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Abstract— Multi-access Edge Computing (MEC) has emerged
as a flexible and cost-effective paradigm, enabling resource
constrained mobile devices to offload, either partially or
completely, computationally intensive tasks to a set of servers
at the edge of the network. Given that the shared nature
of the servers’ resources introduces high computation and
communication uncertainty, in this paper we consider users’
risk-seeking or loss-aversion behavior in their final decisions
regarding the portion of their computing tasks to be offloaded at
each server in a multi-MEC server environment, while executing
the rest locally. This is achieved by capitalizing on the power
and principles of Prospect Theory and Tragedy of the Commons,
treating each MEC server as a Common Pool of Resources
available to all the users, while being rivarlous and subtractable,
thus may potentially fail if over-exploited by the users. The goal
of each user becomes to maximize its perceived satisfaction,
as expressed through a properly formulated prospect-theoretic
utility function, by offloading portion of its computing tasks to the
different MEC servers. To address this problem and conclude
to the optimal allocation strategy, a non-cooperative game
among the users is formulated and the corresponding Pure Nash
Equilibrium (PNE), i.e., optimal data offloading, is determined,
while a distributed low-complexity algorithm that converges to
the PNE is introduced. The performance and key principles of
the proposed framework are demonstrated through modeling and
simulation, while useful insights about the users’ data offloading
decisions under realistic conditions and behaviors are presented.

Index Terms— Data offloading, Multi-access Edge Computing,
computation and communication overhead, risk-based behavior,
probabilistic uncertainty, utility functions, convex optimization.

I. INTRODUCTION
HE rise of 5G networks alongside the Internet of
Things (IoT) evolution, have skyrocketed the number of
connected objects, which was around a few dozen billions
in 2015 and is expected to experience a many-fold increase
by 2020 [1], [2]. Within this setting, multiple heterogeneous
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devices, with a wide range of computational capabilities,
are expected to execute various applications with different
constraints and requirements. Despite the recent hardware
advances in the smart devices, several of them are not yet
capable of efficiently supporting computationally-intensive
applications, as their local computation and energy resources
appear still insufficient.

The concept of MEC was motivated by the unprecedented
growth of mobile traffic, especially by the smart phones, and
the emergence of enhanced multimedia services, which are
characterized by high computing demands. The edge com-
puting - representing the practice of processing data near the
edge of the network - currently comes either as an alternative
or complementary to the cloud computing paradigm, which
suffers from latency issues due to the connection to remote
servers in the cloud through public Internet. Thus, the MEC
solution reduces the network congestion at the backhaul of the
network, as the users’ computing applications are offloaded
at the edge servers via the access network, and therefore
facilitates the execution of various types of computing hun-
gry applications (either due to delay sensitivity requirements
or due to high throughput demands). For the same reason,
by adopting the MEC approach the propagation delay becomes
negligible, while in addition large and unpredictable queuing
and transmission delays are avoided, which would instead
occur if data were offloaded to the central cloud, due to the
congestion at the backhaul of the network. Also, the MEC
reduces the privacy and security concerns compared to the
central cloud that has a single point of failure. Consequently,
the MEC environment, as considered in this paper, appears
as the appropriate candidate to support both latency-sensitive
applications (e.g., smart home, smart city, autonomous vehi-
cles, virtual reality, industrial Internet of Things applications)
and in general computational-intensive applications.

A. Related Work

Single-MEC server and multi-MEC servers approaches have
been proposed in the literature to consider the computation and
communication limitations in the MEC environment. Regard-
ing the single-MEC server setup, Mao et al. [3] have assumed
that the computation task requests from the mobile users
arrive in a stochastic manner, and they formulated a power
consumption minimization problem with task buffer stability
constraints to examine the tradeoff between the mobile users’
power consumption and the execution delay of the computa-
tion tasks. The decision regarding the local execution and com-
putation offloading is based on Lyapunov optimization, while
the communication resources, i.e., transmission power and
bandwidth, are allocated following the Gauss-Seidel method.
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A similar problem is considered in [4] under the consideration
of a multi-channel wireless interference environment. The
authors propose a distributed approach to determine the users’
computation offloading decisions based on game theory.

On the other hand, a centralized approach is introduced
in [5], [6], targeting at the energy-efficient data offloading via
jointly optimizing the computation offloading and the radio
resource allocation for all the users in the network, in order
to obtain the minimal energy consumption under the latency
constraints in a single-MEC server environment. The same
problem is studied in [7] under the assumption of mobile users’
personalized delay requirements, which introduces additional
constraints (as many as the number of users) in the corre-
sponding optimization problem. This problem has been also
extended in a MIMO multicell system [8], where multiple
users offload their data to a single-MEC server. The formulated
optimization problem is non-convex, thus the authors propose
an iterative algorithm following the successive convex approx-
imation technique to determine a local optimal data offloading
and radio resource allocation.

In [9], the authors study the workload balancing problem
in a fog network to minimize the latency of data flows in
the communications and processing procedures by associat-
ing mobile devices to suitable base stations. A hierarchical
computing infrastracture is proposed in [10] consisting of
shallow and deep cloudlets and the authors study the problem
of users’ data offloading to reduce the latency and improve
the quality of service based on a queuing theory analysis.
In [11], the authors examine the joint optimization problem
of minimizing the system cost in terms of leasing virtual
machines for computing purposes, while guaranteeing QoS
requirements, and they address it as a mixed integer nonlinear
programming problem. In [12], the author provides a techno-
economic analysis via proposing a coalitional game-based
pricing scheme to study the users’ data offloading problem.

The centralized partial data offloading problem, while
the mobile users can harvest energy from the environment,
is studied in [13] and [14] based on linear programming and
Lyapunov optimization, respectively, towards determining the
optimal policies of offloading decision, clock frequency con-
trol, power splitting ratio and transmission power allocation.
In [15], the authors focus their study on the communication
collisions at the shared network when multiple users offload
their data to a single-MEC server. The authors aim to minimize
the average application completion time following a mixed
integer programming approach.

Limited research work however has been performed so far in
the multi-MEC servers environment regarding the full and/or
partial offloading and radio resource allocation. In this setting,
several additional dimensions arise in the decision making
process, namely: a) determine to which server(s) should a
user offload its data, b) determine the total amount of data
to be offloaded, and c) optimize the data offloading allocation
among multiple MEC servers. All these aspects ideally should
be treated jointly, as there is a strong interdependence among
them. The latter makes the combined optimization and deci-
sion making problem more complicated with the increasing
number of users and MEC servers.

The problem of pure data offloading is studied in [16],
where the authors aim to determine the amount of offloaded
data to each MEC server (without considering the radio
resource allocation) via formulating a multiple knapsack prob-
lem. Similarly, two separate problems are formulated in [17]
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regarding the mobile users’ energy consumption minimization
and the minimization of application’s execution latency. Both
problems are non-convex ones and the authors transform the
first problem to a convex one based on the variable substitution
technique, while they propose a locally optimal algorithm with
the univariate search technique to address the second one. The
joint data offloading and radio resource allocation problem has
been recently studied in [18] considering that the mobile users
can harvest energy from the surrounding environment.

It is noted that, all the aforementioned approaches, whether
considering a single-MEC server or multi-MEC servers,
assume that the users have a risk-neutral behavior, acting as
neutral maximizers that aim to maximize their payoff from the
allocation of the communication and computation resources.
However, in real life the individuals tend to exhibit risk-
seeking or loss-aversion behavior under the presence of uncer-
tainty (in terms of both computation and communication),
which is a key property of the MEC environment.

B. Contributions & Outline

In this paper, towards exactly filling the aforementioned
research gap, we exploit Prospect Theory [19] to account for
users’ risk-seeking and loss-aversion behavior [20], in their
data offloading decisions. This comes in contrast to the major-
ity of the relevant literature that considers risk-neutral users
and classical utility maximizers [21]. In particular, in our work
we address the data offloading problem under the uncertain-
ties of a realistic multi-MEC servers system, consisting of
servers with certain capabilities, e.g., storage, computing. This
is achieved through a risk-based distributed framework that
properly captures users’ behavior under losses and gains, in a
formal but still pragmatic manner.

The main contributions of our work that differentiate it from
the rest of the literature, are summarized below:

1. A heterogeneous multi-users and multi-MEC servers envi-
ronment is introduced, where each user can offload arbitrarily
parts of its application to multiple MEC servers for remote
execution. This goes beyond the majority of current literature,
that primarily addresses the problem of binary offloading,
i.e., each user may offload its whole application to one MEC
server.

2. The users determine, under risk, the computation load
to be offloaded at each MEC server, taking into considera-
tion both the computation uncertainty (limited computation
capability) and the communication uncertainty (interference)
at each MEC server, due to its shared nature among the
users. Each MEC server is treated as a common pool of
resources (CPR) following the principles of the Tragedy of
the Commons [22].

3. Each user’s perceived prospect-theoretic utility by a MEC
server, is properly formulated by considering its actual edge
computing overhead that the user experiences via offloading
part of its application to the MEC server, and the correspond-
ing overhead that would be involved if instead processed the
same amount locally. It is noted that the prospect-theoretic util-
ity is of probabilistic nature, as the user’s perceived satisfaction
depends on the communication and computing congestion at
the MEC servers, which are introduced as fragile comput-
ing resources that can fail to serve the users’ computation
demands. A corresponding probability of failure function is
defined characterizing each MEC server and representing its
probability to fail serving the end-users’ computing requests
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Fig. 1. Multi-MEC servers environment.

due to the over-exploitation of its computing capabilities. Also,
the effective rate of return function is defined to quantify the
user’s perceived quality of service by a MEC server, while
the return function expresses the user’s assigned computational
capability from a MEC server. Each user’s satisfaction utility
function is defined as the summation of the expected prospect-
theoretic utility outcomes from the MEC servers, and the
corresponding local computing overhead for the rest part of
the user’s application that is not offloaded.

4. The problem of each user determining in an autonomous
manner the portion of its computation task that will be
performed at each MEC server, has been formulated as a
convex optimization problem of each user’s satisfaction utility,
and is treated as a non-cooperative game among the users.
The respective non-cooperative game is solved in a distributed
manner, and the existence and uniqueness of a Pure Nash
Equilibrium (PNE) is proven. A distributed low-complexity
algorithm that converges to the PNE is introduced.

5. A series of experiments are performed to evaluate the
performance of the distributed framework, in terms of users’
satisfaction regarding the inherent attributes of the proposed
prospect-theoretic formulation and system’s scalability. Fur-
thermore, a detailed comparative evaluation with alternative
decision-making scheme demonstrates our framework’s supe-
riority and benefits, in terms of devices’ overhead and proper
system’s operation regarding the environment’s uncertainty.

The remainder of this research paper is organized as follows.
In Section II, the overall system model is described, while in
Section III, the user’s risk-aware behavior is captured and its
prospect-theoretic utility function is formulated. In Section IV,
the problem of risk-aware data offloading is formulated and
treated as a non-cooperative game among the users, while the
existence and uniqueness of a Pure Nash Equilibrium (PNE) is
shown. In Section V, a low-complexity algorithm is introduced
towards determining the PNE, following a convex optimiza-
tion approach. Finally, a detailed performance evaluation of
our approach is presented in Section VI via modeling and
simulation, while Section VII concludes the paper.

II. SYSTEM MODEL

A multi-access edge computing (MEC) system with multi-
MEC servers, as shown in Fig. 1, is considered, where the
users have the ability to offload part of their application to the
MEC system through a 5G heterogeneous network. The MEC
servers can be small data centers at the edge of the network
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and possibly managed by different Wireless Internet Service
Providers (WISPs). Following the existing literature in the field
of multi-access edge computing, the MEC servers reside at
the Macro Base Stations (MBSs) of the macrocells or at the
Access Points (APs) of the small cells, e.g., femtocells [5], [8].
Considering that typically the small cells and the macrocell
are overlapping, each user is assumed capable of potentially
offloading part of its data to all the MEC servers in the exam-
ined scenario. By offloading a portion of the user application
data to the MEC system, the computing performance and
energy consumption that the users observe, are significantly
improved and reduced respectively, thus overall enhancing user
experience. Data offloading decision is a dynamic process that
depends not only on the the communication and computing
environment, but also on the type of users’ requested ser-
vices. These services may impose different time and energy
constraints in the data offloading problem based on their real
and non-real time nature. Accordingly, the users may request
either elastic or inelastic services, such as executing a machine
learning algorithm for data analytics purpose or online gaming,
respectively.

In our model, we denote by U = {1,...,4,...,U} the set of
users, and with S = {1,...,s,...,S5} the set of MEC servers
in the system. Furthermore, each user ¢ € U has a computing
application to be completed, with a certain affordable delay
and energy consumption, related to the user’s energy avail-
ability. Specifically, we denote by A; = (B;, Ci, ¢i,ti, €;)
the user’s ¢ computing application, which is characterized by
specific features and requirements. In particular, let B; denote
the total input bits and C; the number of CPU cycles required
for the execution of the requested computing application.
We set C; = ¢; - B;, where ¢;, ¢; > 0 describes the
application’s intensity, e.g., a higher value of ¢; expresses a
more computing demanding application. For application A;,
t; is the time constraint that the user i requests regarding its
completion, and e; denotes user’s ¢ energy availability at its
own device.

In this paper, we assume that for each user ¢ € U,
the application A; can be arbitrarily partitioned into subsets
of any size, which can be offloaded to any of the available
MEC servers. We denote by b; = (b;1,...,b;s) the user’s
i offloading vector and b; ; is the amount of data that user
i offloads to the MEC server s. Thus, b, s € [0,B;] and
Zses bis < B;,Vi € U. It is noted that each user transmits
sequentially its data b; ;,Vs € S via exploiting its single-
interface communication capabilities and each MEC server’s
wireless channel. Consequently, the amount of data that will
be executed locally at the device is: (B; — ESES bi,s). The key
notations used in this paper are summarized in Table I.

In a realistic multi-MEC servers system, the end-users sense
their environment and available options of the MEC servers.
The user devices are sufficiently intelligent and make optimal
data offloading decisions in an autonomous and distributed
manner, while expressing and considering the users’ risk-
aware behavioral characteristics. On the other hand, having
a centralized load balancer to control the users’ optimal data
offloading, introduces several drawbacks in the system design
and efficiency, which our proposed solution bypasses. First,
the load balancer is a centralized decision-making entity,
which is prone to be a single point of failure that can be
attacked, e.g., distributed denial of service (DDoS) attacks,
and the system can misoperate. Second, it is assumed that all
the service operators owning the various MEC servers will
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TABLE I
SUMMARY OF KEY NOTATIONS

[ Notation [ Description ]
U Set of users
S Set of MEC servers
A; User’s i computing application
B; Total input bits of user ¢
C; Number of CPU cycles required by user’s computing application A;
bi User’s i application’s level of intensity [CPU-cycles/bit]
t; Time constraint of user i [sec]
e; Energy constraint of user i [J]
bis Offloaded data of user i to server s [bits]
R; s Uplink data rate of user 7 to server s [bps]
w System’s bandwidth
Pi,s Transmission power of user i to server s [W]
8i.s Channel gain between user i and server s
Ny Set of users offloading to server s
O'g Variance of the Additive White Gaussian Noise
OZ'T\ft Overhead of the transmission time of the data [sec]
[245 Overhead of the energy consumption due to transmission [J]
by Total amount of data that server s can process [bits]
Fy Total computing capability of server s [CPU-cycles/sec]
Fi.s(bs) Comp. capability assigned to user i by server s [CPU-cycles/sec]
b " Total amount of offloaded data to server s [bits]

Server’s s production function
Total time overhead [sec]

S
AT
Oi s ltoral

[ Relative MEC overhead for user i offloading to server s
or Overall MEC overhead for user i

L; Amount of data executed locally at the user’s device [bits]
lci User’s i local computing capability [CPU-cycles/sec]

le; User’s i local energy consumption [J/CPU-cycles]

5’1 Overhead of local computing execution time [sec]

f’e Overhead of local energy consumption to process the data [J]
Of Relative overhead regarding the local computing approach
O; User’s i total overhead
ps (bg) Probability of failure of server s
a;, Vi Sensitivity to the gains and losses of user #, respectively
ki Loss aversion parameter of user ¢
Ui s Prospect-theoretic utility of user i offloading to server s
Si User’s i satisfaction utility
I User’s i strategy space

accept and trust the centralized load-balancer to control the
data offloading to them. Third, even in the simple case of
considering risk-neutral rational users, the users are burdened
by signaling overhead in order to report their characteristics to
the centralized load-balancer. Fourth, in the case of risk-aware
users, as considered in the proposed framework, the central-
ized load-balancer has no feasible way to know the user’s
behavioral characteristics and the users are reluctant to reveal
them due to privacy concerns. Based on the above description,
we evangelize that a distributed risk-aware data offloading in
multi-MEC server environments is a more realistic framework
compared to a centralized approach.

A. Communication Model

Each AP/MBS operates and receives data over a dedicated
communication link, i.e., frequency band, thus, each user,
while transmitting part of its data to a MEC server, senses
the interference from the rest of the users transmitting only
to the same MEC server, i.e., Zjeij i Dj.s - 9j,s» Where the
communication channel gain between tﬁe user j and the MEC
server s is denoted by g; s, Ny = {j € U:b; s # 0} is the set
of users that offload part of their application to server s, and
Di,s 18 the user’s ¢ transmission power to offload part of the data
to server s. The signal-to-interference-plus-noise-ratio (SINR)
measured at the receiver side, i.e., MEC servers, with respect
to the transmission of user i is ;s = Piss i

3
UO+ZJ'€NS j#iPisGis’
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and given that the bandwidth allocated to each communication
link is W, the corresponding user’s achievable data rate, while
communicating with server s, is [23]:

Di,s * Gi,s ) (1)

Ris =W -log(1+
h o+ D jeN. jiPis  Gis

where o7 indicates the variance of the Additive White
Gaussian Noise (AWGN) of the server s.

The user 4, by offloading b; s amount of data to the MEC
server s, experiences an overhead consisting of: a) the trans-
mission time [sec] of the data

bis
m,t 1,8
SV = — 2
e )
and b) the transmission energy consumption [Joules]
bi s - pi
Om,e _ L8 1,8 3
A )

B. Computing Model

1) Multi-access Edge Computing Model: We assume that
a strong computing resource (e.g., a high-speed CPU) is
available at each MEC server, while the computing capability
of each server is limited by the total amount of data b, that can
process at the same time, e.g., due to either limited memory
storage or finite multi-core architecture of the MEC server. The
total computing capability of each MEC server s, which is
denoted by F, [Cycles/sec], is shared among the users that
select to offload b; ; amount of data to the MEC server s.
Thus, the computing capability that is assigned to user ¢
(e.g., through a virtual machine) in order to remotely execute
part of its application is expressed via user’s ¢ return function
F; s(bs) that is given as follows:

ZjENS ¢j

where by = >,y bjs is the total amount of offloaded data
to MEC server s, and f, defines the server’s s production
function expressing users’ perceived computing satisfaction
from the MEC server s, and is given as follows:

- 1— = if by < by
Ly =1 <

0, otherwise

) r )

where by denotes the received bytes threshold value that the
MEC server can process without failing its operation.
Proposition 1: Each MEC server’s s, s € S, production
function fs(bs), and each user’s ¢, ¢ € U return function
F; s(bs), are strictly decreasing with respect to the total
offloaded data b, at the MEC server s.
The return function of user ¢ (Eq. 4) is personalized based on
the computing demand ¢; of its application, and due to Eq. 5
decreases as the total computing offloading b, increases.
User ¢ can execute remotely its offloaded data by receiving
a computing capability F; ; from the server, and the corre-
sponding execution time is & As a result, based on Eq. 2
user’s i total time overhead is calculated as follows:

@i = bis

m,t bz s
Oi N |total = — +
s .

(6)
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Based on Eq. 3 and Eq. 6 the relative MEC overhead that
user ¢ experiences by deciding to offload part of its application
to the server s, considering both the user’s application time
constraints and the user’s energy availability, is formulated as
follows:

bis + Pibis bi s Pis
R s F; s R; s
OZ;(bi!S) = o + o (7)
i i

and the overall multi-access edge computing overhead
O =) cs O, is given as
(bi Dis

by = %bm (Ri,s b * Fis-t; N R - ei) ®

2) Local Computing Model: For the local computing model,
user ¢ € U executes L; = B; — Eses b;,s amount of data
locally at its device. By denoting with [¢; [Cycles/sec] user’s 4
local computing capability and with le; [Joules/Cycle] user’s
i energy consumption to process locally the data, the local
computing execution time is given as follows:

@i Ly

o't =
lCi

©)

while user’s local energy consumption to process the data is
determined as follows:

0% =i Li - le; (10)

Based on Eq. 9 and Eq. 10, the user’s relative overhead
regarding the local computing approach considering both the
computing time and the energy consumption overhead, is given
as follows:
oy o 1 e
Oi(Li) = ==+ == =i - Li - ( +—)

ti . ZCfL' €;

Y

t; €

C. Actual Total Overhead

Based on Eq. 8 and Eq. 11, user’s 7 total overhead is given
as follows:

1 d)" Pi,s
0i =S bis- |
i % S TR R )
1 Z@i
L leiv s
+oiLi (- + ) (12
Note that each user i € U with strategy b; = (bi1, .-, bis)

can evaluate its experienced total overhead by receiving from
each server s (via server’s broadcasting), the total interference
> jeN. j#iPis " 9js» the overall applications levels of com-
puting intensity > jen, @5, and the total amount of offloaded
data by, without requiring any additional information of the
individual users.

ITI. THE PROSPECT OF DATA OFFLOADING
A. Risk-Aware Behavior: The Tragedy of the Commons

In the multi-MEC servers’ environment, each MEC server
constitutes a Common Pool of Resources (CPR), since all the
users are able to arbitrarily offload part of their applications to
the MEC servers for remote execution. Due to Eq. 4 and Eq. 5
each MEC server s is rivarlous and subtractable, as the MEC
server’s computing capability is a shared resource among the
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users. Specifically, Eq. 5 denotes that the by is the received
bytes threshold value for each MEC server s, thus if by > by
the MEC server s is considered unable to execute the receiving
amount of applications at the same time, so it “fails”. This
phenomenon is well known in the literature as the Tragedy
of the Commons [22]. As a result, in the case of the CPR’s
failure, it is more beneficial for the user 7 either to offload the
b;,s amount of data to another MEC server, or process the data
locally.

Towards minimizing the perceived overhead, user’s ¢ goal
is to determine in an autonomous and distributed manner
the offloading amount of data b; s to each MEC server s by
accounting for the uncertainty of the expected outcome. The
uncertainty introduced by the shared computing environment
drives the users to exhibit a risk-aware behavior. Based on this
uncertainty, we introduce the probability of failure of each
MEC server s, which is denoted by p(bs). The probability
of failure characterises each MEC server and represents its
probability to fail serving the end-users’ computing requests
due to the over-exploitation of its computing capabilities.

Assumption 1: Each MEC server’s s (CPR) probability of
failure pg(bs) is strictly increasing, convex and twice con-
tinuously defferentiable with respect to b, € [0,b,), with
ps(bs) =1, Vbg > bs.

In this paper, we consider a linear probability of failure
function for each MEC server s, thus ps(bs) = g—-‘, Vb, <

bs, while p,(bs) = 1, Vb, > b, in order to represent a
smooth potential failure of the MEC server, if its computing
capabilities become over-exploited by the users. It should be
noted however, that the provided mathematical analysis would
follow exactly the same philosophy and pattern for any convex
form of the probability of failure function, e.g., logarithmic or
exponential (which essentially respects Assumption 1). The
physical meaning of the logarithmic or exponential function
compared to the linear probability of failure function is that the
MEC server would be more sensitive to failure for the same
total amount of offloaded data. Each user ¢ with strategy b,
by offloading b; ; amount of data to the MEC server s, should
consider the server’s probability of failure p;, since in the case
that the server s “fails” to execute user’s ¢ amount of offloaded
data, the user has to process the data locally. Given that the
MEC server’s s probability of failure is ps, then the probability
that the server survives and executes successfully the total
received amount of offloaded data is accordingly (1 — ps).
Based on Eq. 7, Eq. 11, and given ps, user’s ¢ expected MEC
overhead from the server s, is formulated as follows:

E(O7L(bis))
= (1 —ps(bs)) - Oﬁs(bi,S)
+ps(bs) - (OL(bis) + bis +%“”ﬂ (13)
Pl TR st Rig e

where the last two factors in the second term refer to the
additional communication overhead in the case of the MEC
server’s failure, as the user offloads its data to the server, and
then the server’s failure is observed.

Following the same reasoning as in Eq. 8, and applying
the operation of expectation, the overall expected multi-
access edge computing overhead that user i experiences is
E(O7* (b)) = > ,es E(O7"(bis)). Consequently, taking the
expectation of the overall MEC overhead, where the first term
of Eq. 12 becomes E(O!"(b;)), the user’s ¢ overall perceived
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Losses Reference point - q;

Prospect-theoretic
utility u

UE's actual multi-access edge computing overhead - q ,

Fig. 2. Prospect-theoretic utility.

expected overhead is given as follows:
1 le;

ZE +¢’L ‘ (tllcl

seS

—) (14

€;

where the overall local computing overhead remains the same
(i.e., second term of both Eq. 12 and Eq. 14).

B. Offloading Decision Under Prospect Theory

To address the users’ subjectivity in decision-making under
uncertainty, as they tend to exhibit different decisions under
losses or gains with respect to their actual satisfaction,
Prospect Theory has been adopted. Prospect Theory was
introduced by Kahneman and Tversky [19] and proposes a
behavioral model, where humans make actions autonomously
under risk and uncertainty. Following this behavioral model
and applying it to the users’ decision-making mechanism
regarding the allocation of the amount of the offloading data
bi,s to each MEC server s, users’ relative MEC overhead
as expressed in Eq. 7, is evaluated with respect to a ref-
erence point (reference dependence property). In our case,
the reference point for each user is the guaranteed overhead
OL(bi.s) (Eq. 11) that the user i can obtain by processing the
b;,s amount of data locally instead of offloading them to the
server s.

As it is shown in Fig. 2, the users’ prospect-theoretic utility
is a concave function with respect to the users’ actual MEC
overhead above the reference point, i.e., gains curve, while
it is a convex function bellow it, i.e., losses curve (loss
aversion property). Furthermore, the different slope in losses
compared to the gains, depicts the fact that the users, weigh
more the case where they experience a higher MEC overhead
compared to the corresponding local computing overhead that
they would have perceived if they had processed the data
locally (diminishing sensitivity property).

C. Risk-Aware Utility Function

User’s ¢ prospect-theoretic utility, when offloading b; s
amount of data to the MEC server s is formulated as follows:

Ui,s(Gi,s) = {(_qzjr r

i (qi,s -

if gis < qir
if ;s > qir

Qi
qz,s) Y

i )'Yi, (15)

where g; s = O]"(bi s) is the user’s i actual perceived MEC
overhead by offloading b; ; amount of data to the MEC
server s, as defined in Eq. 7, and ¢;, = Ol(b;s) denotes
the reference point of the user’s ¢ prospect-theoretic utility.
It is noted that each user aims at maximizing its prospect-
theoretic utility function. Regarding the first branch of Eq. 15,
the maximization of the u; s directly implies the minimization
of the MEC overhead. On the other hand, at the second branch
of Eq. 15 the MEC fails to serve the users’ computing demands
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which are performed locally, thus, the maximization of the
user’s prospect-theoretic utility concludes to minimizing the
additional overhead imposed to the user to offload its data.

The real parameters «;, 7y; depict user’s ¢ sensitivity to the
gains and losses of its actual perceived MEC overhead ¢; s,
respectively. Small values of «; capture user’s 4 risk-seeking
in losses and risk-averse in gains behavior, while small values
of ~,; reflect a higher decrease in the user’s prospect-theoretic
utility, when its MEC overhead ¢; ; is close to its correspond-
ing local computing overhead g; ;.. In this paper, without loss
of generality, we consider similar behavior for all the users in
losses and gains, i.e., ; = 7;, Vi € U. Furthermore, through
the k;, k; € [0,400) parameter, user i expresses if its losses
weigh more than its gains. If k; > 1, the prospect-theoretic
utility u; , has a greater slope of decrease in the case of losses
compared to the slope of increase in the gains’ part. The exact
opposite holds true if k; < 1.

Considering the case that the MEC server s does not fail
due to the users’ offloaded amount of data, the user’s 1 MEC
overhead ¢; s is calculated by Eq. 7, and in this case, it is
lower than the corresponding local computing overhead g;
(reference point), thus ¢; s < ¢;,. As a result, based on
user’s ¢ first branch of its prospect-theoretic utility (Eq. 15),
via subtracting ¢; ; from the reference point ¢;,, we have
Uis = [bis (f(lzlc,"_le;?l_t}%,g t%g_e,p;%:g)] - On the
other hand, if the MEC server s fails to execute the received
amount of offloaded data due to the fact that it is overloaded,
then the user 7 has to process the b; s amount of data locally,
thus its experienced overhead is given by Eq. 11, while it has
an extra communication overhead, as user 7 at first had to
offload the b; ; amount of data to the MEC server s. As a
result, user’s ¢ actual experienced overhead in the case of
the MEC server’s s failure consists of the local computing
overhead ¢; , (reference point) and the extra communication
overhead, thus ¢; s = ¢; »+ Rb -+ ;%‘ Pis andis greater than
the reference point g; ;.. Therefore based on the second branch
of Eq. 15, by subtracting the reference point ¢; , from user’s ¢
actual multi-access edge computing overhead g; g, its prospect-
theoretic utility becomes u; s = —k;-[bi s (ﬁ + Rp—e)]a
Furthermore, for notational convenience we define ¢; =

1 Di,s a; i leigi 1
(Ri,s'ti Ri,s'ei)) and hl’s(bs) (tilci e; tiRi s
ff, - %)“, considering that h; s > 0 if the MEC server

s does not fail. Considering the probability of failure pg(bs),
the user’s ¢ prospect-theoretic utility can be written as:

L his(bs), with probabil. 1 — p(bs)
Yis T ke - b2, with probabil. py(By)

7,87

(16)

Based on Eq. 16 each user’s 7 expected prospect-theoretic
utility regarding MEC server s is formulated as follows:

E(ui,s) = bzof; ’ hi,S(BS)(l — ps(bs)) — ki EzbasPS(bS)
£ b7 - erti o (bs) (17)
where ertiys(l_)s) = hi,S(ES)(l — ps(bs)) — kieips(bs) is the

effective rate of return of the MEC server s for the user 1.

IV. PROSPECT-THEORETIC PARTIAL OFFLOADING:
A GAME-THEORETIC APPROACH

Each user ¢ has to sophisticatedly and selfishly determine its
best offloading strategy in order to maximize its overall per-

ceived expected prospect-theoretic utility, i.e., > .o E(ui ).
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In this process there is a natural tradeoff between user’s
1 overall MEC overhead and its overall local computing
overhead. In order to capture this tradeoff, we introduce each
user’s ¢ satisfaction utility, which is expressed by its overall
expected prospect-theoretic utility subtracting its overall local
computing overhead as follows.

si(bi,bi) =) E(uis) — Of(Ls) (18)

s€S
where b_; = [by...,bi_1,bit1,...,by] is the users’
offloading strategies’ vector except for the user ¢,

> scs E(uis) is the overall expected prospect-theoretic
utility that user i obtains, and O!(L;) is given by Eq. 11,
where L; = B; — ) s bi s is the amount of locally processed
data.

Therefore, the ultimate goal of each user ¢ is to maximize
its perceived satisfaction utility s; by determining its data
offloading strategy bj;. This problem can be formulated as a
maximization problem of user’s ¢ satisfaction utility, and based
on Eq. 11 and Eq. 17 can be expressed as follows.

1 lei
Z b GT'tl s ) ¢z ’L( + _)

max s;(bi,b_;

b;el’; ses . lCi €;
19)
S - times
where I'; = [0,..., B;] x -+ x [0,..., B;] is the strategy set
of user 4.

Due to the non-cooperative and distributed nature of the
above maximization problem, it can be treated as a non-
cooperative game among the users who act as players making
the optimal decisions about themselves in a selfish and dis-
tributed manner. Let G = [U, {I';}icvu, {$i }icu] denote the
non-cooperative game among the users which set is U, where
each user’s strategy space is I';, and its payoff is the satisfac-
tion utility s; (Eq. 18). Towards solving the non-cooperative
game G, the concept of Nash equilibrium is adopted. The
Nash equilibrium (NE) of the non-cooperative game G is the
strategy vector which consists of users’ offloading vectors,
b* = [bj,...,b{, ..., b{;], where no user has the incentive to
change its own strategy (i.e., at least the amount of offloading
data at one MEC server s) given the strategies of the rest of
the users. Let b*; = [b7,...,b{_;,b{ ;,...,bp] denote the
users’ offloading strategies vector except for user 7 at the NE
point.
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Definition 1: The vector b* = [b},...,b},....b] € T
I'=T4 x--- x Ty, is a Pure Nash Equilibrium (PNE) point
of the non-cooperative game G, if Vi € U it holds true that
Sz(b;k, bil) > Si(bi,b*_i), Vb; € T';.

A. Problem Formulation

Each user ¢ aims at maximizing its satisfaction utility s;,
while at the same time experiencing a non-negative expected
prospect-theoretic utility E(u; 5) > 0. If E(u; s) < 0, then the
bi,s amount of data that the user ¢ offloads to the MEC server
s, drives the latter to a high probability of failure ps, thus the
user’s offloading is not beneficial.

Additionally, each user aims at satisfying its time ¢; and
energy e; constraints, as follows: E(O;)|; < t; and E(O;)l. <
e;, where E(O;)|; and E(O;)|. are given by Eq. 20 and
Eq. 21, as shown at the bottom of this page, respectively.
Therefore, the maximization problem of user’s ¢ satisfaction
utility (Eq. 19-21) can be formulated as follows:

maximizes;(b;, b_;)

i€l
Zbi,s < B,

s€ES

subject to E(u; ) >0, Vse€S,
E(O;)]r <t
E(Oi)]e < e;

(Ci) (22)

where (C;) denotes the group of the constraints that user’s 4
offloading strategy b; should satisfy.

B. Existence, Uniqueness and Convergence of PNE

Let us denote as A; the set of each user’s ¢ strategy space,
where A; = T, NC;, C; = {bl € I'; : b; satisfies (Cz)}
Thus, the non-cooperative game G is transformed to G =
(U, {Ai}icu, {si}ieu]-

Theorem 1: The non-cooperative game G among the users
is an m-person concave game, where n = U.

In order to prove the above theorem, we first state the
following Lemmas 1-4.
Lemma 1: For each user ¢ and each MEC server s there

exists a value bth > (0 such that ertiﬁs(bg;) = 0 and
E(uis) > 0, Vb o < bit, while E(u; ) <0, Vb; s > bi"

Proof: See Appendix A in the Supplementary Material.

1 bi - 1 Gi\ 7 iLi
= E(O O, = b s(=— 1—ps(b bi s(5— + — b
O;)le = Z i)t + Oile = Z[ w(Ris +Fis)( ps(bs)) + w(Rz‘.s +lCi)pS( s) ]+ lcz
SES SES ? § i
multi-access edge computing time overhead  local computing and transmission time overhead for b; s
(Eq. 4 & 5)F; s= ﬁ( ——)F 1 . ¢ b b, L
— JENs ?j Z [bq/ s( + ZJENS J + ﬁ( 7,5 i 7,5 ))] + d)’b (20)
pe=bo/babi=biatboi.  fop | Ris s leim by lei
Pi,s 7 Pi,s T
Oi)le = Y E(O%)|c+0e=) | bi.s == (1 — ps(bs)) + bis (22 + dile;)ps(bs) |4 ¢; Lile;
s€eS s€S Ri,s Ri,s
multi-access edge computing energy overhead  local computing and transmission energy overhead for b; s
(Eq. 4 & HF; =52 (1-22)F, , b b
S JENs %5 b Z [bi,s( Di,s T d)il@i( iys T0—iss )]+¢iLil€i @1)
Pe=be /be,ba=bi s +b_; s Ris s

s€eS
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Based on Lemma 1, the maximization problem in Eq. 22
can be rewritten as follows.

maximizes;(b;, b_;)

(€A,
Z bis < B,
s€ES
subject to 0 < b; s <b", VseS, »(Ci) (23)
E(Oy)|: < t,
E(O;)le < e

where the second constraint in (C;) was replaced by 0 <
bis < b

Lemma 2: For each user 7 and each MEC server s,
the expected prospect-theoretic utility E(u; s) is strictly con-
cave Vb; , € (0,b}").

Proof: See Appendix B in the Supplementary Material.

In the following Lemma, we prove that C; = {b; € T; :
b; satisfies (C;)} is a convex set, due to the fact that the group
of constraints (C;) is a set of convex functions.

Lemma 3: For each user i, its group of constraints (C;) is
a set of convex functions.

910) = Zbi,s - B;

s€S
gz(?s) =bis— b, VseS
91(,35) = _bi,S7 Vs €S

9 =EO)|: — t;

9 = E0))]. — e (24)
Proof: See Appendix C in the Supplementary Material.

Based on Lemma 3, for each user ¢, the set C; = I'; N
(Nireqrasy Lev(@™,0) NV (Nae .5y Lev(g"?) 0)). Vs €
S is a convex set as an intersection of a convex set I'; and level
sets of convex functions, which are necessarily convex sets
(see Section 3.1.6 of [24]). Therefore, each user’s ¢ strategy
space A, = I';NC; in the non-cooperative game G, is a convex
set as an intersection of convex sets.

Lemma 4: Each user’s i, ¢ € U satisfaction utility s;, is a
concave function over the strategy space A;.

Proof: See Appendix D in the Supplementary Material.

Based on Lemmas 1-4, each user’s ¢ strategy space A; is a
convex set, and its satisfaction utility s;(b;, b_;) is concave
over the set A;. Thus, the non-cooperative game G is an
n-person concave game, where n = U, so the Theorem 1 holds
true. An n-person concave game has at least one Pure Nash
Equilibrium (PNE) [25], thus the existence of at least one PNE
point for the non-cooperative game G holds true.

Finally, based on Theorem 1, Lemma 4 and [25], the follow-
ing Theorem proves the convergence of the users’ strategies
to the PNE.

Theorem 2: Consider the user ¢ and an S x S matrix
function X; in which (X;)ss = /\i%, Vs,s' € S, and the
constant choices \; > 0. Then, if X; + X7 is strictly negative
definite, then the PNE of the game G is unique. Starting
from any initial offloading strategy b = [b1,0,- - ,buol
b;o € A;, the continuous Best Response (BR) dynamics
converge to the unique PNE.

Proof: See Appendix E in the Supplementary Material.
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V. TOWARDS DETERMINING THE EQUILIBRIUM

A. A Convex Optimization Approach

Each user’s ¢ satisfaction utility s; is a concave function over
A; (Lemma 4), thus the function z;(b;,b_;) = —s;(bi, b_;)
is a convex function over the same space. Let us denote
each user’s ¢ best response strategy bf(b_;) : A_; =% A;
considering the other users’ strategies, as follows.

bi(b_;) = argmax(s;(bi,b_;)),b_; € A_;
bi€A;

(25)

where b_; is the vector of the offloading strategies of all the
users except user ¢, as it was defined in Section IV, and A_; =
Ay X xA;_1 XAy X+ - XAy is the corresponding strategy
space, thus Vi € U, b_; € A_;. Each user’s i best response
strategy b; € A; should satisfy the group of constraints (C;)
(Eq. 23). Furthermore, considering that the function z; is a
convex function over the convex set A;, each user’s i best
response strategy can be formulated as follows:

b;(b_;) = argmin(z;(b;,b_;)),b_; € A_;

bi€A;

(26)

Each user 7 in order to maximize its satisfaction utility s;
(Eq. 18), should equivalently minimize the convex function z;
over the convex set A;. Thus, each user ¢ during the continues
BR dynamics solves the following optimization problem to
determine its best response strategy by

minimizez; (bi, b_;)
b;el’;

> bis < B,
s€ES
subject to 0 < b; ; < bil,

E(O;)|: < ti,
E(Oi)]e < e

Moreover, assuming that each user ¢ is able to satisfy its
time and energy constraint in (C;) by executing its whole
application locally, i.e., b; = 0 € A, the set A; is non-
empty, and the above minimization problem is a nonlinear
convex optimization problem, where the function z;(b;, b_;)
is the objective function, and the ginl), ny € {1,4,5}, gg;?),
ng € {2,3} (Eq. 24) are the inequality constraints.

VsesS, ¢ (C)) (27

B. Algorithm and Complexity Analysis

In this section, the Distributed Algorithm for Convergence
to the PNE (DACP) of the non-cooperative game G is pre-
sented. The DACP algorithm is a decision-making tool that
runs at the beginning of the data offloading process and after
it converges to b* = [bj,...,b},...,b{j] the users know
the data that should be offloaded to each MEC server and the
ones that should be processed locally. The DACP algorithm
is an iterative distributed sequential algorithm, where at each
iteration only one randomly selected user plays an action.
At the first iteration (ite = 0), each user selects randomly
a feasible data offloading vector bj,V: € U. Then, this is
reported to the MEC servers by a user’s broadcasting signal
and each MEC server calculates the by, Vs € S, which then
it is broadcasted to all the users. At the next iteration of the
DACP algorithm, one user is randomly selected to make an
action b given the values b,,Vs € S. The user makes an
action and broadcasts its decision to all the MEC servers in
order the latter to recalculate the new values bs,Vs € S.
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The same procedure is followed iteratively until the DACP
algorithm converges (Line 15 of DACP algorithm). After the
DACP algorithm converges, then each user has decided its data
offloading vector b;" and performs the data offloading.
Specifically, each user, in order to compute its best
response by, first receives from each MEC server the total
amount of ofﬂoaded data b, the interference > jeN, Pi,sYj,s>

and the overall applications’ levels of computing intensity
> jen. j-i ¢; that have been offloaded to this MEC server s.

Then, each user, in order to construct its second constraint in
(Ci), determines the bl", such that ert; ,(b!".) = 0, Vs € S.
From Lemma 1 the root r} , of the ert; = 0 exists, and given
s 18 unique and can

that the ert; s is strictly decreasmg, the Ty

be found via Binary Search into [0, b,] w1th an approximation
error € — 0, thus b = min(r] ,, B;).

Each user has to solve the nonlinear optimization problem
given in Eq. 27 in order to determine its best response
strategy. Since, as we have already proven, the problem in
Eq. 27 is a convex optimization problem, the constrained
local minimum 1is also a constrained global minimum. Thus,
each user may apply any of well known existing methods for
solving constrained nonlinear optimization problems [26], and
conclude to the global minimum of z;(b;, b_;) (Eq. 27), while
determining its best response strategy b;. For demonstration
purposes, we consider the sequential quadratic programming
(SQP) [27] method, that is also provided by the function
Jfmincon() in the MATLAB Optimization Toolbox [28].

Regarding the Algorithm’s DACP complexity, each user ¢,
is required to determine the b", Vs € S. Given that the

1,57 -
complexity of the Binary Search into the interval [0, b,], s € S,
is O(log, bs) [29], the complexity of the user i to determine
all the bfh is O(S- 1og2(maSa:(b )). Also, by denoting as O(A)
€

the complexity of the function finincon(), and since the rest

operations involve only algebraic calculations, the complexity

of each user ¢ to determine its best response b; at each

iteration ite is O(A + S - log, (mgS:c(bs)). Considering that U
S

users execute the Algorithm DACP and given that /fe iterations
are needed for convergence to the PNE, the total complexity
of the distributed Algorithm DACP for all the users is O(U

Ite- (A+S- 1og2(mg1:(b s)))). Finally, the complexity of the

optimization problem O(A) can be considered significantly
greater than the complexity O(S - 1og2(maga:(b ))), therefore
€

the complexity of the Algorithm DACP is O(U - Ite - A).

In a nutshell, the DACP algorithm is a decision-making tool
enabling the users to determine their optimal data offloading
satisfying their personal constraints (C;), as presented in
Eq. 27, before they actually perform it. Also, as it is presented
in Section VI.A, the DACP algorithm needs only few iterations
(i.e., less than five iterations) in order to converge, thus the
signaling overhead added to the end-users is rather limited,
and in most cases practically insignificant.

VI. NUMERICAL RESULTS

In this section, we provide a detailed numerical performance
evaluation of the proposed prospect-theoretic framework,
through modeling and simulation, illustrating the opera-
tion, features and benefits of our approach. Specifically,
in Section VI-A, we focus on the pure operational char-
acteristics of our prospect-theoretic framework, in terms of
efficiently controlling the users’ offloaded data with respect
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Algorithm 1 DACP: Distributed Algorithm for Convergence
to PNE
1: Input:
= Set of users:
= Set of MEC Servers:
2: Output:

U=1[1,...,i,...,U]

S=11,...,s,...,95]

=Profile Strategy at PNE: b* = [b},....b},...,b{j]
3: Initialization:
= bi=[bi1,...,bis,...,bis]
= ite = 0, Convergence =0
4: Iterative Procedure:
5. while Convergence == 0 do
6: ite =1ite+1;
7. flag = 0;
8: fori=1to U do
9 for s=11to S do
10: user i calculates the transmission uplink rate R;
11: Tie = BinarySearch(|0, b s €);
12: b = min(r},, B;);
13: end for
14: b} = fmincon();
15: if (|b}, —bis| <€, Vs€S) then
16: flag = flag + 1,
17: end if
18: b; = b}
19:  end for
20: if (flag == U) then
21: Convergence = 1, Ite = ite;
22:  end if

23: end while

to the heterogeneous multiple MEC server environment.
In Section VI-B we provide a detailed study of our frame-
work’s operation under heterogeneous users regarding their
loss-aversion characteristics. Furthermore, in Section VI-C
a scalability and fragility evaluation study is shown with
respect to an increasing number of users and MEC servers,
while finally in Section VI-D, a comparative evaluation of
our approach against alternative approaches and offloading
strategies is provided.

In our study, we consider a set of S = 3 heterogeneous
MEC servers, with each MEC server s, s € S having a
coverage area of radius R; = 100m, and U = 50 users
in total. Each user’s ¢, ¢ € U channel gain is modeled as
Gis = d%, where d; s is the user’s i distance from the

MEC server s, ie, dis < R, and 6 is the distance loss
exponent, e.g., # = 2. The system’s transmission bandwidth
is considered W = 5M Hz, while a representative value of
the service uplink rate for video conference application is
Ry = 128 kbps. Each 2user ¢ transmits to the MEC server
R
power is normalized and proportional to its distance from
the corresponding MEC server. Moreover, for each user @
we consider [¢; € [0.1,1] GHz and le; = 10’9%,
Vi € U [30]. The considered application characteristics
(e.g., face recognition application) are B; € [1000,5000] KB
and C; € [1000,5000] Mega-Cycles. In the remaining of the

thus each user’s ¢ transmission

s with power p; s =
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paper, unless otherwise explicitly stated, we assume homo-
geneous users with prospect-theoretic parameters «o; = 0.2
and k; = 5, Vi € U. Finally, for each MEC server s,
s € S we consider that Fi; € [1,4] - 10> GHz and bs €
30,70]% - 22°, B.

A. Pure Operation of the Algorithm

Fig. 3a presents the evolution of a specific user’s offloading
strategy (b; 5, Vs € S) at each MEC server s, as a function of
the number of iterations and actual execution time needed for
the Algorithm DACP to converge at the PNE point. Firstly,
we observe that the user by starting from randomly selected
feasible initial values, as the amounts of the data offloading
at each MEC server, it converges in few iterations, i.e., less
than five, at the unique PNE point. Indicatively we note that
the DACP algorithm needs approximately 1.5sec to converge
to the Pure Nash Equilibrium considering that 3 MEC servers
and 50 users reside in the network, while significantly smaller
times are observed if smaller-scale systems are considered or
enhanced devices are utilized. Also, in our simulated scenarios,
we have considered an indicative application with latency
constraints 3sec (Fig. 3b) and based on the decision of the
DACP algorithm a time overhead E(O;)|; = 50msec is
achieved for the execution of the application.

As we also see in Fig. 4a, where four different users are con-
sidered, each user’s total amount of offloaded data converges
to a stable point, while the difference in the values of these
points is due to the users’ heterogeneous characteristics, e.g.,
users’ application characteristics, users’ location inside the
system. Furthermore, as Fig. 3b illustrates, the examined user
determines its best response strategy (in accordance to Eq. 26)
by satisfying its energy and time constraint at every iteration,
while at the same time its satisfaction utility converges to a
stable point (Fig. 3c), as the user’s data offloading strategy at
each MEC server converges (Fig. 3a). Also, the propagation
time is negligible in our presented numerical results, as the
maximum distance of each user from each MEC server is
100m. Moreover, the convergence of the users’ average satis-
faction utility and overhead are presented in Fig. 3d.

Fig. 4b presents the total amount of offloaded data that each
MELC server collects by the users. MEC servers’ heterogeneous
characteristics, in terms of insetting the users to offload part

of their applications to the MEC servers, are better captured
b

_bs 4 Fs
Yjesb; ' Xjes Ty
2icudis

Yjes Lieu 44,5
which is presented in Fig. 4c. The MEC server’s incentive
factor indicates that the higher the ability of a MEC server
to process bigger amounts of data, i.e., bs, or the higher the
MEC server’s computation capability, i.e., Fi, then the higher
is the incentive of a user to offload part of its application to
this MEC server in order to obtain an increased satisfaction
utility. Consequently, the higher is the MEC server’s incentive
factor, the greater is the amount of data that it gathers by the
users (Fig. 4b). Also note, that each MEC server’s incentive
factor is being influenced by the average distance of the
users from the server, since for small distances the users
will experience less communication overhead during their data
offloading at this MEC server. Although MEC servers 1 and 3
collect higher amount of data compared to the server 2,
the latter one concludes to a higher probability of failure
(sub-figure within Fig. 4b). This phenomenon is observed
since MEC server 1 and 3 are assumed to have a significantly
higher threshold value b, than MEC server 2 (Fig. 4d), which
enables them to process a higher amount of data.

In the following, we present some indicative results in order
to study the tradeoffs in the users’ offloading decisions with
respect to the MEC servers’ characteristics, i.e., threshold
value bs, computation capability F, and the average distance
of the users from each MEC server. In particular, we assume
a scenario where each user initially has the same distance
from each MEC server, while the MEC server 3 has improved
computation capabilities compared to the rest of the servers,
in terms of its threshold value b, and its computation capabil-
ity F. Then, the distance of the MEC server 3 from each user
increases, thus, the users reduce their amount of data that they
offload to the MEC server 3 (Fig. 5a). Specifically, the MEC
server 3, due to its improved computation capability gathered
a greater amount of data at the initial point, while then the
amount of collected data decreases, as each user experiences
a greater communication overhead due to the increase of its
transmission power and time, which overturns the obtained
computation benefit. Moreover, the users in order to reduce
their additional local amount of data due to the decrease of
their offloaded amount of data at the MEC server 3, they

by the incentive factor of each MEC server,
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Fig. 6. Heterogeneous users - loss aversion impact study.

increase their corresponding amounts to the rest MEC servers,
and this lead the MEC servers 1 & 2 to receive greater amount
of data compared to the MEC server 3 (Fig. 5a), after a specific
point. As a result, the values of the probabilities of failure
for the MEC servers 1 & 2 increase, while MEC server’s
3 corresponding value decreases (Fig. 5b). Furthermore, due to
the increase of MEC server’s 3 distance from the users, each
user’s offloading is becoming less beneficial, and as a result
its satisfaction utility decreases as it experiences a greater
expected overhead (Fig. 5c¢).

B. Heterogeneous Users - Loss Aversion

In this section, initially the impact of the users’ heteroge-
neous loss aversion prospect-theoretic behavior on the achiev-
able performance is studied. Specifically, the results presented
in Fig. 6a and Fig. 6b compare a scenario of homogeneous
users (i.e., same loss aversion prospect-theoretic parameter
k; for all the users) against a heterogeneous scenario, where
each user ¢, ¢ € U is associated with a different personalized
loss aversion parameter k;, while for fairness purposes the
k; loss aversion value for the homogeneous population is
equal to the average among all the loss aversion values of
the heterogeneous users. It is noted that the more loss averse
is the users’ behavior, the bigger is the loss aversion index
k;, Vi € U, thus, the less amount of data the users offload to
the MEC servers, and as a result the benefits that they obtain
from their offloading, in terms of their experienced satisfaction
utility and expected overhead, are lower. However, the opposite
holds for the highly risk seeking users, which may lead the
MEC servers to be overloaded, and thus, the users’ perceived
satisfaction utility will be decreased due to the high uncertainty
of the system. In particular, as we observe in Fig. 6a the
heterogeneous environment indeed led to higher congestion
levels for the MEC servers, as both the average total amount
of offloaded data by the users and the average MEC servers’
probability of failure increase. However, Fig. 6b illustrates that
the increase of the average amount of offloaded data, led the
heterogeneous users to achieve a higher average satisfaction
utility, and as a result a lower average expected overhead.
On the other hand, the homogeneous users presenting a high
loss averse behavior keep significantly higher amount of data
for local execution, and as a result they experience a higher
expected overhead and a lower satisfaction utility.
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C. Scalability & Fragility Evaluation

Fig. 7 illustrates the necessary time for convergence to PNE,
both for an increasing number of users and an increasing num-
ber of MEC servers. It is observed that our prospect-theoretic
framework scales very well with respect to the increasing
number of MEC servers, since the required execution time has
a smaller increase rate when compared to the corresponding
increase rate on the number of servers. Moreover, as the
number of the users increases, the framework’s execution time
follows almost a linear increasing trend with respect to the
number of users, and this indicates that the factor A -Ife in our
framework’s complexity O(U -Ite- A) (Section V.B) increases
with a significantly lower rate compared to the increase of the
factor U. It should be clarified that the DACP algorithm is
a decision-making tool enabling the users to determine their
optimal data offloading satisfying their personal constraints
(C;), as presented in Eq. 27, before they actually perform it.

Furthermore, in Fig. 8 our framework’s performance in
terms of the MEC servers’ probability of failure, users’ experi-
enced satisfaction utility and expected overhead is studied. The
results reveal that by keeping the number of users constant and
increasing the number of MEC servers, the performance of the
system improves, since the average amount of data that each
MEC server receives from the users is reduced (Fig. 8a), as the
users have more choices/MEC servers to offload their data.
Thus, the average probability of the MEC servers decreases
(Fig. 8b) (ps is decreasing with respect to by), and the users
experience lower expected overhead (Fig. 8d), and greater
satisfaction utility (Fig. 8c).

On the other hand, by keeping the number of MEC servers
constant and increasing the number of users, the exact oppo-
site phenomenon is observed. Specifically, the MEC servers
become more congested as the servers’ average received
amount of data increases (Fig. 8a), and as a result the average
probability of failure of the MEC servers also increases
(Fig. 8b). Moreover, since each MEC server is overloaded,
the computation capability portion that each user obtains
(F;,s, Eq. 4) from each MEC server decreases, while at the
same time the communication overhead increases. As a result,
each user experiences a greater expected overhead (Fig. 8d),
thus, its satisfaction utility decreases (Fig. 8c).

In order to further study the effect of competition on the
fragility of each MEC server (i.e., treated as CPR) between
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a single and several self-interested users, we use the Fragility
under Competition (FuC) metric, which is defined as the ratio
of the fragility of a MEC server when there are several users
to the fragility of the server when there is only one user [31].
The fragility of the MEC server s is expressed by the failure
probability function, p,(bs) which steadily increases as users’
total offloaded bits (i.e., investment) by increases. The fragility
of MEC server s is expressed by the failure probability
function, which steadily increases as users’ total investment
increases. Specifically, the Fragility under Competition for
ps(b7)

_ pS(E:,i) ’
the numerator ps(b%) is the probability of failure function
when the total investment in the server s at the Pure Nash
Equilibrium (PNE) point of N, N > 2 homogeneous visitors

is b, whereas the denominator p(b; ) is the probability of

where

each MEC server s is given by FuC|

s
failure function when considering a single user ¢ (i.e., N = 1)
who has the same risk preferences as the homogeneous group
and its optimal investment in CPR is b; .

Fig. 9 depicts the MEC server average FuC value as a
function of increasing number of users, for different values
of sensitivity parameter a. In particular, we observe that the
FuC value of a MEC server rises as the number of user grows,
then depending on the sensitivity parameter a, it reaches a
peak and after that remains stable, regardless of the number of
users. Based on Theorem 1 and Lemma 1 the total investment
in a MEC server s at the PNE is smaller than b;‘?s, while
Assumption 1 states that probability of failure is an increasing
function of b, and thus pq(bs) < ps(b,). As a consequence,
FuC is upper bounded which is clearly confirmed by our
numerical evaluation results. Fig. 9 also illustrates that the
FuC bound decreases when visitors have a smaller sensitivity
parameter a, thus they become more risk averse. This confirms
that the bounds are influenced by the sensitivity parameter and
the specific CPR characteristics.

D. Comparative Analysis

Considering the basic scenario of homogeneous users
(Section VI.A), a comprehensive comparative study of the
proposed optimal approach, against several other alternatives
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is presented. The comparative evaluation is performed with
respect to the following metrics: users’ achievable average
expected overhead and MEC servers’ probability of failure.
We compare our approach to six other approaches that differ
with respect to the users’ behaviors, as follows:

(a) non prospect-theoretic (NPT) users, but expected over-
head minimizers instead. Each user 7 determines its best
response b; that minimizes its perceived expected over-
head (Eq. 14),

(b) a full game-theoretic offloading approach (only non
partial offloading is permitted) (GOFF) [4], where a non-
cooperative game is formulated among the users. Each user ¢
determines its best choice ch! € {0,1,...,S}, in terms of
which MEC server to select to offload its whole applica-
tion (data), (ch; = 0, if the user ¢ keeps its application
for local execution), that minimizes its perceived expected
overhead (Eq. 14),

(c) a single MEC server environment (SMEC), where a
single only MEC server with the average capabilities of the
three MEC servers of the basic setting is placed, instead of a
multi-MEC servers environment,

(d) only local (LOC) computing users, who are risk-averse
and keep the task’s execution locally to obtain the guaranteed,
though limited, performance provided by their device,

(e) full offloading users (FULL), who are risk seeking, and
offload their whole task to the multi-MEC servers environment,
by choosing randomly a MEC server s, thus b = B;,

(f) each user 7 determines its best response b}
[b;l, _ ,b;s] randomly (RAND), such that ) ¢ b s < B.

Specifically, Fig. 10a illustrates the users’ average expe-
rienced overhead and Fig. 10b indicates the MEC servers’
average probability of failure for each different approach. The
results clearly reveal that our proposed approach achieves
the best performance in terms of both experienced overhead
and probability of failure, while the LOC, RAND and FULL
alternatives achieve the worst performance. In particular,
in the LOC approach the users perceive the highest expected
overhead, since they keep the whole application for local
execution, and thus they obtain the worst performance in
terms of time and energy overhead due to the limited local
computing characteristics of the devices. On the other hand,
under the RAND and FULL approaches which offload either
part (RAND) or the whole application (FULL), respectively,
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the users experience lower overhead. However, under the
FULL approach the MEC servers become overloaded, and thus
the highest average probability of failure is observed.

Furthermore, as Fig. 10a presents, the NPT approach
achieves the second best performance after our approach. This
is due to the pure benefits stemming from the optimization of
the partial offloading, while under the GOFF approach the
users offload their whole application without taking advantage
of the potential for partial offloading. This leads the MEC
servers to higher levels of congestion, with a higher probability
of failure (Fig. 10b), and as a result since the uncertainty of
the MEC servers’ successful operation increases, it is expected
that the users will execute greater amounts of data locally, and
the expected overhead (Eq. 14) increases accordingly.

On the other hand, under the NPT approach, the users
make their offloading decisions in order to simply minimize
their perceived expected overhead, without evaluating however
their perceived overhead regarding the guaranteed performance
that they would obtain if executed the offloading amount
of data locally. Consequently, the MEC servers conclude to
significantly higher probability of failure (Fig. 10b), while the
users obtain worst performance compared to our prospect-
theoretic approach, where the users’ decisions offloading
strategies are based on the tradeoff between the perceived
performance and the one that they would experience from their
local device (Fig. 10a). Finally, the SMEC prospect-theoretic
strategy results in relatively good performance in terms of
MEC servers’ average probability of failure owing to the con-
sideration of the risk-based behavior modeling, however, since
there is only one single MEC server, the users enjoy limited
computation capabilities, while the communication overhead
increases and the MEC server’s computation capability is
shared among all the users. As a result the SMEC strategy
results in relatively higher expected overhead compared to the
NPT and GOFFE.

VII. CONCLUSION

In this paper, a novel approach towards determining the
optimal data offloading of each user within a multiple MEC
servers environment is introduced, while considering users’
risk-seeking or loss-aversion behavior due to the computation
and communication uncertainty imposed by the multi-MEC
system. The users are able to offload part of their computing
tasks to the MEC servers and execute the rest locally. Each
MEC server is considered as a Common Pool of Resources,
serving the users’ computing requests, and can potentially fail
due to over-exploitation. The latter characteristic is captured
by the theory of Tragedy of Commons. In this uncertain
environment, the users demonstrate different risk-seeking data
offloading behaviors, which are captured in a holistic prospect-
theoretic utility function, following the principles of Prospect
Theory. The goal of each user is to maximize its perceived
satisfaction, as expressed by the prospect-theoretic utility
function, by offloading its computing tasks to the MEC servers.

A non-cooperative game among the users is formulated
and the corresponding Pure Nash Equilibrium [32]-[34], i.e.,
optimal data offloading, is determined, while a distributed low-
complexity algorithm that converges to the PNE is also intro-
duced. Detailed numerical results were presented highlighting
the operation and superiority of the proposed framework, while
at the same time providing useful insights about the users’ data
offloading decisions under realistic conditions and behaviors,
within such a competitive multi-MEC environment.
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Our current and future research work focuses on treating
the overall key problem of data offloading in various cloud
computing environments, such as fog computing, where a
large number of computing devices imposes scalability and
stability challenges. Finally, it should be noted that the appli-
cation of Prospect Theory can be adopted in several diverse
fields that involve decision-making under uncertainty, such as
finance, crowd-sourcing, 5G systems, etc. With reference to
the latter, spectrum fragility and resource pricing have been
recently jointly investigated [21] under a common resource
management umbrella, by utilizing the principles of Prospect
Theory, as a means of preserving resource stability. It is indeed
of high research and practical significance to investigate how
pricing mechanisms can influence the prospect-theoretic users’
behavior within a multi-access edge computing environment
in terms of offloading their data to the CPR, and in particular
treating the potential issue of CPR’s fragility associated with
the over-exploitation of this resource under uncertainty.
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