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Abstract—In this paper, a novel data offloading decision-
making framework is proposed, where users have the option
to partially offload their data to a complex Multi-access Edge
Computing (MEC) environment, consisting of both ground and
UAV-mounted MEC servers. The problem is treated under the
perspective of risk-aware user behavior as captured via prospect-
theoretic utility functions, while accounting for the inherent
computing environment uncertainties. The UAV-mounted MEC
servers act as a common pool of resources with potentially
superior but uncertain payoff for the users, while the local
computation and ground server alternatives constitute safe and
guaranteed options, respectively. The optimal user task offloading
to the available computing choices is formulated as a maxi-
mization problem of each user’s satisfaction, and confronted
as a non-cooperative game. The existence and uniqueness of
a Pure Nash Equilibrium (PNE) are proven, and convergence
to the PNE is shown. Detailed numerical results highlight the
convergence of the system to the PNE in few only iterations,
while the impact of user behavior heterogeneity is evaluated.
The introduced framework’s consideration of the user risk-
aware characteristics and computing uncertainties, results to a
sophisticated exploitation of the system resources, which in turn
leads to superior users’ experienced performance compared to
alternative approaches.

Index Terms—Data offloading, Multi-access Edge Computing,
Unmanned Aerial Vehicles, risk-aware behavior, computing un-
certainty, Prospect Theory, convex optimization

I. INTRODUCTION

UNMANNED Aerial Vehicles (UAVs) have gained in-

creasing research and commercial popularity due to their

salient attributes, such as flexible deployment, mobility, strong

line-of-sight connection links, low-cost, adjustable usage, ma-

neuverability, and hovering ability. Their vital features have

enabled them to support not only various military applications,

but several civilian services as well, including transporta-

tion, industrial monitoring, agriculture services, forest fire

monitoring, wireless services. For instance, focusing on the

latter, the UAVs have been used among others to enhance the

coverage and capacity of the wireless cellular networks, act

as flying base stations, and support Internet of Things (IoT)
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communications in smart cities environments [1]. Also, over

the last few years, the UAVs have been considered as means to

provide computing support to the end-users by acting as UAV-

mounted multi-access edge computing servers [2]. The concept

of multi-access edge computing (MEC), formerly known as

mobile edge computing, is a network architecture concept,

standardized by the European Telecommunications Standards

Institute (ETSI), offering cloud-computing capabilities at the

edge of the access network [3].

A. Related Work & Motivation

Very recently (2018), the use of UAV-mounted MEC servers

has been proposed in combination with the ground MEC

servers to support end-users’ applications’ offloading in order

to perform computationally intensive tasks, thus, collectively

creating a fog computing system [4]. In [5], the authors

investigate the stability of a cloud-based UAV system consist-

ing of UAV-mounted MEC servers, in relationship with the

acquisition rate of sensors’ big data. An air-ground integrated

MEC architecture is introduced in [6] consisting of both

ground and UAV-mounted MEC servers. The authors highlight

the benefits of the UAV-assisted network in terms of edge

caching and computing. In [7], the authors consider clusters of

UAV-mounted MEC servers and the problem of opportunistic

computational offloading is studied to determine the tasks that

should be offloaded to the neighboring UAV clusters with

sufficient computing resources, in order to increase the UAVs’

lifetime and decrease the overall computation time.

Focusing on the problem of users’ computation tasks of-

floading to UAV-mounted MEC servers, the authors in [8]

propose an UAV-enabled MEC system, where the UAVs act

jointly as relay and data processing nodes to facilitate the

communication and computing demands of the ground de-

vices. A joint optimization problem is formulated to minimize

the service delay of the ground devices and the UAVs by

determining the UAVs optimal position, the communication

and computing resource allocation, and the devices’ task

splitting. A centralized task offloading approach to the UAV-

mounted and ground MEC servers is introduced in [9], where

an intelligent centralized agent makes optimal decisions about

the users’ task offloading strategies via sensing the communi-

cation and computing conditions of the environment towards

optimizing the users’ Quality of Experience. The authors in

[10] introduce an optimization algorithm to jointly optimize
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the task offloading, the bit allocation during transmission, and

the UAV trajectory. A similar problem is studied in [11],

where the amount of offloaded bits to be processed by the

UAVs, as well as the number of output bits returned to the

users in the downlink, are jointly optimized, while taking into

consideration the users’ maximum latency constraints. This

research work has been extended in [2] to consider orthogonal

and non-orthogonal multiple access techniques to offload the

users’ data to the UAV-mounted MEC servers, as well as to

optimize the UAVs’ trajectory subject to their energy budget

constraints.

In [12], the UAV-mounted MEC servers’ energy saving is

studied by jointly optimizing the UAVs trajectory and data

offloading to ground MEC servers based on a long short term

memory prediction algorithm. In [13], the UAVs energy effi-

cient operation is also studied by jointly optimizing the UAVs

trajectory, the users transmission power, and the computation

load allocation via introducing a heuristic method based on

the successive convex approximation technique. Furthermore,

the feature of wireless powered communication has been also

incorporated in the UAV-mounted MEC servers. For example

in [14], [15] the UAVs are assumed to transmit energy to

multiple ground users, who in turn exploit the harvested energy

for local computing and computation tasks offloading.

All the aforementioned research works have examined the

users computation tasks offloading problem to the UAV-

mounted MEC servers and have demonstrated accordingly

significant benefits and advances, by making some key as-

sumptions, which do not necessarily hold true in real-life

networking scenarios. In particular, all the users are assumed

to have rational characteristics and aim to maximize some

form of their perceived utility, e.g., minimizing their energy

consumption, or transmission and processing time overhead of

the computation tasks. However, in reality the users demon-

strate a risk-aware behavior, which is driven by their personal

characteristics, the actions and behavior of the other users,

and the conditions in the UAV-assisted network [16], [17].

Furthermore, when users make decisions regarding offloading

and particularly in a distributed manner, the uncertainties

introduced by the underlying computing resource availability

are not properly accounted for.

Therefore, the users tend to exhibit risk-seeking or loss-

aversion behavior during their decision-making process under

the presence of uncertainty stemming from the computation

environment, which is an intrinsic characteristic of the MEC

environment. As a result, the users computation tasks of-

floading problem needs to account for the human aware-

ness and cognition within the MEC environment, capturing

several underlying characteristics, e.g., risk-awareness, which

are observed in real-life humans’ decision-making process.

For that reason, in this work we leverage Prospect Theory

[18], which has emerged as a realistic model to capture how

people make decisions under uncertainty, by considering and

modeling many of their standard biases. As it has been argued

in [19], Prospect Theory was proposed as an alternative to pure

expected utility theory in order to overcome the unrealistic

assumption, typically made by the latter, that risk attitudes are

constant across all levels of wealth. Prospect Theory asserts

that the shape of the utility function differs in the gain and

loss domains. An interesting indicative example, where the

users’ risk-aware behavior needs to be considered for the

successful design of complex systems, is the human-robot

interaction design [20], where the robots should predict the

humans’ behavior based on the risk-aware characteristics of

the latter, in order to collaborate with each other smoothly.

Another example refers to the successful design of adver-

tisement campaigns and products’ promotions based on the

risk-aware bias of the customers with respect to products’

negative reviews in their purchasing decision-making [21].

Regardless of the particular application domain (e.g., human-

robot interaction, advertisement campaigns, etc.), Prospect

Theory evangelizes that the users’ payoff, resulting from their

autonomous decisions under uncertainty, is determined in a

probabilistic manner and deviates from the one received con-

sidering users’ risk-neutral behavior, as the Expected Utility

Theory commonly assumes.

As far as the users computation task offloading problem in

MEC servers is concerned, very recently [22], [23], Prospect

Theory was utilized in a single MEC server environment

to formulate the computation task offloading problem for

resource-constrained IoT devices. The authors considered the

human awareness, inherent cognitive biases and behavioral

characteristics into the devices’ operation focusing on full [22]

or partial task offloading [23] to the single MEC server. Several

additional efforts have been reported in the literature where

Prospect Theory has been adopted in various environments

and application domains. Some of these applications include:

dynamic resource management in 5G wireless networks [16],

[24], public safety networks [17], anti-jamming communica-

tions in cognitive radio networks [25], users’ transmission

power management and anti-jamming techniques in UAV-

assisted networks [26], and Quality of Experience [27] in

cyber-physical social systems.

B. Contributions & Outline

Despite the fact that several approaches, including game

theoretic ones, have been proposed in the literature to study

the offloading decisions in UAV-enabled MEC environments,

our paper aims at exactly filling the aforementioned gap by

incorporating users’ behavioral factors in the users’ compu-

tation task offloading problem. In particular, we consider the

existence of two different types of MEC servers (i.e., ground

MEC servers and UAV-mounted MEC servers, each type

with different characteristics and capabilities), while taking

into account users’ latency and energy requirements. Towards

achieving this goal, we exploit the principles of Prospect
Theory [18], motivated by the fact that the UAV-mounted MEC

servers constitute a competitive resource-constrained environ-

ment, where the users make decisions under uncertainty of

the available resources and they compete among each other

for the shared limited resources. On the other hand, it is

noted that the ground MEC servers provide a guaranteed slice

of computation resources to each user, given their powerful

computing capabilities and availability. This comes in contrast

to the UAV-mounted MEC servers that offer an unpredictable
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slice of computation resources to each user, due to the fact

that the UAV-mounted MEC servers confront the challenge of

the constrained energy availability.

The main contributions of our work that differentiate it from

the rest of the literature, are summarized below:

1. A heterogeneous complex multi-MEC system consisting

of both ground and UAV-mounted MEC servers, that jointly

considers the risk-aware behavior of the individual users and

the risk of failure of the shared computing resources, is

introduced. Given this uncertain environment, and in con-

trast to the majority of the existing literature that primarily

addresses the problem of binary offloading where each user

may offload its whole application to one MEC server, in this

work we investigate the problem of partial offloading. In the

considered setting each user can offload arbitrarily parts of its

application to ground and/or UAV-mounted MEC servers for

remote execution [28].

2. The choice of partially locally processing the tasks or

offloading them to the ground MEC servers, where a guar-

anteed slice of computation resources is offered to each user,

are considered as a safe and guaranteed option, respectively,

offering predictable performance to the users. The difference

between the safe and guaranteed options, mainly stems form

the fact that in the local processing option (i.e. safe option)

each user’s device computation capabilities depend solely on

the user’s local characteristics and are known before the user’s

decision-making and available only for its own explicit use.

This differs from the ground MEC server option that, though

it presents a powerful computation capability by offering a

guaranteed slice of computation resource to each user that

offloads parts of its data to it, still constitutes a shared resource

among the users. The latter, comes in contrast to the UAV-

mounted MEC servers that act as Common Pool of Resources

(CPR), providing possibly superior but uncertain payoff to the

users. The potential for superior expected payoff stems from

the improved communication channel gains resulting from the

UAVs proximity to the users compared to the ground MEC

servers. On the other hand the uncertainty stems from the

probability of over-exploitation of their limited computation

resources as a natural outcome of the respective energy con-

straints, which in turn may drive the users to perceive lower

satisfaction based on the principles of the Tragedy of Commons
[29].

3. The users’ risk-aware behavior in their decision-making

process is captured via properly formulated prospect-theoretic

utility functions, considering the users’ actual utilities, their

latency and energy requirements, their computation task char-

acteristics, and their perception of the gains and losses. The

latter consideration comes in contrast to the majority of

existing works and fundamentally differentiates our work from

current literature body, since the users are not any more treated

as blind utility maximizers, but their behavioral modeling

is specifically designed to reflect real life human decision-

making under uncertainty.

4. Each user’s overall perceived satisfaction is formulated

by considering and exploiting all the different computation

options available (i.e., UAV-mounted servers, ground MEC

servers, local computing). In that respect, each user’s perceived

satisfaction utility results from the overall expected prospect

theoretic utility obtained from the UAV-mounted MEC servers,

the corresponding overall time and energy overhead by of-

floading part of its data to the ground MEC servers, and from

executing the remaining amount of data locally. It is noted

that the prospect theoretic utility is of probabilistic nature,

as it depends on the computing load and congestion at the

UAV-mounted MEC servers, with the latter being considered

as fragile computing resources that can fail to serve the

users’ computation demands due to their constrained energy

availability.

5. The user’s autonomous and optimal computation task al-

location to the available computing alternatives (i.e., local,

ground/UAV-mounted MEC servers), is formulated as a convex

optimization problem of each user’s satisfaction utility. Due

to users’ competition for shared resources, i.e., UAV-mounted

and ground MEC servers, it is confronted as a non-cooperative

game among them. The existence and uniqueness of a Pure

Nash Equilibrium (PNE) is proven, and a low complexity and

distributed algorithm that converges to the PNE is proposed.

The remaining of the paper is organized as follows. In

Section II, the considered system model is presented, by

introducing the communication and computing model, and

defining the users’ experienced time and energy overheads

from transmitting and processing their data to the avail-

able offloading options (i.e., ground and UAV-mounted MEC

servers). In Section III, the proposed prospect-theoretic utility

function formalities are detailed, whereas in Section IV, the

optimal user data offloading problem is formulated and ana-

lyzed. In Section V, a distributed low-complexity algorithm

exploiting the properties of convex optimization to determine

the game’s PNE is introduced. The performance evaluation

of the proposed framework is achieved via modeling and

simulation, and numerical results are presented in Section VI.

Section VII concludes the paper.

II. SYSTEM MODEL

A UAV-assisted multi-MEC system is considered consisting

of a set of ground MEC servers G = {1, . . . , g, . . . , G}, a set

of UAV-mounted MEC servers F = {1, . . . , f, . . . , F}, and a

set of users U = {1, . . . , i, . . . , U}. Let us also denote the set

of all available MEC servers by S = {1, . . . , s, . . . , S}, i.e.,
S = G ∪ F and S = G + F . The ground MEC servers are

attached to base stations and access points located in different

places on the ground. An indicative topology of the considered

UAV-assisted multi-MEC system in Fig. 1.

We further denote by Ti = (Bi, ti, ei) the user’s i compu-

tation task, which is characterized by: a) the amount of the

Bi [bits] input bits (i.e., data to be processed), b) the required

φ∗Bi CPU-Cycles where φ > 0 [ CPU-Cycles
bit

] describes the level

of the user’s computation task’s intensity (in the following,

we consider that the users are requesting computation tasks

with similar computation intensity and thus homogeneous φ
computation intensity factors are considered, in alignment with

current literature [30], [31]), and c) the user’s computation

task’s latency and energy requirements, denoted by ti [sec] and
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ei [J], respectively. The latency requirement ti is related with

the user’s task and indicates that the latter has to be completed

before this time deadline. Moreover, each user’s local device is

characterized by a limited energy availability (associated with

the actual device’s battery). For that reason, the user’s device’s

energy requirement ei is considered as well, and it constitutes

an upper limit value for the user’s overall consumed energy

to complete the task. Each user can arbitrarily partition its

application into distinct parts and offload them to the ground

MEC servers and the UAV-mounted MEC servers, which are

capable of processing the users’ offloaded data in parallel,

while the remaining amount of data is processed locally [15],

[28]. Accordingly, the energy requirement, as used in this

paper, practically reflects a threshold value that the user may

set with respect to the use of its own energy resources for the

execution of the specific task under consideration. It essentially

refers to energy components consumed only at the user device,

either for local execution or for transmission to the server.

The users’ communication overhead of associating with

multiple UAV-mounted and/or ground MEC servers is assumed

negligible compared to the corresponding data transmission

and processing overhead. Nevertheless, it is noted that it

can be easily incorporated in our model and framework,

by considering an additional constant factor - which would

typically be of smaller magnitude compared to the rest of

the involved overhead factors - in the formulation of the

corresponding communication overhead, each time that a user

is associated with a sever.

We denote by bi = (bi,1, · · · , bi,s, · · · , bi,S) the user’s

i offloading vector, where bi,s [bits] is the amount of data

that user i offloads to the MEC server s (either ground or

UAV-mounted MEC server). Accordingly, the total amount

of data that user i offloads to the MEC servers equals to∑
s∈S

bi,s ≤ Bi, ∀i ∈ U, while the rest Li = Bi −
∑

s∈S
bi,s

amount of data is processed locally at the user’s device. The

data offloading strategy of all the users is b = (b1, · · · ,bU).
For practical purposes, and assuming single-communication

interface at each user, we consider that each user transmits

sequentially its data bi,s, ∀s ∈ S, and each MEC server

has sufficient memory to store the received data. Each UAV-

mounted MEC server’s s, s ∈ F, energy availability is denoted

as Es [J], a part of which is used for the UAV’s operation (e.g.,

accurately maintaining its position above the ground) and the

rest Ep
s is consumed for the users’ offloaded data processing.

A. Communication & Computing Model

A multi-channel interference limited wireless communica-

tion environment is considered, where the system’s bandwidth

is divided in wireless communication channels, i.e., frequency

bands. Each MEC server (ground or UAV-mounted) is assigned

and occupies one such wireless communication channel and

receives the users’ offloaded data through it [32]–[34]. Thus,

the users communicating with the same MEC server share the

same channel and accordingly they experience intra-channel

interference, while avoiding the inter-channel interference

stemming from users offloading their data to other MEC

servers. Thus, the user’s i uplink data rate to the MEC server

Fig. 1: UAV-assisted multi-MEC System

s is Ri,s = Ws ∗ log(1 +
pi,s∗gi,s

σ2
o+

∑
j∈Us,j �=i pj,s∗gj,s ), where Ws

is the MEC server’s s channel bandwidth, pi,s is the user’s

i transmission power to offload its amount of data to the

MEC server s, gi,s is the channel gain between the user i
and the MEC server s, σ2

0 is the variance of the Additive

White Gaussian Noise, and Us = {i ∈ U : bi,s �= 0} is the set

of users that offload a non-zero amount of data to the MEC

server s.
It should be noted that in practice some users may complete

their data transmission earlier than others, which means that

they may no longer contribute to the interference term (i.e.,∑
j∈Us,j �=i pj,s ∗ gj,s) of the rest users, i.e., Us, who still

transmit their data to the MEC server s. To fully characterize

each user’s perceived transmission rate when the user actually

performs the data offloading to the MEC server s, would imply

that during the decision-making process, the user i is aware

of specific individual information about the rest of the users,

both in terms of individual user offloading strategies as well as

communication information (i.e., transmission power, channel

gain), such that the actual interference term is evaluated.

Such an approach, though would be more accurate by fully

exploiting the time dimension as well, it would be rather

complex and impractical, or even infeasible in most cases.

Moreover, the way that the user’s i uplink data rate Ri,s to

the MEC server s is defined above constitutes a lower bound,

i.e., the worst-case, transmission rate that a user perceives

by offloading bi,s data to the MEC server s. This worst-

case formulation of the transmission rate for the purposes

of computation offloading, is well aligned with commonly

assumed research efforts in the literature [34], [35].

The user i by offloading bi,s data to the MEC server s, s ∈ S

experiences a transmission time overhead Ot
i,s|tr =

bi,s
Ri,s

, and

a transmission energy overhead Oe
i,s|tr =

bi,s
Ri,s

·pi,s. We denote

as lci [CPU-Cycles
sec

] and lei [ Joules
CPU-Cycle

] the user’s i device’s local

computation capability and energy consumption, respectively.

Thus, the user’s perceived local time overhead is Ot
i |l = Li∗φ

lci
[sec] and its local energy consumption is Oe

i |l = Li ∗ φ ∗ lei
[J]. It should be noted here that in our setting, without loss

of generality, we assume that both energy and time overheads

are of equal and high importance. Accordingly, taking into

account normalization aspects to guarantee the same order of

magnitude of the jointly considered time and energy overhead
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[34], [35], the user’s i overall local overhead is formulated as

follows.

Oi|l = Ot
i |l
ti

+
Oe

i |l
ei

(1)

In Sections II-B and II-C, the ground and UAV-mounted MEC

server’s computing models are introduced. It should be clari-

fied that in this research work, we assume that a MEC server

is capable of parallel processing the users’ offloaded data.

The latter is commonly considered in the literature [34]–[37],

where a MEC server is able of computing the users’ offloaded

tasks independently through virtualization techniques.

B. Ground MEC Servers and Actual Overhead

Each ground MEC server s, s ∈ G has a powerful computa-

tion capability (e.g., high speed CPU). We consider that each

ground MEC server offers a guaranteed slice of computation

resources fG
s [CPU-Cycles

sec
] to each user that offloads part of its

data to the specific ground MEC server s. Thus, the ground

MEC server acts as a guaranteed option for the user to process

its data. Considering the user’s transmission time Ot
i,s|tr and

energy Oe
i,s|tr overhead, as well as the processing time for

the bi,s data at the ground MEC server, i.e.,
bi,s∗φ
fG
s

, the user’s

i actual overhead for offloading bi,s data to the ground MEC

server s is given as:

Oi,s|gr =
Ot

i,s|tr + bi,s∗φ
fG
s

ti
+

Oe
i,s|tr
ei

(2)

Thus, the user’s i overall actual overhead by the data offloading
and processing to the ground MEC servers is given as:

Oi|gr =
∑
s∈G

Oi,s|gr =
∑
s∈G

bi,s(
1

Ri,sti
+

φ

fG
s ti

+
pi,s

Ri,sei
) (3)

C. UAV-mounted MEC servers and Expected Overhead

The UAV-mounted MEC servers offer an attractive choice

to the users by possibly providing superior (compared to

ground MEC servers) payoff to them, due to the potential

establishment of better communication channel gains as an

outcome of their closer proximity to the users. In this re-

search work, we consider that the UAVs trajectory is a priori

known and the UAVs have the ability to hover closer to

the users, in comparison to the users’ corresponding distance

from the ground MEC servers. However, each UAV-mounted

MEC server s, s ∈ F has limited energy availability Ep
s

to be used for the processing of the users’ offloaded data.

Furthermore, each UAV-mounted MEC server is considered

as a Common Pool of Resources (CPR) and its computation

capability, which is shared among the users, is a decreasing

function of the overall amount of received data, as the more

data are offloaded to the UAV-mounted MEC server, the less

computation capability is assigned to each user.

By denoting as es [ Joules
CPU−Cycle ] each UAV-mounted MEC

server’s s energy consumption, then based on the users’ level

of computation task intensity φ, the threshold data value

that each UAV-mounted MEC server can receive for remote

processing is B̄s =
Ep

s /es
φ . Let b̄s =

∑
i∈Us

bi,s denote the

TABLE I: Summary of Key Notations

Notation Description [Units]

S Set of MEC servers

G Set of ground MEC servers

F Set of UAV-mounted MEC servers

U Set of users

Ti User’s i computation task

Bi Total input bits of user i [bits]

φ Computation task’s level of intensity of users [CPU-Cycles/bit]

ti, ei User’s i latency [sec] and energy [J] requirements

bi,s Offloaded data of user i to MEC server s [bits]

Es UAV-mounted MEC server’s energy availability [J]

Ri,s Uplink data rate of user i to MEC server s
Ws MEC server’s channel bandwidth [Hz]

pi,s Transmission power of user i to MEC server s
gi,s Channel gain between user i and MEC server s

σ2
0 Variance of the Additive White Gaussian Noise

bi User’s i data offloading vector

Li User’s i amount of locally processed data [bits]

b Data offloading strategy of all users

Us Set of users offloading data to MEC server s

Ot
i,s|tr User’s i transmission time overhead to offload data to MEC server s

[sec]

Oe
i,s|tr User’s i transmission energy overhead to offload data to MEC server

s [J]

lci User’s i local computation capability [CPU-Cycles/sec]

lei User’s i local computation energy consumption [J/CPU-Cycles]

Ot
i |l User’s i local time overhead [sec]

Oe
i |l User’s i local energy consumption [J]

Oi|l User’s i overall local overhead

FU
s UAV-mounted MEC server’s computation capability [CPU-

Cycles/sec]

fG
s Guaranteed computation resources slice assigned to a user by the

ground MEC server s [CPU-Cycles/sec]

fU
s UAV-mounted MEC server’s s computation resources slice assigned

to a user [CPU-Cycles/sec]

Oi,s|gr User’s i overall overhead by a ground MEC server s
Oi|gr User’s i overall overhead by the ground MEC servers

es UAV-mounted MEC server’s s energy consumption [J/CPU-Cycles]

Ep
s UAV-mounted MEC server’s data processing energy availability [J]

b̄s Overall data received by a UAV-mounted MEC server s [bits]

B̄s Threshold data value of a UAV-mounted MEC server s [bits]

ps(b̄s) Probability of failure of UAV-mounted MEC server s

αi, γi Sensitivity to the gains and losses of user i, respectively
ki Loss aversion parameter of user i
ui,s User’s i prospect-theoretic utility

Oi User’s i total overhead

Oi,s|fl User’s i overall overhead by a UAV-mounted MEC server

Oi|fl User’s overall overhead by the UAV-mounted MEC servers

qi,r User’s reference point

si(bi,b−i) User’s satisfaction utility

Γi User’s i strategy space

b∗
i User’s i optimal data offloading vector

b∗ Pure Nash Equilibrium point

UAV-mounted MEC server’s total received amount of data.

Each UAV-mounted MEC server’s s computation resources

slice, denoted by fU
s , that is allocated to each user is a portion

of the server’s overall computation capability FU
s [CPU-

Cycles/sec] to be shared among all users, and is formulated

as follows.

fU
s = (1− b̄s

B̄s
)FU

s (4)

Each UAV-mounted MEC server s, s ∈ F constitutes a

rivalrous and subtractable resource, since all the users can

arbitrarily offload part of their data for remote execution. This

means that its utilization by one user reduces the degree that is

exploited and utilized by another user. Thus, it is observed in

Eq. 4 that each user computation resources slice fU
s decreases
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as the overall data b̄s received by a UAV-mounted MEC server

s increases due to the fact that the server becomes more

congested, especially given the UAV-mounted MEC server’s

limited energy availability. Also, based on Eq. 4, it is evident

that if b̄s ≥ B̄s, then the UAV-mounted MEC server is unable

to process the received amount of data due to its limited energy

availability. It is worth mentioning that even in the case of

b̄s ≥ B̄s, there may still exist users’ offloaded data that could

be processed by the UAV-mounted MEC server s with an

appropriate scheduling. However, this is not deterministically

known by the users, when the latter ones are making their of-

floading decisions (Section V). For that reason, in this research

work, considering the importance of each user’s i latency (ti)
and energy (ei) requirements’ fulfilment, we adopt a worst-

case scenario approach, where each user considers that with

probability ps(b̄s) its offloaded data are unable to be processed

by the UAV-mounted MEC server s. This phenomenon is well

known in the literature as the Tragedy of the Commons [29].

In the case of the UAV-mounted MEC server’s failure, it is

more beneficial for the user to offload its data to another

MEC server (ground or UAV-mounted) or to process them

locally on its device. Moreover, each UAV’s overall energy

availability Es decreases over time, as part of it is consumed

for the UAV’s operation, thus Ep
s , B̄s decrease over time as

well. The latter constitutes a computing uncertainty for the

users decision-making offloading, as the UAV-mounted MEC

server’s capability to process the offloaded data by the users is

not known in prior. As a result, the uncertainty of each UAV-

mounted MEC server’s failure is captured by its probability of

failure, thus, the users exhibit a risk-aware offloading behavior.

Assumption 1: Each UAV-mounted MEC server’s s, s ∈ F

probability of failure ps(b̄s) is strictly increasing, convex and

twice differentiable with respect to b̄s ∈ [0, B̄s), with ps(b̄s) =
1, ∀b̄s ≥ B̄s.

In this paper, we consider a linear probability of failure

function, thus ps(b̄s) = b̄s/B̄s, ∀b̄s < B̄s, while ps(b̄s) = 1,
∀b̄s ≥ B̄s. The physical meaning of this model is that

the UAV-mounted MEC server will deterministically fail to

serve the users’ computation demands, if their total amount

of offloaded data exceeds the server’s computation capacity,

i.e., ps(b̄s) = 1, ∀b̄s ≥ B̄s. In the case however, where the

users’ total amount of offloaded data does not exceed the

server’s computation capacity, i.e., ∀b̄s < B̄s, then, the UAV-

mounted MEC server’s probability of failure is not zero, but

probabilistically depends on the amount of offloaded data that

it needs to process, i.e., ps(b̄s) = b̄s/B̄s. This holds true since

each UAV-mounted MEC server’s actual threshold data value

B̄s decreases over time, thus is not deterministically known

by the users, when they make their data offloading decisions.

It is noted that the rest of the paper’s analysis still holds

true for any other probability of failure function that follows

the Assumption 1 and the selection of a linear probability of

failure function is made for presentation purposes. Studying

the behavior of additional probability of failure functions, such

as the one resulting form a Poisson process regarding the

arrival data from all users, is also of high research interest and

part of our future work. The probability for the UAV-mounted

MEC server to survive and process the users’ offloaded data

is (1− ps(b̄s)). Thus, the user’s expected perceived overhead

by offloading bi,s to the UAV-mounted MEC server s is:

E(Oi,s|fl) = (1−ps(b̄s))Oi,s|fl+ps(b̄s)(Oi|l+
Ot

i,s|tr
ti

+
Oe

i,s|tr
ei

) (5)

where

Oi,s|fl =
Ot

i,s|tr + bi,s∗φ
fs

ti
+

Oe
i,s|tr
ei

(6)

is the actual overall overhead that user i experiences by

offloading part of its data to a UAV-mounted MEC server s,
where Ot

i,s|tr =
bi,s
Ri,s

and Oe
i,s|tr =

bi,s
Ri,s

· pi,s, ∀s, s ∈ F.

The last two terms in Eq. 5 indicate the user’s additional

time and energy overhead (accounting for the need to transmit

the data before the UAV-mounted MEC server’s failure is

finally observed). As a result, the user’s i overall expected

overhead by the UAV-mounted MEC servers is E(Oi|fl) =∑
s∈F

E(Oi,s|fl), and its overall overhead based on its of-

floading strategy bi is formulated as follows.

E(Oi) = E(Oi|fl) +Oi|gr +Oi|l (7)

III. THE PROSPECT OF DATA OFFLOADING

To address the users’ subjectivity in the data offloading

decision-making under the uncertainty of each UAV-mounted

MEC server failure, and considering that in real life users are

not risk-neutral, we adopt the principles of Prospect Theory.
Prospect Theory was introduced by Kahneman and Tversky

[38], and it is a behavioral model where the users make

decisions under risk and uncertainty of the associated payoff

of their choices, which is estimated in a probabilistic manner.

Prospect Theory captures users’ behavioral patterns, where

a user perceives greater dissatisfaction from a potential loss

compared to its satisfaction from gains of the same magnitude

(loss aversion property). The user’s losses and gains are

evaluated with respect to a reference point, which implies a

safe outcome that the user can perceive (reference dependence
property). Moreover, the users’ associated utility function is

concave for gains (i.e., users are risk averse in gains) and

convex for losses (i.e., users are risk seeking in losses), i.e.,

diminishing sensitivity property.
Some research works have focused on examining users’

behavior under the cases of observing only gains or losses

in the examined system, i.e., concave and convex part of

user’s utility function, respectively [22], [39]. However, in this

research work, we examine the users risk-aware behavior (i.e.,

with respect to both gains and losses) under the principles of

Prospect Theory, jointly with the risk of failure of the shared

UAV-mounted MEC servers’ computing resources, as reflected

by the theory of the Tragedy of the Commons. Following

the prospect-theoretic behavioral model, each user’s perceived

actual overhead (Eq. 6) by offloading bi,s data to the UAV-

mounted MEC server is evaluated with respect to a reference

point qi,r. In our work, the reference point expresses the

corresponding overhead that the user would have obtained if

processed locally the bi,s data, i.e., qi,r = Oi|l(bi,s) (Eq. 1).

Moreover, following the diminishing sensitivity property, the

user’s prospect-theoretic utility function is concave with re-

spect to the user’s actual overhead (Eq. 6) above the reference
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point qi,r, i.e., gains curve, while it is convex bellow it, i.e.,

losses curve. Also, the prospect-theoretic utility function has

a greater slope in the losses compared to the gains, as the

user weighs more the losses (i.e., experiencing a higher actual

overhead Oi,s|fl compared to its reference point) compared to

the gains (loss aversion property).
Based on the above analysis, we combine the properties

of reference dependence, diminishing sensitivity, and loss

aversion, and we define each user’s i prospect-theoretic utility
function, following the general form of the prospect-theoretic

utility function [18], as folows.

ui,s(qi,s) =

{
(qi,r − qi,s)

αi , if qi,s ≤ qi,r
−ki · (qi,s − qi,r)

γi , if qi,s > qi,r
(8)

where qi,s = Oi,s|fl if the UAV-mounted MEC server sur-

vives, otherwise qi,s = Oi|l+ Ot
i,s|tr
ti

+
Oe

i,s|tr
ei

, as the bi,s data

are executed locally, while an additional communication over-

head is generated by their transmission to the UAV-mounted

MEC server (despite its eventual failure). Each user aims to

maximize its prospect-theoretic utility (Eq. 8). If the UAV-

mounted MEC server survives, the user targets at its gains’

maximization (first branch of Eq. 8), i.e., its actual overhead

minimization, while in the opposite case, the maximization of

the user’s prospect-theoretic utility indicates the user’s losses’

minimization (second branch of Eq. 8).
The user’s risk seeking behavior in losses and risk averse

behavior in gains are reflected by small values of the parameter

αi ∈ [0, 1]. Also, small values of the parameter γi ∈ [0, 1]
reflect a higher decrease in the user’s prospect-theoretic utility,

when its actual overhead is close to the reference point.

Without loss of generality, we consider that the users follow

similar behavior both in losses and gains, i.e., αi = γi, ∀i ∈ U.

Moreover, the parameter ki captures the users’ loss aversion

behavior. Specifically, a user weighs the losses more than

(ki > 1) or equal to (ki = 1) the gains, while the opposite

holds if ki < 1.
Considering the case that b̄s ≤ B̄s =

Ep
s /es
φ , then the UAV-

mounted MEC server’s limited energy Ep
s is expected to be

sufficient to process the users’ offloaded data b̄s. To this end,

we assume that the user’s perceived actual overhead qi,s is

lower than the reference point (qi,s ≤ qi,r), given that a UAV-

mounted MEC server is considered to have significantly higher

computation capability compared to the corresponding one of

the users’ devices themselves [2], [11] (indicative realistic

values are provided in Section VI) . Based on Eq. 6 and

the first branch of Eq. 8, the user’s prospect-theoretic utility

is ui,s = [bi,s(
φ

ti·lci +
lei ·φ
ei

− 1
ti·Ri,s

− φ
ti·fU

s
− pi,s

ei·Ri,s
)]ai .

In the case of the UAV-mounted MEC server’s failure (i.e.,

b̄s > B̄s), the user’s actual overhead qi,s is greater than the

reference point qi,r, as qi,s = qi,r +
Ot

i,s|tr
ti

+
Oe

i,s|tr
ei

, so

following the second branch of Eq. 8, the user’s prospect-

theoretic utility is ui,s = −ki · [bi,s( 1
Ri,s·ti +

pi,s

Ri,s·ei )]
ai . For

notational convenience, we set εi = ( 1
Ri,s·ti +

pi,s

Ri,s·ei )
ai and

gi,s = ( φ
ti·lci +

lei ·φ
ei

− 1
ti·Ri,s

− φ
ti·fU

s
− pi,s

ei·Ri,s
)ai . Thus, the

user’s prospect-theoretic utility can be re-written as follows.

ui,s =

{
bai
i,s · gi,s(b̄s) , with prob. (1− ps(b̄s))

−ki · εi · bai
i,s , with prob. ps(b̄s)

(9)

Therefore, each user’s expected prospect-theoretic utility

by offloading bi,s data to a UAV-mounted MEC server is

formulated as follows.

E(ui,s) = bai
i,s · hi,s(b̄s) (10)

where hi,s(b̄s) = gi,s(1− ps(b̄s))− kiεips(b̄s).

IV. OPTIMIZING USERS’ SATISFACTION: A GAME

THEORETIC APPROACH

A. Problem Formulation

The goal of each user is to maximize its overall expected

prospect-theoretic utility
∑

s∈F
E(ui,s) that obtains from the

UAV-mounted MEC servers, while at the same time to min-

imize its overall local overhead Oi|l and its overall actual

overhead Oi|gr by offloading part of its data to the ground

MEC servers. Thus, we introduce each user’s satisfaction

utility, which is formulated as:

si(bi,b−i) =
∑
s∈F

E(ui,s)−Oi|l −Oi|gr (11)

where b−i = [b1, · · · ,bi−1,bi+1, · · · ,bU] is the users’ of-

floading strategy vector except of user i. The physical meaning

of the user’s satisfaction utility is the user’s overall perceived

satisfaction by processing its data in the UAV-assisted MEC

system by jointly considering the local computation, as well

as the computation at the ground MEC servers and the UAV-

mounted MEC servers. Based on Eq. 1, 3, 10, the user’s

satisfaction utility is written as follows.

si(bi,b−i) =
∑
s∈F

bαi
i,s · hi,s(b̄s)− Liφ(

1

ti · lci
+

lei
ei
)

−
∑
s∈G

bi,s(
1

Ri,s · ti +
φ

fG
s · ti +

pi,s
Ri,s · ei )

(12)

where, as mentioned earlier, Li = Bi−
∑

s∈S
bi,s are the user’s

i data that remain to be processed locally.

Each user aims to autonomously determine its optimal data

offloading b∗
i by maximizing its satisfaction utility si, while at

the same time it perceives a non-negative expected prospect-

theoretic utility E(ui,s) by each UAV-mounted MEC server,

since a negative value of the latter implies a high probability of

failure for the UAV-mounted MEC server. Furthermore, each

user’s optimal offloading strategy b∗
i should satisfy its latency

and energy requirements, i.e., E(Oi)|t ≤ ti, E(Oi)|e ≤ ei,
where E(Oi)|t and E(Oi)|e are the expected overall time and

energy overheads, as formulated in Eq. 14, 15, respectively.

It is noted that the user’s overall time overhead (Eq. 14)

considers its aggregated transmission time that is required to

sequentially transmit its offloaded data to the MEC servers. If

we had considered that each user’s device supports a multi-

communication interface , i.e., transmission to more than one

MEC server at the same time through multiple channels,

instead of the single-communication interface assumed here,

then the user’s overall corresponding transmission time would

be replaced by the maximum required transmission time.

However, even in this case the provided mathematical analysis

would follow the same line of thread.
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Thus, each user’s satisfaction utility maximization problem

can be formulated as follows.

maximize
bi∈Γi

si(bi,b−i)

subject to

∑
s∈S

bi,s ≤ Bi,

E(ui,s) ≥ 0, ∀s ∈ F,

E(Oi)|t ≤ ti,

E(Oi)|e ≤ ei

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(Ci)
(13)

where Γi =

S - times︷ ︸︸ ︷
[0, Bi]× · · · × [0, Bi], and (Ci) are the con-

straints that each user’s optimal offloading strategy b∗
i must

satisfy.

The above maximization problem (Eq. 13) can be con-

fronted as a non-cooperative game among the users who aim to

determine their optimal data offloading strategy in a distributed

manner. Let G = [U, {Γi}i∈U, {si}i∈U] denote the non-

cooperative game, where U is the users’ set, Γi is each user’s

strategy space, and si is its satisfaction utility. The solution

of the above maximization problem is captured by the Pure

Nash Equilibrium (PNE), which is the users’ offloading vector

b∗ = [b∗
1, · · · ,b∗

i , · · · ,b∗
U], where no user has the incentive

to change its offloading strategy b∗
i , given the strategies of the

rest users b∗
−i = [b∗

1, · · · ,b∗
i−1,b

∗
i+1, · · · ,b∗

U].
Definition 1: The vector b∗ = [b∗

1, . . . ,b
∗
i , . . . ,b

∗
U] ∈ Γ,

Γ = Γ1 × · · · × ΓU , is a Pure Nash Equilibrium (PNE) of

the non-cooperative game G, if ∀i ∈ U it holds true that

si(b
∗
i ,b

∗
−i) ≥ si(bi,b

∗
−i), ∀bi ∈ Γi.

It is noted that in principle, finding the PNE of a non-

cooperative game could be essentially considered as a complex

combinatorial problem among the users, whose computation

complexity makes it intractable [40]. To treat this issue, in

this work we focus on investigating a distributed solution that

overcomes the aforementioned limitations and inefficiencies.

In particular, the existence and uniqueness of a PNE point

of the non-cooperative game G is proven (Section IV-B).

Moreover, capitilizing on the continuous Best Response (BR)

dynamics methodology and properties, the convergence of a

distributed-based method to the unique PNE is proven [41].

Specifically, following the BR principles, each time a user is

selected to determine its optimal offloading data strategy by

solving a convex optimization problem (Section V).

B. Existence, Uniqueness and Convergence of PNE

We denote as Ai, each user’s set of strategies that satisfy

the group of constraints (Ci), thus Ai = {bi ∈ Γi :
bi satisfies (Ci)}, Ai ⊆ Γi. Let us introduce the transformed

non-cooperative game G′ = {U, {Ai}i∈U, {si}i∈U}.
Theorem 1: The non-cooperative game G′ among the users

is an n-person concave game, where n = U .

In order to prove the above theorem, we first state the

following Lemmas 1-4.

Lemma 1: For each user i and each UAV-mounted MEC

server s, s ∈ F = S−G, there exists a threshold value b̃i,s ≥ 0,
such that hi,s(b̃i,s) = 0, and E(ui,s) ≥ 0, ∀bi,s ≤ b̃i,s, while
E(ui,s) < 0, ∀bi,s > b̃i,s.
Proof: See Appendix A.

Consequently, based on Lemma 1 the maximization problem

in Eq. 13 can be rewritten as follows:

maximize
bi∈Γi

si(bi,b−i)

subject to

∑
s∈S

bi,s ≤ Bi,

0 ≤ bi,s ≤ b̃i,s, ∀s ∈ F,

E(Oi)|t ≤ ti,

E(Oi)|e ≤ ei

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(Ci)
(16)

where the second constraint (Ci) was replaced by the inequal-

ity 0 ≤ bi,s ≤ b̃i,s.

Lemma 2: For each user i and each UAV-mounted MEC

server s, s ∈ F, the expected prospect-theoretic utility E(ui,s)
(Eq. 10) is a strictly concave function ∀bi,s ∈ (0, b̃i,s), where
b̃i,s is the threshold value that was defined in Lemma 1.

Proof: See Appendix B.

Lemma 3: Each user’s group of constraints (Ci) is a set of

convex functions.

Proof: See Appendix C.

Based on Lemma 3, each user’s set Ai is the intersection

of the level sets of the convex functions in Eq. C.1, thus Ai =

(
⋂

n1∈{1,4,5} Lev(μ
(n1)
i , 0))∩(⋂n2∈{2,3} Lev(μ

(n2)
i,s , 0)), ∀s ∈

F, which are necessarily convex sets (see Section 3.1.6 of

[42]). Therefore, each user’s set of strategies Ai is a convex

set as an intersection of convex sets.

Lemma 4: Each user’s satisfaction utility si is a concave

function over the strategy space Ai.

Proof: See Appendix D.

Based on Lemmas 1 - 4, each user’s strategy space Ai is

a convex set, and each user’s i satisfaction utility si(bi,b−i)
is a concave function over the set Ai. Therefore, the non-

cooperative game G′ is an n-person concave game, where

n = U , and the proof of Theorem 1 is completed. An n-
person concave game has at least one PNE point [43], thus,

the existence of at least one PNE point for the non-cooperative

game G′ is guaranteed. Finally, based on Theorem 1, Lemma

4, and [43], the following Theorem proves the convergence of

the users’ strategies to the PNE.

Theorem 2: Considering the user i and an S × S matrix

function Xi, (Xi)ss′ = λi
∂2si

∂bi,s∂bi,s′
, ∀s, s′ ∈ S, and the

positive constant choices λi > 0, then the PNE of the game G′

is unique if Xi+X
T
i is strictly negative definite. Also, starting

from any initial offloading strategy vector b = (b1, · · · ,bU),
b ∈ A = A1×· · ·Ai×· · ·×AU , the continuous Best Response

(BR) dynamics converge to the unique PNE [41].

Proof: See Appendix E.

It is noted that, given that the user’s satisfaction utility

si(bi,b−i) is a concave function over its convex strategy space
Ai (Lemma 4), it has a global maximum point. In the case

that the global maximum point is beyond the user’s feasibility

region, i.e., strategy space Ai, then the user converges to its

maximum data offloading strategy (see DCP algorithm’s line

13 in SectionV-B), in order to maximize its satisfaction utility.
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E(Oi)|t = E(Oi|fl)|t +Oi|gr|t +Oi|l|t
ps=b̄s/B̄s,b̄s=bi,s+

∑

i′∈Us−{i}
bi′,s

================
fU
s =(1− b̄s

B̄s
)FU

s ,∀s∈F

∑

s∈F

bi,s(
1

Ri,s
+

φ

FU
s

) +
∑

s∈F

φ

lci
(
b2i,s

B̄s
+ bi,s

∑
i′∈Us−{i}

bi′,s

B̄s
)

+
∑

s∈G

bi,s(
1

Ri,s
+

φ

fG
s

) +
φ

lci
(Bi −

∑

s∈S

bi,s)

(14)

E(Oi)|e = E(Oi|fl)|e +Oi|gr|e +Oi|l|e
ps=b̄s/B̄s,b̄s=bi,s+

∑

i′∈Us−{i}
bi′,s

================
∑

s∈S

bi,s
pi,s

Ri,s
+

∑

s∈F

bi,sφl
e
i

bi,s +
∑

i′∈Us−{i}
bi′,s

B̄s

+ φlei (Bi −
∑

s∈S

bi,s)

(15)

V. DETERMINING THE EQUILIBRIUM

A. A Convex Optimization Approach

Each user’s best response offloading strategy b∗
i (b−i) :

A−i ⇒ Ai can be formulated as follows.

b∗
i (b−i) = argmax

bi∈Ai

(si(bi,b−i)),b−i ∈ A−i (17)

where A−i = A1×· · ·Ai−1×Ai+1×· · ·×AU and equivalently

it can be written as:

b∗
i (b−i) = argmin

bi∈Ai

(s
′
i(bi,b−i)),b−i ∈ A−i (18)

Therefore, each user should solve the following optimization

problem to determine its optimal data offloading strategy.

minimize
bi∈Ai

s
′
i(bi,b−i)

subject to

∑
s∈S

bi,s ≤ Bi,

0 ≤ bi,s ≤ b̃i,s, ∀s ∈ F,

E(Oi)|t ≤ ti,

E(Oi)|e ≤ ei

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(Ci)
(19)

It is clarified that the non-offloading strategy (i.e., bi = 0)
corresponds to the worst case decision, as in that case the

users would execute their tasks locally by using their own

devices limited resources, which would conclude to lower

perceived satisfaction, compared to the case where part of

their tasks are offloaded to the MEC environment. Thus, under

the assumption that the non-offloading strategy, i.e., bi = 0,
constitutes a worst feasible solution of the optimization prob-

lem in Eq. 19 (that is bi = 0 ∈ Ai), the proposed distributed

algorithm (Section V-B) will examine and eventually converge

to any alternative offloading strategy (if it exists) that satisfies

the constraints in Eq. 19 and leads to a higher perceived

satisfaction utility. As a result, the optimization problem in

Eq. 19 is a non-linear feasible convex optimization problem,

thus Ai �= ∅.

B. Algorithm & Complexity Analysis

In this section, the Distributed algorithm for Convergence to

the PNE (DCP Algorithm) of the non-cooperative game G′ is
presented. Firstly, each UAV-mounted MEC server evaluates

its threshold data value B̄s, and the latter is shared with the

users via a broadcasted signal, at the beginning of the users’

offloading decision-making process. As discussed in Section

II-C, each UAV-mounted MEC server’s threshold data value

decreases over time, thus in practice it may deviate from the

Algorithm 1 DCP Algorithm

1: Input/Initialization: F,G,U, Ti,bi ∈ Γi, ∀i ∈ U, B̄s, b̄s,∑
j∈Us,j �=i pj,sgj,s, ∀s ∈ S, ite = 0

2: Output: PNE strategy b∗ = (b∗
1, · · · ,b∗

U)
3: while Convergence == 0 do
4: ite = ite+ 1
5: flag = 0
6: for i = 1 to U do
7: for s = 1 to S do
8: user i calculates the transmission uplink rate Ri,s
9: if (s ∈ F) then
10: ri,s = BinarySearch([0, B̄s],ε);
11: end if
12: if (s ∈ F) then
13: b̃i,s = min(ri,s, Bi);
14: end if
15: end for
16: b∗

i = fmincon();
17: if (|b∗i,s − bi,s| ≤ ε

′
, ∀s ∈ S) then

18: flag = flag + 1;

19: end if
20: bi = b∗

i

21: user i updates b̄s,
∑

j∈Us,j �=i pj,sgj,s, ∀s ∈ S

22: user i broadcasts the new values intra-channel
23: end for
24: if (flag == U ) then
25: Convergence = 1, Ite = ite;
26: end if
27: end while

received threshold data value B̄s by the users at the beginning

of their offloading decision-making. The latter uncertainty is

captured through the UAV-mounted MEC server’s probability

of failure function (Section II-C). Following the principles of

continues BR dynamics, at each round a user is selected to

determine its optimal offloading strategy. Each user receives

the b̄s, ∀s ∈ F, and the factor
∑

j∈Us,j �=i pj,sgj,s, ∀s ∈ S

via intra-channel broadcasted signals [34] from the user that

was selected on the previous round to determine its offloading

strategy, thus avoiding any need for each user to receiving

individual information about the rest of the users, both in terms

of individual user offloading strategies as well as communi-

cation information (i.e., channel gains). Moreover, based on

Lemma 1 the root ri,s of the equation hi,s = 0 exists, and

since the hi,s is a strictly decreasing function, the root ri,s
is found via Binary Search in [0, B̄s], while b̃i,s is obtained

as: b̃i,s = min(ri,s, Bi). Moreover, in order to solve the non-

linear convex optimization problem in Eq. 19, a variety of

known methods can be applied [44]. In this paper, the method

of the sequential quadratic programming (SQP) [45] is adopted

by using the function fmincon() in the MATLAB Optimization

Toolbox [46]. Finally, after the user i determines its offloading
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decision bi, then it appropriately updates and broadcasts the

received b̄s and the factor
∑

j∈Us,j �=i pj,sgj,s, ∀s ∈ S.

Regarding the DCP algorithm’s complexity, each user ap-

plies a Binary Search routine in each interval [0, B̄s], so as to

determine the ri,s and b̃i,s, ∀s ∈ F. Therefore, each user finds

the b̃i,s, ∀s ∈ F, with a complexity O(F · log2(max
s∈F

(B̄s)). By

denoting as O(Δ) the complexity of the fmincon() function,
and since the rest operations involve only algebraic calcula-

tions, each user’s complexity to allocate its best response of-

floading strategy b∗
i at each iteration ite of the Best Response

(BR)-dynamics is O(Δ+F ·log2(max
s∈F

(B̄s)). Considering that

the DCP algorithm is executed by U users, and denoting as

Ite the required iterations for convergence to the PNE, the

overall complexity of the DCP algorithm is O(U · Ite · (Δ +
F · log2(max

s∈F

(B̄s)))). Finally, since the complexity of the

optimization problem O(Δ) can be considered significantly

greater than the complexity O(F · log2(max
s∈F

(B̄s)), then, the

overall complexity of the DCP algorithm is O(U · Ite ·Δ).

VI. NUMERICAL RESULTS

In this section, a detailed numerical evaluation is presented

to study the performance and the inherent attributes of the

proposed framework in the UAV-assisted network. Initially,

we assume users exhibiting common risk averse behavior,

in order to gain some insight about the process of optimal

data offloading in each computing environment, as well as

the corresponding utility obtained (Section VI-A), while sub-

sequently, the impact of user heterogeneity on the data of-

floading process is investigated (Section VI-B). A comparative

evaluation of our approach against alternative data offloading

strategies is provided in Section VI-C, while in Section VI-D

the proposed framework’s performance is studied for different

topologies with respect to the number of users and their

position distribution. Finally, Section VI-E summarizes the

main observations derived, by providing meaningful insights

about the overall operation and key features of the framework.

The proposed framework’s evaluation was conducted in a

MacBook Pro Laptop, 2.5GHz Intel Core i7, with 16GB

LPDDR3 available RAM.

We consider a UAV-assisted network servicing U = 200
users, via a set of S = 10 MEC servers, i.e., G = 7 ground

MEC servers and F = 3 UAV-mounted MEC servers with

each UAV having a coverage area of radius Rs = 100m.

Unless otherwise explicitly stated, the users are randomly and

uniformly distributed in two-dimension grid 1000m×1000m.

Each user’s channel gain is modeled as gi,s =
1

dθ
i,s

, where di,s

is the user’s i distance from the MEC server s and θ = 3
is the distance loss exponent. In this research work, in line

with the corresponding models adopted in the majority of the

related literature [47], [48], we consider the free-space path

loss model regarding the users’ channel gain in communication

with the MEC servers (ground or UAV-mounted), as the line-

of-sight links are much more dominant than other channel

impairments such as shadowing or small-scale fading [49].

However, it is noted that the adopted channel model does not

have an impact on the foundations and validity of the proposed
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distributed data offloading framework, which can be directly

applied by adopting other channel models as well. Each MEC

server’s channel bandwidth is Ws = 5MHz, and each user’s

transmission power to the MEC server s is pi,s =
d2
i,s

R2
s
, so it is

normalized and proportional to its distance from the respective

MEC server. Also, we set lci ∈ [0.1, 1] · 109CPU−Cycles
sec ,

lei = 10−9 J
CPU−Cycle ∀i ∈ U , FU

s ∈ [4, 10] ·109CPU−Cycles
sec ,

Es ∈ [100, 200]KJ , b̃s ∈ [30, 70]% · ∑200
i=1 Bi, Bi ∈

[1000, 5000]KB and φ = 103 [CPU-Cycles
bit

] [50], [51]. Unless

otherwise explicitly stated, we assume a homogeneous popula-

tion with common risk preferences, i.e., αi = 0.2 and ki = 5,
∀i ∈ U.

A. Pure Operation of the Algorithm

In the following, we present the operational characteris-

tics and performance of the proposed user-centric prospect-

theoretic data offloading approach in a UAV-assisted network

consisting of 3 UAV-mounted MEC servers and 7 ground

MEC servers. Fig. 2 illustrates the evolution of a representative

user’s data offloading bi,s at each MEC server (either ground or

UAV-mounted), as a function of the DCP algorithm’s iterations

required for convergence to the PNE. It is clearly shown

that the convergence is achieved in a few iterations (i.e.,

less than 4), starting from any feasible initial random value,

while the corresponding average time that the user needs to

determine its optimal offloading strategy till convergence is

achieved, is relatively low as well, as demonstrated on the

upper horizontal axis of Fig. 2 (for practical purposes less

than 0.05 sec). Similarly, Fig. 3, presents the corresponding

experienced energy and time overhead of a representative

user, where we observe that the corresponding values at the

PNE satisfy the user’s computation task’s latency and energy

requirements. Fig. 4 presents the average satisfaction utility

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on May 12,2021 at 20:51:19 UTC from IEEE Xplore.  Restrictions apply. 



1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3069911, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING 11

1 2 3 4 5 6
Iterations

0.5

0.55

0.6

0.65

0.7

0.75

S
at

is
fa

ct
io

n
 U

ti
lit

y

0.8

0.85

0.9

0.95

O
ve

rh
ea

d

Average Satisfaction Utility
Average Expected Overhead

Fig. 4: Convergence of users’ average expected overhead and

satisfaction utility by offloading data to all the MEC servers

l
i
c l

i
e k

i
t
i

e
i

0

5

10

15

T
o

ta
l O

ff
lo

ad
ed

 D
at

a 
[B

it
s]

104
User 1 User 100 User 200

d
i

0

500

1000

1500

2000

B
i

1.34

1.345

1.35

1.355

105

Fig. 5: Three indicative users’ total offloaded data as a function

of their personal parameters

and corresponding expected overhead of all the users by

offloading data to all the MEC servers. The results illustrate

that after the convergence to the optimal data offloading point,

the users experience high levels of satisfaction and low levels

of expected overhead.

In Fig. 5 and Fig. 6, we present the total offloaded bits and

the satisfaction utility respectively, of three representative users

by examining the effect of seven different personal parameters,

i.e., overall average distance from all the MEC servers d̄i,
local computing capability lci and energy consumption lei , total
amount of bits Bi, loss aversion parameter ki and the latency ti
and energy ei requirements. It is noted that every parameter’s

value under examination is assigned in an ascending order to

the users with ID 1, 100, and 200, while when we examine the

impact of each one of these parameters, all other parameters’

values remain the same for all three users. The results reveal

that the less distant is the user from the UAVs, the more

data will offload to them, as less power is needed for its

transmission resulting in lower energy overhead. For this

reason, in Fig. 6 it is observed that the user with ID 200,
who is the most distant from the MEC servers, experiences the

lowest satisfaction utility, as it offloads the smallest amount of

data and processes the majority of its data locally. Regarding

the impact of the local computing capability user 1, who has

the lowest lci , tends to offload the greatest amount of data

compared to the other users, resulting to a greater satisfaction

utility. The exact opposite impact is observed for the local

energy consumption lei . With reference to the loss aversion

parameter ki, the greater its value is, the more loss-averse the

users appear, thus user 200, who has the greatest ki value,

offloads the smallest amount of data and experiences a lower

satisfaction utility. In addition, the more data Bi a user needs

to process, the more data it will offload to the MEC servers and

process locally, thus, it receives low satisfaction utility. Finally,

if the user’s latency and energy requirements are relaxed, then

the user will prefer to offload less data to the MEC servers,
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resulting to high levels of satisfaction utility, as the total local

overhead is low and satisfies the users.

A study from the system’s perspective is also presented in

Fig. 7-9 considering the threshold data value B̄s, the UAV-

mounted MEC server’s computation capability FU
s , and the

average distance d̄s of the UAV-mounted MEC server s from

the users. It is noted that every examined parameter’s value

is assigned in an ascending order to the UAV-mounted MEC

servers with ID 1, 2, and 3, while when we examine the impact

of each one of these parameters, all other parameters’ values

remain the same for all three UAV-mounted MEC servers. In

particular, it is observed that the greater the UAV-mounted

MEC servers’ computational capability FU
s is, the more data

it collects from the users (Fig. 7), as it appears as a more

appealing choice, however its probability of failure increases

(Fig. 8). Also, the greater is the UAV-mounted MEC server’s

average distance d̄s from the users, the less data it collects,

as the users must consume more energy to send their data.

Moreover, for larger values of the UAV-mounted MEC server’s

operational threshold B̄s, the UAV appears more robust in

terms of the amount of data that it can process, thus, its

probability of failure is lower (Fig. 8). Also, as expected

the energy that each UAV-mounted MEC server consumes to

process the users’ offloaded data increases with respect to the

total amount of data (Fig. 9).

Finally, Fig. 10 presents the total offloaded bits that each

ground MEC server received by studying the impact of its

computational capability fG
s and its average distance d̄s from

the users (the values fG
s and d̄s increase with respect to the

ascending ID of the ground MEC server). A similar trend with

the UAV-mounted MEC servers is observed, i.e., the greater

fG
s a ground MEC server has or the less distant is from the

users, the more data it receives.
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B. Heterogeneous Users - Loss Aversion

In this section, the impact of the users’ heterogeneous

loss aversion behavior on their data offloading decisions

and achieved satisfaction utility is evaluated. Specifically, a

heterogeneous scenario, where the users are associated with

different loss aversion parameters ki, is compared against a

homogeneous scenario, where all the users have the same

exactly loss aversion parameter (equal to the average value

of the corresponding ki parameters in the heterogeneous

scenario). It is reminded that the more loss averse is the user’s

behavior, the greater is the loss aversion parameter ki. Thus,
those users offload less amount of data to the UAV-mounted

MEC servers (Fig. 11), their satisfaction utility is lower and

their expected overhead from the UAV-mounted MEC servers

is higher (Fig. 12). Regarding the risk seeking users, they

tend to offload more data to the UAV-mounted MEC servers

resulting in high probability of failure (Fig. 11), thus making

the overall system unstable and prone to failure.

Furthermore, in Fig. 11, it is observed that the heteroge-

neous population led to higher levels of UAV-mounted MEC

servers’ congestion compared to the homogeneous population,

as both the average amount of offloaded data to the UAV-

mounted MEC servers and the corresponding average proba-

bility of failure of the latter ones increase. In Fig. 12, it is

shown that the heterogeneous users, by offloading more data

to the UAV-mounted MEC servers, they experience a greater

satisfaction utility and a lower expected overhead.

C. Comparative Analysis

In this section, a detailed comparative evaluation of the

proposed framework is performed against five other alter-

native data offloading strategies: (i) Non prospect-theoretic

(NonProsTheor) - users minimize their expected overhead

by the UAV-mounted MEC servers via determining their

best response strategy b∗
i , (ii) Full Game-theoretic Offloading
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Fig. 11: Users’ average offloaded data and UAV-mounted

MEC servers’ probability of failure as a function of their loss

aversion parameter ki

(FullGameOff) - each user offloads the whole amount of its

data to one UAV-mounted MEC server through a formulation

of a non-cooperative game in order to minimize its expected

overhead, (iii) Single UAV-mounted MEC servers environment

(SingleUAV) - characterized by the average capabilities of all

the UAV-mounted MEC servers, (iv) Each user processes all its
data locally (LocalExec), (v) Each user determines randomly

its data offloading strategy (Random).

Fig. 13 and Fig. 14 illustrate the user’s average expected

overhead and the UAV-mounted MEC servers’ average prob-

ability of failure, respectively, for each of the aforementioned

approaches. It is evident that our proposed data offloading

approach achieves the best results while the SingleUAV,

LocalExec and Random demonstrate the worst performance.

Specifically, in the LocalExec approach, the users experience

the highest expected overhead, as they process their compu-

tation task locally. In the Random approach, the users offload

partially their data to randomly selected MEC servers (UAV-

mounted or ground MEC servers), thus, even if the users

experience a lower expected overhead than the LocalExec

approach, the probability of the UAV-mounted MEC servers’

failure remains high. Regarding the SingleUAV approach, the

users offload their data to the single UAV-mounted MEC server

and share its computational capabilities. Thus, they experience

a higher expected overhead and a greater probability of failure

(Fig. 13, 14) compared to the non prospect-theoretic and the

full game-theoretic data offloading approaches.

The Non prospect-theoretic approach achieves the second

best performance after our proposed framework, as the users

partially offload their data to the UAV-mounted MEC servers
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parative scenarios

and they aim to minimize their expected overhead. However,

they do that in an agnostic manner with respect to the

guaranteed performance that they could get if they execute

their applications in the safe resources, i.e., in the ground

MEC servers and in their mobile devices. On the contrary,

our prospect-theoretic framework results in lower average

probability of failure and average expected overhead, by taking

these aspects into consideration during the decision-making

process. Finally, in the Full Game-theoretic Offloading, the

users select a UAV-mounted MEC server to offload their

whole computation task, without taking advantage of the

partial offloading to multiple UAV-mounted MEC servers, thus

concluding to a higher probability of failure compared to the

Non prospect-theoretic approach.

D. Performance Analysis for different User Topologies

In this section, we further examine the performance of

the proposed framework for different and varying topolog-

ical characteristics, and in particular with reference to the

increasing number of users, as well as to their position

distribution within the examined environment. Specifically,

Fig. 15 shows the users’ average expected overhead and the

corresponding actual execution time of the DCP algorithm as

a function of the number of users in the examined system.

The results reveal that for a five-fold increase in the number

of users (i.e. from 200 to 1000 users), the corresponding

average expected overhead that the users experience, increases

by approximately 13%. This slight increase is owed to the

fact that the ground and the UAV-mounted MEC servers are

required to process more computation tasks (offloaded by

the users), thus, they become more congested in terms of

computation processing. Based on these results, we observe

that the proposed framework achieves to serve the users in

ProsTheor

NonProsTheor

FullGameOff

SingleUAV

LocalExec

RandomPartial
0.01

0.015

0.02

0.025

0.03

P
ro

b
ab

ili
ty

 o
f 

F
ai

lu
re

Fig. 14: UAVs’ probability of failure for different comparative

scenarios
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Fig. 15: Avg. expected overhead and execution time with

respect to increasing number of users

a satisfactory manner, even when considering a large scale

computing environment. Moreover, it is noted that this is

achieved while noticing approximately a five-fold increase

in the corresponding execution time of the DCP algorithm,

essentially demonstrating an almost linear increase of the

execution time with respect to the number of users.

Additionally, Fig. 16 illustrates the users’ average expected

overhead and the execution time of the proposed frame-

work, for different topological characteristics. We focus on

investigating our proposed framework’s behavior with re-

spect to different users’ position distributions within the two-

dimensional grid, while still maintaining the aforementioned

base experimental setting, i.e., U = 200, G = 7, F = 3. In
particular, except from the users’ random and uniform position

distribution scenario, we also consider several Poisson distri-

butions with different values of variance, i.e., λ parameter. The

corresponding results reveal that the DCP algorithm execution

presents a stable behavior and performance, as indicated by the

fact that the execution time is rather insensitive to the users’

position distribution. Furthermore, it is observed that as the

users are distributed more closely to each other, as reflected

by lower values in the Poisson parameter λ, their average

expected overhead increases. The latter phenomenon is due

to the fact that the more closely among each other are the

users distributed, they tend to have similar distances from the

MEC servers, thus, making similar offloading decisions, and

accordingly over-congesting the corresponding servers that are

close to them. The opposite holds true for larger values of the

Poisson parameter λ,
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Fig. 16: Avg. expected overhead and execution time with

respect to the users’ position distribution

E. Discussion and Guidelines

In this following, insights and guidelines regarding the

operation and key features of the proposed framework are

summarized, highlighting the user and system points of view.

1. (Users’ perspective) The proposed framework enables the

users to satisfy their energy and latency requirements, max-

imize their satisfaction utility, and converge to a stable data

offloading equilibrium within few iterations. It is demonstrated

that the users’ physical and risk-aware characteristics have a

significant impact on their data offloading decisions. Specifi-

cally, the users tend to offload more data to the UAV-mounted

MEC servers, if they (i) are less distant from them; (ii) have

stricter energy and latency requirements; (iii) present more risk

seeking behavior; and (iv) have low local computing capability.

The more data the users offload to the UAV-mounted MEC

servers, the greater is their satisfaction utility, except for the

cases of (i) having relaxed latency and energy requirements,

where the local processing is more beneficial, and (ii) having

a large amount of data to process, where inevitably a large

portion of them will be processed locally resulting in low

satisfaction utility.

2. (System’s perspective) The UAV-mounted and ground MEC

servers receive more data, if they have high computation

capability and small average distance from the users. Also,

increased amount of data is received by the UAV-mounted

MEC servers if their operational threshold (i.e., amount of data

that they can concurrently process) is high, in which case they

present high robustness to failure. The more data the UAV-

mounted MEC servers receive, the higher is their probability

of failure and the energy consumption to process them.

3. The more loss averse the users are, the more data they

process locally, the less satisfaction utility they perceive, the

more overall overhead they experience, and the less they

contribute to the UAV-mounted MEC servers’ failure, as they

exhibit a conservative data offloading behavior.

4. The users’ heterogeneity in their loss averse behavior in-

creases the UAV-mounted MEC servers’ probability of failure.

5. The combined consideration of the (i) users’ physical and

risk-aware characteristics, (ii) UAV-mounted and ground MEC

servers characteristics, (iii) users’ distributed and autonomous

decision-making, and (iv) users’ ability to partially offload

their data to multiple MEC servers (while process part of them

locally on their devices), concludes to superior data offloading

strategies, users’ satisfaction, and sophisticated system’s re-

sources exploitation, compared to other alternative approaches.

VII. CONCLUSIONS

In this paper, a novel approach towards determining the

user optimal data offloading strategy within a complex MEC

environment consisting of both ground MEC servers and

UAV-mounted MEC servers is introduced. Given the inherent

computing uncertainty introduced, the UAV-mounted MEC

servers are treated as CPRs, and the users act as prospect

theoretic decision-makers, aiming to maximize their perceived

prospect theoretic utility, while at the same time minimize

the time and energy overhead by the ground MEC servers

and the local execution. Accordingly, the risk-aware data

offloading problem is formulated as a non-cooperative game

among the users and the existence and uniqueness of the

corresponding Pure Nash Equilibrium point (PNE) is proven.

A low complexity distributed algorithm converging to the PNE

is introduced, while detailed numerical results that demonstrate

our framework’s operation and superiority are presented.

Our current and future work focuses on studying the task

offloading computation problem under a variety of probability

of failure functions, e.g., Poisson process of the arrival data

from all users, that also capture the uncertainty stemming

from the rapidly changing communication environment in a

metropolitan area. Moreover, we are interested in investigating

the combination of the aforementioned framework with the

optimal placement of the UAV-mounted and ground MEC

servers, by considering several factors and aspects, such as

coverage area, overall energy availability of the UAV-mounted

MEC servers, computation capabilities, UAVs mobility, etc.
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