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ABSTRACT

In this paper, we exploit the capabilities of Fully Autonomous
Aerial Systems’ (FAAS) and the Mobile Edge Computing
(MEC) to introduce a novel data offloading framework and
support the energy and time efficient video processing in
surveillance systems based on game theory in satisfaction
form. A surveillance system is introduced consisting of Ar-
eas of Interest (Aols), where a MEC server is associated with
each Aol, and a FAAS is flying above the Aols to collec-
tively support the IP cameras’ computing demands. Each
IP camera adopts a utility function capturing its Quality of
Service (QoS) considering the experienced time and energy
overhead to offload and process its data either remotely or
locally. A non-cooperative game among the cameras is for-
mulated to determine the amount of offloading data to the
MEC server and/or the FAAS. The novel concept of Satis-
faction Equilibrium (SE) is introduced where the IP cameras
satisfy their minimum QoS prerequisites instead of maxi-
mizing their performance by wasting additional system re-
sources. A distributed learning algorithm determines the
IP cameras’ stable data offloading, while a reinforcement
learning algorithm determines the FAAS’s movement among
the Aols exploiting the accuracy, timeliness, and certainty
of the collected data by the IP cameras per Aol. The perfor-
mance evaluation of the proposed framework is achieved via
modeling and simulation.
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1 INTRODUCTION

Surveillance systems have recently gained great attention
due to the increased number of terrorist attacks, which chal-
lenge the public safety and homeland security [10]. With
the advent of Internet of Things (IoT), the smart Internet
Protocol (IP) cameras have enabled the surveillance systems
to capture real-time video and process it either locally [8], or
remotely at the cloud computing environment. However, the
surveillance systems confront the challenges of increased
computing demand and time criticality in processing the
recorded information. The use of Unmanned Aerial Vehicles
(UAVs) and remote computing capabilities has been shown
to improve the performance of the surveillance systems.

1.1 Related Work and Motivation

The authors in [12] have introduced an image uploading
process from the IP cameras to the cloud, where the images
captured by the IP cameras are processed at the cloud to
decrease the local processing cost. In [3], a drone-assisted
surveillance system is studied, where the videos captured by
the drone are forwarded to Fog Computing nodes through
the drones’ ground controller, in order to track vehicles’
movement. In [9] an UAV-based crowd surveillance system
is introduced where the UAVs capture videos that either
process them on board or offload them to MEC servers.

Despite the advantages introduced, the use of UAVs still
requires human control. To address this issue, the Fully Au-
tonomous Aerial Systems (FAAS) have been recently intro-
duced. The FAAS is a flying robotic system equipped with
sensors, computing resources, wireless communication in-
terfaces or any combination of them and is able to operate
fully autonomously with no human intervention.
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One common characteristic of the aforementioned ap-
proaches is their assumption that each entity involved in the
surveillance system aims at maximizing its Quality of Service
(QoS). However, the maximization of each involved entity’s
QoS is a sub-optimal solution, which under several circum-
stances lead to energy inefficiencies. Towards this direction,
the games in satisfaction form have been introduced in Game
Theory [4], where the autonomous entities aim to "satisfy"
their minimum QoS prerequisites in a distributed manner in-
stead of targeting at maximizing their QoS. In this paper, the
FAAS’s and the MEC servers’ computing capabilities are ex-
ploited to introduce a novel data offloading framework based
on the satisfaction games, in order to ultimately support the
energy and time efficient video processing in surveillance
systems consisting of several IP cameras.

1.2 Contributions and Outline

Specifically, we introduce a surveillance system paradigm
consisting of areas of interest (Aol) with IP cameras. The
cameras partially offload the computing tasks related to the
videos’ processing to the MEC server that is associated with
the Aol or to the FAAS, if the latter is flying above the Aol,
while the rest are executed locally at the IP cameras. Each
utilized IP camera experiences a time and energy overhead
in order to offload part of its data and process the remaining
part of the data locally (Section 2). A holistic utility function
is introduced representing the IP cameras’ level of achieved
QoS, while accounting for their time and energy constraints
associated with the video processing procedure. To realize
an autonomous system operation, a non-cooperative game
among the IP cameras is formulated and the concept of Satis-
faction Equilibrium (SE) is adopted to determine a stable data
offloading, where the IP cameras satisfy their minimum QoS
prerequisites. A distributed learning algorithm determines
the IP cameras’ data offloading at the SE, if the latter exists.
If the SE does not exist, the proposed Distributed Learning
Satisfaction Equilibrium (DLSE) algorithm converges to the
Generalized SE, where only a part of the cameras satisfy their
QoS prerequisites (Section 3). A Reinforcement Learning (RL)
algorithm is adopted that determines the FAAS’s movement
by considering several factors associated with the quality of
information from the Aols (Section 4). Detailed numerical
results are presented to evaluate the proposed framework’s
operation (Section 5.1), while a comparative evaluation is
provided to reveal its drawbacks and benefits (Section 5.2).

2 SYSTEM MODEL

A surveillance area of size L X L consisting of several Aols
(e.g., banks, airports) randomly distributed with coordinates
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Z; = (X, Y;), X;, Y; < Lis considered. The set of Aols is de-
noted by A = {1,...,i,...,A}. Each Aol has a set of IP cam-
eras that collect and process data [8] C; = {1,...,j,...,C;}
and a MEC server M;, which supports their computing de-
mands. A FAAS flies over the Aols with a velocity v and
altitude d. At each timeslot, the FAAS receives and processes
data from the Aol’s cameras of which the FAAS is located
above. The set of timeslots is T = {1,...,¢,...,T} and at
each timeslot, the FAAS is assumed to cover and support
only one Aol. The set of collected data by each IP camera
jeC; belonging to the Aol i per timeslot t is denoted as
D(.t.) Ejt), CP(t) qﬁg), dtl(Jt), de(t)) where B(t)[blts] is the to-
tal collected 1nf0rmat10n CP(t) ¢§;)B§;) is the number of
required CPU cycles to process the data, where ¢E}r) > 0is
the level of the video processing task’s intensity, dtl(.Jt.) de-
notes the time constraint during which the data should be
processed, and deg.) is the IP camera’s energy availability
for the timeslot ¢. The amount of collected data can be parti-
tioned into subsets of specific size, which can be offloaded
to the MEC server or the FAAS, assuming that the last one
is located at the Aol i for the timeslot t. For the rest of the
analysis, we drop the () for notational convenience.

We denote s; = (sjq, . . ., sic;) the vector of strate-
gies for the cameras residing in the Aol i, where sy = (ch;j, a;;)
and a;; € [0, 1] is the camera’s data offloading percentage,
and ch;; = 0 if the camera offloads its a;; - B;; data to the
MEC server M;, while ch;; = 1 if it offloads to the FAAS.
Considering that the FAAS is located at the Aol i, then for
each other Aol i’ € A,i’ # i it holds true that chy; = 0,
Vj € Cy. Thus, assuming that the Aols do not interfere with
each other, the IP camera’s j in Aol i uplink data rate is:

Pijgij

Sij,...,

Rij = W; - log(1 + (1)

ol +
keCi\{j},chik=chij,a;;#0

)
Pik9gik

where W; is the Aol’s i bandwidth, p;; is the camera’s j trans-
mission power, g;; is the channel gain between the camera j
and the MEC server M; (if ch;; = 0) or the FAAS (if ch;; = 1),
and of indicates the background noise power.

The IP camera j in the Aol i experiences the data trans-
b= a’jz Bij [sec] by offloading
a;jB;; data and the data transmissmn energy consumption

Oitjr’e = pij algé” [Joules]. Each MEC server M; and the FAAS

i

.. . tr,
mission time overhead O; jr

have the computing capability fy;, and fr[Cycles/sec] re-
spectively, which is shared among the IP cameras. The allo-
cated computing capability to each IP camera j in order to
remotely process its offloaded data is given as:

aijBijij

aikBik ik
keCi\{j},chix=chij

fij= ((1=chij) fm, +chij fr) (2)
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where the first factor of Eq. 2 reveals that an IP camera with
a higher processing intensity (i.e, ¢;;) and greater amount of
offloaded data acquires a higher computing capability, while
the second one reveals that each IP camera j can offload a
part of its data to only one computing resource (i.e., either
the MEC server M; or the FAAS). Based on the IP camera’s j
remote computing capability (Eq. 2), its offloaded data pro-

a”?#(ﬁ” Moreover, the IP

ij

. . . N
cessing time overhead is ij =

camera j has a local computing capability fiﬂ.[Cycles/sec]

and processes the rest (1 — a;;)B;; data locally. Thus, its local

(1-a;;)Bi;¢ij
1

processing time overhead is and its local process-

ij
ing energy overhead is (1 — a;;)B;j¢;je;;, where e;;[J/Cycle]
is its local energy consumption to process the data.
The IP camera’s j overall time overhead is given as follows.

a:i B a:iiBiidi: (1—a:i)Biib:
Ot] = max {244 ij 1J¢U’( Ul) 1197511} (3)
Rij fij 7
while its overall energy consumption is formulated as:
aii - Bii
Of; = pij UR__ 2+ (1 - ai))Bijdijes; (4)
ij

3 SATISFACTION EQUILIBRIUM
OPERATION

Each IP camera aims to satisfy its QoS prerequisites ex-
pressed in terms of time dt;; and energy de;; demands by
offloading an amount of data and processing the rest locally.
Thus, we formulate a generic utility function that represents
each IP camera’s QoS as follows.

dtij=0}; eij=0j;
- ) (2070

dt;;~O%,  dey- o;f].
a, ) (e )

e At . 0e y
if OF; > dt;j,05; > dei;
uij(sij, s—ij) =
otherwise

)
where s_j; is the strategy vector of all the IP cameras of the
Aol i except the IP camera j. Assuming that the FAAS is
located at the Aol i, it is evident by Eq. 5, that when the IP
camera’s j chosen computing resource (i.e., the MEC server
or the FAAS) is overloaded, then its perceived time and en-
ergy overhead increase, and its utility value u;; is negative if
the IP camera does not satisfy at least one of its QoS prereq-
uisites (i.e., dt;;, de;j). Thus, each IP camera j aims to fulfill
its time and energy demands, i.e., u;; > 0, via autonomously
determining its offloading strategy s = (ch;j, a;;).

A non-cooperative game is played among the IP cameras
per Aol to determine a stable data offloading vector that ful-
fills the IP cameras’ QoS prerequisites. The game is written in
the satisfaction form G; = [C;, {Sij}jec,, {uij}jec;, {hij}jec; ],
where C; is the set of the IP cameras in the Aol i, and con-
sidering that the FAAS is located in the Aol i, then S;; =

{(a?j,O),--~ (ZIO) (Z 1), (U,l)} WhlleS,] =
{(af;. 0), - ,(aN ij»0)} otherwise, and af; is the n'" available
offloading percentage, thus al.j [0, 1], Vn < N,N € N.
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Moreover, u;; is the Aol’s i IP camera’s j utility as expressed
in Eq. 5, and h;; is the satisfaction correspondence defined
as follows [4].

hij(s—ij) = {sij € Sijluij(sij,s—jj) = 0} (6)
DEFINITION 1 (SATISFACTION EQUILIBRIUM - SE). A strat-

egy vectors] = (s}, - ,s;JT,n- , :’C) €8; =S %X Sic, is
an SE for the game G;, if Vj € C;, s} € h,](sfij).

is 1,]

At the SE, the IP cameras satisfy their minimum QoS pre-
requisites without overspending the system’s resources.

Towards determining the SE for each non-cooperative
game G;, we propose the Distributed Learning Satisfaction
Equilibrium Algorithm (DLSE). Each camera evaluates its
utility (Eq. 5) by receiving its allocated remote computing
capability (Eq. 2) from the MEC server or FAAS and the inter-
ference factor (i.e., Xxec, chyp=chy. ;0 Pikgik in Eq. 1) and
converges to the strategy sf. Assuming that the elements of

the offloading strategy set S;; are indexed with [;;, thus s(J )

is the [;; th offloading strategy, then [;; < L;;, and L;; = 2N if
the FAAS is located in the Aol i, otherwise L;; = N. Let us de-
note the IP camera’s j offloading strategy at instant r > 0 as
sij(r) € S;j, where it is chosen following a discrete probabil-

ll j Ll j
= () ) ),
where n(l."j )(r) is the probability with which the Aol’s i IP

camera j chooses its action s(J u)

ity distribution s;;(r)

at instant r > 0. The initial

probability distribution for each IP camera is ﬂ.'(lij )(r =0) =
1/L;j,V1;; < Lij, where L;; is the number of the IP camera’s
Jj offloading strategies. Let U;; denote the maximum utility
that each IP camera j perceives if it was the only one inside
the Aol i. Each IP camera updates its probability distribution
m;; based on a learning parameter A;;, so that higher proba-
bilities are allocated to offloading actions which lead the IP
camera j to perceive a higher utility u;;. Let us introduce the
definition of a clipping action, which is considered for the
study of the DLSE Algorithm’s convergence to an SE point.

DEFINITION 2 (CLIPPING ACTION). At each non-cooperative
game G;, an IP camera j has a clipping action sicj € S iff
VS_ij € S—ij,sicj € hl-j(s_ij), where S—ij =Sy XX Si(}'*l) X
X SiC,— [11]

Therefore, Definition 2 reveals that once an IP camera
concludes to a clipping action sicj at an instance r’ of the
DLSE Algorithm, then Vr > r’ the IP camera keeps the
same offloading strategy, i.e., s;j(r) = s . Thus, assuming
that there exists an IP camera j* # j, such that its satisfaction
correspondence h;j(s_jj;) = 0, Vs_iyj € S_ijj, where s_jy; is
the offloading strategy vector of all the IP cameras except
the camera j” and the IP camera j which plays its clipping
action sfJ and S_;j; is the corresponding set of vectors, then

Si(j+1) X+
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the DLSE Algorithm converges to a Generalized SE (GSE)
point, which is defined as follows.

DEFINITION 3 (GENERALIZED SE). A strategy profile is a
GSE s; = (sj,.-..8;c,) of the non-cooperative game G;, if
there exists a partition of the C; given by C{ and CY, such that
V] S Cf, Sij S hij(s—ij) and V]' S C?, hijf(S_ijf) =0.

In a nutshell, given the existence of at least one SE point
for each game G;, if there is no clipping action, then the
DLSE Algorithm converges to the SE point for each game G;.
Otherwise, in the existence of a clipping action sfj for at least
one IP camera, the DLSE Algorithm converges to a GSE.

4 FAAS MOVEMENT BASED ON
REINFORCEMENT LEARNING

In this section, the consideration of the FAAS as a sequential
decision maker that aims to maximize a long-term objec-
tive is considered. Specifically, at each timeslot, the FAAS
is located at an Aol i, and acting as a computing resource,
it provides a higher QoS to the corresponding IP cameras
since the corresponding MEC server M is less overloaded.
Specifically, a Reinforcement Learning approach is adopted
that enables the FAAS to autonomously decide the most ap-
propriate Aol to visit and support at each timeslot, trying to
optimize a specific objective that accounts for performance
in terms of satisfied cameras, FAAS energy consumption and
Quality of Information (Qol), formally defined below.
Three different quality factors are introduced that collec-
tively capture the Qol that each Aol’s surveillance system
provides. We consider that several processes (e.g., object de-
tection, movement detection) can be executed locally at the
cameras’ and remotely at the MEC servers’ and FAAS’s com-
puting resources to assess each Aol’s Qol. Such processes
assign values to the following quality factors at each timeslot
based on each camera’s captured data.
(a) Accuracy refers to how the observed information inside
each Aol conforms to the reality. After the processing of the
IP cameras’ collected data, the number of the correctly de-
tected events AE;; is evaluated and the IP camera’s accuracy
is gace = 2Lu
ij TE;j
were captured. The overall accuracy of the Aol i is defined
as Q4¢ £ C% 2jec; dij-
(b) Timeliness refers to the availability of the informa-
tion at the desired time. The timeliness factor is defined

A . N .
as q! Is & _Dy ~, where D; is the duration of each timeslot
ij D,+Oij

t and O}, is the IP camera’s overall time overhead to offload
and process the data. The Aol’s overall timeliness factor is
Q,'tls = CL, Yjec; qul's-
(c) Certainty: refers to the measurement of confirmation of
the information and is strictly related to each IP camera’s

hardware characteristics (e.g., recording rate, sensor’s pixels).

where TE;; is the total number of events that
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In particular, this quality factor depicts the probability of
error regarding the captured data of each IP camera and it is
denoted as q‘l.’j”. The overall certainty of the Aol i is evaluated

as Q£ L5, girt.
Finally, each Aol’s i,i € A overall Qol for a specific times-
lot is based on the past Qol values and is given as fllows.

! ‘tls ‘crt
Zt'<t Q'CZCC Zt’<t Q't 2[’<[ Q
lgzcc st xij +witls St xij +Wl§rt sLXj

t t
(7)
+w{™ = 1are

Qol; =w
where w{°, wi”S, wt e [0, 1], wice + wi”S
the corresponding weights of each quality factor.

The support provided by the FAAS to the Aol with high
Qol is important, since the overall surveillance system’s
performance and effectiveness could be increased by de-
creasing the delay between an event’s detection and fur-
ther reactive actions. Also, the FAAS’s limited energy avail-
ability should be considered for both FAAS’s flying move-
ment and its role as a computing resource. Considering
that the FAAS is located at the Aol i, and by denoting as
Ep[Joules/Cycle] the FAAS’s energy consumption to process
the received data, then its processing energy consumption
is EP = Ep - DjeC;,chy;=1 4ijBij¢ij. Furthermore, considering
that the FAAS was located at the Aol i’, i’ # i at the previous
timeslot and the FAAS’s velocity is v, then its movement

energy consumption is E™ = Ej; - ( Uil ) , where

Epm[Watts] is the FAAS’s constant consun;)ed energy while
moving with velocity v. Based on the above discussion, we
formulate the reward that the FAAS experiences while visit-
ing an Aol i as follows.

. EP+E™
E

€3
rwiz o E (8)
| 61'QOI,'+E2'P,'
¢

o> C; = {j € Cilu;; > 0} denotes the ra-

where P; =
tio of the IP cameras that meet their QoS prerequisites (i.e.,
dt;j, de;j), E is the FAAS’s energy availability, and €1, €2, €5 €
[0, 1] denote the weights of the Aol’s Qol, the performance
(i.e., P;) and the FAAS’s consumed normalized energy, respec-
tively. The physical meaning of the negative reward value is
that reward values closer to zero benefit the FAAS.

In the following, we adopt a Reinforcement Learning (RL)
approach that enables the FAAS to autonomously learn its
dynamic environment and decide which Aol to visit per
timeslot towards maximizing its long-term objective (Eq. 8)
[7].

The RL algorithms demonstrate good results [1, 5, 13]
in real-world sequential decision making problems, which
are characterized by the environment’s uncertainty. Two of
the most widely used RL algorithms are the Q-learning and
SARSA [13] algorithms, which via stochastic approximation
conditions lead the decision maker to converge to its optimal
decision policy with high probability [6]. In our case, for
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the FAAS’s sequential decision making problem (i.e., the
Aol i that selects to be located at each timeslot ¢) we deploy
the SARSA algorithm, which first examines the uncertain
environment (i.e., the set of Aols A), and then derives the
optimal strategy based on the model knowledge that has
already been constructed.

SARSA is an algorithm that learns through a Markov deci-
sion process policy. An agent (i.e., FAAS) interacts with the
environment (i.e., surveillance system) in order to update its
policy on the action it took (i.e., the Aol that is located). The
experienced reward (Eg. 8) is known as the Q-value and is
adjusted by a learning rate that weights new information
higher than the previously gathered information. In order
to do this, SARSA algorithm takes the agent’s action in its
current state and multiplies a specified discount future re-
ward that the agent will receive from the next state action
it observes. These Q-values represent the rewards that the
agent is expected to receive in the next time step and will be
considered by the agent when it is deciding which action to
take when it is at a specific state.

5 NUMERICAL RESULTS

In this section, a detailed numerical performance evalua-
tion and comparative study of the proposed architecture
is conducted through modeling and simulations. We con-
sider a surveillance system consisting of A = 7 Aols with
C; =30, Vi € A cameras and size 500m X 500m. We have
B;j € [1000,5000]KB and CP;; € [1000, 5000]MCycles. The
IP cameras’ strategy space consists of 11 data offloading
strategies, where a; ; € [0, 1] with step 0.1. Also, we have
eij = 107°]/Cycle, W; = 5MHz, fl. € [1072,107}], ol

ij
10713, p;; € [0,1]W, dt; ; € [0, Cgij Isec, de; j € [0,CPyje;;]],

25

9ij = d%, where d;; is the IP camera’s j distance from the
ij

MEC server M; or FAAS, w#¢ = 0.333, w!'s = 0.333, w'’ =
0.333, 0,7, Q'tls Qlert e [0,1], Ep = 107°], Epr = 0.0013W,
E =17.28-10°], ¢; = 0.35, €, = 0.55, €3 = 0.10, the duration
of a timeslot is 1k, and v = 6.25m/s [2]. The evaluation fo-
cuses on: (i) pure operation of the proposed framework, (ii)
scalability performance, and (iii) comparative analysis.

5.1 Pure Operation of the Algorithm

In Fig. 1.a-c, the amount of offloaded data, along with the
corresponding time and energy overhead are presented for
four different IP cameras. The IP cameras with ID 12 and 3
have strict time and energy constraints (Fig. 1.b,c), thus they
choose to offload large amount of data to the MEC server
in order to satisfy their QoS prerequisites. However, even
if they choose such a strategy, they still cannot meet their
QoS demands and the DLSE algorithm converges to an GSE
point. The IP cameras with ID 1 and 28 have relaxed time and
energy constraints and they achieve to satisfy them, while
the stricter the constraints are, the less time and energy
overhead they experience, and the more data they offload.
Fig. 2.a presents the FAAS’s average reward versus the
timeslots. After almost 50 timeslots, the FAAS learns its en-
vironment and then it can choose the path that provides the
maximum reward (Eq. 8). In Fig. 2.b-c, it is shown that the
percentage of satisfied cameras is significantly higher and
the corresponding IP cameras’ time and energy overheads
are lower as the time evolves, when the FAAS visits those
areas, thus showing the great benefits of adopting the FAAS
in the overall considered architecture. Fig. 3.a, b depict the
average number of FAAS’s visits and the average Quality of
Information per Aol in a time frame of 250 timeslots. It is
observed that if an Aol has high Qol, the SARSA algorithm
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will efficiently consider the FAAS’s perceived reward and
enable the FAAS to visit more often the critical Aols, i.e., the
ones having high value of Qol.

Fig. 4a,b show the time and energy overhead and the per-
centage of satisfied IP cameras for increasing number of
cameras per Aol. The results reveal that as the number of
cameras increases, the Aols become more congested in terms
of their communication and computing. thus the IP cameras’
time and energy overhead increases, while the percentage
of the cameras that meet their QoS prerequisites decreases.

5.2 Comparative Analysis

Finally, comparative scenarios are presented to confirm the
advantages of our proposed approach in terms of: (i) Sat-
isfaction Equilibrium’s benefits, and (ii) the benefits of the
adoption of reinforcement learning. Regarding the former,
five different comparative approaches are presented: i) mini-
mizing the energy (MEO), ii) minimizing the time overhead
(MTO), iii) determining the Nash Equilibrium (NE), vi) of-
floading the data entirety (OE), and v) random amount of
data is offloaded to the MEC server. As clearly shown in Fig.
5.a, the novel concept of SE resulted to the highest percent
of satisfied cameras. Similarly, in Fig. 5.b, the proposed rein-
forcement learning SARSA algorithm is compared against
several other different scenarios regarding the FAAS’s navi-
gation among the Aols. In the examined scenarios, the FAAS
visits the area: i) closest to the current area, ii) with the
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largest average energy constraint, iii) sequentially, vi) max-
imizing its reward, v) randomly, and vi) with the largest
average time constraint. The results clearly reveal that the
SARSA algorithm produced an average FAAS’s reward closer
to zero compared to the other scenarios, thus indicating a bet-
ter FAAS’s path in terms of collecting valuable information
from the surveillance system.
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