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Engineered point defects in two-dimensional (2D) materials offer an WSe, My Vx
attractive platform for solid-state devices that exploit tailored optoelectronic,
quantum emission, and resistive properties. Naturally occurring defects are also
unavoidably important contributors to material properties and performance. The === N
immense variety and complexity of possible defects make it challenging to —== - & é >
experimentally control, probe, or understand atomic-scale defect-property relation-

Optimal
Defects

h-BN MoS, Xu Vu

Machine
Learning

ships. Here, we develop an approach based on deep transfer learning, machine

learning, and first-principles calculations to rapidly predict key properties of point defects in 2D materials. We use physics-
informed featurization to generate a minimal description of defect structures and present a general picture of defects across
materials systems. We identify over one hundred promising, unexplored dopant defect structures in layered metal
chalcogenides, hexagonal nitrides, and metal halides. These defects are prime candidates for quantum emission, resistive

switching, and neuromorphic computing.

machine learning, 2D materials, defects, DFT, quantum emission, resistive switching, neuromorphic computing

t the frontier of atomic-scale engineering, there is a

major drive to construct artificial atoms in layered

materials to simultaneously exploit the advantages of
traditional cold atom systems and the quantum confinement
effect in two dimensions. It is now possible to engineer two-
dimensional (2D) materials with designer quantum properties,
but it remains a tremendous challenge to control defects at the
atomic level and manipulate local quantum states. Localized
defects in transition metal dichalcogenides (TMDs)' and
hexagonal boron nitride (h-BN)” have been shown to exhibit
single-photon emission (SPE) at cryogenic and room temper-
atures, as well as resistive switching that enables memristor-
based neuromorphic computing architectures.’™* Point defects
in 2D materials have advantages over traditional diamond color
centers’ and memristive systems, namely, high tunability'>""
and easy integration into van der Waals heterostructures'” with
other solid-state devices."*~"* Defects in 2D materials are also
extremely sensitive to local conditions, making them ideal for
quantum sensing'®'” applications in nanoscale devices and
biological systems. However, the space of possible defect
structures and host materials is so vast and complex that
experimental screening and exploration is a highly inefficient,
slow, and nondeterministic approach to address this challenge.
This presents an exciting opportunity to use computational
tools to systematically explore the defect space, design optimal
defects, and develop a more complete understanding of the
underlying physics.'*~>°
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Recently, machine learning (ML) has emerged as a useful
addition to the toolkit for designing and predicting properties
of materials.”"”> Graph-based deep learning methods that
account for lattice periodicity in crystals have shown promise
in mapping bulk crystal structures directly to target properties
when large data sets are available.”’”** Due to the smaller
number of available 2D materials compared to bulk crystals
and the resulting lack of data, there have been few studies of
machine learning applied to 2D systems.”* >’ Additional
difficulties arise when trying to apply ML to predict quantum
properties, which may be due to strong correlations between
electrons that are difficult to capture with first-principles
methods. Even greater challenges are involved in studying
defects due to the exploding combinatorics in the defect search
space, but this also provides opportunity to increase the
amount of data available by orders of magnitude and use
ML**~** to obtain insight into the many outstanding questions
about how imperfections affect material behavior.””**™** An
understanding of defects across materials systems is necessary
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Figure 1. Deep learning property prediction for 2D materials. (a) 2D structures are mapped to structure graphs. (b) Graph network models
are pretrained on large data sets of bulk crystals. Transfer learning is used to fine-tune model weights for predicting formation energies,
band-gaps, and Fermi energies of 2D materials. (c) Parity plot of DFT calculated 2D material formation energies versus formation energies
predicted with deep transfer learning for a test set of 381 materials. R” value and mean absolute error (MAE) are given. (d) Schematic of the
entire workflow. Deep transfer learning is used to predict 2D host material properties and identify promising hosts, a random forest machine
learning model is trained to predict defect structure properties, and finally ideal candidate defects are predicted.

not only for engineering artificial atoms to enable emerging
technologies, but also because defects are inextricably linked to
material properties and performance.

In this work, we synthesize recent advances in deep learning,
machine learning, materials informatics, and ab initio materials
design to systematically investigate hundreds of 2D materials
(both van der Waals and non-van-der-Waals)***’ and quickly
identify the most promising defect structures for quantum
emission and neuromorphic computing. Starting from nearly
4000 2D material structures, we use transfer learning“’42 to
leverage models trained on tens of thousands of bulk crystal
structures for deep-learning-powered predictions of 2D
material properties that are critical to identifying promising
defect host systems. After identifying the most promising 2D
material hosts, we then generate nearly ten thousand defect
structures in TMDs, h-BN, and over 150 2D wide band gap
(WBG) materials. We develop a simple, physics-informed
representation of defect structures in terms of easily accessible
chemical and structural information, requiring no DFT
calculations, and train ensemble ML models to create a
predictive mapping between these representations and
calculated defect properties. Band structures and defect

formation energies (energy difference between the pristine
host structure and the dilute defect structure) are computed
with density functional theory (DFT) for over 1000 defects
across materials in the database to train and test the ML
models. The ML approach enables prediction of fundamental
defect properties without computationally expensive first-
principles calculations. From the subset of considered defect
structures, we identify 100 promising deep center defect
structures for quantum emission and engineered dopant
defects for resistive switching. The results provide ample
opportunity for further study of promising candidates as well as
a data-driven, physical understanding of defects in 2D materials
that is needed to begin to resolve the complex microscopic
origins of defect-mediated properties.

RESULTS

2D Material Property Prediction with Deep Transfer
Learning. As the first step in designing ideal defect structures,
we apply deep learning as a framework for 2D material
property prediction and identify optimal host 2D materials.
The Computational 2D Materials Database (C2DB)*
contains nearly 4000 2D materials, and it would be highly
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desirable to leverage this data to produce powerful, general
models that can predict properties of arbitrary 2D materials.
However, even 4000 materials are not sufficient to train data
hungry deep neural networks (DNNs). To address the lack of
data on 2D materials, transfer leElrningA'l'A'2 is used for property
prediction by starting from networks trained on large data sets
of bulk crystals. Here, we make use of graph networks™* (a
generalization of graph-based neural networks) as imple-
mented in MatErials Graph Network (MEGNet)** models.
Any material, for example, h-BN and MoS, (shown in Figure
1a), can be mapped to a graph representation characterized by
the atomic numbers of the constituent elements and the spatial
distance (bond lengths) between atoms. The graph network
maps input graphs to outputs by “learning” the relationship
between material structure and some target property. We use
three MEGNet models constructed to predict formation
energy, band gap, and Fermi energy, and one that classifies
metals versus nonmetals. These models were trained on
between 10* and 10° crystal structures from the Materials
Project database*’ and as such, the model weights are already
tuned to capture material properties. Furthermore, they
contain elemental embeddings from the formation energy
model using the largest data set (133 000+ materials) to
encode chemical trends. Starting from these pretrained models,
we fine-tune the model weights by training on the much
smaller data set of 2D materials (~10?).

The transfer learning procedure (Figure 1b) enables rapid
model training and accurate property prediction for 2D
materials, simply by exploiting the learning process for the
much larger data set of bulk crystal structures. The purpose of
the 2D material property prediction models is to efficiently
identify promising host materials, without requiring DFT
calculations, whether they are present in a database or not. Not
all 2D materials are suitable for quantum emission and resistive
switching, so it is important to easily be able to screen
candidate host materials for these applications. Predicted
quantities such as the host band gap and formation energy are
also important for ML predictions of defect properties. Figure
Lc shows the parity plot for the test data of formation energy
calculated by density functional theory (DFT) versus
formation energy predicted by the graph network. The
formation energy per atom of a material is given by

pmat _ Etotal - Zi i,

f n (1)
where E,, is the total energy of a unit cell, n is the total
number of atoms in a unit cell, and #; and y; are the number
and chemical potential (referenced to the most stable bulk
unary phase) of the ith atomic species, respectively. Ef* > 0
eV/atom indicates that the material is thermodynamically
unstable or metastable. The model achieves an impressive R
score of 0.98 and a mean absolute error (MAE) of 0.06 eV/
atom on the test data (Table S1). Similar parity plots are given
in Figure S1 for band gap (Ebg) and Fermi energy (Epem)
predictions. The metal versus nonmetal classifier (Table S2)
has a test set accuracy of 0.84 and an F, score of 0.88 (0.73)
for metals (nonmetals). The receiver operating characteristic
(ROC) curve for nonmetal classification and the confusion
matrix for predictions are shown in Figure Sld,e. The model
performance statistics are given in Tables S1 and S2. The band
gap model performs more poorly (R* = 0.73) than the others,
while still achieving an MAE (0.36 eV) similar to that of the

band gap model trained on the bulk nonmetals (0.33 eV).**

This is expected because the set of 2D nonmetals comprises
only 28% (1067 of 3810 2D materials have nonzero calculated
band-gaps) of the total data set. We note that it would be
highly desirable to construct a single “multi-task” model with
multiple outputs. In this work, we were limited by the
availability of models pretrained on bulk crystal structures, and
by significant differences in the training data sets. For example,
the band gap regressor data sets for bulk and 2D crystals are
smaller than the formation energy data set, because they
include only nonmetals. These models enable rapid and
accurate prediction of 2D material properties with deep
learning, requiring no feature engineering or ML experience.
The workflow presented in this paper is summarized in Figure
1d: deep transfer learning enables efficient prediction of critical
host material properties (particularly band gap and formation
energy) to identify promising hosts, a random forest machine
learning model is trained to predict defect structure properties
that are referenced to first-principles calculations, and finally
ideal candidate defects are predicted.

Defect Database. Next, we narrow our focus to only those
2D materials that will make optimal hosts for engineered point
defects. A good host material should have a wide band gap
allowing for isolated deep defect levels and small spin—orbit
coupling (SOC).*® These conditions are satisfied by screening
for nonmagnetic materials with band-gaps greater than 2 eV
calculated with the GW approximation. This yields 158
potential WBG materials. We further screen out compounds
with heavy elements as needed to reduce the effects of SOC.
To identify promising defects in these systems, we establish
some screening criteria and specify which are amenable to a
high-throughput, machine learning-driven approach, and which
require more individual study. By analogy to the NV~ center in
diamond, a deep defect center should have a paramagnetic
qubit state with an energy splitting between two spin sublevels
that is isolated from the bulk and other bound states.*® Further
details involving the magnitude of the two-level splitting and
transitions between ground and excited states are important for
assessing whether the state is optically addressable.*>*” For
resistive memory applications, the defect state should be
reversible, long-lived, and controllable with experimentally
feasible switching voltages.”* By estimating the neutral defect
formation energy and the position of defect states relative to
the band edges, we evaluate hundreds of defects with machine
learning and treat the other criteria as engineerable
perturbations. This method has been validated by previous
studies’”** on point defects in bulk crystals.

To clarify the approach, we describe the defect state by a
simple model Hamiltonian

Hdefect = HO + Hsb + Hshift (2)

H, includes a minimal description of the electrically neutral
defect, namely the formation energy (Figure 2a) and the
position of defect levels relative to the conduction and valence
bands (Figure 2c). Hy, contains symmetry breaking terms
(crystal field splitting, spin—orbit coupling, Jahn—Teller
distortion, uniaxial strain, etc.) that split degenerate levels.
Hg, includes terms that preserve the crystal symmetry (biaxial
strain, small applied fields, doping) but tune the energy levels
and charge states of defect levels in the gap (Figure 2d). All the
host structures considered in this work have either Dy, (h-BN,
AIN), D;; (Mgl,), or C;, (GeS) point group symmetry
(neglecting large structural distortions). The point group
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Figure 2. Machine learning a description of point defects in 2D
wide band gap semiconductors. (a) Schematic of formation energy
for a substitutional defect species, M, replacing an A atom in an A—
B binary system. (b) An average of 70 point defects are considered
for 150 materials to generate nearly 10 000 defect structures. More
than 1000 band structures are computed to train machine learning
models, leading to the identification of 100 promising defects. (c)
Deep defect center located in the gap acts as a two-level system.
(d) Diagram of an engineered two-level system from a deep center
defect. Solid (dashed) up or down arrows indicate occupied
(unoccupied) spin states.

symmetry immediately gives a first-order description of the
defect energy level splitting due to the crystal field. The
process of taking a proposed deep center defect and
engineering an ideal two-level system is shown in Figure 2d.
For example, dopants or vacancies with C;, symmetry have
levels split into three irreducible representations denoted a}, a,,
and e. These levels are further split by other symmetry
breaking effects, such as SOC and external stimuli such as
applied strain, which generate a two-level system with an
optically accessible transition. Applied fields and doping will
then tune the position of the levels within the gap and the
Fermi level. Complexing the dopants with vacancies is one
particularly robust strategy to engineer isolated two-level
systems.35’47 In this work, we focus on characterizing H; to
obtain statistics, trends, and understanding of point defects
across many materials systems with machine learning and
without prohibitively expensive hybrid functional calculations.
The most promising candidates can then be further studied
with higher levels of theory to determine and design the
perturbative effects of the symmetry breaking and energy
shifting terms.' ">

With these considerations in mind, we generated over
10000 defects in the WBG materials by considering all
possible vacancies, divacancies, antisites, and common dopants
(listed in Table S3). Of these, we computed relaxed defect
geometries and band structures for over 1000 quantum point
defects (QPDs) and for 140 substitutional metal defects
(Table S4) in the atomically thin resistive memory materials
MX, (M = Mo, W; X = S, Se, Te) and h-BN. Some
representative atomistic structures are shown for defects in h-
BN in Figure S2. Figure 2b shows a schematic of the process:
the candidate defects are funneled into a subset for electronic
structure calculations, which are then used to test ML models

for defect property prediction, and finally to predict ideal
defect structures.

Machine Learning Prediction of Defect Properties.
Because detailed defect calculations at a high level of theory are
computationally expensive and necessarily low-throughput,
here we develop an ML approach to predict defect formation
energy and energy-level position without requiring any DFT
calculations. Figure 3 shows the ML workflow developed in this
paper. For any WBG material, first the host material
parameters are obtained (Figure 3a). The host material is
well-described by automatically generated structural and
chemical descriptors™ ™" and calculated electronic properties
such as the band-gaps at the Perdew—Burke—Ernzerhof
(PBE),”' Heyd—Scuseria—Ernzerhof (HSE),”> and GW
approximation™ levels of theory, which are available in the
C2DB or from transfer learning. Because of the scarcity of
defect data and the large differences in target properties and
defect structure graphs compared to that of pristine host
materials, the graph-based approach used above is not tractable
here. Instead, defects are described by structural and chemical
properties and by percent changes in properties compared to
the pristine bulk. For example, one feature may be the mean
atomic radius in the structure, 73, where the d subscript
denotes a defect structure. The defect is described both by 7,

— _ ®-F — . . S
and by A7 = <2, where 7, is the mean atomic radius in the
"o

pristine 2D material. For an Sng, substitution (Sn occupying an
Se site), A7 > 0, while A% < 0 for mean electronegativity. Using
percent differences as features, rather than absolute values,
facilitates comparing defect structures across material systems
that may have significantly different values. This is a form of
feature normalization, which is standard in machine learning
applications,”” although it is not strictly necessary for random
forest models.”* There are also features that are not averaged
over the entire supercell and only relate to local differences at
the defect site. This is a simple representation for defect
structures that is easily interpretable, well-suited as input to
ML models, and requires no first-principles calculations.

The ML approach is broken up into two models: a classifier
to predict the existence of deep center defects and a regressor
to predict defect formation energies. The existence of deep
centers is determined by computing the energy differences
between the defect level and the valence band maximum and
conduction band minimum, denoted AVB and ACB (Figure
3b), respectively. For simplicity, a defect is labeled a deep level
if ACB > kgT and AVB > kT at room temperature (kzT =~ 25
meV). Otherwise, it is a shallow level which is either
susceptible to thermal excitations or resonant with the bulk
bands. Using this kT threshold, 442 (roughly 35%) of the
computed QPDs exhibit deep centers. Figure 3c shows the
histogram of defect formation energy, E; (defined in eq S in the
Methods), values for the QPDs. These computed band
structures and E; values determine the targets for ML
prediction, but no first-principles defect calculation data are
used as input features.

Before discussing the particulars of the ML model
performance, we briefly review the mechanisms at work in
the defect that determine the energetics. Understanding the
physics of defect formation will inform the feature generation
and model training during the ML process. Figure 4a is a
schematic that shows the interactions between some dopant
atom, M, and the four atoms (blue spheres) to which it is
bonded. On the left side, there are the strain-dependent terms
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energies.

that include an elastic dipole contribution that is linear in the
strain, €, and a strain energy that goes as €*. The strain is
spontaneously induced to relax the geometry and lower the
energy. On the right side, there are terms arising from
electron—electron interactions such as Coulomb repulsion and
charge transfer that account for the breaking and reforming of
bonds, which raises the energy. This simple picture suggests
that a minimal description of defects is realized by accounting
for local relaxation (strain) and electronegativity (electro-
statics).55

By constructing feature vectors for defects that encode
information about local relaxation and electronic interactions,
the ML models are able to classify deep centers and predict E.
In both cases we use random forest (RF) ensemble models for
the benefits in interpretability, performance, and robustness to
overfitting.”* We split 90% of the data into a training set,
making use of bootstrapping®® to generate an out-of-bag
(OOB) score for validation, and 10% of the data is held as a
test set. The final trained RF model for E; prediction has an
OOB score of 0.75 and an R* of 0.74 on the test set (Figure
4b). The MAE on the test set is 0.67 eV, which is small

considering that the range of computed E; values is from 0 to 8
eV. We use the permutation feature importance (Figure 4c) to
rigorously inspect how the model is working.”* Looking at only
the top 10 most important features, there are descriptors
clearly related to local relaxation that encode how the defect
will induce compression or tension in the lattice, for example,
the change in atomic weight of the defect compared to the host
atom and the change in van der Waals radius. On the other
hand, the change in mean number of p valence electrons and
the change in electronegativity relate to electrostatics and
bonding. Finally, among the most important features, the
chemical potential of the defect species (available from the
Materials Project database)® is directly related to E.

The model performance is even better for the deep center
classifier, with F| = 0.92 on the test set for classifying deep level
defects (Figure S3). The most important features are more
directly related to band structure, with the most important
being the lowest unoccupied molecular orbital (LUMO)
energy. Other features related to changes in electronegativity
and column position (electron count) of constituent elements
are also weighted heavily.
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sandwiched between two metallic electrodes. The Mg substitutional defect controls the local resistivity. (b) Calculated distances, z, between
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MoS, (Aug). The Au dopant atom is circled in gold. (d) Calculated binding energies for dopants in MoS, as a function of the dopant

chemical potential. Colors correspond to magnitude of maximum g, value.

F https://dx.doi.org/10.1021/acsnano.0c05267

ACS Nano XXXX, XXX, XXX=XXX


https://pubs.acs.org/doi/10.1021/acsnano.0c05267?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.0c05267?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.0c05267?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.0c05267?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.0c05267?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.0c05267?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.0c05267?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.0c05267?fig=fig5&ref=pdf
www.acsnano.org?ref=pdf
https://dx.doi.org/10.1021/acsnano.0c05267?ref=pdf

Importantly, the linear Pearson correlations of all these
individual features with E; and the defect energy level position
is quite low (<0.3); in other words, although our physical
intuition guides the feature engineering process, it is not
possible to construct a simple model to 5Eredict defect
properties. Linear models such as Lasso”” and Ridge
regression”” fail at predicting E; whereas the nonlinear RF
performs much better. Despite the complex, nonlinear nature
of the models, we can extract mechanistic insight by
considering the permutation feature importance and the
mean and median values of the most important features
when defects are grouped by formation energy or energy level
position. If we classify defects as either high or low formation
energy based on whether E; is greater than or less than the
median formation energy (2.44 €V), it is possible to quantify
the contributions from stress-induced and electronic inter-
actions described above. We find that high energy defects have,
on average, 23% larger changes in electronegativity compared
to low energy defects. High energy defects also have a 7%
larger median chemical similarity value (eq 7 in the Methods)
compared to low energy defects, indicating that high energy
defect structures are associated with larger distortions.
Likewise, deep center defects have a median change in the
atomic number that is 39% higher than shallow defect states.
The interplay between local relaxation and electronic
interactions that determines defect energetics is not trivial,
but the RF model is able to capture the defect physics we
aimed to describe. The model results support our simple
picture that structural and electronic distortions induce deep
level defects,”>>”*° but large local distortions also raise the
formation energy.

Metallic Dopants in Atomically Thin Resistive
Memory Materials. Next, we will discuss a subset of
engineered defects in TMDs and h-BN that are of importance
for their applications in nonvolatile resistance switching
(NVRS). These so-called “atomristors” comprise a semi-
conducting monolayer sandwiched between two electrodes. A
schematic of this device geometry is shown in Figure Sa. A
voltage is applied across the electrodes to induce a metal atom,
M, from the electrode to hop into a naturally occurring
vacancy in the semiconductor, for example, a sulfur vacancy in
MoS,, forming a substitution Mg. Reversing the voltage causes
the vacancy to form again. This gives a voltage-controlled local
resistivity that forms a kind of memory in an atomically thin
device. The defect geometry can be probed via scanning
tunneling microscopy (STM) to measure the out-of-plane
distance zry_y between the defect and the plane of the
transition metal (TM) atom in the TMD or the plane in h-BN.
We define Az = (zry_ym — 2rm—x)/Zrv—x 2s the change in out-
of-plane distance relative to the equilibrium distance between
the TM plane and the chalcogen plane; this value represents
the local strain and bond breaking/formation, although it is not
perfectly correlated with the total binding energy. Because the
dopants considered here always preserve the point group
symmetry of the material (there is no in-plane displacement of
the dopant), and because the out-of-plane displacement can be
probed with STM,”" we have considered Az as the primary
indicator of local strain. With the M atom electronegativity and
atomic orbitals, we know from our ML results above that this
information can be used to effectively predict the defect
properties. In particular, we will focus on neutral and acceptor
defects (chalcogen vacancies) with a metallic cation dopant,
where electrically neutral substitutions are of interest.

For this subset of defects, we calculate Az for every
combination of host material and metallic dopant (listed in
Table S4). Among the dopants we also consider C, Si, and Ge,
which exist in few-layer semimetallic phases that could be used
as electrodes in a completely van der Waals resistive device.
The height profiles for all dopants in MoS, are given in Figure
Sb, where the dashed red line indicates the equilibrium z
between the Mo and S planes. Az increases linearly with the
increasing atomic radius of the dopant (Figure S4). We plot
cross sections of the calculated charge density at varying
distances from the Mo plane to visualize the defect height
profile, as shown for Aug in MoS, in Figure Sc. As z increases,
charge density localized on the Au dopant (highlighted with a
gold circle in Figure Sc) remains visible, while the charge
density localized on neighboring S atoms decreases.

We define the defect binding energy Ezz of a metallic
dopant, M, as

Egp(ty) = Erora — Ev — Hy (©)

where E,, is the total energy of the supercell with the dopant,
Ey is the energy of the supercell with the vacancy, and py is the
chemical potential of the dopant. In experiments, it is difficult
to control the dopant chemical potential, so in Figure 5d we
plot Egp(py) for each defect in the MoS, for the range from
py = 0 to fiyy = Hye, Where pi,¢ is the bulk reference value of the
most stable unary phase. Ezp < 0 indicates that the dopant
defect will occur spontaneously in the presence of the vacancy.
Egg(py) corresponds to the switching voltage (neglecting
kinetic barriers), and the plot in Figure Sd shows that by
varying the M atom species, a wide range of switching voltages
and dopant stabilities can be achieved to serve diverse
switching applications from information storage to neuro-
morphic computing. The binding energy is correlated with the
dopant species’ atomic radius (or equivalently, Az), as shown
in Figure SSa, where the R” value is 0.51. However, the dopant
atomic radius does not completely represent bond breaking
and formation, so that the binding energy cannot be directly
inferred from the dopant atomic radius. We note that the
calculated binding energies for MoS, with Au and Ag dopants
agree well with experimental measurements” of ~1 V switching
voltages.

Optimal Defect Candidates. To summarize the results of
our analysis, we introduce a simple “defect score” metric that
succinctly represents a candidate defect’s fitness as a potential
deep center for quantum emission. The defect score is defined
as

S= i[E{fgW + (lsd + lst) - A- Ef)
N 27 2 4)
where EEgW, sy Sy A, and E¢ are the GW band gap, dynamic
stability, thermodynamic stability, maximum atomic number in
the host (corresponding to SOC), and defect formation
energy, respectively. N is an overall normalization factor.
Higher scores reflect larger band-gaps, greater stability, smaller
defect formation energies, and smaller SOC (smaller maximum
atomic number). Although there are not many examples of
experimentally verified WBG material quantum emitters, we
have compared the average defect scores for three materials (h-
BN, h-AIN, and GaN) that have been shown to exhibit
quantum emission in either monolayer or crystalline form
(Figure S6). We find that the average defect score decreases
with reported inverse emission lifetime (z7'), that is, a higher
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Figure 6. Top identified defect candidates. (a) Ten substitutional defects in h-BN, AIN, GeS, and Mgl, with the highest defect scores. (b)
Plot of defect scores for top 100 defects. The top 10 are highlighted in the inset and color-coded to their corresponding host materials. (c)
Highest five and lowest five defects for resistive switching by maximum binding energy. The light purple shaded region indicates high
stability defects, while the light yellow shaded region indicates defects with a low switching voltage.

average defect score corresponds to higher emission lifetime.
This could be due to materials with larger band-gaps and low
E¢ deep center defects (higher average defect score) having
longer-lived two-level defect states.”

The top 10 dopant defects are shown in Figure 6a. Defects
in h-BN score highly, as expected because of its ideal WBG
material properties, but we also find optimal defect candidates
in AIN, GeS, and Mgl, (Table S5). Notably, room temperature
quantum emission was recently shown in bulk AIN.®* The top
100 defect scores are plotted in Figure 6b, with the top 10
highlighted in the inset. The scores (Table S6) appear Pareto
distributed, emphasizing the challenge in identifying promising
defect candidates compared to the relatively more abundant,
less promising defects. These dopants can be complexed with
vacancies to engineer symmetry breaking and construct two-
level systems.””"” Other than h-BN, these systems are
relatively or completely unexplored for quantum emission
applications and are prime candidates for further study.

Finally, we highlight the optimal defect candidates for
resistive switching. Figure 6¢ shows the highest five and lowest
five defects by maximum binding energy, Egp(pp = fhrer) (listed
in Table S7). The highest binding energy defects are of interest
in memory applications for their assumed stability, while the
lower binding energy defects require small switching voltages
useful for neuromorphic architectures. We have also listed the
five defect structures with binding energies in an intermediary
regime (between 0.60 and 0.49 eV), such that they strike a

balance between stability and switching voltage. In general, we
find that My defects in TMDs with larger Ar differences in
atomic radii between dopant atoms, M, and chalcogen atoms,
X, have larger binding energies (Figure SSa). TMDs with
smaller band-gaps and therefore weaker bonds (larger in-plane
lattice constants) have lower binding energies for metallic
dopants (Figure SSb). This suggests that the unexplored MTe,
(M = Mo, W) systems are optimal low voltage resistive
switching materials, similar to their bulk counterparts.”* We
also find a number of defects with high values of Ey,/Egg
(Figure S7), which may form easily and simultaneously offer
high ON/OFF current ratios due to the large band gap.’
Relatively few experiments’ ' have been done on 2D
monolayer resistive switching, hence our results here provide
ample opportunity to explore more optimal host/dopant
architectures that span a large range of accessible switching
voltages.

CONCLUSIONS

In this work, we have systematically investigated and identified
optimal point defects in 2D materials using a combination of
deep transfer learning, machine learning, and first-principles
calculations. We have leveraged graph networks trained on tens
of thousands of bulk crystal structures to enable deep learning
for predicting formation energies, Fermi energies, and band-
gaps in 2D materials. Nearly 10000 defect structures were
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constructed from over 150 wide band gap semiconductors and
layered metal chalcogenides. Band structures and formation
energies were calculated for over 1000 of these defects and
used to test ensemble machine learning models based on
physics-informed featurization. The models used easily
accessible descriptors, requiring no electronic structure
calculations, to encode information about local relaxation
and electronic interactions that captures defect physics. The
resulting models were able to predict key defect properties
including formation energies and the position of defect levels
relative to the valence and conduction bands. We identified the
100 most promising deep center defects for quantum emission
applications and 10 optimal defects for nonvolatile resistive
switching in atomically thin memristor devices. The systematic,
machine learning-enabled exploration of 2D materials and
defect structures presented here provides a holistic and simple
physical picture of defects that complements the many detailed
studies of individual defects in specific materials. By identifying
the most promising defect structures and revealing the
microscopic strain and electronic mechanisms that govern
their behavior, we accelerate the realization of designer
artificial atoms on an atomic scaffold for quantum and
neuromorphic technologies.

METHODS

Defect Database and First-Principles Calculations. A total of
3810 materials with their corresponding dynamic and thermodynamic
stabilities, formation energies, Fermi energies, and band-gaps were
obtained from the Computational 2D Materials Database.** Of those,
158 candidate WBGSC 2D materials were identified by screening for
nonmagnetic materials with computed GW band-gaps greater than 2
eV. This yielded 1 unary, 130 binary, and 27 ternary compounds. All
DFT calculations were performed with the Vienna Ab-Initio
Slmulatlon Package, projector augmented wave (PAW) pseudopo-
tentials,’° and the Perdew—Burke—Ernzerhof (PBE)®' exchange-
correlation functional. Host material properties were computed
starting from structures in the C2DB and then relaxing them until
forces were converged to below 1072 eV/A with a 10 X 10 X 1 T-
centered k-point grid and a 520 eV plane wave basis cutoff. For total
energy calculations, the k-point grid density was increased to 18 X 18
X 1 and the total energy was converged to 107° eV. Defect structures
were generated with the pymatgen code,’” considering all possible
vacancies, divacancies, antisites, and common semiconductor dopants
given in Table S3. All defect structures were modeled as S X S X 1
supercells to minimize interactions between periodic images of
defects.*”*® Plane wave basis cutoffs were taken to be the largest
cutoff of the pseudopotentials for the constituent elements. With the
lattice parameters fixed, ionic positions were relaxed usinga 3 X 3 X 1
k-point grid until forces were converged to below 1072 eV/A. For
supercell band structure calculations, 1280 defect structure calcu-
lations completed with total energies converged to 10™* eV. Also, 140
additional point defect structures for resistive switching were
calculated by considering the metallic dopants listed in Table S4
and the host materials MX, (M = Mo, W; X = S, Se, Te) and h-BN.
The structure graphs and defect structures are available on figshare at
https://figshare.com/collections/Defect_design/4946874.

Neutral defect formation energies®" 37 were calculated as

nil;
Z ©)

where E,, is the total energy of the defect supercell, E, is the total
energy of the corresponding pristine monolayer, and the sum is over
all atoms that are added (n; > 0) or removed (n; < 0), with »; and p;
being the number and chemical potential of species i, respectively.
Deep Learning. Pretrained models were obtained from
MEGNet.** MEGNet models are built using the keras® API and
TensorFlow’® backend. All materials in the C2DB were split into an

Ef = By — Epuic —

80:10:10 training, validation, test set. For the band gap regressor, the
total data set was reduced to the 1078 nonmetals. Models were
trained on 2D materials data until no further improvement was seen
in the training and validation losses. Structure graphs were generated
using the graph convertors in the pretrained MEGNet models. The
models were trained on Nvidia Tesla P100 GPUs. The formation
energy neural network model architecture is shown as an example in
Figure Sla. The trained graph network models and an example
Jupyter notebook are available on GitHub at https://github.com/
ncfrey/defect-design.
Machine Learnlng Machine learning models were implemented
with scikit-learn,”" and some descrlptors (as defined in Meredig et
al®) were generated with matminer®® and automatminer.>® Defect
descriptors were constructed as percent differences between the
corresponding descriptor for the bulk structure and the unrelaxed
defect structure,

f:iefect f bulk
f=
o (6)

where fiee and fyyy are values of a feature, f, for defect and bulk
structures, respectively. f may be any available feature, such as the
average electronegativity of atoms in the structure. No calculations are
required to generate the descriptors; only the chemical and structural
information on the host and defect structures is needed. We introduce
the “chemical similarity fingerprint,” d, defined as

d = Wy = Yegecdl (7)

where v = (w;, w,, .., w,) is a vector of all chemical descriptors, w, for
a particular monolayer or one of its defect structures. This metric
succinctly represents the similarity of a defect structure to its pristine
host and the corresponding magnitude of structural distortion that
may be induced in the defect structure. For example, Mgl with a Br;
defect has d ~ 1 (indicating a small distortion), whereas GaN with a
Biy defect has d ~ 50 (indicating a large distortion). Machine learning
model validation statistics are presented in Table S8.
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