MIPAC: Dynamic Input-Aware Accuracy Control for Dynamic
Auto-Tuning of Iterative Approximate Computing

Taylor Kemp*
tkemp@wisc.edu
University of Wisconsin-Madison

ABSTRACT

For many applications that exhibit strong error resilience, such as
machine learning and signal processing, energy efficiency and per-
formance can be dramatically improved by allowing for slight errors
in intermediate computations. Iterative methods (IMs), wherein the
solution is improved over multiple executions of an approxima-
tion algorithm, allow for energy-quality trade-off at run-time by
adjusting the number of iterations (NOI). However, in prior IM cir-
cuits, NOI adjustment has been made based on a pre-characterized
NOI-quality mapping, which is input-agnostic thus results in an un-
desirable large variation in output quality. In this paper, we propose
a novel design framework that incorporates a lightweight quality
controller that makes input-dependent predictions on the output
quality and determines the optimal NOI at run-time. The proposed
quality controller is composed of accurate yet low-overhead NOI
predictors, generated by a novel logic reduction technique. We eval-
uate the proposed design framework on several IM circuits and
demonstrate significant improvements in energy-quality perfor-
mance.

KEYWORDS

Approximate computing, Quality control, Logic synthesis

ACM Reference Format:

Taylor Kemp, Yao Yao, and Younghyun Kim. 2021. MIPAC: Dynamic Input-
Aware Accuracy Control for Dynamic Auto-Tuning of Iterative Approximate
Computing. In 26th Asia and South Pacific Design Automation Conference
(ASPDAC °21), January 18-21, 2021, Tokyo, Japan. ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3394885.3431551

1 INTRODUCTION

Emerging compute-heavy applications, such as deep learning, data
mining, and multimedia processing, are highly resilient to errors
and produce similar (often, the same) results even if the intermediate
computations are not 100% exact. For such applications, approximate
computing exploits this error resilience to greatly improve perfor-
mance and energy efficiency by allowing for small errors [8, 14].
Iterative methods (IMs) are a common approximation technique that

*Currently at Facebook (taylorkemp@fb.com).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASPDAC 21, January 18-21, 2021, Tokyo, Japan

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-7999-1/21/01...$15.00
https://doi.org/10.1145/3394885.3431551

Yao Yao
yyao69@wisc.edu
University of Wisconsin-Madison

248

Younghyun Kim
younghyun kim@wisc.edu
University of Wisconsin-Madison

is widely adopted in many applications for large linear/non-linear
systems of equations and combinatorial optimization problems [18].
IMs improve approximate solutions from an initial guess over mul-
tiple iterations at a much lower computational effort as compared
to obtaining the exact solution, thus the accuracy of the approxi-
mation is dependent on the number of iterations (NOI): the more
iterations, the more accurate the approximate result.

Including iterative logarithmic multipliers [1, 2] and Taylor
approximation-based arithmetic logic units (ALUs) [3, 6, 15, 17],
a variety of IM circuits have been proposed recently. While these
IM circuits enable dynamic energy-accuracy trade-off, they also
pose the new challenge of determining optimal NOI In conven-
tional IM circuit design, NOI is determined based on the average- or
worst-case energy-accuracy trade-off characterized at design-time
by offline analysis or profiling. The accuracy of the approximation,
however, is not constant and largely input-dependent [13]. As a
result, the offline characterization-based NOI control is inevitably
input-agnostic, resulting in a wide variation of approximation error
(even if the target average error is satisfied). If a worst-case error
must be met, the wide-varying error must be over-compensated by
extra iterations, thus more energy consumption.

To address this challenge, we propose dynamic auto-tuning of
IM circuits using a novel lightweight quality predictor. The quality
prediction aims to maintain computation quality by determining
the level of approximation from the input, without comparing ap-
proximate results to exact results, which incurs extra performance
and energy overheads. Conventional quality prediction methods
are mainly detect-and-correct, where if an approximate module
generates a large error, the exact module counterpart corrects the
error by re-executing the corresponding portion of the code. They
are generally designed to work at the algorithm or application
level, which can afford multiple cycles for quality prediction and
extra overhead for re-execution. However, for low-power IM cir-
cuits, which complete within a few cycles, such high-level quality
prediction is prohibitively time- and energy-consuming. For such
circuits, predictors should make actionable predictions to determine
whether the approximation should terminate every cycle they are
run.

Designing lightweight quality predictors for IM circuits offers
several challenges and objectives. First, the prediction should start
at the same time with the target IM circuit and must be completed
before its earliest possible termination, which can be as short as a
single cycle. Second, the predictor should generate an actionable
output, i.e., optimal NOI, that can be directly used to control the
target IM circuit, rather than just an estimated accuracy that incurs
extra time and power overheads to control the IM circuit. Finally,
energy overhead for accuracy prediction should be minimal to not
offset energy savings. These requirements, unfortunately, render

ASPDAC °21, January 18-21, 2021, Tokyo, Japan

Mean = 8.3% 1 | Mean = 3.1% ; Mean = 1.2%

60 i i i i Vo
S i i : i) :
« 40 H | | ! o

2 ! Max = 25% ! ! Max = 12.5% 1! Max =6.3%
£ 20 E i : : By
0 H : H) T

0 10 20 300 10 20 300 10 20 30
Relative error (%) Relative error (%) Relative error (%)
(a) NOI =2 (@) NOI=3 (a) NOI =4

Figure 1: Error distribution of Taylor approximation-based
division showing wide variation in output quality depend-
ing on the input.

conventional high-level predictors requiring multiple iterations
of complex operations (e.g., multiply-and-add) unsuitable for the
quality control of IM circuits.

In this paper, we aim to address these challenges to provide a
general auto-tuning quality controller for iterative approximate
computing. The following is a summary of the novel contributions
of this work:

e We propose the design of a lightweight quality controller
which determines the optimal NOI for a given input to
achieve optimal energy-accuracy trade-off providing fine-
grained dynamic accuracy configuration.

e We present an efficient design flow including a novel approx-
imate logic minimization technique to generate accuracy
quality predictors under strict power constraint.

o We apply the proposed method to multiple IM circuits and
demonstrate improvement in energy efficiency and accu-
racy distribution in comparison to decision tree (DT)-based
quality control.

2 BACKGROUND

In this section, we introduce prior work on approximate computing
methods and quality prediction for approximate computing.

2.1 Approximate Circuits

Various approximate circuits have been introduced to improve the
performance and energy efficiency of emerging error-resilient ap-
plications [9, 12]. Among others, approximate ALUs have received
much attention since they are the key building blocks for imple-
menting energy-efficient computing systems. Early approximate
ALUgs, such as [4, 5], aim to reduce power consumption by simpli-
fying hardware at the circuit or logic level. In these approximate
circuits, however, the level of approximation is fixed by hardware
design at design-time, which makes run-time energy-quality recon-
figuration impossible. Because the actual accuracy is not constant
but heavily input-dependent, and also because the accuracy level
required by the application varies over time, the fixed-configuration
approximate circuits often fail to deliver the optimal energy-quality
trade-off the application needs. Recent approximate circuits attempt
to address this limitation by adopting IMs [2, 3, 6, 17]. These circuits
adjust the level of approximation by adapting NOI at run-time based
on off-line quality profiling. Even these solutions, however, do not
consider the underlying issue that quality is input-dependent and
rely solely on off-line characterization between NOI and average-
or worst-case error.

249

Taylor Kemp, Yao Yao, and Younghyun Kim

Application ‘ Application
Target accuracy & Target accuracy Result
v () e e ik, ettt
&
Py : @ MIPAC-
G NG %é?’ ’9@‘ Lightweight quality || enabled
/@b controller (MIPAC) AC
Input-agnostic NOI | | Result A T l Input-aware NOI

‘ 0 IM circuit ‘ ‘ G IM circuit
! —
Input

Input
(a) Conventional (b) MIPAC (Proposed)

Figure 2: Comparison of NOI determination in conventional
and proposed IM-based approximations.

2.2 Run-time Quality Prediction

Quality prediction is crucial for an approximate computing system
to meet an energy-quality target in the presence of input-dependent
quality variation. Rumba [7] is one of the first attempts at predicting
and controlling the quality by detecting quality violations and
correcting them by re-computing using the exact counterpart. They
consider application-specific approximate computing, such as k-
means clustering, JPEG, etc. and use high-level predictors such
as linear models and DTs. Other approaches focus on improving
prediction accuracy through the implementation of neural network
(NN) and ensemble models, which are computationally heavier [10,
16, 18]. These quality predictors are computationally complex and
take multiple cycles to generate prediction output. They are suitable
to the algorithm- and application-level approximate computing
where the time and energy overheads of quality prediction are
relatively negligible. However, the overheads are prohibitively high
for the quality prediction of IM circuits that should be completed
within one to a few cycles.

3 INPUT DEPENDENCY OF APPROXIMATION
ERROR

We first present an example of the wide variation of IM output qual-
ity to motivate the need for proper quality prediction and control.
Figure 1 shows the distribution of relative error for an approximate
divider based on iterative Taylor approximation [3] for NOI of 2, 3,
and 4. While it is evident that the overall accuracy improves as NOI
increases, significant accuracy variation is observed for all NOIs,
and many inputs are not accurately characterized by the mean er-
ror. The mean relative error (MRE) when NOI=2 is 8.3%, and the
worse-case error (WCE) is as high as 25%. When NOI increases to
4, the MRE achieves 1.2%, and the WCE reduces to 6.3%. Both the
MRE and WCE drop gradually as NOI increases, but a huge gap
consistently exists between the MRE and WCE, which is indicative
of the wide variation in the output quality. Therefore, if NOI is set
to a fixed number irrespective of the input, the application will
suffer from a large variation in output quality.

4 PROPOSED APPROACH

As a solution to the above-mentioned challenge, we present Mini-
mum Iteration Predictive Accuracy Control (MIPAC), a lightweight
quality controller design for low-power IM circuits and a design

MIPAC: Dynamic Input-Aware Accuracy Control for Dynamic Auto-Tuning of Iterative Approximate Computing

Input

0 IM circuit

—
=

Lightweight quality
controller (MIPAC)

-—>
>

NOI

Target
accuracy (a)

Figure 3: Hardware architecture of MIPAC-enabled IM cir-
cuit including the proposed lightweight quality controller.

framework for generating the controller. MIPAC addresses the issue
of input-dependent error magnitude by moving the functional map-
ping of accuracy to NOI closer to the IM circuit. In conventional sys-
tems (Figure 2(a)), the application (to be more precise, the compiler)
is responsible for determining the NOI for each IM circuit operation
that achieves the desired accuracy. Because the actual input values
are not available at compile-time, it determines the NOI solely based
on the pre-characterized accuracy-to-NOI mappings of the IM cir-
cuit. However, the accuracy in the pre-characterized mappings is
usually the average- or worst-case error that is not input-aware,
and thus it results in a significant output quality variation as we
discussed in Section 3. On the other hand, in the MIPAC-based
system (Figure 2(b)), the accuracy-to-NOI mapping is performed
by the IM circuit itself with the aid of the proposed lightweight
quality controller. Because the inputs are directly visible at run-
time, the optimal NOI can be derived from the input and/or some
input-dependent signals from the IM circuit. Since the quality con-
troller is more tightly integrated as hardware with the IM circuit, it
provides the benefits of i) improved stability of the output quality
due to input-aware accuracy-to-NOI mapping, and ii) decoupling
of the application and compiler from a specific IM circuit, without
any hardware modification to the circuit.

As discussed in Section 1, the quality prediction should be made
within a single cycle. This is to prevent the IM circuit, which may
produce an acceptable result after the first iteration, from running
more than needed. Therefore, we generate each predictor as simple
combinational logic, which, unlike prior quality predictors that
return the outcome after many cycles of computation, completes
within the first cycle of execution. Figure 3 shows the hardware
architecture of MIPAC integrated with an IM circuit. The quality
controller incorporates n quality predictors, which of each deter-
mines the minimum NOI that achieves a specific accuracy. Based
on the target accuracy «, the output of the quality predictor that
corresponds to the target accuracy is selected. For example, Py, is
the predictor that produces the minimum NOI for a given input
that achieves the accuracy «;. The prediction is made based on the
input and internal signals from the target IM circuit.

We adopt combinational logic-based neural networks (NNs) for
solving this highly nonlinear yet error-tolerable quality prediction
problem. The quality predictor is implemented by training a NN,
generating a look-up table (LUT) from the NN, and realizing the

250

ASPDAC 21, January 18-21, 2021, Tokyo, Japan

NOI characterization ‘

For each @;, repeat:

| Model training |

| NN logic conversion
I Power capping:

—— TR ;
: Logic r ?ducﬁon | Reduce power until | |
| v it becomes < & |
) T n i
| — o — N 1
| == Total power constraint met? ° X + - !
! — _ Pick predictor with |
! Yes highest power \

Return generated predictor set ‘

Figure 4: Overall design flow for optimizing MIPAC under
accuracy requirements and power constraint.

LUT as combinational logic after applying approximate logic mini-
mization. The combinational logic-based NN implementation offers
the power of nonlinear decision making and the complexity that
NN offer, without the need for ALUs and other complex units
commonly associated with NN. Our method allows us to learn the
weighted importance of features and remove circuit signals that
have a low correlation with predicted NOI, hence, vastly reducing
logic complexity. We describe the design and implementation of
MIPAC in more detail in the next section.

5 DESIGN AND IMPLEMENTATION

In this section, we first describe the overview of MIPAC, followed
by the design of its key component, the quality predictor. Finally,
we present a novel logic minimization scheme to efficiently realize
the quality predictor.

5.1 Design Flow

The design of MIPAC requires a joint optimization over multiple
design parameters, such as the number of quality predictors to be
included in the controller and the accuracy-power trade-off of each
predictor among others. Due to the large design space, a systematic
design methodology is needed to efficiently derive an accurate
yet low-overhead controller. The predictors for accurate quality
control incur extra power overhead, and the more accurate, the
more power consuming the predictors. Therefore, we present a
design framework to maximize the prediction accuracy of MIPAC
under minimal power overhead constraints.

NOI characterization. Figure 4 illustrates the offline process to
design the MIPAC controller. A set of MREs, ay, a2, . .., ap, that
the controller needs to support and a power constraint f that the
controller can afford are specified by the designer. In order to satisfy
the MRE targets ;, we first determine how long to run each input to
achieve them. We do this by annotating the minimum NOI needed
to satisfy a variable WCE y; and pick y; such that the MRE becomes
a;. Once we have determined a suitable y; for each target MRE, we
generate a set of annotated samples for each predictor to train on,
using individual signals as input features.

ASPDAC °21, January 18-21, 2021, Tokyo, Japan

ONOI=1
ONOI = 2
ONOI =3

Input and
internal
signals

128/RelLU
64/ReLU
16/ReLU

O NOI = MAX

Hadamard Identity
product ' activation function
In Out In Out In Out
000..000 0 000..000 X 000..000 1
000..001 X 000..001 1 000..001 0
000..010 1 000..010 000..010 0
111..111 1 111..111 0 111..111 X

LUT for NOI =1 LUT for NOI = 2

)

NOI for accuracy a;
NOI for accuracy a2
NOI for accuracy a3

LUT for NOI = MAX

Input and

internal — NOI

signals

NOI for accuracy @y

Figure 5: NN model is converted into a set of LUTs for each
NOI setting. These LUTs are then further reduced into com-
binational logic.

Model training. Next, an NN is trained for each y;. The NN is
trained using squared hinge loss under Adam Optimizer with a
learning rate of 4e-4. The batch size was set to 50 and the model
was trained for 50 epochs. After model training, we convert the NN
into a set of LUTs, one for each NOI setting. Each LUT determines
a mapping from the selected IM circuit signals (NN input) to a
particular NOI setting. If for a given key the LUT output is 1, this
indicates the IM should run for the NOI corresponding to that LUT.
In the event that multiple LUTs have an output of 1 for a given
input, the NOI will default to the highest one. If none of the LUTs
have a corresponding output of one, the predictor will default to the
average NOI rounded up, determined when generating the training
data. In order to determine the output mapping, the majority vote
of all inputs that map to a given key is used. Figure 5 illustrates the
process.

NN logic conversion. The number of possible keys is very large
for even a simple IM circuit. Therefore, we reduce the number of
possible input keys in the LUTs by merging keys that are likely to
map to similar outputs. During training, features that have higher
importance when they go high will have larger corresponding
weights in the Hadamard product. If the weight is small, prun-
ing out that particular input will result in negligible changes to
the overall model output. We pick and prune the n inputs with
smallest associated importance iteratively increasing the n until
the accuracy is maximized. As there are much fewer samples than
possible key combinations, the output is undefined (don’t-cares) for
the majority of the key combinations, and low pruning levels will
result in a high miss rate for the LUT. As we prune out unimportant
features, however, we will observe fewer misses and as a result an
improvement in the LUTs prediction accuracy, leading to overall
accuracy improvements. We continue to prune out features until
the maximum accuracy is obtained. Further pruning will begin to
decrease accuracy as LUT inputs begin to be mislabeled.

251

Taylor Kemp, Yao Yao, and Younghyun Kim

In_ Out Importance In__ Out
AB 0 P AB O
00 0 o »OOL
01 1 10 01 x_
10 1 20 10 1
11 1 5 11 x

0=AlB » 0=4

Figure 6: Example
lem.

approximate logic minimization prob-

Power capping. After all predictors are converted to hardware
LUTs, the controller is synthesized and the power consumption
is checked against the constraint §. If the constraint is violated,
beginning with the predictor with the highest power consumption,
approximate onset logic minimization is performed to reduce the
power to below the average. The importance of correctly specifying
each input is determined based on the average improvement in error
by increasing the NOI prediction to the average NOL In this way,
input keys in the LUT that will have larger error improvements
should be set to zero first during approximate logic minimization.
If fully pruning all bits is required to meet the f3, the predictor is
replaced by the fastest fixed NOI predictor satisfying the average
error constraint o;. Approximate onset logic reduction is explained
further in Section 5.2.

5.2 Power Capping through Approximate
Onset Logic Minimization

In this section, we further discuss power capping to ensure that
the power overhead of the quality controller meets the power con-
straint f. In order to reduce power consumption beyond what can
be attainable by conventional logic minimization, we leverage that
the logic minimization of quality predictors does not have to ex-
actly conserve the functional mapping since the consequence of the
errors is the occasional misprediction of quality, thus non-optimal
NOIL Therefore, by a novel approximate onset logic minimization
algorithm, we trade quality prediction accuracy for power reduc-
tion.

Consider a partially specified LUT in which each input-output
mapping has corresponding importance. The goal is to produce
a minimum sum-of-products (SOP) of the onset where we can
tolerate some € threshold of error over the error-weighted onset.
Error is incurred by setting the output for a corresponding input in
the initial LUT from 1 to 0. Inputs with larger importance should
be set to 0 with lower priority than those with less. Additionally,
we do not consider the don’t-care set as unspecified inputs are
assumed to map to 0. This is because LUT misses in the predictor
may correspond to other NOI predictions. At the algorithm level,
we specify some overall tolerance € which we may violate which
determines the aggressiveness of approximation. Setting an output
from logic one to zero introduces a corresponding error annotated
during LUT construction.

For example, Figure 6 maps a set of 2-bit input signals A and B to
a single bit output. We determine a corresponding importance for
correctly specifying each row in the table and want to produce a
minimum SOP for the onset. If we are unable to incorrectly specify
any rows the solution will be A|B. However, if we are allowed to

MIPAC: Dynamic Input-Aware Accuracy Control for Dynamic Auto-Tuning of Iterative Approximate Computing

Algorithm 1 Generate Onset Primes

procedure GENERATEONSETPRIMES(onset)
mergings = {}
primes = {}
for (y,dc’) € onset s.t. dist(y odc’,x odc) = 1 do
add (x,dc o =(x ® y)) to mergings
end for
if did not add x to a merging then
add (x,dc) to primes
end if
return GenerateOnsetPrimes(mergings) U primes
end procedure

violate some of the outputs in the onset, we can find a simpler
solution. For example, if we can violate at most 15 total importance,
the most we can violate is rows two (AB = 01) and four (AB = 11).In
this case, violating only row two provides the simplest approximate
solution of A. It is worth mentioning here that in general optimal
solutions will consist solely of prime cubes.

The proposed approximate logic minimization for quality predic-
tors can be formulated as a simple integer linear problem (ILP). For
the ILP construction, we consider an e-implicant to be any input
x; mapping to logic 1 with associated error e. A cube is defined to
be a pair x,dc € {0,1}" s.t. {y : y odc = x o dc, f(y) = 0} is empty.
We define a prime p to be a cube that is maximal, i.e., there is no
cube that contains p as a strict subset.

In order to generate the set of all primes based on the onset we
consider Algorithm 1 which performs repeated distance one merges
within the onset.

The ILP formulation for finding a minimum SOP for e-approximate
logic minimization is as follows:

minimize Z Cipi

1
subject to pi 2 1-y;Vj

i:xj€cube(p;)

ejyj <€

J
pi-yj € {0,1}

where p; is 1if we include cube(p;), the i’ h prime cube for the onset,
and 0 otherwise; ¢; is the associated hardware cost for adding the i th
prime cube and is larger for smaller cubes; x; is the j’ h implicant
in our LUT and e; is its corresponding error, the inverse of the
average error improvement, larger improvements have a smaller
ej and should be set to 0 first; and y; is one if the j th implicant is
set to zero and zero if it is correctly labeled in the reduced LUT. In
this way, we may leave at most € worth of implicants uncovered
when finding a minimum SOP within the onset. We note that the
exact solution to this ILP is optimal. Furthermore, if € is zero, this
will give the solution for exact onset logic minimization.

6 EXPERIMENTAL RESULTS

In this section, we demonstrate that the proposed quality controller
effectively improves the output quality of various IM circuits.

252

ASPDAC 21, January 18-21, 2021, Tokyo, Japan

20 Target MRE

Target MRE

MRE (%)

10 ———————————

Target MRE

0 bl o,

T T t T T T T T T
© 1% 0.5% Fixed oo 1% 0.5% Fixed oo 1% 0.5% Fixed
N

MIPAC § ol MIPAC § ol MIPAC § ol
(Fixed NOI = 2) (Fixed NOI = 3) (Fixed NOI = 4)
(@) @ =8.3%) a=21% © a=12%

Figure 7: Error distribution of div with MIPAC constrained
by various target MRE () power constraints (f) in compari-
son to the fixed-NOI baseline.

6.1 Experimental Setup

We evaluate the accuracy and latency of MIPAC implemented in
Verilog HDL and present the energy-accuracy trade-off for vari-
ous design-time and runtime parameters. We restrict the overall
power consumption of the MIPAC controller to 10% of the target
IM power consumption. MIPAC controller is generated for 8 quality
settings for each application to provide fine-grained tunability. IM
circuits and quality predictors are synthesized using Synopsis De-
sign Compiler, targeting the NanGate 45 nm CMOS Technology. We
compare and apply MIPAC to three IM circuits: a 16-bit multiplier
(mult) [2], a 16-bit divider (div) [3], and an 8-bit exponentiation
function (exp) [17]. Both div and exp are based on Taylor approxi-
mation, and mult is based on Mitchell’s algorithm [11], which are
widely used iterative approximation methods. As a baseline, we
implement a DT-based NOI predictor similar to [7]. We assume
uniformly distributed input data.

6.2 Experimental Results

We first evaluate the improvement in error distribution achieved by
the proposed quality controller as a function of the power constraint
B. Figure 7 shows the distribution of MRE of div for three target
MREs under three different power constraints f. We vary f as
a percentage of the target IM circuit’s power consumption: 0.5%
(most constrained), 1%, and oo (unconstrained). The ‘Fixed NOI’
is the baseline without quality control, equivalent to f = 0. The
three target MREs 8.3%, 3.1%, and 1.2% correspond to those of fixed
NOIs of 2, 3, and 4, respectively. The results show that MIPAC can
significantly reduce the distribution of output quality to close to
the target MRE. With only a 1% power constraint (f = 1%), the
output quality improvement is as substantial as unconstrained case
(B = o). More specifically, when f is set to 1%, the maximum MRE
is improved by up to 53%. The results confirm the efficacy of the
proposed quality controller with only a minimal power overhead
as well as the proposed design framework.

Next, we evaluate the output quality improvement by MIPAC in
comparison to the DT-based controller and the baseline without
any quality control. Both MIPAC and the DT-based controller are
generated with the same WCE y-values, determined to satisfy the
corresponding target a-values. At each node in the DT, we consider
the specified bit signals from the IM circuit as individual features
and choose the split based on information gain. For iso-power com-
parison, we impose the same power constraint on the DT as MIPAC,

ASPDAC °21, January 18-21, 2021, Tokyo, Japan

—=— Baseline ---%--- Decision tree MIPAC
o
5
v
® 2
et K]
3 e
= kS
>
3
12 3 4 5 5 &
Average NOI Average NOI
(a) mult
-
8
=
[
[
® 2
=il K]
3 2
= s
>
e :% ot+r——r—""
1 2 3 4 5 1 2 3 4 5 o 1 2 3 4 5
Average NOI Average NOI Average NOI
(b) div
-
B, £
\ b}
L X 2
\ \\‘ E
\'\ 2
| 5
X
= _§
12 3 4 5 & 5
Average NOI Average NOI Average NOI
(c) exp

Figure 8: MRE, WCE, and standard deviation of relative
errors without any control (Baseline) and with DT- and
MIPAC-based quality control.

by restricting its maximum depth such that the overall power con-
sumption for the set of DT predictors does not exceed 10% of the
target IM power consumption. From Figure 8, we observe that MI-
PAC requires fewer average NOI for most quality settings, leading
to additional energy savings. For the same average NOI, MIPAC
also presents tighter average error variation than the baseline and
DT. Although DT is unable to improve the output quality, it does
provide finer-grained energy-accuracy control.

Finally, to compare the trade-off between energy efficiency and
accuracy, we show the total energy consumption (including the
quality controller’s energy overhead) versus target MRE in Fig-
ure 9. With the input-dependent quality control, MIPAC exhibits
significantly better energy-accuracy trade-off than the baseline and
DT in almost all target MRE range. This is because MIPAC selec-
tively runs each input for the minimum NOI needed to satisfy the
overall target MRE, improving both energy and latency MIPAC
achieves finer-grained energy-accuracy trade-off, which is essential
for better energy-quality scaling of the application. This is possible
because MIPAC incorporates input signals, allowing it to make
input-dependent rather than input-agnostic NOI predictions.

7 CONCLUSIONS

Iterative approximation methods, such as Taylor approximation
and Mitchell’s algorithm, can dramatically improve the power effi-
ciency of basic arithmetic operations. However, the lack of proper
input-aware quality control has resulted in a wide input-dependent
variation of output quality. In this paper, we presented a novel

Taylor Kemp, Yao Yao, and Younghyun Kim

——— Baseline =~ ------e-- Decision tree MIPAC

[

Energy (p])

10 20 30

10 20 30 0 10 20 30
Target MRE (%) Target MRE (%) Target MRE (%)
(a) mult (b) div (c) exp

Figure 9: Comparison of energy-accuracy trade-off.

quality controller design called MIPAC, which adjusts the number
of iterations depending on the input to better satisfy the desired
quality. We also provided a design framework that generates the
controller under a designer specified power constraint. By decou-
pling the underlying approximate hardware from compiler-driven
control, MIPAC achieves high accuracy, low total energy consump-
tion, and fine-grained quality control with only a minor power
overhead. We apply MIPAC to an approximate divider, multiplier,
and exponentiation function and demonstrated up to 53% worst-
case output quality improvement compared to the baseline with
only 1% energy overhead.

ACKNOWLEDGEMENT

This work was supported by the National Science Foundation under
award CNS-1845469.

REFERENCES
n

Syed Ershad Ahmed and M. B. Srinivas. 2019. An improved logarithmic multiplier
for media processing. Journal of Signal Processing Systems 91, 6 (2019), 561-574.
[2] Zdenka Babi¢ et al. 2011. An iterative logarithmic multiplier. Microprocessors and
Microsystems 35, 1 (2011), 23-33.
[3] Setareh Behroozi et al. 2019. SAADI: A scalable accuracy approximate divider
for dynamic energy-quality scaling. In ASP-DAC. 481-486.
[4] Vaibhav Gupta et al. 2011. IMPACT: Imprecise adders for low-power approximate
computing. In ISLPED. 409-414.
[5] Jiawei Huang et al. 2012. A methodology for energy-quality tradeoff using
imprecise hardware. In DAC. 504-509.
[6] Mohsen Imani et al. 2019. ApproxLP: Approximate multiplication with lineariza-
tion and iterative error control. In DAC. 1-6.
[7] D. S. Khudia et al. 2015. Rumba: An online quality management system for
approximate computing. In ISCA. 554-566.
[8] Younghyun Kim et al. 2020. Approximate hardware techniques for energy-quality
scaling across the system. In ICEIC. 1-5.
[9] Vasileios Leon et al. 2018. Walking through the energy-error Pareto frontier of
approximate multipliers. IEEE Micro 38, 4 (2018), 40-49.
[10] Divya Mahajan et al. 2016. Towards statistical guarantees in controlling quality
tradeoffs for approximate acceleration. In ISCA. 66-77.
[11] John N Mitchell. 1962. Computer multiplication and division using binary loga-
rithms. IRE Transactions on Electronic Computers 4 (1962), 512-517.
Vojtech Mrazek et al. 2018. Design of quality-configurable approximate multipli-
ers suitable for dynamic environment. In AHS. 264-271.
[13] Arnab Raha and Vijay Raghunathan. 2017. Towards full-system energy-accuracy
tradeoffs: A case study of an approximate smart camera system. In DAC. Article
74.
Swagath Venkataramani et al. 2015. Approximate computing and the quest for
computing efficiency. In DAC. 1-6.
[15] Liang-Kai Wang and Michael J Schulte. 2007. A decimal floating-point divider
using Newton-Raphson iteration. The Journal of VLSI Signal Processing Systems
for Signal, Image, and Video Technology 49, 1 (2007), 3-18.
[16] Ting Wang et al. 2016. On effective and efficient quality management for approx-
imate computing. In ISLPED. 156-161.
[17] Di Wu et al. 2019. SECO: A scalable accuracy approximate exponential function
via cross-layer optimization. In ISLPED. 1-6.
[18] Qian Zhang et al. 2014. ApproxIt: An approximate computing framework for
iterative methods. In DAC. 1-6.

=
&N

=
oot

