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Abstract—Electronic money or e-Cash is becoming
increasingly popular as the preferred strategy for
making purchases, both on- and off-line. Several
unique attributes of e-Cash are appealing to cus-
tomers, including the convenience of always hav-
ing ‘cash-on-hand’ without the need to periodically
visit the ATM, the ability to perform peer-to-peer
transactions without an intermediary, and the peace
of mind associated in conducting those transactions
privately. Equally important is that paper money
provides customers with an anonymous method of
payment, which is highly valued by many individuals.
Although anonymity is implicit with fiat money, it is a
difficult property to preserve within e-Cash schemes.
In this paper, we investigate several artificial intelli-
gence (AI) approaches for improving performance
and privacy within a previously proposed e-Cash
scheme called PUF-Cash. PUF-Cash utilizes physi-
cal unclonable functions (PUFs) for authentication
and encryption operations between Alice, the Bank
and multiple trusted third parties (mTTPs). The AI
methods select a subset of the TTPs and distribute
withdrawal amounts to maximize the performance
and privacy associated with Alice’s e-Cash tokens.
Simulation results show the effectiveness of the vari-
ous AI approaches using a large test-bed architecture.

I. INTRODUCTION

Electronic money or cash, frequently termed e-

Cash for short, refers to a system in which physical

money, i.e., coins and paper bills, is substituted

by digital tokens. Secure exchange, deposit and

withdrawal functions are typically accomplished by

a message exchange protocol. The protocol, in a

potential combination with secure hardware in an

offline scenario, must guarantee the security of the

tokens against all threats. Customers enrolled in an

e-Cash service can use their devices to purchase

goods and services. To be as cash-like as possible,

e-Cash must provide strong privacy guarantees such

that users can remain anonymous in their transac-

tions to both adversaries and system authorities.

Beyond privacy, other challenges to implement-

ing e-Cash include counterfeit and double-spending

protection, the prevention of fraud, and the recovery

of funds in the event of a theft or loss.

II. RELATED WORK

The popularity of e-Cash will eventually prolif-

erate to a wide range of demographics, both rural

and urban, but will grow most rapidly within the

context of the Smart City as the supporting infras-

tructure evolves to support it [1], [2]. However,

privacy remains a key limiter in its wide-spread

adoption, a property recognized as critical early

on. For example, Chaum, Fiat, and Naor (CFN)

addressed privacy in e-Cash systems by introducing

blind signatures in [3] and later proposed their use

in the first e-Cash protocol [4]. Online counterfeit

protection enables a merchant to validate tokens at

the time of transaction. Brand proposed a variant of

the Sigma protocol as an alternative to replace the

original cut-and-choose proof within CFN [5]. Ca-

menisch, Hohenberger, and Lysanskaya (CHL) [6]

proposed a divisible e-Cash scheme by simplifying

the proof requirement and introducing a pseudo-

random function embedded within Alice’s device.

Use of distributed ledger technologies (DLTs), in

particular tokens hosted on blockchains, are pro-

posed as viable alternatives for digital currency.

While DLTs can satisfy the electronic cash re-

quirements of counterfeit, double-spend and privacy

preservation, they lack offline support as transac-

tions are not finalized until written to the main

ledger.

Existing e-Cash schemes leveraging factoriza-

tion or discrete logarithm mathematical operations,
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which are known to be susceptible to Shor’s al-

gorithm [7], are not secure against quantum com-

puting attacks. Recent advances in quantum-hard

alternatives to the blind-signature generation, such

as lattice-based asymmetric key exchanges [8]

show progress in this area. Post-quantum e-Cash

schemes, such as [9], based on constructing e-Cash

tokens using the superposition of quantum states

have also been proposed in recent literature.

A. Contributions

The original PUF-Cash [10] was expanded by

introducing multiple trusted third parties (TTPs)

and reinforcement learning via stochastic learning

automata (SLA) to improve performance and to

introduce non-determinism in the optimal selection

of TTPs [11]. To the best of our knowledge, this

is the first research work in the existing literature

that modifies and extends the multiple TTPs ap-

proach by investigating a wider range of reinforce-

ment learning methods for executing the blinding

process. Key contributions of this paper can be

summarized as follows:

• Introduction of a Master TTP to coordinate the

blinding process on behalf of the customer, e.g.,

Alice, and to prevent attempts by Alice to double

spend. Moreover, Alice chooses the Master TTP

from a set of existing TTPs through a process

that better preserves her anonymity with respect

to the Bank.

• Investigation of alternative reinforcement learn-

ing algorithms to autonomously optimize the

selection and workload of Slave TTPs tasked with

performing the blinding operation.

• Comparative evaluation and analysis of the pro-

posed learning algorithms to SLA from a perfor-

mance perspective.

III. THE PUF-CASH MULTI-TTP PROTOCOL

PUF-Cash is an anonymous, electronic cash pro-

tocol that defines a set of transactions between a

set of entities, namely, the customers, e.g., Alice

and Bob, a set of TTPs, and the Bank. PUF-Cash

preserves customer anonymity using two distinct

mechanisms. First, the customers and the TTPs

authenticate using a privacy-preserving PUF-based

authentication protocol, which prevents adversaries

from tracking their transactions [12]. Second, the

customers engage a set of TTPs to fractionize

and convert from issued tokens to blinded tokens,

reducing the Bank’s ability of establishing the

correct correspondence between the two sets of

tokens. In this paper, we focus on improving this

second mechanism. The proposed multiple TTP

architecture also addresses performance bottlenecks

associated with a single TTP architecture [10] by

distributing system load, which in turn, maximizes

throughput and automatically adjusts with dynami-

cally changing environmental conditions.

Fig. 1 illustrates the entities and message ex-

change operations associated with the blinding pro-

cess, which is a subset of the overall protocol. Pro-

tocol steps are ordered by the circled numbers and

the arrows indicate the direction of the information

exchange. The following section elaborates on this

component of the protocol, namely the issuance and

blinding steps.

A. Issuance and Blinding Steps

1) Alice withdraws funds from her account at the

Bank. The Bank generates a unique token (128-

bit random number) for each 1 cent of the

withdrawal amount, then encrypts them using a

PUF-generated session key and transmits them

to Alice. The Bank records the issued tokens

and Alice’s session key in a database of open

transactions.

2) Alice randomly selects a Master TTP, TTPM ,

XOR encrypts her issued tokens with her session

key and transmits them to TTPM .

3) TTPM transmits Alice’s encrypted issued to-

kens to the Bank. The Bank validates the issued

tokens by XOR decrypting them with each of

the session keys stored in the database of open

transactions, searching for a match to those

stored in the database. All matching tokens are

removed from the database to prevent double

spending. If validated, the Bank sends Alice’s

session key and an acknowledgement to TTPM .

4) TTPM initiates the blinding operation: It runs

an AI algorithm to select a subset of Slave

TTPs from the set TTP1 to TTPn. A second

instance of an AI algorithm runs to determine

a set of fractions, which dictate how the issued

tokens are partitioned among the set of Slave

TTPs for blinding. The AI algorithms utilized

for these operations are presented in Section
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Fig. 1: Operations within the PUF-Cash Protocol responsible for exchanging issued e-Cash Tokens for

blinded e-Cash Tokens

IV. Since all TTPs are enrolled in a trusted

network, all messages between the Slave TTPs

are transferred over encrypted channels.

5) The Slave TTPs generate a new blinded token

(128-bit random number) for each 1 cent in

the conversion request from TTPM . The Slave

TTPs encrypt the blinded tokens using their

session keys and transmit them to the Bank.

The Bank acknowledges receipt and adds them

to a second blinded token database of open

transactions.

6) Once acknowledged, each Slave TTP transmits

the blinded tokens to TTPM .

7) TTPM encrypts the aggregate set of blinded

tokens with Alice’s session key and transmits

them to Alice.

The PUF-Cash protocol addresses the core com-

ponents of e-Cash. The issued token database and

validation process carried out by the Bank (step

3) protects against double spending and provides

a mechanism to recover lost funds. The random

number generation and encrypted communication

between all entities in the blinding operation guards

against man in the middle and replay attacks. Use of

AI algorithms for tasks distribution associated with

the generation of Alice’s blinded tokens across the

Slave TTPs improves performance and obscures the

correspondence between issued and blinded tokens

to preserve Alice’s transactional anonymity.

B. Transaction Timelines

The timeline associated with the PUF-Cash pro-

tocol (Fig. 1) is highly variable, as arbitrary delays

can exist between Alice’s withdrawal (step 1), the

blinding process (steps 2-7), the value transfer

operation between Alice and Bob (step 8) and

Bob’s deposit to the Bank (step 9). As the protocol

was designed to support both online and offline

transaction scenarios, it necessitated that each of

these major sequences operates independently of

each other. Thus, Alice can withdraw issued tokens

at some point and delay blinding for days or weeks.

Tokens cannot be stolen since only Alice’s device

is capable of carrying out the blinding operation.

More rapid timelines are possible, and it follows

that a timeline that minimizes delays between the

initial and final components of the exchange rep-

resents the weakest level of privacy for the proto-

col. This scenario is highly probable in scenarios

where Alice engages in an online purchase and the

payee (Bob) is a fully connected merchant, e.g., a

merchant terminal or an online payment processor.

Here, Alice delays the exchange operation after

withdrawing (to guard against theft) and then car-

ries out the exchange and value transfer operations

in rapid succession. The expanded multi-TTP ar-

chitecture first proposed in [11] adds significantly

to the privacy over the single TTP version proposed

in the original PUF-Cash protocol [10]. However,

the exploration of an AI approach to obscure the

relationship between issued and blinded tokens was

limited to one algorithm in [11], and is expanded

here to include a wider range of AI algorithms.
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IV. ARTIFICIAL INTELLIGENT TRANSACTIONS

In this section, we explore AI algorithms to au-

tomate the performance and anonymity-enhancing

tasks associated with the TTP exchange operation,

namely, (1) the selection of a set of TTPs and

(2) the partitioning of Alice’s withdrawal amount

across the selected TTPs. From Fig. 1, Alice begins

the issued-to-blinded-token exchange operation by

randomly selecting a Master TTP, TTPM . TTPM

then selects a subset of TTPs based on the theory

of the Learning Automata (LA). Once selected,

TTPM determines the Slave offloaded fractional

amounts of issued tokens using a reinforcement

learning (RL) approach. We investigate a variety of

RL approaches, including Linear Reward Inaction,

Binary and Max log linear, and Optimistic Q-

learning with Upper Bound Confidence (QUC) and

compare their drawbacks and benefits.

A. Slave TTP Selection

Let U = {1, . . . , u, . . . , |U |} and T =
{1, . . . , t, . . . , |T |+1} denote the sets of customers

and TTPs, respectively. Given that customers imme-

diately choose a Master TTP, we use u in the fol-

lowing to refer to a customer’s TTPM . Each TTP

t has a computation capability Ft[
CPU cycles

unit operation
].

Each Master TTP u is physically separated from a

Slave TTP t at a distance of du,t[m]. Each TTPM

selected by a customer has Mu issued tokens and

can offload fu,t% of them to a Slave TTP t. TTPM

can select N ≤ |T | Slave TTPs, thus, the TTPM ’s

selection strategy is given by s = [1, . . . , t, . . . , N ]
and its strategy space is S = {1, . . . , s, . . . ,S}.
TTPM wants to minimize its communication and

computing delay, thus, it selects Slave TTPs in its

close proximity which have high available compu-

tation capacity. The reward that TTPM experiences

by choosing a strategy s is defined below,

r
(ite)
u,s =

∑

t∈s
Ft

|Ut|(ite−1)

∑

t∈s

du,t

∑

t∈T

du,t

(1)

where |Ut| is the number of users engaging TTP t.
TTPM acts as an LA making probabilistic iterative

decisions (the iteration is denoted as (ite)) until

converging to a stable decision. Eq. 1 is normalized

as r̂
(ite)
u,s = r

(ite)
u,s

∑

u∈U

r
(ite)
u,s

to reflect the reward probability.

TTPM ’s probability to select the same (Eq. 2a) or

different strategy (Eq. 2b) is given below.

P
(ite+1)
u,s = P

(ite)
u,s + λ1(1− P

(ite)
u,s )− λ2(1− r̂

(ite)
u,s )P

(ite)
u,s ,

s(ite+1) = s(ite)

(2a)

P
(ite+1)
u,s = P

(ite)
u,s − λ1r̂

(ite)
u,s P

(ite)
u,s +

λ2(1− r̂
(ite)
u,s )(

1

|S| − 1
− P

(ite)
u,s ), s(ite+1) �= s(ite)

(2b)

where λ1, λ2 ∈ [0, 1] are the learning parameters,

and based on them, three different LA approaches

are possible: (1) Linear Reward Penalty (LRP),

where λ1 = λ2; (2) Linear Reward-ε Penalty (LR-

εP), where λ1 >> λ2; (3) Linear Reward Inaction

(LRI), where λ2 = 0. Here, each TTPM performs

a thorough, a less thorough, and a very limited

exploration of its available strategies, respectively.

Following convergence, each TTPM has selected

the most efficient combination of Slave TTPs s∗. A
detailed comparative evaluation of the LRP, LR-εP,
and LRI TTPs selection algorithms is presented in

Section V-A.

B. Autonomous Offloading of Fractional Amounts
to Slave TTPs

Following the selection process, TTPM then

determines the fraction fu,t% that it will offload

to each selected Slave TTP t∗ ∈ s∗, with the goal

of maximizing performance and privacy. Regarding

the worst case privacy scenario outlined in Sec-

tion III-B, TTPM validates the issued tokens and

immediately sends requests to the Slave TTPs to

generate blinded tokens, which are then transmitted

to the Bank. Other TTPM will make requests

concurrently, thereby obscuring Alice’s issued to-

kens among the multiple fractional requests for

other customers. The parallel processing capability

provided by multiple Slave TTPs also reduces the

turn-around time for Alice’s exchange operation.

TTPM ’s strategy is Fu,i =

[fu,1∗ , . . . , fu,t∗ , . . . , fu,N∗ ],
N∗∑

t∗=1
fu,t∗ = 1,

i ∈ I = {1, . . . , |I|}, where I is the number of

offloading combinations. By selecting strategy

Fu,i, TTPM experiences the following reward,
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r
(ite)′

u,Fu,i
=

∑

t∗∈s∗
(f

(ite′)
u,t∗ MuFt∗)

∑

u′∈|Ut∗ |,t∗∈s∗
(f

(ite′)
u′,t∗ Mu′)

∑

t∗∈s∗
Ft∗

(3)

which can be normalized as r̂
(ite′)
u,Fu,i

=
r
(ite′)
u,Fu,i

∑

u∈U

r
(ite′)
u,Fu,i

∈
[0, 1] to reflect the reward probability. Four different
artificial intelligent RL algorithms are investigated

to determine Alice’s stable offloading decision,

namely: (1) LRI, which belongs to the category

of gradient ascent algorithms; (2) Binary log lin-

ear learning (BLLL); (3) Max log linear learn-

ing (MLLL); and (4) Optimistic Q-learning with

Upper bound Confidence action selection (QUC).

The probability of selecting a strategy Fu,i in

iteration ite′ of each algorithm is denoted as P
(ite′)
u,Fu,i

.

The probabilistic selection of an offloading strategy

considering the LRI gradient ascent algorithm fol-

lows the rule of Eq. 2a,2b by utilizing the reward

probability r̂
(ite′)
u,Fu,i

and all offloading combinations

|I| in Eq. 2b.

A benefit provided by the log linear algorithms

is that they enable convergence to the best equi-

librium compared to the LRI algorithm (and in

general the gradient ascent algorithms) by allowing

a more thorough exploration of their strategy space.

In the BLLL and MLLL algorithms, a random

TTPM selects an alternative strategy F′
u,i

(ite′)
with

equal probability (while the other TTPM keep the

same actions) and receives the corresponding nor-

malized reward r̂′
(ite′)

u,F′
u,i

(ite′) during the exploration

phase. In the learning phase, the TTPM selects

different (Fu,i
(ite′+1) = F′

u,i
(ite′)

) or the same

(Fu,i
(ite′+1) = Fu,i

(ite′)) offloading strategy based

on Eq. 4a,4c and Eq. 4b,4d for the BLLL and

MLLL algorithms, respectively.

P
(ite′+1)
u,Fu,i

=
e
r̂′(ite

′)
u,F′

u,i
(ite′) ·β

e
r̂′(ite

′)
u,F′

u,i
(ite′) ·β

+ e
r̂
(ite′)
u,Fu,i

(ite′) ·β
(4a)

P
(ite′+1)
u,Fu,i

=
e
r̂
(ite′)
u,Fu,i

(ite′) ·β

e
r̂′(ite

′)
u,F′

u,i
(ite′) ·β

+ e
r̂
(ite′)
u,Fu,i

(ite′) ·β
(4b)

P
(ite′+1)
u,Fu,i

=
e
r̂′(ite

′)
u,F′

u,i
(ite′) ·β

max{e
r̂′(ite

′)
u,F′

u,i
(ite′) ·β

, e
r̂
(ite′)
u,Fu,i

(ite′) ·β}
(4c)

P
(ite′+1)
u,Fu,i

=
e
r̂
(ite′)
u,Fu,i

(ite′) ·β

max{e
r̂′(ite

′)
u,F′

u,i
(ite′) ·β

, e
r̂
(ite′)
u,Fu,i

(ite′) ·β}
(4d)

Here, β ∈ R
+ controls the degree to which the

TTPM can explore alternative strategies. The na-

ture of the MLLL probabilistic update rule (Eq.

4c,4d) enables faster convergence to larger (and

better) normalized rewards (see Section V-B,V-C).

An alternative RL-based decision making model

for offloading is based on the QUC algorithm [13].

Each TTPM determines its Q-value (experienced

reward) in ite′ iterations following the update rule

Q
(ite′)

Fu,i
(ite′) = Q

(ite′)

Fu,i
(ite′) +γ · (r̂(ite′)

u,Fu,i
(ite′) −Q

(ite′)

Fu,i
(ite′))

and selects a strategy as follows:

Fu,i
(ite′) = argmax

Fu,i
(ite′)

[Q
(ite′)
Fu,i

(ite′) + c ·
√

ln (ite′)

N(ite′)(Fu,i
(ite′))

]

(5)

Here,N(ite′)(Fu,i
(ite′)) denotes the number of times

the strategy Fu,i
(ite′) has been selected prior to

iteration ite′. The physical meaning of Eq. 5 is

that a TTPM selects a strategy that not only

maximizes its Q-value, but also considers the upper

confidence bound as expressed by the square-root

component. The upper confidence bound measures

the uncertainty in the estimate of Fu,i
(ite′)’s value,

where c ∈ R
+ captures the confidence level. It can

be observed that if a strategy Fu,i
(ite′) is selected,

the uncertainly decreases, while the opposite holds

true if the strategy is not selected. Finally, it should

be noted that the term ln (ite′) causes the increases
to get smaller over time. Thus, the strategies that

have been explored frequently will be selected with

decreasing frequency over time, ensuring that all

strategies will eventually be explored.

V. RESULTS AND DISCUSSION

The effectiveness of the artificial intelligence

assisted processes within the PUF-cash protocol are

evaluated in this section. In particular, we evaluate

TTPM processes associated with: (1) The selection

of Slave TTPs (Section V-A); (2) The fractionaliza-

tion of issued tokens to the selected subset of Slave

TTPs (Section V-B). Finally, in Section V-C, we

compare the results from the various AI algorithmic

approaches. The evaluation is carried out with the

parameters assigned as follows: |U | = 1000, |T | =
6, Ft = 356[

CPU cycles
unit operation

], dc,t ∈ [100, 1000]m,
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Fig. 2: Gradient Ascent Learning Algorithms – Convergence

N = 3, Mu ∈ [100, 20000] tokens, c = 2, γ = 0.6,
fu,t ∈ [10%, 20%, . . . , 100%]. Algorithmic specific

parameters are assigned as follows: for the gradient

ascent RL algorithms λ1 = 0.7, for the LRI ap-

proach λ2 = 0, for the LR-εP approach λ2 = 0.001
and for the LRP approach λ2 = 0.7.

A. Reinforcement Learning-based TTPs Selection

In this section, a comparative evaluation of the

gradient ascent LRP, LR-εP, and LRI RL algorithms

is carried out to show the drawbacks and benefits

with respect to Slave TTP selection process. Fig.

2 shows the convergence to a stable selection for

a typical TTPM using each of the three gradient

ascent algorithms. The graphs reflect the expected

result that more iterations are needed for con-

vergence when the solution space is thoroughly

explored as is true for LRP in Fig. 2c, while fewer

iterations are required for LR-εP - Fig. 2b, and

even fewer for LRI - Fig. 2a, for lightly explored

solution spaces. The real execution time of the three

gradient ascent RL algorithms is presented in Fig.

3b, while the corresponding average reward of the

TTPM is shown in Fig. 3a. Thus, we conclude that

more thorough exploration leads to higher rewards

at the expense of longer execution times. The trade-

off between the reward and the execution time is

also shown in Fig. 3b which plots the ratio of

the normalized reward to normalized real execution

time, where normalization is performed by dividing

the sum of the rewards by time. The results reveal

that the LRI algorithm outperforms the LRP and

LR-εP algorithms due to the extremely low real

execution time and achieved rewards.

B. Artificial Intelligence-enabled Slave TTPs Of-
floading

A comparative evaluation among the gradient

ascent, log linear, and QUC RL algorithms is
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Fig. 3: Gradient Ascent RL Algorithms - Compar-

ative Evaluation

carried out here to determine the effectiveness of

Slave TTP offloading strategies. Fig. 4 presents the

convergence of the LRI, BLLL, MLLL, and QUC

algorithms. The results reveal that the log linear

(BLLL, MLLL) and QUC algorithms require more

iterations than the LRI algorithm to converge to a

stable decision, as they explore more thoroughly

the available strategies or converge to the best

equilibrium, respectively, while achieving higher

TTPM s’ average rewards. Also, it is clear that the

MLLL algorithm converges faster when compared

to BLLL given the form of the probabilistic update

rule (Eq. 4c,4d). A higher value of the learning

parameter β for the log linear algorithms results

in higher TTPM s’ average rewards at the expense

of longer execution times.

Fig. 6 shows the results for the QUC algorithm.

Fig. 6a illustrates the uncertainty associated with a

TTPM offloading strategy, showing two strategies

where the TTPM converged, i.e., strategy #3 and

#9, as well as the number of times that each strategy

is selected before convergence occurs. The results

reveal that strategies which are selected more often

produce lower uncertainties, as the TTPM has

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on May 12,2021 at 20:55:13 UTC from IEEE Xplore.  Restrictions apply. 



2162-2248 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MCE.2020.3024512, IEEE Consumer
Electronics Magazine

7

0 1000 2000 3000 4000 5000
Iterations

0.494

0.496

0.498

L
R

I A
vg

 R
ew

ar
d

0.3

0.4

0.5

0.6

Q
U

C
 A

vg
 R

ew
ar

d

(a)

0 2000 4000 6000
Iterations

0.4

0.45

0.5

B
L

L
L

 A
vg

 R
ew

ar
d  = 100  = 500  = 1000

0 2500 5000
Iterations

0.4
0.45
0.5

M
L

L
L

A
vg

 R
ew

(b)

Fig. 4: Gradient Ascent, Log Linear, Q-Learning

RL Algorithms – Average Rewards

explored the solution space more thoroughly. This

is confirmed by the corresponding Q-value for these

two strategies (Fig. 6b), which shows the strategy

that the TTPM finally selects generates a greater

Q-value (reward).

C. Comparative Evaluation

In this section, the gradient ascent, log linear, and

QUC RL algorithms are compared with respect to

the TTPM s’ average reward, real execution time,

and the ratio of the normalized average reward

over the normalized real execution time (Fig. 5)

when tasked with selecting the fractional amounts

to offload to the Slave TTPs. The results reveal

that the QUC algorithm outperforms the other algo-

rithms in terms of average achieved reward, at the

expense of higher real execution time. The MLLL

algorithm ranks second and performs better than

the BLLL algorithm when using the same learning

parameter β – with respect to the achieved reward

and execution time. In contrast, the LRI algorithm

has similar rewards but with significantly lower

real execution times. To determine the trade-off

between the average reward and the execution time,

we calculate the ratio of the normalized average

reward over the normalized real execution time. The

results show that the MLLL algorithm with a low

learning parameter value represents the best trade-

off due to the significantly lower real execution time

while achieving similar rewards when compared

to the other algorithms. The superiority of the

Fig. 5: TTPM offloading - Comparative Evaluation

MLLL algorithm is further supported by its intrinsic

characteristic to converge to the best equilibrium.

D. Transaction Time Speedup with Multiple TTPs

The performance benefit associated with intro-

ducing multiple TTPs over the one TTP protocol

proposed in [10] are reported on here. Only the

MLLL algorithm from the previous section is used

in the hardware validation experiments to measure

the speed-up, but the performance of the other

algorithms can be extrapolated from the results

reported above. Our testbed is composed of 5 TTPs

and 9 customers. The customers were configured

to continuously carry out the blinding process,

which effectively emulates a much larger set of

customers. The average transaction time, measured

from the time instant when a customer selects a

Master TTP to the time instant when the customer

receives the blinded tokens from the Master TTP

improves from approximately 9 seconds with one

TTP to 3.7 seconds with 5 TTPs, i.e., a speedup of

approximately 2.43.

VI. CONCLUSION

In this paper, multiple trusted-third-parties

(mTTPs) are utilized within the PUF-Cash protocol

for improving performance and privacy. A set of

artificial intelligence (AI) algorithms are evaluated

to determine their effectiveness in selecting an

optimal subset of Slave TTPs for offloading the

task of exchanging issued e-Cash tokens for blinded

tokens during value transfer operations requested

by Alice. The combination of AI algorithms and

mTTPs provides a significant performance benefit

to PUF-Cash, while simultaneously reducing the

Bank’s ability to correlate Alice’s issued tokens

with her corresponding blinded tokens. The latter

property increases the level of privacy for Alice,
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Fig. 6: QUC-Learning – Evaluation

making PUF-Cash an attractive solution for imple-

menting e-Cash systems that are private and scale

with system demand.
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