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Abstract—In this paper an Unmanned Aerial Vehi-
cles (UAVs) - enabled dynamic multi-target tracking
and data collection framework is presented. Initially, a
holistic reputation model is introduced to evaluate the
targets’ potential in offloading useful data to the UAVs.
Based on this model, and taking into account UAVs and
targets tracking and sensing characteristics, a dynamic
intelligent matching between the UAVs and the targets
is performed. In such a setting, the incentivization of
the targets to perform the data offloading is based
on an effort-based pricing that the UAVs offer to the
targets. The emerging optimization problem towards
determining each target’s optimal amount of offloaded
data and the corresponding effort-based price that the
UAV offers to the target, is treated as a Stackelberg
game between each target and the associated UAV. The
properties of existence, uniqueness and convergence
to the Stackelberg Equilibrium are proven. Detailed
numerical results are presented highlighting the key
operational features and the performance benefits of
the proposed framework.

Index Terms—Unmanned Aerial Vehicles, Matching
Theory, Reputation Model, Game Theory.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have attracted the
interest of the research community due to their salient at-
tributes, such as strong line-of-sight connection links, fast
and flexible deployment and mobility. Their vital features
have enabled them to support various civil Internet of
Things (IoT) applications, such as surveillance systems [1].
UAVs have also been used for data collection from critical
areas in crowdsourcing applications [2]. Motivated by these
applications, in this paper we propose a UAV-enabled
multi-target tracking and sensing framework, where the
UAVs are matched to the targets based on a reputation
model, and the optimal data collection is determined in a
distributed manner by a game-theoretic approach.

A. Related Work & Motivation

Computer vision-based target tracking is proposed in
the literature using the sparse representation theory to
model the target’s appearance [3]. In [4], the target track-
ing problem is formulated based on the partially observ-
able Markov decision process framework, where input is
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provided by an on board camera. The joint problem of
target tracking and UAV path planning is studied in
[5], by using vision sensors, a laser scanner, and an on
board embedded computer. A deep reinforcement learning
(DRL) approach is proposed in [6] to deal with the target
tracking problem, under the challenge of frequent changes
of the target’s aspect ratio. In [7], the authors determine
the minimum number of UAVs that are needed to detect a
set of targets by formulating a network flow-based problem
and solving it with heuristic algorithms.

UAVs have also been used to support crowdsourcing
ToT applications enabling the data collection from targets
residing in critical areas, e.g., public safety scenarios. In
[8], a UAV-assisted crowd surveillance use case is stud-
ied, where the UAVs collect videos from cameras on the
ground and they process them either on board or at the
ground servers. In [9], the UAV’s flight time is minimized
by optimizing its altitude, while jointly maximizing the
number of offloaded bits by the ground devices. In [10], the
joint optimization problem of the UAV’s trajectory and
radio resource allocation is studied via a successive convex
approximation framework, to maximize the number of
served devices in terms of achievable uplink data rate.

However, despite the significant advances achieved by
these efforts, they either neglect or partially consider, the
problem of stable matching among the UAVs and the tar-
gets, as well as the incentivization of the targets to provide
their data to the UAVs. In this paper, we aim to address
this research gap by introducing (i) a holistic reputation
model to evaluate the targets’ potential to provide useful
data, (ii) an intelligent matching framework between the
UAVs and the targets, and (iii) a game-theoretic approach
to determine the targets’ optimal amount of offloaded data
to the UAVs, while following a pricing-based approach to
incentivize them to perform the data offloading.

B. Contributions € Outline

The key technical contributions of this research work
are summarized as follows.

o A reputation model is introduced to quantify the
targets’ reputation in terms of valuable offloaded data
to the UAVs. It consists of (i) the UAV-agnostic rep-
utation, where the targets’ reputation is determined
by all the UAVs, and (ii) the trustworthy reputation,
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where the evaluation of a trusted set of UAVs regard-
ing the targets’ reputation weighs more (Section II).

o Representative preference matching functions are for-
mulated for the UAVs and the targets to capture their
preferences in terms of pairing among each other. An
intelligent matching algorithm is realized to decide
the targets to be tracked by the UAVs (Section III).

o The targets and the UAVs utility from offloading and
collecting data, respectively, is captured in utility
functions. A Stackelberg game is formulated among
each target and the associated UAV to determine each
target’s optimal amount of offloaded data and the
effort-based price that the UAV offers to the target
to incentivize it to offload its data. The properties of
existence, uniqueness and convergence to the Stackel-
berg Equilibrium are proven (Section IV).

o A set of detailed numerical results is presented to
evaluate the performance of the proposed framework,
while a comparative study demonstrates its superi-
ority in terms of successful target tracking and data
collection (Section V).

II. MODELS & ASSUMPTIONS

A. System Model

We consider a snapshot of a smart city environment
consisting of a set of targets I = {1,...,i,...,|I|} (e.g.,
ambulances, firetrucks, mobile IoT sensors), and a set of
UAVs N ={1,...,n,...,|N|}. The position of each UAV
at the time t is pj' = (z7,v}, 24"). The target’s position
qi = (2%, yi,0m) at time ¢ is stochastic following a bivariate
Gaussian distribution. Thus, the UAVs know the likelihood
' (q)) : Q — Rsg that the target i is at a location ¢ at
time ¢t. We obtain the highest likely probabilistic position
Gi = (&%, 9¢,0m) by employing the mean of the target’s
Gaussian distribution. Each UAV n is characterized by its
normalized flying time F,, € [0, 1], which depends on its
energy availability, where a value closer to one indicates a
greater flying time. Each target i has a personal normal-
ized cost ¢; € (0,1] (e.g., consumed energy) to collect the
data d; ,, that will be offloaded to a UAV n, thus, it charges
the UAV with an effort-based price P; ,, in order to obtain
its data. For generalization purposes, we consider that the
targets’ data collection personal cost ¢; and the effort-
based price P;,, are unitless. Each target has a criticality
factor i; € (0, 1] based on the events in the surrounding
environment. For example, an ambulance close to an area
that a shooting occurred has greater criticality of data
compared to a police car patrolling a neighborhood. The
targets collect D = {1,...,d,...,|D|} different types of
data, e.g., videos, alerts, where d € (0, 1]. A greater value
of d represents an enhanced type of data, e.g., video,
compared to a smaller value of d, which indicates a lower
type of data, e.g., speed alert. The popularity of each type
of data is captured by the Zipf distribution Zipf(d) = 7,
21> 0,0< 290 < 1.

B. UAV-agnostic Reputation Model

The UAVs track the targets and collect data from
them in order to report them to a central entity, e.g.,
the Emergency Control Center (ECC) in a smart city.
Each target is characterized by a reputation based on
how helpful or not was the provided information. In the
UAV-agnostic reputation model, all the UAVs evaluate
the targets’ reputation that they interact with, each one
with equal weight. Towards the UAV n evaluating how
helpful is the information collected by the target i, the
following metric is introduced: H; ,, = - Zipf(d ) Its
physical notion is that a UAV considers the prov1ded data
from target ¢ helpful if the data collection process is cost-
efficient (i.e i,’ ~) and the type of the collected data is of
high popularlty (1 e., Zipf(d)). Thus, a binary parameter
represents if the collected data are helpful (c;\n =1, if
H;, > H,) or not (cf‘n = 0, if H;,, < Hy,) for the
UAV n in the A-th interaction with the target i, where
chT = ZViVn szn/|I|

The reputation of a target i, as it is evaluated by a
UAV n, decreases as the most recent interaction time
among them elapses, given that the UAV has not a recent
evaluation regarding the target’s data. A reputation decay
function logQ(T o + 1) is introduced, where tf:n is the

time instance of the A-th interaction among the UAV n
and the target ¢, T' is the time duration that we study
the sytem, and b > 0 is the decay factor. After each
UAV is associated with a target (Section III), the UAV

n provides a good GR;, = Z A logQ(# +1) or

.
a bad reputation BR; , = Z (1—¢},) - logQ(T e +1)

for the target ¢ that is absc?(:lated w1th where A, ,, is the
number of interactions among the target ¢ and the UAV
n in the examined duration 7. Thus, the overall UAV-
agnostic reputation that target i receives from UAV n,
considering both its good and bad reputation, is derived as
UAR;,, = E(beta(GR;,,+1, BR;,+1)) = %

C. Trustworthy Reputation Model

In contrast to the UAV-agnostic reputation, there may
be UAVs that their evaluation weighs more, e.g., UAVs
belonging to the ECC, in the reputation score of a tar-
get. Thus, we determine the most trusted UAV n =

arg mln[EneN |[UAR; ,,—UAR, ,|] as the one that has the
n'e N
smallest dlfference from all the other UAVs for a specific

target . A UAV belongs to the set of trusted UAVs IV, ;
for a target ¢, if [UAR;; — UAR; | < T7rihy, where
Trinyr > 01is a trust threshold defined by the central entity.

The overall reputation of a target ¢ combines the UAV-
agnostic reputation and the trustworthy reputation. Thus,
the overall good (Eq. 1) and the overall bad reputation
(Eq. 2) of the target ¢ is determined as follows.
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[Ntr. il
OGqun = w7 - GRi,n + wsy - Z GRi,n’ (1)
n'=1
[Ner il
OBR;y =w; - BRiyn+wy- Y BRiw (2)
n'=1
where wy,we > 0 are the weighting factors of the UAV-
agnostic and trustworthy reputation.
Thus, the overall reputation of the target ¢ based on the
evaluation of the UAV n is determined below.

OGR; , +1
Rion = E(beta(OG R n+1,0BR; +1)) = o

(3)
OGR;, + OBR; , +2

III. INTELLIGENT MULTI-TARGET TRACKING

In this section, an intelligent matching mechanism is
introduced to pair each UAV with a corresponding target,
while considering their tracking and sensing characteris-
tics. Each UAV n has a preference function M ; that
captures its priority to track a target ¢ in time ¢.

1 7 R;
M= - Tl 4
mi G —pp] Pin S Rin (4)
el

The physical notion of Eq. 4 is that a UAV prefers to track
a target that is in its close proximity, has high criticality
of collected data, provides its data in a competitive effort-
based price, and it has a good reputation.

Each target ¢ has a preference function 7'M;, that
captures its priority to offload data to a UAV n at time t.
G —pY| ¢ |UAR;; —UAR;,|

The physical notion of Eq. 5 is that a target ¢ prefers to
offload its data to a UAV n that (i) is in its close proximity,
thus the target will spend less energy to offload the data;
(ii) has a long flying time, thus the target has sufficient
time to transmit its data; (iii) the target’s data collection
cost for the requested amount of data by the UAV n is
low; and (iv) is trustworthy and has provided an overall
high reputation for the target i.

Based on the above, we build the UAVs’ and the targets’
matching tables at time t, as M* = (M{,)jx|; and
TM' = (TM{,)|n|x|N|, respectively. We consider |N| =
|7|, and we are searching for a stable matching among
the UAVs and the targets by examining the problem from
the UAVS’ perspective. Following the matching theory, we
adopt the Gale-Shapley algorithm [11] to enable the UAVs
to select the targets that will track at every examined time
t. The main steps of the proposed multi-target multi-UAV
matching algorithm are as follows.

1. At each time t, the UAVs and the targets have ranked
the members of the opposite set based on their own
preference function, i.e., Eq. 4 and Eq. 5, respectively.

2. FEach UAV, which is not already paired with a target,
will be randomly chosen to propose to its most preferable
target (as indicated by the UAV’s matching table M?),
which has not already rejected this UAV.

3. The target being proposed will: (i) accept the UAV’s
proposal, if this is the target’s first received proposal; (ii)

TMf’n =

reject if this proposal is worse (in terms of the target’s
preference order of UAVs) than its current proposal; and
(iii) accept if this proposal is better than its current one.
4. If all the UAVs are paired, the matching algorithm stops,
otherwise returns to step 2.

The outcome of the multi-target multi-UAV matching
algorithm is the stable pairs (i*,n*) of targets and UAVs.

IV. OPTIMAL SENSING

In this section, the problem of optimal sensing, i.e., data
collection from the smart city’s field, is addressed. Given
the pairs of UAVs and targets, the target’s ¢ utility by
offloading d; ,, data to the UAV n, is given as follows.

Ui,n(Pi,n7 dz,n) = Pi,n ' di,n — G di,n (6)

where ¢; = #f‘(d),ki > 0 is a personalized cost (e.g.,

energy cost) of the target ¢ to collect the data of type d.
The target’s utility represents the revenue (P, ,, - d; ) that
the target gains by offloading its data, while considering
its corresponding cost (¢; - d;) to collect the data.

The experienced utility of a UAV n by tracking a target
i and collecting data from it, is formulated as follows.

L{n,,-(Pi,n, dz,n) = ln - log2(1 + Z Ri’ndi,n) — Z Pi,ndi,n (7)
icl el

where p,, > 0 is the UAV’s n operation factor, i.e., level
of contribution to the smart city’s proper operation. It
is noted that the UAVs belong to a central entity of the
smart city, that controls the data collection operation. The
first term of Eq. 7 represents the perceived utility of the
UAV n by the available information in the smart city
field that is collected by the targets. The second term of
Eq. 7 represents the smart city central entity’s total cost
(charged by the targets) to collect the data.

Each target aims at maximizing its utility during the
data collection process by determining the optimal effort-
based price P, that will charge the UAV in order to
provide its data d; ,. Each target’s utility maximization
problem is formulated as follows.

max Uj n (Pin, di;n) (8)
Similarly, each UAV aims at maximizing its own utility
during the data sensing operation. Each UAV determines
the optimal amount of data d;, that it can receive from
the target that is paired with, while providing the corre-
sponding effort-based price. Each UAV’s utility maximiza-
tion problem is formulated as follows.

Iglia:(un,i(Pi,na dz,n) (9)
The two utility maximization problems of the target (Eq.
8) and the UAV (Eq. 9) are coupled together through
the variables P;, and d;,. Thus, we follow a two-step
Stackelberg game-theoretic approach, where the target 7 is
the leader and the UAV n is the follower. The Stackelberg
game is played between a UAV n and a target ¢, thus,
|| Stackelberg games are played in parallel at time ¢.
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Towards determining the Stackelberg Equilibrium (SE) of
each game, we perform a backward induction.
The UAV determines its optimal sensing demand of

data df, requested from the target towards maximizing
. . . OUn i pnRin _ .
its utility, as follows: o TS Riadin P;,, and
5 i€l
Ui pn 5, .
= ——mmm—e=t . SeT h - 1S
. WS Fondi)? < 0. We observe that U, ; is

i€l
strictly concave with respect to the requested amount of
data d; . Thus, it has a unique optimal amount of data
d; ,, determined as follows.

1+ E : Ri’,ndi’,n
% Hn i €1,i' #i +
dr = — 1

where [z]T, 2 > 0. Based on Eq. 10, we derive the following
observations: (i) the sensing demand of data d;, of the
UAV n is proportional to the target’s i overall reputation
and inversely proportional to the target’s i effort-based
price that charges the UAV; (ii) the targets compete with
each other to gain a higher reputation by reducing the
effort-based price, thus, reducing their personal cost.

The target’s utility function (Eq. 6) can be rewritten as

14+ Z Rll ndit

Usn(Puns i) = (P — 1) - [ — —2Si0 ),
based on Eq. 10. It is noted that 'if the effort-based price

P;,, that a target ¢ charges a UAV n is high, this will
impact the UAV’s tracking decision (Section IIT), and the
UAV may select another target to track. Thus, the target’s
optimal effort-based price P;,, is the Best Response to the
other targets announced prlces, ie, P, = BR(P_in),
where Pfi,n - (Pl,na ey Pifl,'ru N PZ+17n7 N 7P|I|,n)-
Towards proving the existence and uniqueness of an SE, we
show that the target’s utility function is strictly concave

with respect to the effort-based price P, ,, as follows:
1+ Z R,L/ ndz’ n

U, i HnCq i/ €1,i! #i 32Un17 _ 2ncCi
ad, = P Rim and g = — s <
0. Thus, the best response strategy of the target i is:
R npinc;
P’ =BR(P_j,) = LA 2 11
,n ( lJl) 1 + Z Ri’,ndi’m ( )
ireli #i
Based on Eq. 10, 11, the SE is (Pf,,d;,,) for the Stack-

elberg game played among the UAV n and the target
i. In order to prove the convergence of the target’s i
best response strategy to the SE, it suffices to prove that
P, = BR(P_; ) is a standard function [12].

Theorem 1: Each target’s 7,7 € I, best response strategy
BR(P_; ) is a standard function.

Proof: Towards proving Theorem 1, the properties of

positivity, monotonicity, and scalability should hold true.
1. Positivity: Based on Eq. 11, we have BR(P_; ) > 0.

2.  Monotonicity: Base on Eq. 10, 11, we have
Ri npnci
BR Pf‘ — i,n HnCi .
( 1,1’1) 1+ Z Ri”,ndt”,n
u il er,il #i
I+ Z Ry "[Pi/yjn B Ritn ]

il eI,il #i

[l Avg Over. Good Rep. [] Avg Over. Bad Rep.| 100

7] b
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Fig. 1: Targets reputation model — Targets perspective

Thus, we observe that Py, is proportional to BR(P_; n).
Therefore, the property of monotonicity is satisfied.
3. Scalability: The following property should hold true: a -

. aBR(P_in) _
BR(Pfi,n) > BR(G/'Pfi’n), a > 1. We have: m =
1+ Z Bt nditt g
n /el il #i
a2+ Z aeryn[P‘:/ —- v ]
il €1,i! #i ’ .
iz . Given that
1+ Z By pdinn
n i'el, il #i
2. Realdi L ]
il eI,i! #i !

a > 1, wehave%>l — a-BR(P_m)>

BR(a-P_jn). Thus, we conclude that P, = BR(P_;n
is a standard function with respect to P_; 5. [ ]

V. NUMERICAL RESULTS

In this section, a detailed numerical evaluation is pre-
sented in terms of (i) the proposed reputation model’s
success to capture the system’s conditions (Section V-A);
(ii) the performance of the intelligent matching algorithm
(Section V-B); (iii) the operation of the game-theoretic
sensing framework (Section V-C); and (iv) the benefits
of the overall framework compared to other alternatives
(Section V-D). For the purposes of the evaluation, the
values of the considered key parameters are as follows:
IN| = |I| = 4,b = 0.5, Trep = 0.1,w; = 0.6,wy =
0.4,z1 = dln, zp = 1/P},, an area of 100m x 100m, 23" =
121m, T = 100, pu, = [1.115,1.355,1.675,1.789], while
F,,i; randomly distributed in (0, 1]. The proposed frame-
work’s evaluation was conducted in a HP Laptop, 1.8GHz
Intel Core i7, with 16GB LPDDR3 available RAM.

A. Operation of Targets Reputation Model

In the following we examine the operation of the reputa-
tion model, both from the targets and the UAVs perspec-
tive. In particular, initially Fig. la presents the targets’
average overall good (Eq. 1), overall bad (Eq. 2), and
overall (combined) reputation (Eq. 3), over the time period
of T = 100 time instances, while Fig. 1b depicts the
number of times that the targets were providing helpful
data to their associated UAVs. The results confirm that the
targets with the highest average overall good reputation
and the smallest average overall bad reputation conclude
to better average overall reputation (Fig. 1a). Accordingly,
as shown in Fig. 1b their provided data to the UAVs are
evaluated as helpful more times.

Towards examining the operation of the proposed rep-
utation model from the UAVs’ perspective, Fig. 2a-2d
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present the UAVS’ agnostic reputation deviation from the
most trusted UAV, ie., |UAR, ; — UAR, |, the number
of times that each UAV belongs to the set of trusted
UAVs NV, ; of its associated target, the average normalized
effort-based price that it experiences and the average
normalized amount of data that it collects, respectively.
We observe that the UAVs with the smallest deviation
(Fig. 2a) are trusted more times (Fig. 2b). Thus, based
on the outcome of the SE of each game among each UAV
and its associated target, they collect more data (Fig. 2d)
by investing a smaller effort-based price (Fig. 2c¢), thus
collectively concluding to more cost-efficient data sensing.

B. UAVs — Targets Intelligent Matching Framework

The following results in Fig. 3a-3c demonstrate the
operation and effectiveness of the introduced UAVs-targets
matching framework, in terms of the UAVs’ preferences
(Eq. 4), the targets’ preferences (Eq. 5), and the actual
number of targets’ selections by the UAVs for a time
duration T" = 100 time instances, respectively. Specifically,
based on the results illustrated in Fig. 3a, it is observed
that UAV 1 prefers to track target 1, UAV 2 prefers
to track target 2, etc. The exact symmetric observation
holds true regarding the targets’ preferences to offload
their data to the corresponding UAVs (Fig. 3b). It is
noted that the proposed matching framework captures in
a holistic manner both the UAVs and the targets matching
preferences through the proposed preference functions, i.e.,
Eq. 4, 5, thus concluding to an overall successful matching
outcome (Fig. 3c).

d; . and the corresponding effort-based price P;,, as a
function of the game’s iterations. The enclosed subfigure
presents the respective target’s revenue and cost. Fig. 4b
presents the target’s utility U; ,, and the UAV’s utility
Uy ; as a function of the number of iterations. The results
reveal that the target’s offloaded amount of data and the
corresponding price (Fig. 4a) converge monotonically to
the SE in few iterations (less than 8 iterations equiva-
lent to 7msec). Following the outcome of the Stackelberg
game, the target’s and the UAV’s utility (Fig. 4b) also
monotonically converge to the optimal outcome given the
uniqueness of the SE. Also, during the Stackleberg game’s
iterations, the target increases its revenue and decreases
its cost by strategically deciding its offloaded data, while
considering the effort-based pricing limitations (Fig. 4a).

D. Comparative Evaluation

In this section, initially we compare the proposed in-
telligent matching framework with the following three
alternative matching approaches. (1) Ratio Approach:
The UAVs select the targets that have high criticality of
collected data and provide their data in a competitive
effort-based price, ie., M}, = . The targets select
the UAVs that have long ﬂylng time and its personal
cost to collect the data is low, ie., TM{, = &. (2)
Reputation Approach: The UAVs and the targetb define
therr preferences based on the reputation model, i.e.,

M} lZRz - , TM, (3) Min Distance

Approach: The UAVs’ and the targets’ preferences are
defined based on the minimum distance between them,
Le, M}, =TM}, ==

BRI

= [UAR,»—UAR; .|"
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Fig. 5a and Fig. 5b present the actual standard devia-
tion of the number of selections of each UAV from the most
selected target and the corresponding average standard
deviation over all the targets in the system for all the
comparative approaches, respectively. Furthermore, Fig.
5¢ presents the corresponding average number of rejec-
tions, i.e., two UAVs preferred the same target and due
to conflict one UAV’s preference was rejected. The results
reveal that under the proposed matching framework, the
UAVs experience few conflicts among each other (Fig. 5c),
while they tend to select their most preferable target,
and therefore the actual (Fig. 5a) and average (Fig. 5b)
standard deviation of the number of selections from their
most preferable selection is high. The Ratio approach
presents also small number of conflicts among the UAVs
(Fig. 5c¢) compared to the Reputation and the Min Dis-
tance approaches, due to the great variation of the UAVs’
preference function given the personalized price F; ,, that
target i charges UAV n. In the Reputation approach, all
the UAVs tend to select the most reputable targets, while
in the Min Distance approach, the closest targets. Thus,
in those two approaches, the number of rejections is high
(Fig. 5¢) and the actual (Fig. 5a) and average (Fig. 5b)
standard deviation of the number of selections from their
most preferable selection are consequently low.

Additionally, we compare the proposed optimal sensing
framework against the following three alternatives: (1)
Max Data Scenario: All targets offload their total amount
of collected data. (2) Max Price Scenario: The targets
charge the UAVs with a fixed (maximum) price. (3) Ran-
dom Scenario: The targets decide randomly the amount
of data to offload and the price to charge. For fairness
purposes, in all comparative approaches, the intelligent
matching algorithm introduced in this paper, is adopted.
The social welfare of the system, i.e., the summation of
the targets’ (Eq. 6) and the UAVs’ utilities (Eq. 7), is
presented in Fig. 5d for all the considered comparative
scenarios for T = 100 time instances. The results clearly
reveal the superiority of the proposed optimal sensing
framework, while the Max Data and the Max Price sce-
narios both present similar low social welfare levels, and
the Random approach provides the worst outcome.

VI. CONCLUSIONS

In this paper, a novel holistic UAV-enabled multi-target
tracking and sensing framework is introduced. Initially,
each target’s reputation is defined, consisting of both

UAV-agnostic and trustworthy reputation models. Based
on that, the intelligent pairing of the UAVs with the
targets towards enabling the multi-target tracking by the
UAVs, is performed. The targets’ optimal data offload-
ing strategies along with the optimal effort-based price
that the UAVs are charged with in order to collect the
targets’ data, are determined based on a Stackelberg
game-theoretic approach. Detailed numerical results were
presented highlighting the key operational features and the
performance benefits of our proposed approach. Part of
our current and future work focuses on treating the exam-
ined problem based on a labor economics approach under
the principles of Contract Theory, towards incentivizing
the targets to offload their data to the UAVs.
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