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ABSTRACT

In this paper, we exploit the capabilities of Fully Autonomous

Aerial Systems’ (FAAS) and the Mobile Edge Computing

(MEC) to introduce a novel data offloading framework and

support the energy and time efficient video processing in

surveillance systems based on game theory in satisfaction

form. A surveillance system is introduced consisting of Ar-

eas of Interest (AoIs), where a MEC server is associated with

each AoI, and a FAAS is flying above the AoIs to collec-

tively support the IP cameras’ computing demands. Each

IP camera adopts a utility function capturing its Quality of

Service (QoS) considering the experienced time and energy

overhead to offload and process its data either remotely or

locally. A non-cooperative game among the cameras is for-

mulated to determine the amount of offloading data to the

MEC server and/or the FAAS. The novel concept of Satis-

faction Equilibrium (SE) is introduced where the IP cameras

satisfy their minimum QoS prerequisites instead of maxi-

mizing their performance by wasting additional system re-

sources. A distributed learning algorithm determines the

IP cameras’ stable data offloading, while a reinforcement

learning algorithm determines the FAAS’s movement among

the AoIs exploiting the accuracy, timeliness, and certainty

of the collected data by the IP cameras per AoI. The perfor-

mance evaluation of the proposed framework is achieved via

modeling and simulation.
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1 INTRODUCTION

Surveillance systems have recently gained great attention

due to the increased number of terrorist attacks, which chal-

lenge the public safety and homeland security [10]. With

the advent of Internet of Things (IoT), the smart Internet

Protocol (IP) cameras have enabled the surveillance systems

to capture real-time video and process it either locally [8], or

remotely at the cloud computing environment. However, the

surveillance systems confront the challenges of increased

computing demand and time criticality in processing the

recorded information. The use of Unmanned Aerial Vehicles

(UAVs) and remote computing capabilities has been shown

to improve the performance of the surveillance systems.

1.1 Related Work and Motivation

The authors in [12] have introduced an image uploading

process from the IP cameras to the cloud, where the images

captured by the IP cameras are processed at the cloud to

decrease the local processing cost. In [3], a drone-assisted

surveillance system is studied, where the videos captured by

the drone are forwarded to Fog Computing nodes through

the drones’ ground controller, in order to track vehicles’

movement. In [9] an UAV-based crowd surveillance system

is introduced where the UAVs capture videos that either

process them on board or offload them to MEC servers.

Despite the advantages introduced, the use of UAVs still

requires human control. To address this issue, the Fully Au-

tonomous Aerial Systems (FAAS) have been recently intro-

duced. The FAAS is a flying robotic system equipped with

sensors, computing resources, wireless communication in-

terfaces or any combination of them and is able to operate

fully autonomously with no human intervention.
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One common characteristic of the aforementioned ap-

proaches is their assumption that each entity involved in the

surveillance system aims at maximizing its Quality of Service

(QoS). However, the maximization of each involved entity’s

QoS is a sub-optimal solution, which under several circum-

stances lead to energy inefficiencies. Towards this direction,

the games in satisfaction form have been introduced in Game

Theory [4], where the autonomous entities aim to "satisfy"

their minimum QoS prerequisites in a distributed manner in-

stead of targeting at maximizing their QoS. In this paper, the

FAAS’s and the MEC servers’ computing capabilities are ex-

ploited to introduce a novel data offloading framework based

on the satisfaction games, in order to ultimately support the

energy and time efficient video processing in surveillance

systems consisting of several IP cameras.

1.2 Contributions and Outline

Specifically, we introduce a surveillance system paradigm

consisting of areas of interest (AoI) with IP cameras. The

cameras partially offload the computing tasks related to the

videos’ processing to the MEC server that is associated with

the AoI or to the FAAS, if the latter is flying above the AoI,

while the rest are executed locally at the IP cameras. Each

utilized IP camera experiences a time and energy overhead

in order to offload part of its data and process the remaining

part of the data locally (Section 2). A holistic utility function

is introduced representing the IP cameras’ level of achieved

QoS, while accounting for their time and energy constraints

associated with the video processing procedure. To realize

an autonomous system operation, a non-cooperative game

among the IP cameras is formulated and the concept of Satis-

faction Equilibrium (SE) is adopted to determine a stable data

offloading, where the IP cameras satisfy their minimum QoS

prerequisites. A distributed learning algorithm determines

the IP cameras’ data offloading at the SE, if the latter exists.

If the SE does not exist, the proposed Distributed Learning

Satisfaction Equilibrium (DLSE) algorithm converges to the

Generalized SE, where only a part of the cameras satisfy their

QoS prerequisites (Section 3). A Reinforcement Learning (RL)

algorithm is adopted that determines the FAAS’s movement

by considering several factors associated with the quality of

information from the AoIs (Section 4). Detailed numerical

results are presented to evaluate the proposed framework’s

operation (Section 5.1), while a comparative evaluation is

provided to reveal its drawbacks and benefits (Section 5.2).

2 SYSTEM MODEL

A surveillance area of size L × L consisting of several AoIs

(e.g., banks, airports) randomly distributed with coordinates

Zi = (Xi ,Yi ), Xi ,Yi ≤ L is considered. The set of AoIs is de-

noted by A = {1, . . . , i, . . . ,A}. Each AoI has a set of IP cam-

eras that collect and process data [8] Ci = {1, . . . , j, . . . ,Ci }
and a MEC serverMi , which supports their computing de-

mands. A FAAS flies over the AoIs with a velocity v and

altitude d . At each timeslot, the FAAS receives and processes

data from the AoI’s cameras of which the FAAS is located

above. The set of timeslots is T = {1, . . . , t , . . . ,T } and at

each timeslot, the FAAS is assumed to cover and support

only one AoI. The set of collected data by each IP camera

j ∈ Ci belonging to the AoI i per timeslot t is denoted as

D(t )
i j = (B(t )

i j ,CP
(t )
i j ,ϕ

(t )
i j ,dt

(t )
i j ,de

(t )
i j ), where B(t )

i j [bits] is the to-
tal collected information, CP (t )

i j = ϕ(t )
i j B

(t )
i j is the number of

required CPU cycles to process the data, where ϕ(t )
i j > 0 is

the level of the video processing task’s intensity, dt (t )i j de-

notes the time constraint during which the data should be

processed, and de(t )i j is the IP camera’s energy availability

for the timeslot t . The amount of collected data can be parti-

tioned into subsets of specific size, which can be offloaded

to the MEC server or the FAAS, assuming that the last one

is located at the AoI i for the timeslot t . For the rest of the
analysis, we drop the (t) for notational convenience.
We denote si = (si1, . . . , sij, . . . , siCi

) the vector of strate-
gies for the cameras residing in theAoI i , where sij = (chi j ,ai j )
and ai j ∈ [0, 1] is the camera’s data offloading percentage,

and chi j = 0 if the camera offloads its ai j · Bi j data to the

MEC server Mi , while chi j = 1 if it offloads to the FAAS.

Considering that the FAAS is located at the AoI i , then for

each other AoI i ′ ∈ A, i ′ � i it holds true that chi′j = 0,

∀j ∈ Ci′ . Thus, assuming that the AoIs do not interfere with

each other, the IP camera’s j in AoI i uplink data rate is:

Ri j =Wi · loд(1 +
pi jдi j

σ 2
0 +

∑
k ∈Ci \{j },chik=chi j ,aik�0

pikдik
) (1)

whereWi is the AoI’s i bandwidth, pi j is the camera’s j trans-
mission power, дi j is the channel gain between the camera j
and the MEC serverMi (if chi j = 0) or the FAAS (if chi j = 1),

and σ 2
0 indicates the background noise power.

The IP camera j in the AoI i experiences the data trans-

mission time overhead Otr,t
i j =

ai j ·Bi j
Ri j

[sec] by offloading

ai jBi j data and the data transmission energy consumption

Otr,e
i j = pi j

ai j ·Bi j
Ri j

[Joules]. EachMEC serverMi and the FAAS

have the computing capability fMi
and fF [Cycles/sec] re-

spectively, which is shared among the IP cameras. The allo-

cated computing capability to each IP camera j in order to

remotely process its offloaded data is given as:

fi j =
ai jBi jϕi j∑

k ∈Ci \{j },chik=chi j
aikBikϕik

·((1−chi j )fMi
+chi j fF ) (2)
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where the first factor of Eq. 2 reveals that an IP camera with

a higher processing intensity (i.e, ϕi j ) and greater amount of

offloaded data acquires a higher computing capability, while

the second one reveals that each IP camera j can offload a

part of its data to only one computing resource (i.e., either

the MEC serverMi or the FAAS). Based on the IP camera’s j
remote computing capability (Eq. 2), its offloaded data pro-

cessing time overhead is O
p,t
i j =

ai jBi jϕi j
fi j

. Moreover, the IP

camera j has a local computing capability f li j [Cycles/sec]
and processes the rest (1−ai j )Bi j data locally. Thus, its local
processing time overhead is

(1−ai j )Bi jϕi j
f li j

and its local process-

ing energy overhead is (1 − ai j )Bi jϕi jei j , where ei j [J/Cycle]
is its local energy consumption to process the data.

The IP camera’s j overall time overhead is given as follows.

Ot
i j = max {ai j · Bi j

Ri j
+
ai jBi jϕi j

fi j
,
(1 − ai j )Bi jϕi j

f li j
} (3)

while its overall energy consumption is formulated as:

Oe
i j = pi j

ai j · Bi j
Ri j

+ (1 − ai j )Bi jϕi jei j (4)

3 SATISFACTION EQUILIBRIUM
OPERATION

Each IP camera aims to satisfy its QoS prerequisites ex-

pressed in terms of time dti j and energy dei j demands by

offloading an amount of data and processing the rest locally.

Thus, we formulate a generic utility function that represents

each IP camera’s QoS as follows.

ui j (sij, s−ij) =
⎧⎪⎪⎨
⎪⎪⎩

−(dti j−O
t
i j

dti j
) · (dei j−O

e
i j

dei j
) if Ot

i j ≥ dti j ,O
e
i j ≥ dei j

(dti j−O
t
i j

dti j
) · (dei j−O

e
i j

dei j
) otherwise

(5)

where s−ij is the strategy vector of all the IP cameras of the

AoI i except the IP camera j. Assuming that the FAAS is

located at the AoI i , it is evident by Eq. 5, that when the IP

camera’s j chosen computing resource (i.e., the MEC server

or the FAAS) is overloaded, then its perceived time and en-

ergy overhead increase, and its utility value ui j is negative if
the IP camera does not satisfy at least one of its QoS prereq-

uisites (i.e., dti j , dei j ). Thus, each IP camera j aims to fulfill

its time and energy demands, i.e., ui j ≥ 0, via autonomously

determining its offloading strategy sij = (chi j ,ai j ).
A non-cooperative game is played among the IP cameras

per AoI to determine a stable data offloading vector that ful-

fills the IP cameras’ QoS prerequisites. The game is written in

the satisfaction formGi = [Ci , {Si j }j ∈Ci , {ui j }j ∈Ci , {hi j }j ∈Ci ],
where Ci is the set of the IP cameras in the AoI i , and con-

sidering that the FAAS is located in the AoI i , then Si j =
{(ani j , 0), · · · , (aNij , 0), · · · , (ani j , 1), · · · , (aNij , 1)}, while Si j =

{(ani j , 0), · · · , (aNij , 0)} otherwise, and ani j is the nth available

offloading percentage, thus ani j ∈ [0, 1], ∀n ≤ N ,N ∈ N.

Moreover, ui j is the AoI’s i IP camera’s j utility as expressed

in Eq. 5, and hi j is the satisfaction correspondence defined

as follows [4].

hi j (s−ij) = {sij ∈ Si j |ui j (sij, s−ij) ≥ 0} (6)

Definition 1 (Satisfaction Eqilibrium - SE). A strat-

egy vector s+i = (s+i1, · · · , s+ij , · · · , s+iCi
) ∈ Si = S1j × · · · SiCi is

an SE for the game Gi , if ∀j ∈ Ci , s+ij ∈ hi j (s+−ij).
At the SE, the IP cameras satisfy their minimum QoS pre-

requisites without overspending the system’s resources.

Towards determining the SE for each non-cooperative

game Gi , we propose the Distributed Learning Satisfaction

Equilibrium Algorithm (DLSE). Each camera evaluates its

utility (Eq. 5) by receiving its allocated remote computing

capability (Eq. 2) from the MEC server or FAAS and the inter-

ference factor (i.e.,
∑

k ∈Ci ,chik=chi j ,aik�0 pikдik in Eq. 1) and

converges to the strategy s+ij . Assuming that the elements of

the offloading strategy set Si j are indexed with li j , thus s
(li j )
ij

is the li j th offloading strategy, then li j ≤ Li j , and Li j = 2N if

the FAAS is located in the AoI i , otherwise Li j = N . Let us de-

note the IP camera’s j offloading strategy at instant r > 0 as

sij(r ) ∈ Si j , where it is chosen following a discrete probabil-

ity distribution πi j(r ) = (π (1)
i j (r ), · · · ,π

(li j )
i j (r ), · · · ,π (Li j )

i j (r )),
where π

(li j )
i j (r ) is the probability with which the AoI’s i IP

camera j chooses its action s
(li j )
ij

at instant r > 0. The initial

probability distribution for each IP camera is π
(li j )
i j (r = 0) =

1/Li j ,∀li j ≤ Li j , where Li j is the number of the IP camera’s

j offloading strategies. Let Ui j denote the maximum utility

that each IP camera j perceives if it was the only one inside

the AoI i . Each IP camera updates its probability distribution

πi j based on a learning parameter λi j , so that higher proba-

bilities are allocated to offloading actions which lead the IP

camera j to perceive a higher utility ui j . Let us introduce the
definition of a clipping action, which is considered for the

study of the DLSE Algorithm’s convergence to an SE point.

Definition 2 (Clipping Action). At each non-cooperative

game Gi , an IP camera j has a clipping action sc
ij
∈ Si j iff

∀s−ij ∈ S−i j , scij ∈ hi j (s−ij), where S−i j = Si1 × · · · × Si(j−1) ×
Si(j+1) × · · · × SiCi [11].

Therefore, Definition 2 reveals that once an IP camera

concludes to a clipping action sc
ij
at an instance r ′ of the

DLSE Algorithm, then ∀r ≥ r ′ the IP camera keeps the

same offloading strategy, i.e., sij(r ) = sc
ij
. Thus, assuming

that there exists an IP camera j ′ � j , such that its satisfaction

correspondence hi j (s−ij′j) = ∅, ∀s−ij′j ∈ S−i j′j , where s−ij′j is
the offloading strategy vector of all the IP cameras except

the camera j ′ and the IP camera j which plays its clipping

action sc
ij
, and S−i j′j is the corresponding set of vectors, then
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the DLSE Algorithm converges to a Generalized SE (GSE)

point, which is defined as follows.

Definition 3 (Generalized SE). A strategy profile is a

GSE s−i = (s−i1, . . . , s−iCi
) of the non-cooperative game Gi , if

there exists a partition of the Ci given by C
s
i and C

u
i , such that∀j ∈ Csi , sij ∈ hi j (s−ij) and ∀j ′ ∈ Cui , hi j′ (s−ij′ ) = ∅.

In a nutshell, given the existence of at least one SE point

for each game Gi , if there is no clipping action, then the

DLSE Algorithm converges to the SE point for each gameGi .

Otherwise, in the existence of a clipping action sc
ij
for at least

one IP camera, the DLSE Algorithm converges to a GSE.

4 FAAS MOVEMENT BASED ON
REINFORCEMENT LEARNING

In this section, the consideration of the FAAS as a sequential

decision maker that aims to maximize a long-term objec-

tive is considered. Specifically, at each timeslot, the FAAS

is located at an AoI i , and acting as a computing resource,

it provides a higher QoS to the corresponding IP cameras

since the corresponding MEC serverMi is less overloaded.

Specifically, a Reinforcement Learning approach is adopted

that enables the FAAS to autonomously decide the most ap-

propriate AoI to visit and support at each timeslot, trying to

optimize a specific objective that accounts for performance

in terms of satisfied cameras, FAAS energy consumption and

Quality of Information (QoI), formally defined below.

Three different quality factors are introduced that collec-

tively capture the QoI that each AoI’s surveillance system

provides. We consider that several processes (e.g., object de-

tection, movement detection) can be executed locally at the

cameras’ and remotely at the MEC servers’ and FAAS’s com-

puting resources to assess each AoI’s QoI. Such processes

assign values to the following quality factors at each timeslot

based on each camera’s captured data.

(a) Accuracy refers to how the observed information inside

each AoI conforms to the reality. After the processing of the

IP cameras’ collected data, the number of the correctly de-

tected events AEi j is evaluated and the IP camera’s accuracy

is qacci j =
AEi j
T Ei j

, where TEi j is the total number of events that

were captured. The overall accuracy of the AoI i is defined
as Qacc

i � 1
Ci

∑
j ∈Ci qi j .

(b) Timeliness refers to the availability of the informa-

tion at the desired time. The timeliness factor is defined

as qt lsi j � Dt

Dt+O
t
i j
, where Dt is the duration of each timeslot

t and Ot
i j is the IP camera’s overall time overhead to offload

and process the data. The AoI’s overall timeliness factor is

Qt ls
i � 1

Ci

∑
j ∈Ci q

t ls
i j .

(c) Certainty: refers to the measurement of confirmation of

the information and is strictly related to each IP camera’s

hardware characteristics (e.g., recording rate, sensor’s pixels).

In particular, this quality factor depicts the probability of

error regarding the captured data of each IP camera and it is

denoted asqcr ti j . The overall certainty of the AoI i is evaluated

as Qcr t
i � 1

Ci

∑
j ∈Ci q

cr t
i j .

Finally, each AoI’s i, i ∈ A overall QoI for a specific times-

lot is based on the past QoI values and is given as fllows.

QoIi = w
acc
i

∑
t ′ ≤t Q

′acc
i

t
+wt ls

i

∑
t ′ ≤t Q

′t ls
i

t
+wcr t

i

∑
t ′ ≤t Q

′cr t
i

t
(7)

where wacc
i ,w

t ls
i ,w

cr t
i ∈ [0, 1],wacc

i +wt ls
i +w

cr t
i = 1 are

the corresponding weights of each quality factor.

The support provided by the FAAS to the AoI with high

QoI is important, since the overall surveillance system’s

performance and effectiveness could be increased by de-

creasing the delay between an event’s detection and fur-

ther reactive actions. Also, the FAAS’s limited energy avail-

ability should be considered for both FAAS’s flying move-

ment and its role as a computing resource. Considering

that the FAAS is located at the AoI i , and by denoting as

EP [Joules/Cycle] the FAAS’s energy consumption to process

the received data, then its processing energy consumption

is Ep = EP ·∑j ∈Ci ,chi j=1 ai jBi jϕi j . Furthermore, considering

that the FAAS was located at the AoI i ′, i ′ � i at the previous
timeslot and the FAAS’s velocity is v , then its movement

energy consumption is Em = EM ·
√
(Xi−Xi′ )2+(Yi−Yi′ )2

v
, where

EM [Watts] is the FAAS’s constant consumed energy while

moving with velocity v . Based on the above discussion, we

formulate the reward that the FAAS experiences while visit-

ing an AoI i as follows.

rwi = − ϵ3 · Ep+EmE

ϵ1 ·QoIi + ϵ2 · Pi
(8)

where Pi =
|Csi |
Ci

, Csi = {j ∈ Ci |ui j ≥ 0} denotes the ra-

tio of the IP cameras that meet their QoS prerequisites (i.e.,

dti j ,dei j ), E is the FAAS’s energy availability, and ϵ1, ϵ2, ϵ3 ∈
[0, 1] denote the weights of the AoI’s QoI, the performance

(i.e., Pi ) and the FAAS’s consumed normalized energy, respec-

tively. The physical meaning of the negative reward value is

that reward values closer to zero benefit the FAAS.

In the following, we adopt a Reinforcement Learning (RL)

approach that enables the FAAS to autonomously learn its

dynamic environment and decide which AoI to visit per

timeslot towards maximizing its long-term objective (Eq. 8)

[7] .

The RL algorithms demonstrate good results [1, 5, 13]

in real-world sequential decision making problems, which

are characterized by the environment’s uncertainty. Two of

the most widely used RL algorithms are the Q-learning and

SARSA [13] algorithms, which via stochastic approximation

conditions lead the decision maker to converge to its optimal

decision policy with high probability [6]. In our case, for
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Figure 1: (a)Data Offloading (b)Time and (c)Energy Overhead versus the DLSE Algorithm’s iterations for convergence
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Figure 2: (a) FAAS’s Avg. Reward (b)Percentage of Satisfied Cameras, (c)Time, and (d)Energy Overhead versus timeslots

the FAAS’s sequential decision making problem (i.e., the

AoI i that selects to be located at each timeslot t ) we deploy
the SARSA algorithm, which first examines the uncertain

environment (i.e., the set of AoIs A), and then derives the

optimal strategy based on the model knowledge that has

already been constructed.

SARSA is an algorithm that learns through a Markov deci-

sion process policy. An agent (i.e., FAAS) interacts with the

environment (i.e., surveillance system) in order to update its

policy on the action it took (i.e., the AoI that is located). The

experienced reward (Eg. 8) is known as the Q-value and is

adjusted by a learning rate that weights new information

higher than the previously gathered information. In order

to do this, SARSA algorithm takes the agent’s action in its

current state and multiplies a specified discount future re-

ward that the agent will receive from the next state action

it observes. These Q-values represent the rewards that the

agent is expected to receive in the next time step and will be

considered by the agent when it is deciding which action to

take when it is at a specific state.

5 NUMERICAL RESULTS

In this section, a detailed numerical performance evalua-

tion and comparative study of the proposed architecture

is conducted through modeling and simulations. We con-

sider a surveillance system consisting of A = 7 AoIs with

Ci = 30, ∀i ∈ A cameras and size 500m × 500m. We have

Bi j ∈ [1000, 5000]KB and CPi j ∈ [1000, 5000]MCycles . The
IP cameras’ strategy space consists of 11 data offloading

strategies, where ai, j ∈ [0, 1] with step 0.1. Also, we have

ei j = 10−9 J/Cycle , Wi = 5MHz, f li j ∈ [10−2, 10−1], σ 2
0 =

10−13, pi, j ∈ [0, 1]W , dti, j ∈ [0, CPi j
fj

]sec , dei, j ∈ [0,CPi jei j ]J ,

дi, j =
1
d2
i j

, where di j is the IP camera’s j distance from the

MEC serverMi or FAAS,w
acc
i = 0.333,wt ls

i = 0.333,wcr t
i =

0.333,Q
′acc
i ,Q

′t ls
i ,Q

′cr t
i ∈ [0, 1], EP = 10−9 J , EM = 0.0013W ,

E = 17.28 · 106 J , ϵ1 = 0.35, ϵ2 = 0.55, ϵ3 = 0.10, the duration
of a timeslot is 1h, and v = 6.25m/s [2]. The evaluation fo-

cuses on: (i) pure operation of the proposed framework, (ii)

scalability performance, and (iii) comparative analysis.

5.1 Pure Operation of the Algorithm

In Fig. 1.a-c, the amount of offloaded data, along with the

corresponding time and energy overhead are presented for

four different IP cameras. The IP cameras with ID 12 and 3

have strict time and energy constraints (Fig. 1.b,c), thus they

choose to offload large amount of data to the MEC server

in order to satisfy their QoS prerequisites. However, even

if they choose such a strategy, they still cannot meet their

QoS demands and the DLSE algorithm converges to an GSE

point. The IP cameras with ID 1 and 28 have relaxed time and

energy constraints and they achieve to satisfy them, while

the stricter the constraints are, the less time and energy

overhead they experience, and the more data they offload.

Fig. 2.a presents the FAAS’s average reward versus the

timeslots. After almost 50 timeslots, the FAAS learns its en-

vironment and then it can choose the path that provides the

maximum reward (Eq. 8). In Fig. 2.b-c, it is shown that the

percentage of satisfied cameras is significantly higher and

the corresponding IP cameras’ time and energy overheads

are lower as the time evolves, when the FAAS visits those

areas, thus showing the great benefits of adopting the FAAS

in the overall considered architecture. Fig. 3.a, b depict the

average number of FAAS’s visits and the average Quality of

Information per AoI in a time frame of 250 timeslots. It is

observed that if an AoI has high QoI, the SARSA algorithm

Session 2 CHANTS ’19, October 25, 2019, Los Cabos, Mexico

25



AoI 0
AoI 1

AoI 2
AoI 3

AoI 4
AoI 5

AoI 6
0

20

40

60

A
vg

. #
 o

f 
F

A
A

S
's

 V
is

it
s

a)

AoI 0
AoI 1

AoI 2
AoI 3

AoI 4
AoI 5

AoI 6
0

0.5

1

A
vg

. Q
o

I

b)
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Figure 4: Scalability Analysis

MEO
MTO NE OE

Random SE
0

0.1

0.2

0.3

%
 o

f 
S

at
is

fi
ed

 C
am

er
as a)

Closest

Energy
Inorder

Max Reward

Random
SARSA

Time

-0.3

-0.2

-0.1

0

R
ew

ar
d

 V
al

u
e

b)

Figure 5: (a)% of Satisfied Cameras (b)FAAS’s Avg. Reward

w.r.t. different offloading and FAAS’s policy approaches

will efficiently consider the FAAS’s perceived reward and

enable the FAAS to visit more often the critical AoIs, i.e., the

ones having high value of QoI.

Fig. 4a,b show the time and energy overhead and the per-

centage of satisfied IP cameras for increasing number of

cameras per AoI. The results reveal that as the number of

cameras increases, the AoIs become more congested in terms

of their communication and computing. thus the IP cameras’

time and energy overhead increases, while the percentage

of the cameras that meet their QoS prerequisites decreases.

5.2 Comparative Analysis

Finally, comparative scenarios are presented to confirm the

advantages of our proposed approach in terms of: (i) Sat-

isfaction Equilibrium’s benefits, and (ii) the benefits of the

adoption of reinforcement learning. Regarding the former,

five different comparative approaches are presented: i) mini-

mizing the energy (MEO), ii) minimizing the time overhead

(MTO), iii) determining the Nash Equilibrium (NE), vi) of-

floading the data entirety (OE), and v) random amount of

data is offloaded to the MEC server. As clearly shown in Fig.

5.a, the novel concept of SE resulted to the highest percent

of satisfied cameras. Similarly, in Fig. 5.b, the proposed rein-

forcement learning SARSA algorithm is compared against

several other different scenarios regarding the FAAS’s navi-

gation among the AoIs. In the examined scenarios, the FAAS

visits the area: i) closest to the current area, ii) with the

largest average energy constraint, iii) sequentially, vi) max-

imizing its reward, v) randomly, and vi) with the largest

average time constraint. The results clearly reveal that the

SARSA algorithm produced an average FAAS’s reward closer

to zero compared to the other scenarios, thus indicating a bet-

ter FAAS’s path in terms of collecting valuable information

from the surveillance system.
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