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Abstract—Recent technological advances in the use
of Unmanned Aerial Vehicles (UAVs) and Wireless
Powered Communications (WPC) have enabled the
energy efficient operation of the Public Safety Networks
(PSN) during disaster scenarios. In this paper, an
energy efficient information flow and energy harvesting
framework capturing users’ risk-aware characteristics
is introduced based on the principles of Contract The-
ory. To better support the operational effectiveness of
the proposed framework, users are clustered in rescue
groups following a socio-physical-aware group forma-
tion mechanism, while rescue leaders for each group are
selected. A reinforcement learning approach is applied
to enable the optimal matching between the UAVs and
the rescue leaders in a distributed and efficient manner.
The proposed contract-theoretic framework models the
UAVs-victims relation based on a labor market setting
via offering rewards to the users (incentives) in order
to compensate them for their invested labor (reporting
information). Detailed numerical results demonstrate
the benefits and superiority of the proposed framework
under different settings.

Index Terms—Contract Theory; Reinforcement
Learning; Public Safety Systems; Resource Control

I. Introduction
Public Safety Networks (PSNs) have been introduced

to provide reliable exchange of data during catastrophic
events (e.g., natural disasters, terrorist attacks). The per-
sistent and robust information flow in disaster-struck areas
has been enabled by the usage of Unmanned Aerial Vehi-
cles (UAVs). UAV-enabled wireless communications have
attracted great research and commercial interest due to
their salient attributes, i.e., controllable mobility, line-of-
sight communication with the transmitters, and low-cost,
fast, and flexible deployment [1]. Moreover, the Wireless
Powered Communications (WPC) networking paradigm
enables the mobile devices to harvest energy from the radio
frequency signals of the transmitter [2]. Capitalizing on
the advances achieved by these technologies, in this paper,
we consider a UAV-assisted WPC network that enables
the efficient data collection from a disaster-struck area,
following a contract-theoretic approach.

The research of Mr. Georgios Fragkos and Dr. Eirini Eleni
Tsiropoulou was conducted as part of the NSF CRII-1849739.

A. Related Work & Motivation

The problem of maximizing the system’s energy effi-
ciency in a three layer UAV-assisted network architecture
(space-air-ground) is studied in [3] considering an Internet
of Remote Things network, where the UAVs act as relays.
The authors formulate and solve an optimization problem
to determine the devices’ subchannel selection, their op-
timal transmission power, and the UAVs’ deployment. In
[4], a UAV performs the data collection from an Internet of
Things (IoT) field. The authors jointly optimize the UAV’s
flying speed, altitude, and the IoT devices’ frame length
at the MAC layer, to maximize the ground sensors energy
efficiency. In [5], an ant colony optimization algorithm
is presented that enables the collaboration between the
UAVs and the ground devices, in order to prolong the
lifetime of the network, by reducing the devices’ energy
consumption to report their data to the UAVs.

The concept of UAV-enabled WPC system has been in-
troduced in [6], where UAV-mounted energy transmitters,
transmit radio frequency signals and the ground devices
harvest energy from them. In [7], the UAV’s trajectory
is obtained to maximize the harvested energy by the
ground devices under the UAV’s flying speed and altitude
constraints. In [8], the authors aim at maximizing the
minimum achievable throughput of the ground devices,
by jointly optimizing the UAVs’ trajectories, the users’
transmission power, and the decision between the devices’
energy harvesting and information transmission phases.

However, all these research efforts have been conducted
in isolation focusing on only one of the following related
problems, that is: the energy efficient information acquisi-
tion from the ground nodes, the energy harvesting from
the UAVs’ radio frequency signals, and/or the optimal
UAVs’ deployment. This fragmentation has not yet allowed
the exploitation of the corresponding achievements in their
full capacity. Accordingly, in this paper, we aim to address
this research gap by introducing an energy efficient infor-
mation flow and energy harvesting framework capturing
users’ risk-aware characteristics, based on the principles
of Contract Theory, and the support of Reinforcement
Learning.
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Fig. 1: UAV-assisted WPCN topology and framework’s architecture

B. Contributions & Outline
The main contributions of this research work are sum-

marized as follows.
• A wireless powered communication network (WPCN)

assisted by UAVs charging the victims’ devices is
considered in a public safety scenario. The victims’
risk-aware characteristics to provide their information
to the UAVs are captured in representative utility
functions. An optimization problem determining each
victim’s optimal amount of provided information to
the UAV and each UAV’s optimal charging power,
is formulated and solved following the principles of
Contract Theory, by introducing a labor market rela-
tionship among the UAVs and the users (Section II).

• The victims are organized in rescue groups and the
rescue leaders are determined for each group through
a socio-physical groups formation mechanism (Section
III-A). A reinforcement learning framework, based
on the theory of Stochastic Learning Automata, is
introduced to enable the optimal matching between
the UAVs and the rescue leaders of each group, in a
distributed and efficient manner (Section III-B).

• A set of simulation experiments are performed
demonstrating the basic characteristics of the pro-
posed contract-theoretic framework, while considering
users’ risk-aware behavior. The benefits of the pro-
posed framework are highlighted in terms of energy-
efficiency, information acquisition from the disaster
area, and intelligent users’ incentivization to support
the rescue operation (Section IV).

II. Contract-theoretic Control of Resources
A UAV-assisted WPCN is considered within a pub-

lic safety system consisting of a set of victims V =
{1, . . . , v, . . . , |V |}, a set of UAVs U = {1, . . . , u, . . . , |U |},
and the Emergency Control Center (ECC). The channel
gain between two victims v, v′ is defined as Gv,v′ = λ

d2
v,v′

,
where λ > 0 represents the channel fading and dv,v′ [m]
is the distance among the victims v and v′ [9]. Let Ev [J]
denote the energy availability of each victim’s v device and
dv [m] represent the distance of the victim from the source

of the disaster (e.g., epicenter of an earthquake). The vic-
tims are organized in rescue groups. Each rescue group rg
determines its rescue leader rlrg following a socio-physical
rescue groups formation mechanism (Section III-A). Each
rescue leader selects in a distributed manner to which UAV
it will offload its data based on a reinforcement learning
approach (Section III-B). The considered system’s topol-
ogy is presented in Fig. 1. Initially, we assume that the
rescue groups formation and the rescue leaders association
to the UAVs have already been performed and we focus on
the contract-theoretic control of the resources.

During a catastrophic event, the ECC needs to collect
information from the victims in order to plan the rescue
operation [10]. Thus, incentives should be offered to them
in order to provide information to the UAVs and corre-
spondingly to the ECC. At the same time, the victims’ be-
havioral characteristics, i.e., risk-aware behavior in terms
of providing information, should be considered, while de-
signing their incentives. To achieve this goal, the principles
of Contract Theory are adopted [11]. Contract Theory is
a powerful tool to design effective incentives by modeling
the UAVs-victims relation based on a labor market setup.
Specifically, the victims of a rescue group report their
information to the corresponding rescue leader. Then, a
UAV, which collects information from the rescue leader,
considers the rescue leader’s risk averse characteristics and
offers rewards (i.e., incentives) in order to compensate it
for its invested labor (i.e., reporting information).

Each victim transmits with power proportional to the
normalized distance from its rescue leader, i.e., Pv =

dv,rlrg

max
v∈Vrg

dv,rlrg
· P max

v , where P max
v is the victim’s maxi-

mum transmission power and Vrg is the set of victims
belonging to the rescue group rg. The corresponding
achievable transmission data rate is Rv = W · log(1 +

Gv,rlrg Pv

|V ′|∑
v′≥v+1

Gv′,rlrg
Pv′ +I0

), where I0 represents the Additive

White Gaussian Noise and W [Hz] is the system’s band-
width, while non-orthogonal multiple access has been con-
sidered, and the successive interference cancellation tech-
nique is implemented at the receiver, i.e., rescue leader.
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Thus, during a timeslot t [sec], the total amount of data
that the rescue leader collects is: Drlrg

= (
∑

v∈Vrg

Rv)t [bits].

Each UAV offers a contract to each rescue leader that
is associated with. The contract is defined as (wrlrg ·
P max

u , TDrlrg
), where P max

u is the UAV’s maximum charg-
ing power and TDrlrg

are the collected data from its rescue
group, where TDrlrg

≤ Drlrg
. We consider the UAV’s

provided reward as wrlrg
∈ [0, 1], thus, the correspond-

ing charging power is wrlrg · P max
u . Each rescue leader

invests an effort (i.e., labor) arlrg ∈ [0, 1] and transmits
TDrlrg

= arlrg
·Drlrg

data to the UAV. The rescue leader’s
performance, as it is evaluated by the UAV, is defined as
qrlrg

= arlrg
+ ε, where ε represents some noisy data. The

parameter ε follows a normal distribution with zero mean
and variance σ2. Towards capturing the rescue leader’s
risk aware characteristics in terms of reporting information
to the UAV, as well as its perceived satisfaction from its
action and the harvested energy from the UAV, the rescue
leader’s risk aware utility function is defined as follows [11].

Urlrg
(wrlrg

, arlrg
) = −e−nrlrg [wrlrg −ψ(arlrg )] (1)

where nrlrg ∈ (0, 1] is the rescue leader’s risk aversion
parameter. The greater the value of nrlrg is, the more
conservative the rescue leader becomes in terms of up-
loading information to the UAV in order to save its
own energy. The function ψ(arlrg

) is the cost function
of the rescue leader capturing its personal cost (energy
consumption) to report the collected information from the
disaster area to the UAV. The cost function is concave
with respect to the rescue leader’s invested effort, e.g.,
ψ(arlrg

) =
ca2

rlrg

2 , where c > 0 is a constant cost factor.
The reward percentage wrlrg offered by the UAV is defined
as wrlrg = μ+srlrg ·qrlrg , where μ is a fixed compensation
level, i.e., μ · P max

u , to reward the rescue leaders for even
participating in the information flow process, and srlrg

is
the variable compensation related to the rescue leader’s
performance component. The contract-theoretic control
problem of the UAVs (i.e., charging power) and the rescue
leaders (i.e., transmitted data) resources is formulated as
a maximization problem of the UAV’s expected profit.

max
arlrg ,srlrg

E(qrlrg − wrlrg ) (2a)

E(−e−nrlrg [wrlrg −ψ(arlrg )]) ≥ Urlrg
|min (2b)

arlrg
∈ arg max

arlrg

E(−e−nrlrg [wrlrg −ψ(arlrg )]) (2c)

where Urlrg
|min is the minimum acceptable utility by the

rescue leader in order to be motivated to send the col-
lected data. The constraint (2b) represents the individual
rationality constraint of the rescue leader. If this inequality
does not hold true, then, the rescue leader has no incentive
to report the collected data to the UAV. The constraint
(2c) captures the incentive compatibility for each victim,
i.e., each victim will put an effort to report the collected
data in order to maximize its own perceived utility.

The rescue leader’s expected utility can
be written as E(−e−nrlrg [wrlrg −ψ(arlrg )]) =

−e−nrlrg [μ+srlrg arlrg −
ca2

rlrg
2 −

nrlrg
s2

rlrg
σ2

2 ]) given that

we can show that E(−e−nrlrg srlrg ε) = e
nrlrg

s2
rlrg

σ2

2 from
the theory of the normal distribution. Thus, by solving
the constraint (2c), we can determine the rescue leader’s
optimal amount of transmitted data to the UAV.

TD∗
rlrg

= a∗
rlrg

· Drlrg =
srlrg

c
· Drlrg (3)

We can eliminate the constraint (2c) by substituting Eq.
3 to Eq. 2a and rewrite the optimization problem.

max
arlrg ,srlrg

[
srlrg

c
− (μ +

s2
rlrg

c
)] (4a)

s.t. μ +
s2

rlrg

c
− c

2
s2

rlrg

c
− nrlrg

2
σ2s2

rlrg
= wrlrg

(4b)

The solution of the optimization problem (4a, 4b) yields
to the optimal UAV’s reward, i.e., charging power.

w∗
rlrg

· P max
u = [μ +

1
1 + nrlrg

cσ2 (
srlrg

c
+ ε)]P max

u (5)

Thus, the optimal contract among a UAV and rescue
leader is (w∗

rlrg
· P max

u , TD∗
rlrg

). The operational timeslot
of the system is splitted into the wireless energy transfer
(WET) phase with duration τh[sec] and the wireless infor-
mation transmission (WIT) phase with duration τt [sec].
During the WET phase, the UAVs transfer directed energy
to the rescue leaders that they are associated with, by uni-
casting a radio frequency signal via directional antennas
[12]. The rescue leader’s device’s harvested energy from
the UAV that it is associated with is given as follows.

HErlrg
= Effrlrg

· τh · wrlrg
∗ ·P max

u · Grlrg,u (6)
where Effrlrg

∈ (0, 1] is the energy conversion efficiency
factor, which depends on the rescue leader’s device.

During the WIT phase, each rescue leader reports
TD∗

rlrg
to the UAV, assuming that its available energy,

i.e., Erlrg
+ HErlrg

, is sufficient to report the contract
theoretic optimal amount of data. Each rescue leader
reports its optimal amount of data TD∗

rlrg
through a

dedicated subchannel with bandwidth W [Hz] to the
UAV via adopting the single carrier frequency division
multiple access (SC-FDMA) technique. Thus, its available
data rate is W · log(1 +

Grlrg,UAV P tr
rlrg

I0
), where P tr

rlrg
is

the rescue leader’s transmission power. Thus, the rescue
leader’s consumed energy to transmit the TD∗

rlrg
data is

Etr
rlrg

= P tr
rlrg

· τt, and its remaining energy for the next
timeslot is E

(t+1)
rlrg

= E
(t)
rlrg

+ HErlrg − Etr
rlrg

.

III. Groups Formation and UAV Associations
A. Socio-physical Rescue Groups Formation

In this section, a socio-physical-aware rescue groups
formation mechanism is presented, in order to enable the
victims to create rescue groups and support the energy
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efficient information flow from the victims to the UAVs. In
each rescue group, the victims transmit their information
to the rescue leader of the group, who forwards it along
with its own information to a UAV.
(1) Physical Ties: To support the victims’ energy efficient
communication, the victims tend to participate in rescue
groups, where their communication distance among each
other is small and their channel gain conditions are good.
Thus, we define a symmetric matrix G = {gv,v′}|V |×|V |,
where gv,v′ = Gv,v′

max
∀v,v′∈V

{Gv,v′ } ∈ [0, 1], which represents

the normalized channel gain conditions of a pair of vic-
tims v, v′. Also, the victim’s normalized energy availabil-
ity EAv = Ev

max
∀v′∈V

{Ev′ } ∈ [0, 1] is critical in order to

identify whether it could act as a rescue leader. The
rescue leaders collect, process, and transmit the rest of
the rescue group’s victims’ information, thus, they spend
an increased amount of energy. Moreover, the victim’s
normalized distance from the source of the disaster Dv =

dv

max
∀v′∈V

{dv′ } ∈ [0, 1] is considered, as this victim can provide

more accurate information to the UAV.
(2) Social Ties: The victims have interest to communicate
with specific people, e.g., family members. The symmetric
matrix CI = {civ,v′}|V |×|V |, civ,v′ ∈ [0, 1] captures the
victims’ communication interest. A lower value of civ,v′

represents less communication interest among the victims.
By combining the victims’ social and physical ties, we

define a metric that captures the rescue and communica-
tion capability (RCC) of each victim, as follows.

RCCv = EAv · Dv ·
∑

v,v′∈V,v �=v′
(civ,v′ · gv,v′) (7)

The socio-physical rescue groups formation mechanism
is executed at the ECC, which informs the victims through
broadcasted messages, and consists of the following steps.
(1) Initially, all the victims |V | create a rescue group rg,
whose set of victims is V ′ = V .
(2) For this rescue group rg with set of victims V ′, the res-
cue leader rlrg is determined as rlrg = arg max

v∈V ′
{RCCv}.

(3) For the victims that belong to the rescue group rg with
set of victims V ′, the following condition must hold true:

gv,rlrg
· civ,rlrg

· Dv ≥ RG
(V ′)
thres (8)

where RG
(V ′)
thres =

∑
v∈V ′

gv,rlrg

|V ′| ·
∑

v∈V ′
civ,rlrg

|V ′| ·
∑

v∈V ′
Dv

|V ′| is a
threshold value to create homogeneous rescue groups in
terms of consisting of victims with close distance, good
channel conditions, high communication interest among
each other, as well as contributing valuable information
due to their proximity to the source of the disaster. The
victims, who do not satisfy the condition (8), they form a
new rescue group, with set of victims V ′′ ⊆ V ′.
(4) Set V ′ = V ′ − V ′′ and if |V ′| > 1, return to step 2,
otherwise stop.

B. Reinforcement Learning-enabled Matching among
UAVs and Rescue Leaders

In this section, a reinforcement learning-based frame-
work is introduced to enable the optimal matching among
the UAVs and the rescue leaders in a distributed and
computationally efficient manner. Each leader acts as a
stochastic learning automaton (SLA) making decisions of
selecting a UAV to offload its data. Each UAV is char-
acterized by a reputation, which depends on the physical
and communication characteristics of the overall examined
public safety system, and it is given as follows.

Ru =

∑
rlrg∈Vu

w
∗(ite−1)
rlrg

P max
u

∑
∀rlrg

drlrg,u

∑
rlrg∈Vu

T D
∗(ite−1)
rlrg

F TuRu

∑
∀rlrg

w
∗(ite−1)
rlrg

P max
u

∑
rlrg∈Vu

drlrg,u

∑
∀rlrg

T D
∗(ite−1)
rlrg

∑
∀u

Ru

|V
(ite−1)
u |3

(9)

where FTu ∈ (0, 1) and Ru are the normalized flying
time and the communications coverage radius of the UAV
u, respectively, and Vu is the set of rescue leaders being
served by the UAV u. The physical notion of Eq. 9 is
that a rescue leader prefers to offload its data TD∗

rlrg
to a

UAV u that (a) collectively charges with high transmission
power the rescue leaders that are connected to it; (b) is
in close proximity; (c) has a long flying time and large
communications coverage radius; (d) it tends to collect
large amount of data; and (e) is not overcongested by other
rescue leaders trying to simultaneously offload their data.

The probability of a rescue leader selecting the same
UAV u to offload its data TD∗

rlrg
in the next iteration of

the SLA algorithm is given by Eq. 10a and the probability
of selecting a different UAV is given by Eq. 10b [13].

P r
(ite+1)
rlrg,u

= P r
(ite)
rlrg,u

+ bR(ite)
u (1 − P r

(ite)
rlrg,u

), u
(ite+1)
rlrg

= u
(ite)
rlrg

(10a)

P r
(ite+1)
rlrg,u

= P r
(ite)
rlrg,u

− bR(ite)
u P r

(ite)
rlrg,u

, u
(ite+1)
rlrg

�= u
(ite)
rlrg

(10b)

where u
(ite)
rlrg

is the selected UAV u by the rescue leader
rlrg in the iteration ite of the SLA algorithm and 0 <
b < 1 is the learning parameter that controls how fast
the rescue leaders learn their optimal UAV matching. It is
noted that the UAVs’ reputation values are broadcasted by
them to the rescue leaders to enable the latter execute the
SLA algorithm in a distributed manner and eliminate the
signaling overhead. The SLA algorithm converges when
Pr

(ite)
rlrg,u ≥ Prthr, ∀rlrg where Prthr is a threshold value,

which for the evaluation purposes in this paper is Prthr =
0.95. Then, each rescue leader offloads its data TD∗

rlrg
to

the selected UAV, as shown in Fig. 1.

IV. Numerical Results
A detailed numerical evaluation illustrates the perfor-

mance of the proposed framework in terms of the: impact
of socio-physical parameters (Section IV-A), contract-
theoretic and behavioral-aware resource control (Section
IV-B), and benefits of reinforcement learning to implement
the optimal matching of the UAVs with the rescue leaders
(Section IV-C). We consider τh = 0.985 sec, τt = 0.015
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Fig. 2: Impact of socio-physical parameters under different comparative scenarios
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Fig. 3: (a) Rescue leaders’ total amount of offloaded data, (b) UAVs’ total charging power, and (c) Rescue leaders’
total consumed energy w.r.t. risk averse degree for various comparative scenario

sec, t = 1 sec, P max
u = 85W, dv,v′ ∈ [30, 350]m, λ = 1,

Ev ∈ [100, 400] J, Dv ∈ [30, 350]m, W = 5 · 106Hz, c = 1,
b = 0.7, μ = 0.5, FTu ∈ (0, 1], and Ru ∈ [30, 350]m. We
consider |V | = 100 victims, unless otherwise stated. The
proposed framework’s evaluation was conducted in a HP
Laptop, 1.8GHz Intel Core i7, 16GB LPDDR3 RAM.

A. Impact of Socio-Physical Parameters
Three comparative scenarios regarding the victims’

socio-physical characteristics are evaluated: (i) Best: vic-
tims with high communication interest reside close to
each other; (ii) Worst: victims with high communication
interest reside far away from each other; and (iii) Random:
victims have random communication interest and distance
among each other. Fig. 2a-2d present the victims’ data
offloaded to their rescue leaders, their corresponding total
consumed energy, the number of created rescue groups,
and their corresponding average size, respectively, as a
function of the number of victims for the three considered
comparative scenarios. The results reveal that under the
best case scenario, few homogeneous (in terms of the
victims’ socio-physical characteristics) rescue groups are
created (Fig. 2c) of large average size (Fig. 2d), while the
victims achieve to offload a large amount of data (Fig. 2a)
with small consumed energy (Fig. 2b), due to their close
proximity and good channel conditions among each other.
The exact opposite holds true in the worst case scenario,
while the random scenario presents an intermediate be-
havior between the best and worst case scenarios.

B. The Benefits of Contract Theory
We also present the impact of the victims’ risk-aware

behavior on the resource management and the benefits of
adopting contract theory to model the interactions among
the UAVs and the rescue leaders. Six comparative scenar-
ios are considered; three based on the proposed contract-
theoretic resource control approach while assuming the
best, worst, and random scenarios (Section IV-A), and the
corresponding three scenarios that conclude by assuming
that the UAVs charge the rescue leaders’ devices with

their maximum available power (referred to as Best Max,
Worst Max, and Random Max respectively). Fig. 3a-3c
present the rescue leaders’ total amount of offloaded data,
the UAVs’ total charging power, and the rescue leaders’
corresponding consumed energy to offload their data to the
UAVs, respectively, as a function of the rescue leaders’ risk
averse degree, for all the considered comparative scenarios.
It is observed that, with reference to the contract-theoretic
based scenarios, as the rescue leaders become more risk
averse (i.e., high value of the risk averse degree n), they
tend to invest less effort in terms of offloading their data
to the UAVs (Fig. 3a), thus, they consume less energy in
their data transmission (Fig. 3c) and enjoy less rewards
(i.e., charging power) from the UAVs (Fig. 3b). Also, in
the comparative scenario, where the UAVs provide their
maximum available charging power (Fig. 3b) to incentivize
the rescue leaders to offload more data (Fig. 3a), this goal
is achieved by immensely sacrificing the energy efficiency
of the public safety system (PSS), as shown in Fig. 4a.

Specifically, Fig. 4a depicts the PSS’s energy efficiency
defined as the total amount of offloaded data by the rescue
leaders over the corresponding spent charging power by
the UAVs as a function of the rescue leaders’ risk averse
degree n. The results reveal that the UAVs’ charging
power is not well-spent, when they charge the rescue
leaders with their maximum available charging power,
and the UAVs’ energy cost for every unit of collected
information is higher for any examined topology of the
PSS and the victims’ socio-physical characteristics. This,
demonstrates the benefit of the contract-theoretic control
of the resources from the PSS’s point of view. Moreover,
the proposed framework is also valuable for the rescue
leaders, as it enables them to achieve greater utility (Eq. 1)
compared to the scenario of having their devices charged
with the UAVs’ maximum charging power (Fig. 4c).

C. Intelligent Matching between UAVs and Rescue Leaders
In this subsection, we highlight the benefits of adopting

a reinforcement learning mechanism to enable the rescue
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Fig. 4: (a) Energy Efficiency of the PSS, (b) Ratio of the rescue leaders total offloaded data over the total consumed
energy, and (c) Total rescue leaders utility w.r.t. risk averse degree for various comparative scenario
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Fig. 5: Reinforcement learning-based matching between the UAVs and the rescue leaders – A comparative evaluation

leaders to optimally select a UAV to offload their data,
while considering the characteristics of the PSS. Two
indicative alternative approaches are also considered for
comparison purposes: (a) Min Distance: the rescue leaders
offload their data to the closest UAV; and (b) Random: the
rescue leaders randomly select a UAV to offload their data.
Fig. 5a-5c illustrate the rescue leaders’ total consumed
energy, their corresponding total amount of offloaded data,
and the UAVs’ total charging power, respectively, for the
considered comparative scenarios. The results reveal that
the reinforcement learning approach enables the rescue
leaders to thoroughly learn their surrounding environment
and make a sophisticated choice of a UAV, as indicated by
the holistic reputation function (Eq. 9). Thus, the rescue
leaders achieve to report a larger amount of data (Fig.
5b), compared to the other comparative scenarios, while
consuming the lowest amount of energy (Fig. 5a), and
enjoying greater charging power from the UAVs (Fig. 5c).

V. Conclusions

In this paper, a resource orchestration framework is
introduced in a UAV-assisted WPCN within a public
safety system, based on the principles of contract theory
and reinforcement learning. The key objective and novelty
of this framework is that it enables the energy efficient
information acquisition from the victims, while consider-
ing their risk-aware behavior. Detailed numerical results,
obtained through modeling and simulation, demonstrate
the benefits and superiority of the proposed framework
in terms of energy-efficiency, information acquisition from
the disaster area, and intelligent users’ incentivization to
support the rescue operation. Our future research plans
include the extension of the proposed framework to con-
sider the backhaul connection between the UAVs and the
emergency control center, thus offering an energy efficient
end-to-end data acquisition and transmission solution.
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