool to support
devices’ autonomous human-like decision-making, while
being founded on and supported by multi-disciplinary
techniques, such as machine learning, control theory, game
theory, optimization theory, and meta-heuristics [2].

At the same time, owing to the increasing computational
demands of the vast number of devices connected over
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the Internet, Mobile Edge Computing (MEC) - repre-
senting the practice of processing data near the edge
of the network [3] - is gaining significant momentum to
efficiently handle the corresponding loads, while meeting
the devices’ Quality of Service (QoS) requirements in
terms of delay, latency, and energy efficiency. Furthermore,
lately, there has been heavy investment in the development
of Unmanned Aerial Vehicles (UAVs) and multi-UAVs
systems that can collaborate and complete missions more
efficiently. Emerging technologies, including 5G networks,
have significant potential on UAVs equipped with cameras
and sensors in delivering IoT services, requiring the execu-
tion of computationally intensive tasks [4]. In such cases,
MEC arises as a powerful tool to support their operation.

Motivated by the aforementioned arguments and ob-
servations, in this paper, we propose an AI-driven data
offloading approach to enable the UAVs to optimally of-
fload part of their data to a set of MEC servers for further
processing by combining key principles and methodologies
from Game Theory and Reinforcement Learning.

A. Related Work

The problem of users’ data offloading to a MEC server
has been studied in [5] jointly with the interference man-
agement problem in wireless cellular networks by formu-
lating and solving the sequential optimization problems of
computation offloading decision, physical resource block
allocation, and MEC computation resource allocation. A
variation of this problem is studied in [6] by jointly opti-
mizing the above metrics, as well as the content caching
strategy of the MEC servers, in one holistic optimization
problem that is transformed to a convex one in order to be
solved. A reinforcement learning approach (Q-learning) is
introduced in [7] to jointly optimize the users’ offloading
decision and the computational resource allocation to-
wards minimizing the sum cost of users’ delay and energy
consumption. A minimization problem of users’ energy
consumption is introduced in [8] consisting of the energy
cost for transmitting and processing data. The problem
of data offloading to a MEC server is formulated as a
non-cooperative game among vehicles in [9] targeting at



reducing the latency of data offloading and the existence
of a Nash Eqiulibrium (NE) is shown.

Focusing on the UAVs’ data offloading to a MEC server,
the authors in [4] formulate a multi-nature strategy (i.e.,
energy consumption, time delay, and computation cost)
non-cooperative game among the UAVs, while they prove
the NE’s existence and propose a distributed algorithm
to determine the UAVs’ strategies at the NE. This work
is extended in [10] to minimize a combination of energy
overhead and delay for each UAV. The authors in [11]
minimize the UAV’s mission completion time by jointly
optimizing its trajectory and the computation offloading
to the ground base stations’ MEC servers, while consider-
ing the UAV’s maximum speed constraint and the MEC
servers’ computation capacity capabilities.

B. Contributions & Outline

Despite the significant advances that have been obtained
in each of the aforementioned areas in isolation, limited re-
search work has been performed in empowering the UAVs’
operation and decision-making with adopting the AI tech-
nology. AI techniques have been traditionally focused on
machine learning frameworks with applications primarily
in robotics and image processing, by mainly adopting the
artificial neural networks [12]. Game theory has arisen as
a crucial element and aspect in AI today, gaining ground
in particular in multi-agent systems. In principle, multiple
agents can either compete or collaborate to accomplish
a task with accuracy and efficiency - the foundation for
reinforcement learning in AI. In this paper we adopt a
similar philosophy and perspective to support the UAVs
autonomous intelligent decision making by adopting game
theory and reinforcement learning [2].

To the best of our knowledge, this is the first work
in the existing literature where the use of AI techniques,
e.g., reinforcement learning and game theory, enables the
UAVs to promote human-like decision-making, in terms
of selecting a MEC server to offload their computational
tasks, and determining the optimal amount of offloaded
data to maximize the perceived QoS. The key scientific
contributions of our work, that differentiate it from the
rest of the existing literature, are summarized as follows:
1. A multi-UAVs and multi-MEC servers environment is
considered. The utility of each UAV is formulated as a
function of the amount of data that is offloaded to a
selected MEC server considering the UAV’s transmission
cost, the local computing cost, as well as the impact on its
perceived QoS by the transmission cost of the rest of the
UAVs in combination with the exploitation of the MEC
server’s computing resources (Section II).
2. Based on the theory of submodular games, artificial
intelligence is embodied in the decision of the optimal data
offloading of each UAV (Section III-A). A non-cooperative
game among the UAVs is formulated with the objective to
maximize each UAV’s utility function. The game is proven

to be submodular, and thus the existence of an NE is
shown (Section III-B).
3. Towards each UAV determining the NE in an au-
tonomous manner, three algorithms are proposed: (i) Best
Response Dynamics (Section III-C), (ii) Max Log-Linear
(Max-logit) learning, and (iii) Binary Log-Linear (B-logit)
learning. The latter two algorithms are based on the
principles of reinforcement learning (Section III-D).
4. The MEC server selection by each UAV is achieved
by intelligently considering each server’s reward function
depending on its relative computing capability and dis-
tance from the UAVs, as well as the QoS that it can
potentially provide to the UAVs. Each UAV acts as a
stochastic learning automaton (SLA), which intelligently
selects a MEC server to process its data (Section IV).
5. A series of simulation experiments are realized to eval-
uate the performance and the inherent attributes of the
proposed artificial intelligent UAVs’ data offloading ap-
proach in the mobile edge computing environment, while
a detailed comparative numerical study is presented to
demonstrate its benefits (Section V). Finally, Section VI
concludes the paper.

II. System Model & UAV’s Utility Function

We consider the communication and computing en-
vironment of a system consisting of |S| MEC servers
and |D| UAVs, where their sets are denoted as S =
{1, . . . , s, . . . , |S|} and D = {1, . . . , d, . . . , |D|}, respec-
tively. Each UAV d ∈ D selects one MEC server s ∈ S
to offload either part or all of its data in order the UAV’s
computation task to be processed, while the rest of the
computation task’s data are processed locally at the UAV.
Each UAV has a computation task Td = (Id, Cd, φd),
where Id[bits] and Cd[CPUcycles] denote the compu-
tation total input bits and the total number of CPU
cycles required to accomplish the computation task Td,
respectively. The parameter φd[ CP Ucycles

bits ] expresses the
computation complexity of the task requested by the UAV,
and its value depends on the nature of the application, i.e.,
a higher φd expresses a more computationally intensive
task. Each MEC server s ∈ S has a computation capability
Fs[ CP Ucycles

sec ] to process all the UAVs’ offloaded data.
Accordingly, each UAV decides in an autonomous and
distributed manner to offload bd, bd ∈ Ad = [0, Id] amount
of data to a selected MEC server, while the rest of the
computation task’s data, i.e., (Id − bd), are processed
locally. The UAV’s local computation capability is denoted
by Fd[ CP Ucycles

sec ], while its local power consumption to
process the (remaining) data locally is ρd[ W atts

CP Ucycles ]. We
consider that each UAV has a fixed maximum power P Max

to transmit its data to the MEC server that selects to be
served from.

A holistic utility function is introduced for each UAV
to capture its perceived QoS prerequisites’ satisfaction by
processing its data in the selected MEC server. The UAV’s
utility function is formulated as follows.



Fig. 1: Artificial Intelligence Empowered UAVs Data Of-
floading Framework in Mobile Edge Computing
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where w, w1, w2 and w3 are positive constants acting as
weight parameters and selected appropriately to ensure
the same order of magnitude of the individual considered
terms in the UAV’s utility. The first term of the UAV’s
utility expresses its perceived satisfaction from offloading
its computation task to the selected MEC server. Specif-
ically, the more data it offloads to the MEC server, the
more it is satisfied, as it will save its personal resources
by not processing them locally. However, its utility also
depends on the computation capabilities of the overall
MEC system and the amount of data that the rest of
the UAVs offload to the MEC servers for further process-
ing. The second term of the UAV’s utility expresses the
UAV’s transmission cost, while the third term shows the
robustness of the MEC system observed via the amount
of bits that the rest of the UAVs offload (−1 < c < 0 is
a negative constant). Specifically, if the rest of the UAVs
offload a large amount of data to the MEC servers, this is
a positive feedback for the examined UAV that the MEC
system is robust. The fourth term of the UAV’s utility
expresses the UAV’s local computing cost to process the
remaining data locally. The fifth term of Eq. 1 also acts as
a positive feedback to the UAV, by observing the amount
of data that the rest of the UAVs offload relatively to the
computation capabilities of the overall MEC system, while
finally, the last term of Eq. 1 captures the cost that the
UAV experiences by the exploitation of the MEC system’s
computation capabilities by itself and the rest of the UAVs.

The proposed AI-empowered UAVs’ data offloading
model in a MEC environment is depicted in Fig. 1. Ini-
tially, each UAV acts as an SLA (Section IV) and selects
a MEC server to partially offload its data for further

processing at each time slot. Within the duration of each
time slot, each UAV determines its data offloading strategy
by participating in a non-cooperative game with the rest
of the UAVs (Section III). Towards determining the Nash
Equilibrium of the non-cooperative game, three algorithms
have been proposed: the best response dynamics (BRD)
and two reinforcement learning algorithms, namely the
Max-logit and B-logit. The overall loop of MEC selection
by the UAVs and determining the data offloading strate-
gies of the UAVs is repeated iteratively as time evolves.

III. Artificial Intelligence Empowered UAVs’

Data Offloading

A. Data Offloading: An S-Modular Game Perspective
Each UAV acts as an artificial intelligent node making

decisions to which MEC server to offload part of its com-
puting task data for further processing. In this section, we
present a non-cooperative game-theoretic approach based
on the theory of submodular games in order to enable the
UAVs to decide the optimal amount of data to offload to
a MEC server, by presenting a human-like behavior. The
process of the MEC server selection by the UAVs will be
presented in Section IV.

A non-cooperative game among the UAVs is formulated
G = [D, {Ad}d∈D, {Ud}d∈D], where as mentioned before
D is the set of UAVs, Ad = [0, Id] is the set of data that
the UAV d needs to process for the computation task Td,
and Ud denotes the UAV’s utility function. The outcome of
the game is a Nash Equilibrium (NE) b∗ = [b∗

1, . . . , b∗
|D|]

(denoting the amount of data that each UAV offloads),
which is a stable point for the overall examined system of
the multi-UAVs and the multi-MEC servers. At the NE,
each UAV offloads the amount of bits to the selected MEC
server in order to maximize its utility function, as follows.

max
bd∈Ad

Ud(bd, b−d), ∀d ∈ D

s.t. 0 ≤ bd ≤ Id

(2)

Towards proving the existence of at least one NE of the
non-cooperative game G, as solution of the maximization
problem (2), the theory of submodular games has been
adopted.

Definition 1: The non-cooperative game G is submodu-
lar, if for all the UAVs, the following conditions hold true.
A. Ad is a compact subset of an Euclidean space.
B. Ud(bd, b−d) is smooth, submodular in bd, and has non-
increasing differences in (bd, b−d), i.e., ∂2Ud(bd,b−d)

∂bd∂bi
≤ 0.

The submodular games are characterized by strategic
substitutes implying that an increase in the actions of one
UAV leads the other UAVs to decrease their actions, i.e.,
amount of offloaded data, accordingly. In a submodular
game, there always exist external equilibria: a largest
element bd = sup{bd ∈ Ad : BR(bd, b−d) ≥ bd} and a
smallest element bd = inf{bd ∈ Ad : BR(bd, b−d) ≤ bd}
of the equilibrium set, where BR(·) denotes the UAV’s
d, d ∈ D best response strategy to other UAVs’ strategies.



B. Problem Solution
The theory of submodular games captures very well

the UAVs data offloading problem given that if a UAV
increases its action, i.e., offloads a large amount of data,
then the interference in the communication environment
increases and the MEC system has to process more data.
Thus, the rest of the UAVs experience the ”congestion”
in both the communication and computing environment
and accordingly decrease their actions, i.e., offload a lower
amount of data.

Theorem 1: The non-cooperative game
G = [D, {Ad}d∈D, {Ud}d∈D] is submodular for all
bd ∈ Ad and has at least one Nash Equilibrium.

Proof: The strategy space Ad = [0, Id] is a compact
subset of an Euclidean space. The UAV’s utility function
Ud(bd, b−d), as defined in Eq. 1, is smooth, as it has deriva-
tives of all orders everywhere in its domain Ad. Towards
showing that the utility function Ud(bd, b−d) is submod-
ular and has non-increasing differences in (bd, b−d), we
determine its second order partial derivative, as follows.

∂2Ud(bd, b−d)
∂bd∂bi

= −

∑
∀s∈S

Fs

∑
∀d∈D

Id
· e

Fd∑
∀d∈D

Fd

·w

(1 + c)w1

We conclude that ∂2Ud(bd,b−d)
∂bd∂bi

≤ 0, as 1 + c ≥ 0,
thus the non-cooperative game G is submodular and
has at least one Nash Equilibrium, which is defined as:
b∗

d = argmax
bd∈Ad

Ud(bd, b−d).

C. Best Response Dynamics (BRD) Approach
Towards enabling the UAVs to determine the amount

of data that they should offload to the MEC server in
order their strategies to converge to the NE, the best
response dynamics approach is adopted. Based on the
latter, the UAVs make intelligent data offloading decisions
in an autonomous manner. Let us denote the UAV’s best
response strategy in the Euclidean space Ad, as below.

BR(bd, b−d) = b∗
d = argmax

bd∈Ad

Ud(bd, b−d) (3)

Theorem 2: In the non-cooperative game G =
[D, {Ad}d∈D, {Ud}d∈D], the UAVs’ strategies converge to
a Nash Equilibrium.

Proof: In order to prove that the UAVs’ strategies
converge to a NE, we have to prove that each UAV’s best
response strategy is a standard function. A function f is
standard, if the following three conditions hold true.
A. Positivity: f(x) > 0;
B. Monotonicity: if x ≥ x′, then f(x) ≥ f(x′), and
C. Scalability: for all a > 1, af(x) ≥ f(ax) for all x > 0,
where x = [x1, . . . , x|D|] is a NE.

Regarding the non-cooperative game G =
[D, {Ad}d∈D, {Ud}d∈D], we can easily show that the
above three conditions hold true, as follows.
A. bd > 0, thus BR(bd, b−d) > 0, via Eq. 3 ;

B. If bd ≥ b′
d, then via Eq. 3 we have BR(bd, b−d) ≥

BR(b′
d, b−d), and

C. For all a > 1, BR(bd, b−d) is monotonous with respect
to bd in Ad, thus aBR(bd, b−d) ≥ BR(abd, b−d).

The algorithm that implements the aforementioned
UAVs’ best response dynamics converging to the non-
cooperative game’s G NE is presented in Algorithm 1. The
complexity of the BRD algorithm is O(|D|Ite), Ite >> |D|
(Section V), where Ite is the total number of iterations in
order the algorithm to converge to the NE.

D. Reinforcement Learning Approach
As alternatives to the best response dynamics approach

described above, we utilize two artificial intelligent algo-
rithms, namely the Binary Log-Linear (B-logit) and the
Max Log-Linear (Max-logit) algorithms, in order each
UAV to decide in an autonomous and distributed manner
the amount of data that it should offload to the MEC
server. These approaches require no information exchange
among the UAVs to converge to the NE of the formulated
non-cooperative game and their convergence to a NE is
proven in [13]. In B-logit and Max-logit algorithms, we as-
sume that each UAV has a discrete space of strategies from
which it can choose from, i.e., bd ∈ Ad = {bmin

d , . . . , bmax
d }

and initially it selects a random amount of information
b

(ite=0)
d with equal probability Pr(b(ite=0)

d ) = 1
|Ad| . At

every iteration, one UAV is selected randomly to conduct
exploration and learning. Therefore, at the ite iteration
the UAV d explores an alternative amount of information
b′

d
(ite) as its new strategy with equal probability 1

|Ad| ,
receiving thus a respective utility U ′

d
(ite)(b′

d
(ite), b(ite)

−d )
(exploration phase). At the ite iteration, UAV d updates
its strategy, i.e., the amount of information that it will
offload to the MEC server, according to the following
probabilistic learning rule, i.e., Eq. 4a, 4b regarding the
B-logit approach, and Eq. 4c, 4d with refrence to the
Max-logit approach, while the rest UAVs maintain their
previously selected actions unchanged (learning phase).

P r(b(ite)
d = b

′(ite)
d ) = eU

′(ite)
d

·β

eU
(ite−1)
d

·β + eU
′(ite)
d

·β
(4a)

Algorithm 1 Best Response Dynamics
1: Input: S, D, Td, ρd, ∀d ∈ D
2: Output: Profile Strategy at NE: b∗

d
3: Initialization: ite = 0, Convergence = 0, bd

(ite=0)

4: while Convergence == 0 do
5: ite = ite + 1;
6: for d=1 to D do
7: UAV d determines b

∗(ite)
d w.r.t. b−d

∗(ite−1)(Eq.3)
and receives U

(ite)
d

8: end for
9: if bd

∗(ite) == bd
∗(ite−1) then

10: Convergence = 1
11: end if
12: end while



P r(b(ite)
d = b
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d ) = eU
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d

·β

eU
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·β + eU
′(ite)
d

·β
(4b)

P r(b(ite)
d = b

′(ite)
d ) = eU

′(ite)
d

·β

max(eU
(ite−1)
d

·β , eU
′(ite)
d )

(4c)

P r(b(ite)
d = b

(ite−1)
d ) = eU

(ite−1)
d

·β

max(eU
(ite−1)
d

·β , eU
′(ite)
d )

(4d)

where b
(ite−1)
d , U

(ite−1)
d are the UAV’s d strategy and

utility at the (ite − 1) iteration, respectively. Due to the
space limitation, the B-logit and Max-logit algorithms
are jointly presented in Algorithm 2. The complexity of
the Max-logit/B-logit algorithm is O(Ite′), Ite′ >> |D|
(Section V), where Ite′ is the total number of iterations
in order the algorithms to converge to the NE.

IV. MEC Server Selection Through

Reinforcement Learning

In this section, we introduce a reinforcement learning
approach based on the theory of stochastic learning au-
tomata (SLA) to enable each UAV to select the most ben-
eficial MEC server to process its data. Each MEC server
is characterized by a reputation score, which increases as
the MEC server’s relative computation capability and the
utilities of the users served by the examined MEC server
increase, and if the MEC server’s relative distance from the
users decrease. The formal definition of the MEC server’s
reputation score is provided in Eq. 5.

rs = ( Fs∑
∀s∈S

Fs

∑
∀d∈D

Ud,sd

∑
∀s∈S

∑
∀d∈D

Ud,sd

)/
∑

∀d∈D

dd,sd

∑
∀s∈S

∑
∀d∈D

dd,sd

(5)

where sd denotes the MEC server that the UAV d offloads
its data and dd,sd

[m] denotes the distance of the UAV d
from the MEC server sd that it is served from.

Each UAV acts as an SLA and learns the most beneficial
MEC server to offload its data in order to be processed,
while dynamically adapting to the changes of the multi-
UAVs multi-MEC servers environment. Each UAV selects
a MEC server to offload its data in a probabilistic manner
by using the following action probabilities.
P rd,s(t + 1) = P rd,s(t) + brs(t)(1 − P rd,s(t)), s(t+1) = s(t) (6a)

P rd,s(t + 1) = P rd,s(t) − brs(t)P rd,s(t), s(t+1) �= s(t) (6b)

where b, 0 < b < 1 is a step-size parameter that con-
trols the convergence time of the SLA algorithm. Eq. 6a
presents the probability Prd,s(t + 1) of the UAV d in the
time slot t + 1 to select the same MEC server to be served
from as in time slot t, while Eq. 6b shows the probability
of a UAV to select a different MEC server than the one
that was serving the UAV in the previous time slot. It is
noted that as the time evolves, each UAV selects per time
slot a MEC server to partially offload its data, and within
the time slot, each UAV determines the NE (Section III)

by following any of the three alternative approaches, i.e.,
best response dynamics, B-logit, and Max-logit.

V. Numerical Results

In this section, a detailed numerical evaluation of the
proposed data offloading framework in a multi-UAVs
multi-MEC environment is conducted. The performance
evaluation initially focuses on the pure operation charac-
teristics of the proposed game theoretic data offloading
framework (Section V-A), under the best response dynam-
ics (BRD) algorithm. Subsequently, the performance of the
two alternative reinforcement learning approaches (i.e.,
Max-logit and B-logit) to determine the optimal amount
of offloaded data for each UAV, is studied in Section V-B.
Additionally, a comparative analysis of the performance
of the best response dynamics against these two reinforce-
ment learning approaches is also presented. In the follow-
ing, we considered a multi-UAVs multi-MEC servers envi-
ronment consisting of |S|= 3 MEC servers and |D|= 80
UAVs, where each UAV’s distance from each MEC server
is randomly and uniformly distributed in the interval
(10m, 400m). Also, for demonstration only purposes, we
have assumed the following system parameterization: Fs ∈
[1, 5]1012CPUcycles/sec, Id = [20, 100]MBytes, Cd =
[1, 5]109CPUcycles, φd = Cd/Id, ρd = 130W/CPUcycles,
w = 50, w1 = 1, w2 = 1.47 · 1020, w3 = 106, and
P Max = 2W for each UAV. The proposed framework’s
evaluation was conducted via modeling and simulation and
executed in a MacBook Pro Laptop, 2.5GHz Intel Core i7,
with 16GB LPDDR3 available RAM.

A. Pure Game Theoretic Framework Operation Evaluation
Fig. 2 presents the UAV’s average achieved utility (left

vertical axis) and the average amount of offloaded data to
the MEC servers (right vertical axis), as a function of the
BRD algorithm’s iterations (bottom horizontal axis) and

Algorithm 2 B-logit (Max-logit)
1: Input: S, D, Td, ρd, ∀d ∈ D
2: Output: Profile Strategy at NE: b∗

d
3: Initialization: β = 1000, ε = 1018, T , ite = 0,

Convergence = 0, bd
(ite=0)

4: while Convergence == 0 do
5: ite = ite + 1;
6: UAV d selects b

′(ite)
d with equal probability 1

|Ad| ,

receives U
′(ite)
d and updates b

(ite)
d based on Eq.4a,

4b (Eq.4c, 4d)
7: The other UAVs keep their previous actions, i.e.,

b(ite)
−d = b(ite−1)

−d

8: if |(

T∑
ite=0

|D|∑
d=1

(U (ite)
d )

T
−

|D|∑
d=1

U ite
d )|≤ ε then

9: Convergence = 1
10: end if
11: end while
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Fig. 2: Best Response Dynamics

the actual execution time required for convergence to the
NE. The results reveal that the BRD algorithm converges
to the NE in less than 10 iterations which corresponds to
less than 1 msec, indicating that each UAV determines its
data offloading strategy in a fast manner.

With reference to the MEC server selection component
of our framework, in Fig. 3 we present the operation of the
SLA algorithm, which enables the UAVs to select a MEC
server to offload their data. For the following numerical re-
sults, we consider the SLA algorithm’s learning parameter
b = 0.7. The convergence of the action probabilities to the
three MEC servers for an indicative UAV is presented in
Fig. 3a showing that the UAVs conclude to the selection
of a MEC server relatively fast (requires less than one
second), while in the included subfigure a Monte Carlo
analysis is performed for 10, 000 runs of the SLA algorithm
for each value of the learning parameter b = 0.1, 0.2, . . . , 1.
The results demonstrate that as the learning parameter b
increases, the UAVs explore less the available options of
MEC servers, making a faster decision and requiring fewer
iterations for convergence. Fig. 3b depicts the evolution
of the MEC servers’ reputation score (left vertical axis)
according to Eq. 5, and the corresponding UAVs’ average
action probability per MEC server (right vertical axis). It
is observed that the MEC server with the higher reputa-
tion score achieves a higher average probability to attract
more UAVs to offload their data to it. This is confirmed in
Fig. 3c where the MEC server with the highest reputation
score, i.e., MEC server 3, attracts more UAVs, while those
UAVs achieve higher average utility. Consequently, MEC
server 3 receives increased offloaded data from the UAVs
(Fig. 3d) compared with the other servers.

B. Reinforcement Learning and Comparative Evaluation
In this section, we initially study and analyze the

convergence and behavior of the two alternative (with
reference to the BRD algorithm) reinforcement learning
approaches (i.e., Max-logit and B-logit) as they were intro-
duced in Section III. D, towards determining the optimal
amount of offloaded data for each UAV. In particular Fig.
4a (Fig. 4c) and Fig. 4b (Fig. 4d), present the UAVs’
welfare i.e., summation of all the UAVs’ utilities, and the
UAVs’ average amount of offloaded data respectively, for
the Max-Logit (B-Logit) algorithm, as a function of the
corresponding required iterations (bottom horizontal axis)

and actual execution time (upper horizontal axis) and for
different values of the learning parameter β.

Regarding both reinforcement learning algorithms, the
results reveal that both reinforcement learning algorithms
converge to the NE, by following the exploration and
the learning phases, however this is achieved at a slower
manner compared to the BRD algorithm, i.e., order of
magnitude of sec compared to msec. The latter phe-
nomenon is observed as the learning algorithms perform
the exploration phase in order to learn the data offloading
strategy, while the BRD algorithm determines it by per-
forming the optimization presented in Eq. 3. Moreover, it
is confirmed that the Max-logit algorithm converges faster
than the B-logit to the NE, while for greater values of the
learning parameter β, the UAVs converge to a better NE in
terms of the amount of offloaded data [14] (Fig. 4b and 4d).
Therefore, by offloading a greater amount of data to the
MEC servers for further processing, they achieve greater
individual UAV utilities, and consequently, their overall
welfare is larger (as shown in Fig. 4a and 4c respectively).

Subsequently, a comparative analysis of the game-
theoretic BRD algorithm against the aforementioned rein-
forcement learning paradigm, in terms of the performance
of the overall proposed framework, is presented. For the
comparison, we choose the Max-logit algorithm among
the reinforcement learning ones, since it presented better
results compared to the B-logit algorithm, as discussed
above. Specifically, Fig. 5a presents the UAVs’ amount
of offloaded data at the NE as a function of the UAVs’
IDs for the game-theoretic BRD algorithm and Max-
logit reinforcement learning algorithm, considering differ-
ent action space sizes, i.e., 10, 1, 000, and 10, 000 available
actions. The results reveal that as the number of available
actions increases, the Max-logit algorithm converges to
values of the amount of offloaded data closer to the BRD
algorithm’s values, thus, the corresponding mean square
error decreases (Fig. 5b). In that respect the reinforcement
learning approach (i.e., Max-logit) can achieve similar
results with the game-theoretic approach (i.e., BRD), how-
ever, without requiring any information exchange among
the UAVs, i.e., the data offloading vector of the rest of
the UAVs b−d. Specifically, it is also observed that the
Max-logit algorithm converges to a better NE among
the available ones compared to the BRD algorithm, even
for a small number of available data offloading actions.
Accordingly, the UAVs achieve greater utilities under the
Max-logit algorithm (Fig. 5c) as they offload more data to
the MEC servers for further processing (Fig. 5a).

Moreover, Fig. 5d and Fig. 5e present the UAVs’ average
utility and the execution time of the BRD, Max-logit, and
B-logit algorithms. The results illustrate that the UAVs
achieve the greater average utility under the Max-logit
algorithm, as they converge to a better NE among the
available ones as explained before (Fig. 5a). Also, the BRD
algorithm has the smallest execution time, as it practically
solves a closed-form optimization problem, i.e., Eq. 3, and
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Fig. 3: Stochastic Learning Automata: MEC Server Selection
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Fig. 4: Reinforcement Learning Algorithms: Max-Logit and B-logit
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Fig. 5: Game-theoretic Best Response Dynamics vs Reinforcement Learning Approaches

the UAVs do not invest time in the exploration phase, as it
happens in any of the reinforcement learning approaches.
The B-logit algorithm has the slowest execution time, as
it slowly updates the action probabilities (Eq. 4a, 4b)
compared to the Max-logit algorithm (Eq. 4c, 4d).

VI. Conclusions

In this paper, an artificial intelligence enabled mecha-
nism to support the UAVs’ data offloading in a multi-MEC
servers environment, by exploiting the power of game the-
ory and reinforcement learning, is devised and evaluated.
In particular, a non-cooperative game among the UAVs
is formulated to determine the UAVs’ data offloading to
the MEC servers and the existence of at least one NE is
proven. A best response dynamics framework is initially
introduced that is shown to converge to an NE point,
while two alternative reinforcement learning algorithms
are presented that also achieve to converge to the NE point
without requiring to exchange any information among the
UAVs, at the cost however of lower convergence speed.
Moreover, a reinforcement learning algorithm is proposed
based on the theory of the stochastic learning automata
to enable the autonomous MEC server selection by the
UAVs. The overall framework was evaluated via modeling
and simulation, in terms of its efficiency and effectiveness,
by studying multiple operation approaches and scenarios.

Part of our current and future work contains the ex-
tension of this model under the principles of Contract
Theory, where each UAV acts as an ”employer” and the
MEC servers as ”employees” offering their data processing
capabilities and being rewarded by the UAVs.
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