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ABSTRACT Microbes live in complex and constantly changing environments, but it 

is difficult to replicate this in the laboratory. Escherichia coli has been used as a 

model organism in experimental evolution studies for years; specifically, we and oth- 

ers have used it to study evolution in complex environments by incubating the cells 

into long-term stationary phase (LTSP) in rich media. In LTSP, cells experience a vari- 

ety of stresses and changing conditions. While we have hypothesized that this ex- 

perimental system is more similar to natural environments than some other lab con- 

ditions, we do not yet know how cells respond to this environment biochemically or 

physiologically. In this study, we began to unravel the cells’ responses to this envi- 

ronment by characterizing the transcriptome of cells during LTSP. We found that 

cells in LTSP have a unique transcriptional program and that several genes are 

uniquely upregulated or downregulated in this phase. Further, we identified two 

genes, cspB and cspI, which are most highly expressed in LTSP, even though these 

genes are primarily known to respond to cold shock. By competing cells lacking 

these genes with wild-type cells, we show that these genes are also important for 

survival during LTSP. These data can help identify gene products that may play a 

role in survival in this complex environment and lead to identification of novel func- 

tions of proteins. 

IMPORTANCE Experimental evolution studies have elucidated evolutionary pro- 

cesses, but usually in chemically well-defined and/or constant environments. Using 

complex environments is important to begin to understand how evolution may oc- 

cur in natural environments, such as soils or within a host. However, characterizing 

the stresses that cells experience in these complex environments can be challeng- 

ing. One way to approach this is by determining how cells biochemically acclimate 

to heterogenous environments. In this study, we began to characterize physiological 

changes by analyzing the transcriptome of cells in a dynamic complex environment. 

By characterizing the transcriptional profile of cells in long-term stationary phase, a 

heterogenous and stressful environment, we can begin to understand how cells 

physiologically and biochemically react to the laboratory environment, and how this 

compares to more-natural conditions. 

 
KEYWORDS cold shock, experimental evolution, genetics, long-term stationary 

phase, transcriptomics 

 

xperimental evolution studies of bacteria have revealed many insights into evolu- 

tionary processes (1–3). Many of these experiments have been performed in 

environments where only one factor is being experimentally manipulated, for instance, 

starvation for one nutrient (4), heat shock (5), antibiotic stress (6), etc. However, in 

natural environments, cells are likely experiencing multiple, as well as differing, stresses. 
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We and others have previously used long-term batch culture experimental evolution to 

explore how evolutionary processes work in a heterogenous environment, where cells 

might experience some of the same environmental factors such as oxidative stress, 

anaerobic conditions, or low availability of certain nutrients (7–9). In these experiments, 

we allow cells to move through the entire life cycle of Escherichia coli in complex media, 

in order for cells to experience multiple types of stresses, which change throughout the 

incubation period. 

During the E. coli life cycle in the laboratory, cells transition through the lag, log, and 

stationary phases and then into the death phase, where ~99% of cells die, lyse, and 

release their cellular contents into the medium (10). This allows the remaining ~1% of 

cells to enter long-term stationary phase (LTSP), where they can use the detritus of 

lysed cells as carbon and energy sources (10–12). The stresses of long-term stationary 

phase likely include high pH, high oxidative stress but low oxygen, and a lack of readily 

metabolized nutrients; however, none of these have been characterized completely (10, 

13, 14). We previously showed that cells with mutations that may help cope with these 

stresses are selected for during this phase and that as populations continue further into 

LTSP, there is turnover of different mutant genotypes depending on the medium 

conditions at any given time (7, 9). 

While we have hypothesized that this dynamism of genotypes indicates that 

different subpopulations of cells are growing and dying within LTSP cultures, we do not 

know if this phase consists of a collection of cells reflecting the four previous phases 

(lag, log, stationary, and/or death) or if LTSP consists of cells acting uniquely. We know 

that cells in lag, log, and stationary phases have unique transcriptional programs (15), 

but while expression changes due to genetic effects have been analyzed (16), to our 

knowledge, the transcriptional profile of LTSP in E. coli has not been studied. Elucidat- 

ing the transcriptional profile of LTSP could help determine whether it is a phase in and 

of itself or whether it is more representative of an amalgam of cells experiencing the 

other phases. 

In this study, we analyzed the transcriptome of E. coli throughout its laboratory life 

cycle, including death phase and LTSP. We have determined that the expression of a 

small set of genes is uniquely regulated during LTSP, indicating that this phase does 

have its own transcriptional program. Further, we hypothesize that the genes which are 

upregulated only in LTSP compared to other phases may be important for survival 

during this phase. We identify three genes in the cold shock protein family, cspB, cspF, 

and cspI, which are upregulated in LTSP compared to the other four phases. Loss of two 

of these genes (cspB and cspI) affects survival in LTSP during competition with wild-type 

cells. These results further indicate that (i) we may be able to use these types of data 

to characterize the biochemical and physiological responses to long-term stationary- 

phase stresses and (ii) we may be able to identify novel functions for proteins which 

have been characterized only in earlier phases of the life cycle. Understanding how cells 

respond biochemically to LTSP may allow us to determine how applicable standard 

laboratory conditions are as models to better understand natural environments. 

 
RESULTS 

The transcriptome of cells in LTSP can be distinguished from that of cells in 

other phases. In order to determine if there is a unique transcriptional program in 

LTSP, we incubated cells in triplicate into long-term stationary phase, extracted whole- 

cell RNA at six time points throughout the E. coli life cycle, and performed RNA 

sequencing (Fig. 1). Time points included log phase (4 h), late-log phase (8 h), stationary 

phase (24 h), death phase (72 h), and two time points in LTSP (144 and 192 h). We 

sequenced rRNA-depleted RNA from each cell population and analyzed at least 6 

million reads per sample using HTSeq and DESeq2 (see Materials and Methods for a 

more detailed explanation) (17, 18). 

Using the gene expression data, we performed a principal-component analysis (PCA) 

to determine if there were features that distinguished the LTSP transcriptome from 

those of the other phases (Fig. 2). PCA ordinates the gene expression data across all 
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FIG 1 Average cell density during RNA-extraction time points. Three cultures were used for RNA 

extraction and for counting viable cells at 4, 8, 24, 72, 144, and 192 h postinoculation. Points represent 

averages of results from the three replicate cultures. Error bars represent standard deviations. In some 

cases, the error bar is so small that the point covers it. Shading represents a new phase in the E. coli life 

cycle (lag, log, stationary, death, long-term stationary). 

 
 

4,437 genes included in the analysis to identify principal-component axes (PCs) that 

capture the majority of the variance across all genes. We focused on the first 3 PCs as 

they capture 73.4% of the variation between samples (PC1 = 31.9%, PC2 = 22.8%, and 

PC3 = 18.7%). We can plot each sample across any combination of these axes to 

observe how similar each sample is to another sample with regard to the expression 

data and those principal components. Comparing PC1 to PC2 (Fig. 2A), we observed 

that cells in death phase and LTSP have similar positions along the two axes. However, 

cells in death phase were separated from cells in LTSP along PC3 (Fig. 2B), indicating 

that the expression patterns exhibited by cells in these two phases were similar with 

respect to PC1 and PC2 but different with respect to PC3. Cells in stationary phase were 

found to have a position similar to that seen with those in LTSP along PC1 and PC3 

(Fig. 2B), indicating that there were similarities among their expression profiles for 

components 1 and 3 but that they were positioned uniquely along PC2 (Fig. 2A). Cells 

in log and late-log phase were positioned similarly along PC2 (as were cells in death 

phase; Fig. 2A) but were positioned uniquely along PC1 and PC3 (Fig. 2B). These data 

indicate that cells in the log and late-log phases had expression profiles that are similar 

to each other with respect to PC2 but different from each other with respect to PC1 and 

PC3. Interestingly, the expression profiles of cells in log and death phase were also 

similar along PC3 (Fig. 2B), indicating that there were similarities in expression patterns 

between these populations of cells with respect to this component. The fact that cells 

in LTSP had some gene expression patterns in common with those in stationary phase 

(PC1 and PC3) and in death phase (PC1 and PC2) supports the hypothesis that there are  

subpopulations of cells experiencing other phases during LTSP. However, while show- 

ing similarities in gene expression along some component axes, comparing each phase 

across all three axes simultaneously shows that each phase had a distinct expression 

profile (Fig. 2C). 

We also plotted a 95% confidence interval (CI) ellipse for each time point using a 

correlation matrix representing our three replicates (Fig. 2A and B). By comparing 

overlaps among ellipses for different time points, we were then able to determine how 

similar the transcriptomes were across cells at different time points. Where two CIs 

overlap, this means that, with respect to the two plotted PCs, the cells in those 

populations have similar expression patterns. These data indicate that cells mostly have 

unique transcriptional profiles in each stage of their life cycle (they stay within their 

own CI, which does not overlap another population’s CI) but that there may be time 

points throughout the life cycle when cells in one phase may also have subsets of gene 

expression in common with cells in other phases. 

We noted that the 3 replicates for each time point before the cells reached LTSP 

clustered within their 95% CI, indicating that biological replicates respond very similarly 

to their environment even as it changes. Further, we observed that populations in LTSP 
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FIG 2 PCA of transcriptomes. Shaded circles represent 95% confidence intervals based on correlation matrices of the three replicates  for each 

time point as follows: red, 4 h; orange, 8 h; yellow, 24 h; green, 72 h; blue, 144 h; purple, 192 h. (A) PC1 versus PC2. (B) PC1 versus PC3. (C) PC1, 

PC2, and PC3 plotted on the x, z, and y axes, respectively. The PCA results suggest that the cells had distinct gene expression patterns in each 

phase. 

 
are not as similar to each other as those in other phases, as these replicates did not all 

appear within the 95% confidence interval. We also observed that the 95% CIs for each 

time point overlapped only in the following cases: each LTSP time point overlapped the 

other LTSP time point’s CI in each PC comparison (Fig. 2A and B), and the LTSP CIs 

overlapped stationary-phase time points in the comparison of PC1 to PC3 (Fig. 2B). 

The PC analysis indicates that cells harvested at the two LTSP time points were very 

similar to each other. In order to determine how similar the expression profiles were at 

D
o
w

n
lo

a
d
e

d
 fro

m
 h

ttp
://m

s
y
s
te

m
s
.a

s
m

.o
rg

/ o
n

 A
u
g

u
s
t 4

, 2
0

2
0

 b
y
 g

u
e

s
t 

https://msystems.asm.org/
http://msystems.asm.org/


Transcriptome during LTSP of E. coli 

July/August 2020 Volume 5 Issue 4 e00364-20 msystems.asm.org 5 

 

 

 
 

 
 

FIG 3 Heat map of the differences in expression between LTSP and other time points. Genes are indicated along the x axis in genome order. FC, log2 fold 

change. 

 

 

these time points, we identified the genes that were differentially expressed (DE) 

between cultures incubated for 144 and 192 h. Only 13 genes in 4 operons were 

determined to be significantly different (false-discovery-rate [q] value < 0.05; fold 

change > 2) between cells at these two time points (see Table S1 in the supplemental 

material). Since this is a relatively small number compared to differences during other 

phases (for instance, 567 genes were significantly DE between log-phase and h 144 

cells), we treated the cells from the two LTSP time points as one group (LTSP) for the 

remainder of the analyses. 

Several genes are uniquely expressed in cells experiencing LTSP. While the PC 

analysis indicates that the cell population in LTSP was transcriptionally distinct from 

those in the other phases, it was not clear whether there were genes uniquely 

expressed in this phase or whether this distinct profile was due to a mixture of cells in 

one of the other four stages. 

In order to address this issue, we compared the expression levels for each gene 

between LTSP and each of the four other phases. All of the statistically significant DE 

genes are represented in Table S2. A heat map of each comparison representing all 

genes in the E. coli genome is shown in Fig. 3. Of genes DE in LTSP in comparison to 

log phase, 755 were found to be expressed at higher levels and 823 at lower levels 

during LTSP; of genes DE in LTSP in comparison to late-log phase, 669 were expressed 

at higher levels and 463 at lower levels in LTSP; of genes DE in LTSP in comparison to 

stationary phase, 632 were expressed at higher levels and 718 at lower levels in LTSP; 

and of genes DE in LTSP in comparison to death phase, 311 were expressed at higher 

levels and 499 at lower levels in LTSP. In each comparison, with the exception of 

late-log phase, more genes were expressed at lower levels in LTSP than were expressed 

at higher levels. Further, the number of genes expressed at higher levels than popu- 

lations in LTSP decreased as populations approach LTSP. 

While some genes were consistently DE from LTSP, there are many sets of genes that  

were DE in only one or two other phases. These data support the hypothesis that the 

population of cells in LTSP likely consists of cells experiencing one of the other phases 

but that LTSP may also have a unique transcriptional program that cells in some subset 

are expressing. 

In order to identify gene expression patterns unique to LTSP, we identified 38 genes 

that were significantly DE in LTSP compared to all other phases (Table 1); 32 of these 

genes were expressed at higher levels, and 6 of these genes were expressed at lower 

levels. 

Some genes uniquely expressed during LTSP affect survival during this phase. 

We hypothesize that genes which are expressed most highly in LTSP compared to other 

D
o
w

n
lo

a
d
e

d
 fro

m
 h

ttp
://m

s
y
s
te

m
s
.a

s
m

.o
rg

/ o
n

 A
u
g

u
s
t 4

, 2
0

2
0

 b
y
 g

u
e

s
t 

https://msystems.asm.org/
http://msystems.asm.org/


Kram et al. 

July/August 2020 Volume 5 Issue 4 e00364-20 msystems.asm.org 6 

 

 

 

TABLE 1 Log2 fold change of genes differentially expressed in LTSP compared to all other 
phases 

 

Regulation 

 

Gene 

Log2 fold change in indicated phase 

Log Late log Stationary Death 

Up prpE 6.86 4.99 5.80 1.76 
 efeU 5.75 1.95 4.10 1.10 
 bdm 5.06 3.31 1.75 2.12 
 glmY 5.00 2.66 1.64 1.74 
 entD 4.67 3.98 3.38 1.08 
 ydfK 4.45 6.81 3.22 1.12 
 ynaE 4.43 7.46 5.79 1.38 
 efeO 4.13 1.24 3.58 1.47 
 alaE 4.03 3.16 1.13 1.35 
 yaiY 3.55 2.83 2.47 1.58 
 mltD 2.95 1.77 2.29 1.45 
 ycfJ 2.94 1.50 2.28 1.49 
 rpsT 2.68 1.00 1.94 1.34 
 cspI 2.61 5.82 3.76 2.01 
 ymgG 2.56 2.75 2.92 1.31 
 efeB 2.30 1.14 1.22 1.00 
 wzzB 2.26 1.69 1.37 1.04 
 yhaL 2.21 2.28 1.37 1.16 
 ynfN 2.01 5.59 3.92 2.16 
 cspB 2.01 6.69 4.97 2.24 
 gtrA 1.88 1.93 2.12 1.77 
 queD 1.64 2.11 2.72 1.48 
 yjbE 1.57 1.27 1.52 1.77 
 ybgC 1.56 1.57 1.28 1.35 
 leuZ 1.43 1.91 1.03 1.34 
 valU 1.40 1.79 1.28 2.15 
 valW 1.30 3.93 2.76 1.45 
 metV 1.28 1.12 1.92 1.11 
 ygbE 1.23 1.89 1.82 1.44 
 cspF 1.22 3.42 1.75 1.02 
 mliC 1.10 1.27 1.49 1.32 

 ttcC 1.02 2.42 1.07 1.02 

Down narK -3.17 -2.18 -1.61 -2.15 
 yadK -2.36 -1.50 -2.81 -2.25 
 iraD -1.93 -1.65 -1.14 -1.13 
 ymgF -1.37 -1.04 -2.65 -1.25 
 caiB -1.37 -1.54 -1.09 -1.76 
 pfo -1.00 -1.56 -1.41 -2.11 

 
 
 

time points may play a role in cell survival. Interestingly, 3 genes identified as expressed 

at higher levels in LTSP than in all other phases were csp genes: cspB, cspF, and cspI 

(Table 1). csp genes were initially characterized as important for physiological adapta- 

tion of cells to cold temperatures (19), which cells in our cultures did not experience. 

Therefore, we were especially interested in this set of genes as they may be playing a 

role other than in response to cold shock in long-term batch cultures. The expression 

patterns of all 9 known csp genes during the incubation period are shown in Fig. 4. We 

grouped these genes into categories I to IV. Category I included the genes mentioned 

above which were expressed at higher levels during LTSP than during all other phases 

(cspB, cspF, and cspI). Category II included the genes which were highly expressed 

(normalized count > 1,000) at all time points (cspC, cspD, and cspE). Category III 

included the genes whose expression changed throughout the time course but whose 

expression in LTSP was not different from that in all other phases (cspA and cspG). 

Category IV included the one gene which showed low expression (normalized 

count < 15) at all time points (cspH). While the levels of cspF and cspG expression were 

similar in LTSP, cspF expression was lower earlier in the life cycle, which is why it is 

statistically placed in category I, whereas cspG expression started higher earlier in the 

life cycle, which is why it is statistically grouped in category III (Fig. 4). Each csp gene 
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FIG 4 Expression pattern of csp genes. Normalized counts were outputted from DESeq2 analysis. Each 

point represents averages of results from the three cultures. We hypothesized that genes in category 1 

would be important for survival in LTSP, genes in categories 2 and 3 might play a role in other phases 

of the life cycle, and the gene in category 4 would have no effect on cell growth or survival. 

 

was expressed from its own operon—none shared promoters, although some might 

share regulatory regions—and are therefore likely regulated independently of one 

another. 

We predicted that all genes in category I would be important for survival in LTSP 

specifically, that genes in categories II and III may be important for growth or survival 

during other phases, and that genes in category IV would not affect cells under these 

culture conditions. To test these hypotheses, we deleted each gene from the PFM2 

parental strain using P1 transduction from the Keio collection of gene knockouts (20) 

and incubated these cells into LTSP both alone in monoculture and in competition with 

wild-type cells. The data show that loss of genes in categories II, III, and IV had a 

negligible effect, if any, on growth of E. coli in competition with wild-type cells in 

long-term cultures (Fig. 5). Loss of cspC or cspE (both category II) might have given cells 

a slight (~5-fold to 10-fold) advantage in early LTSP, but the advantage was gone 48 h 

later. Loss of the cspF category 1 gene also had no effect (Fig. 5F). 

However, loss of two of the other category I genes, cspB and cspI, did affect the cell’s 

ability to compete with the wild-type strain, to various degrees (Fig. 5B and I). Cells 

mutant for cspB grew similarly to wild-type cells and experienced a similar death phase 

but then did not recover to the same level as the wild-type cells at 144 h (~80-fold 

lower CFU/ml). In this case, wild-type cell density decreased over the next 48 h, which 

brought them to the same level as the mutant cells (Fig. 5B). Cells lacking cspI again 

grew similarly to wild-type cells but then had a slightly more severe death phase 

(~10-fold-lower CFU/ml at 72 h) and never recovered fully from death phase, leading 

to complete loss of viable mutant cells by 192 h (Fig. 5I). Interestingly, when cells 

missing each of these genes were incubated in monoculture, without having to 

compete with wild-type cells, they did not show any defects in survival during death 

phase or LTSP (Fig. 5J). 

DISCUSSION 

We have determined that each phase in the E. coli life cycle has a unique transcrip- 

tional profile (Fig. 2). This has previously been observed for log phase and stationary 

phase, but to our knowledge this is the first indication that gene expression in death 

phase and LTSP is significantly different from gene expression in other phases. Further, 

we have also shown that there are genes which are differentially expressed in LTSP 

compared to all other phases, indicating that this phase has a unique transcriptional 

program and does not represent only a combination of cells in other phases (although 

the populations are almost certainly also made up of cells in the other four phases, as 

well as of those experiencing this unique transcriptional program). 
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FIG 5 Competitions (A to I) and monocultures (J) of each csp mutant versus wild-type cells. Wild-type cells are shown in 

black in each graph. Letters correspond to the csp gene that is missing in that mutant cell (i.e., panel A shows the 

competition between the wild-type and cspA::Kanr strains), with the exception of panel J, which shows monocultures of 

the cspB::Kanr (red), cspF::Kanr (green), and cspI::Kanr (blue) mutants and the WT strain (black). Note that panel J has a 

different y axis scale. For panels B, F, I, and J, the points represent averages of results from three cultures. For A, C, D, E, 

G, and H, the points represent averages of results from two cultures. Error bars represent standard deviations. In some 

cases, the error bar is so small that the point covers it. 

 

 

At least two of the genes that are expressed at higher levels in LTSP than in other 

phases, cspB and cspI, are important for survival in LTSP in competition against 

wild-type cells (Fig. 4 and 5). CspB and CspI are both cold shock proteins, which were 

initially discovered as induced at low temperatures (19, 21, 22). Generally, Csp proteins 
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help to recover translation levels of proteins by binding to and relaxing mRNA that 

becomes too structured to be translated appropriately in colder temperatures, al- 

though some Csp proteins, including CspB and CspI, may be chaperones for single- 

stranded DNA (ssDNA) as well (19, 23, 24). Because cultures in these experiments are 

consistently incubated at 37°C, it is likely that these proteins are actually performing 

previously unidentified functions. Interestingly, both cspB and cspI are expressed in 

stationary phase even without cold shock (21), further supporting the idea that these 

genes are likely being expressed in response to stresses other than cold shock. 

Other data indicate that these particular genes, as well as csp genes in general, may 

respond to other types of stresses. For instance, neither of these genes responded to 

cold stress in a pathogenic strain of E. coli (25). Further, Brandi et al. have shown that 

CspA, the originally identified cold shock protein, can also be regulated by the global 

regulators Fis and H-NS, indicating that it likely responds to stresses other than cold 

shock (26). cspC, cspD, and cspE are regulated by growth arrest during diauxic shift, 

H2O2 stress, and the transition to stationary phase (15). CspC and CspE are important 

for virulence in Salmonella, again indicating that they likely respond to a signal other 

than cold shock (27). Future studies will elucidate the roles of these and other genes 

during LTSP. 

It is unsurprising that not all of the LTSP-specific genes identified play a specific role 

in LTSP—a similar finding was noted with transcriptome data in long-term cultures of 

Rhodopseudomonas palustris (28). However, data presented here indicate that, in fact, 

we can use expression patterns in LTSP to identify at least some genes that are 

important for survival in this environment and, further, possibly determine the growth 

state of cells within particular environments. 

Determining which genes are expressed or repressed in lower-nutrient environ- 

ments, as well as which proteins are essential for survival, will allow us to characterize 

the biochemical and physiological responses to stress in LTSP. We can then assess 

whether LTSP (or other laboratory conditions) may be a good model for natural 

environments, such as in a host or soil, by comparing those biochemical responses due 

to similar environmental factors, such as oxygen level and access to certain nutrients, 

to those in cells in natural environments. 

 
MATERIALS AND METHODS 

Bacterial strains, growth conditions, and viable cell counts. All strains in this study originated 

from strain PFM2, derived from the E. coli K-12 lineage strain, MG1655 (29) kanamycin-resistant (Kanr) and 

chloramphenicol-resistant (Camr) derivatives, or either mutant or “wild-type” cells, as appropriate. Before 

any experiment was initiated, overnight cultures were inoculated from frozen stocks into 5 ml of Luria-

Bertani (Lennox) medium (LB) (Difco) in 18-mm-by-150-mm borosilicate test tubes, which were 

incubated with aeration in a TC-7 rolling drum (New Brunswick Scientific, Edison, NJ) at 37°C. We 

monitored cell growth and survival as described previously (13). Briefly, after inoculation of cells at a 

1:1,000 (vol/vol) dilution from overnight growth frozen stocks into 5 ml of LB, we determined viable cell  

counts by serially plating dilutions of cultures on LB agar plates supplemented with kanamycin 

(50 µ,g/ml) or chloramphenicol (50 µ,g/ml), as appropriate. 

RNA preparation and sequencing. We inoculated all cultures for transcriptome analysis from a 

single PFM2 overnight culture. At each time point, we sacrificed 3 cultures to remove 1 ml (4 h), 0.5 ml 

(8 h), or 2 ml (24, 72, 144, and 196 h) of cells, and viable cell counts were determined by serial dilution 

as described above. RNAprotect reagent (Qiagen) was added per the manufacturer’s instructions. Cells  

were pelleted and frozen at -80°C until total cellular RNA extraction was performed using an RNeasy 

Protect Bacteria minikit (Qiagen). Total RNA was processed, assessed for quality, and sequenced by the 

University of Southern California (USC) Genomics Core, where rRNA was removed using a Ribo-Zero kit 

(Illumina, Inc.). Single-end reads (75 bp) were generated from each sample on an Illumina HiSeq 2500 

platform. We received an average of 7,882,901 reads per sample, with a range of ~6.5 to ~9.5 million 

reads per sample. 

Transcriptome analysis. Using a custom Python pipeline, we used TopHat2 to align the raw reads 
to the E. coli MG1655 genome (30), SAMtools to generate binary alignment files (BAM) (31), and HTSeq 
to calculate read counts per gene and per sample (18). An average of 89.4% of reads across all samples 

mapped to our reference genome (Escherichia coli K-12 MG1655) (32), with a range of ~66% to ~96%. 

All rRNA gene reads, as well as reads of any genes that showed no expression (sum of gene counts in 

all samples < 1), were removed from the data set. We used the HTSeq output files as the input to analyze 

gene expression levels using DESeq2 (17), with comparisons between samples made based on the time 
of incubation. Once we had determined that expression differences between h 144 and h 192 were 
minimal, we marked these data points as the same time (“LTSP”) in our data frame. We identified 
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differentially expressed genes using pairwise comparisons between time points. We considered genes to 

be differentially expressed between cells in LTSP and cells at other time points if the log2 fold change 

value was greater than or equal to 1 and if the q value was less than or equal to 0.05. We summarized 

the data using principal-component analysis (PCA) and regularized log scale (rlog) values of the 

normalized counts of each gene (derived from DESeq2) using the prcomp function with centering and 

scaling in base R. We added 95% confidence intervals by calculating correlation matrices for each the 

samples in each time point and then adding these intervals to our plot using the polygon function in the 

ellipse package in R (33). The three-dimensional (3D) PCA plot was created using the same values from 

prcomp, and the values were plotted using the Scatterplot3D package in R (34). We also created a heat 

map comparing the log2 fold change between the average normalized counts for each gene in LTSP 

versus each other time point using ggplot2 (35). 

Mutagenesis of csp genes. We constructed in-frame knockout mutations of each csp gene individ- 

ually (cspA to cspI) to create nine mutant strains by the use of P1 transduction from strains in the Keio 

collection (20). Briefly, we inoculated overnight cultures from a frozen stock in the Keio collection. The 

following day, we inoculated cultures at a 1:100 dilution into fresh medium and allowed them to grow 

to mid-log phase. Lysates were made from the donor cells using P1 stock. We then used the lysates to 

transduce wild-type PFM2 and selected for mutants on LB agar plates supplemented with kanamycin. We 

confirmed gene replacement using PCR. 

Competitions and monocultures with wild-type and mutant strains. For monocultures, we 

inoculated cultures as described above. We also performed competitions between mutant strains and 

parental strains. Parental strains were marked with a chloramphenicol cassette replacing lacZ (lacZ::Camr) 

(7), and mutant strains were marked with a kanamycin cassette replacing the gene of interest (cspA::Kanr 

to cspI::Kanr). We inoculated wild-type cells (lacZ::Camr) and cells of each of the mutants (csp*::Kanr) from 

frozen stocks as described above, and overnight cultures were each coinoculated at 1:1,000 (vol/vol) into 

LB broth in test tubes. We assayed both monoculture and competition populations for viable counts 

throughout the experiment (0, 4, 8, 24, 72, 144, and 192 h after inoculation) as described above. 

Data availability. The data discussed in this publication have been deposited in NCBI’s Gene 

Expression Omnibus (36) and are accessible through GEO series accession number GSE152619. 
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Supplemental material is available online only. 

TABLE S1, DOCX file, 0.01 MB. 

TABLE S2, XLSX file, 0.1 MB. 
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