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ABSTRACT

For many applications that exhibit strong error resilience, such as

machine learning and signal processing, energy efficiency and per-

formance can be dramatically improved by allowing for slight errors

in intermediate computations. Iterative methods (IMs), wherein the

solution is improved over multiple executions of an approxima-

tion algorithm, allow for energy-quality trade-off at run-time by

adjusting the number of iterations (NOI). However, in prior IM cir-

cuits, NOI adjustment has been made based on a pre-characterized

NOI-quality mapping, which is input-agnostic thus results in an un-

desirable large variation in output quality. In this paper, we propose

a novel design framework that incorporates a lightweight quality

controller that makes input-dependent predictions on the output

quality and determines the optimal NOI at run-time. The proposed

quality controller is composed of accurate yet low-overhead NOI

predictors, generated by a novel logic reduction technique. We eval-

uate the proposed design framework on several IM circuits and

demonstrate significant improvements in energy-quality perfor-

mance.
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1 INTRODUCTION

Emerging compute-heavy applications, such as deep learning, data

mining, and multimedia processing, are highly resilient to errors

and produce similar (often, the same) results even if the intermediate

computations are not 100% exact. For such applications, approximate

computing exploits this error resilience to greatly improve perfor-

mance and energy efficiency by allowing for small errors [8, 14].

Iterative methods (IMs) are a common approximation technique that
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is widely adopted in many applications for large linear/non-linear

systems of equations and combinatorial optimization problems [18].

IMs improve approximate solutions from an initial guess over mul-

tiple iterations at a much lower computational effort as compared

to obtaining the exact solution, thus the accuracy of the approxi-

mation is dependent on the number of iterations (NOI): the more

iterations, the more accurate the approximate result.

Including iterative logarithmic multipliers [1, 2] and Taylor

approximation-based arithmetic logic units (ALUs) [3, 6, 15, 17],

a variety of IM circuits have been proposed recently. While these

IM circuits enable dynamic energy-accuracy trade-off, they also

pose the new challenge of determining optimal NOI. In conven-

tional IM circuit design, NOI is determined based on the average- or

worst-case energy-accuracy trade-off characterized at design-time

by offline analysis or profiling. The accuracy of the approximation,

however, is not constant and largely input-dependent [13]. As a

result, the offline characterization-based NOI control is inevitably

input-agnostic, resulting in a wide variation of approximation error

(even if the target average error is satisfied). If a worst-case error

must be met, the wide-varying error must be over-compensated by

extra iterations, thus more energy consumption.

To address this challenge, we propose dynamic auto-tuning of

IM circuits using a novel lightweight quality predictor. The quality

prediction aims to maintain computation quality by determining

the level of approximation from the input, without comparing ap-

proximate results to exact results, which incurs extra performance

and energy overheads. Conventional quality prediction methods

are mainly detect-and-correct, where if an approximate module

generates a large error, the exact module counterpart corrects the

error by re-executing the corresponding portion of the code. They

are generally designed to work at the algorithm or application

level, which can afford multiple cycles for quality prediction and

extra overhead for re-execution. However, for low-power IM cir-

cuits, which complete within a few cycles, such high-level quality

prediction is prohibitively time- and energy-consuming. For such

circuits, predictors should make actionable predictions to determine

whether the approximation should terminate every cycle they are

run.

Designing lightweight quality predictors for IM circuits offers

several challenges and objectives. First, the prediction should start

at the same time with the target IM circuit and must be completed

before its earliest possible termination, which can be as short as a

single cycle. Second, the predictor should generate an actionable

output, i.e., optimal NOI, that can be directly used to control the

target IM circuit, rather than just an estimated accuracy that incurs

extra time and power overheads to control the IM circuit. Finally,

energy overhead for accuracy prediction should be minimal to not

offset energy savings. These requirements, unfortunately, render
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Figure 1: Error distribution of Taylor approximation-based

division showing wide variation in output quality depend-

ing on the input.

conventional high-level predictors requiring multiple iterations

of complex operations (e.g., multiply-and-add) unsuitable for the

quality control of IM circuits.

In this paper, we aim to address these challenges to provide a

general auto-tuning quality controller for iterative approximate

computing. The following is a summary of the novel contributions

of this work:

• We propose the design of a lightweight quality controller

which determines the optimal NOI for a given input to

achieve optimal energy-accuracy trade-off providing fine-

grained dynamic accuracy configuration.

• We present an efficient design flow including a novel approx-

imate logic minimization technique to generate accuracy

quality predictors under strict power constraint.

• We apply the proposed method to multiple IM circuits and

demonstrate improvement in energy efficiency and accu-

racy distribution in comparison to decision tree (DT)-based

quality control.

2 BACKGROUND

In this section, we introduce prior work on approximate computing

methods and quality prediction for approximate computing.

2.1 Approximate Circuits

Various approximate circuits have been introduced to improve the

performance and energy efficiency of emerging error-resilient ap-

plications [9, 12]. Among others, approximate ALUs have received

much attention since they are the key building blocks for imple-

menting energy-efficient computing systems. Early approximate

ALUs, such as [4, 5], aim to reduce power consumption by simpli-

fying hardware at the circuit or logic level. In these approximate

circuits, however, the level of approximation is fixed by hardware

design at design-time, which makes run-time energy-quality recon-

figuration impossible. Because the actual accuracy is not constant

but heavily input-dependent, and also because the accuracy level

required by the application varies over time, the fixed-configuration

approximate circuits often fail to deliver the optimal energy-quality

trade-off the application needs. Recent approximate circuits attempt

to address this limitation by adopting IMs [2, 3, 6, 17]. These circuits

adjust the level of approximation by adapting NOI at run-time based

on off-line quality profiling. Even these solutions, however, do not

consider the underlying issue that quality is input-dependent and

rely solely on off-line characterization between NOI and average-

or worst-case error.
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Figure 2: Comparison of NOI determination in conventional

and proposed IM-based approximations.

2.2 Run-time Quality Prediction

Quality prediction is crucial for an approximate computing system

to meet an energy-quality target in the presence of input-dependent

quality variation. Rumba [7] is one of the first attempts at predicting

and controlling the quality by detecting quality violations and

correcting them by re-computing using the exact counterpart. They

consider application-specific approximate computing, such as k-

means clustering, JPEG, etc. and use high-level predictors such

as linear models and DTs. Other approaches focus on improving

prediction accuracy through the implementation of neural network

(NN) and ensemble models, which are computationally heavier [10,

16, 18]. These quality predictors are computationally complex and

take multiple cycles to generate prediction output. They are suitable

to the algorithm- and application-level approximate computing

where the time and energy overheads of quality prediction are

relatively negligible. However, the overheads are prohibitively high

for the quality prediction of IM circuits that should be completed

within one to a few cycles.

3 INPUT DEPENDENCY OF APPROXIMATION
ERROR

We first present an example of the wide variation of IM output qual-

ity to motivate the need for proper quality prediction and control.

Figure 1 shows the distribution of relative error for an approximate

divider based on iterative Taylor approximation [3] for NOI of 2, 3,

and 4. While it is evident that the overall accuracy improves as NOI

increases, significant accuracy variation is observed for all NOIs,

and many inputs are not accurately characterized by the mean er-

ror. The mean relative error (MRE) when NOI=2 is 8.3%, and the

worse-case error (WCE) is as high as 25%. When NOI increases to

4, the MRE achieves 1.2%, and the WCE reduces to 6.3%. Both the

MRE and WCE drop gradually as NOI increases, but a huge gap

consistently exists between the MRE and WCE, which is indicative

of the wide variation in the output quality. Therefore, if NOI is set

to a fixed number irrespective of the input, the application will

suffer from a large variation in output quality.

4 PROPOSED APPROACH

As a solution to the above-mentioned challenge, we present Mini-

mum Iteration Predictive Accuracy Control (MIPAC), a lightweight

quality controller design for low-power IM circuits and a design
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Figure 3: Hardware architecture of MIPAC-enabled IM cir-

cuit including the proposed lightweight quality controller.

framework for generating the controller. MIPAC addresses the issue

of input-dependent error magnitude by moving the functional map-

ping of accuracy to NOI closer to the IM circuit. In conventional sys-

tems (Figure 2(a)), the application (to be more precise, the compiler)

is responsible for determining the NOI for each IM circuit operation

that achieves the desired accuracy. Because the actual input values

are not available at compile-time, it determines the NOI solely based

on the pre-characterized accuracy-to-NOI mappings of the IM cir-

cuit. However, the accuracy in the pre-characterized mappings is

usually the average- or worst-case error that is not input-aware,

and thus it results in a significant output quality variation as we

discussed in Section 3. On the other hand, in the MIPAC-based

system (Figure 2(b)), the accuracy-to-NOI mapping is performed

by the IM circuit itself with the aid of the proposed lightweight

quality controller. Because the inputs are directly visible at run-

time, the optimal NOI can be derived from the input and/or some

input-dependent signals from the IM circuit. Since the quality con-

troller is more tightly integrated as hardware with the IM circuit, it

provides the benefits of i) improved stability of the output quality

due to input-aware accuracy-to-NOI mapping, and ii) decoupling

of the application and compiler from a specific IM circuit, without

any hardware modification to the circuit.

As discussed in Section 1, the quality prediction should be made

within a single cycle. This is to prevent the IM circuit, which may

produce an acceptable result after the first iteration, from running

more than needed. Therefore, we generate each predictor as simple

combinational logic, which, unlike prior quality predictors that

return the outcome after many cycles of computation, completes

within the first cycle of execution. Figure 3 shows the hardware

architecture of MIPAC integrated with an IM circuit. The quality

controller incorporates 𝑛 quality predictors, which of each deter-

mines the minimum NOI that achieves a specific accuracy. Based

on the target accuracy 𝛼 , the output of the quality predictor that

corresponds to the target accuracy is selected. For example, 𝑃𝛼1 is

the predictor that produces the minimum NOI for a given input

that achieves the accuracy 𝛼1. The prediction is made based on the

input and internal signals from the target IM circuit.

We adopt combinational logic-based neural networks (NNs) for

solving this highly nonlinear yet error-tolerable quality prediction

problem. The quality predictor is implemented by training a NN,

generating a look-up table (LUT) from the NN, and realizing the
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Figure 4: Overall design flow for optimizing MIPAC under

accuracy requirements and power constraint.

LUT as combinational logic after applying approximate logic mini-

mization. The combinational logic-based NN implementation offers

the power of nonlinear decision making and the complexity that

NNs offer, without the need for ALUs and other complex units

commonly associated with NN. Our method allows us to learn the

weighted importance of features and remove circuit signals that

have a low correlation with predicted NOI, hence, vastly reducing

logic complexity. We describe the design and implementation of

MIPAC in more detail in the next section.

5 DESIGN AND IMPLEMENTATION

In this section, we first describe the overview of MIPAC, followed

by the design of its key component, the quality predictor. Finally,

we present a novel logic minimization scheme to efficiently realize

the quality predictor.

5.1 Design Flow

The design of MIPAC requires a joint optimization over multiple

design parameters, such as the number of quality predictors to be

included in the controller and the accuracy-power trade-off of each

predictor among others. Due to the large design space, a systematic

design methodology is needed to efficiently derive an accurate

yet low-overhead controller. The predictors for accurate quality

control incur extra power overhead, and the more accurate, the

more power consuming the predictors. Therefore, we present a

design framework to maximize the prediction accuracy of MIPAC

under minimal power overhead constraints.

NOI characterization. Figure 4 illustrates the offline process to

design the MIPAC controller. A set of MREs, 𝛼1, 𝛼2, . . . , 𝛼𝑛 , that

the controller needs to support and a power constraint 𝛽 that the

controller can afford are specified by the designer. In order to satisfy

the MRE targets 𝛼𝑖 , we first determine how long to run each input to

achieve them. We do this by annotating the minimum NOI needed

to satisfy a variable WCE 𝛾𝑖 and pick 𝛾𝑖 such that the MRE becomes

𝛼𝑖 . Once we have determined a suitable 𝛾𝑖 for each target MRE, we

generate a set of annotated samples for each predictor to train on,

using individual signals as input features.
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Figure 5: NN model is converted into a set of LUTs for each

NOI setting. These LUTs are then further reduced into com-

binational logic.

Model training. Next, an NN is trained for each 𝛾𝑖 . The NN is

trained using squared hinge loss under Adam Optimizer with a

learning rate of 4e-4. The batch size was set to 50 and the model

was trained for 50 epochs. After model training, we convert the NN

into a set of LUTs, one for each NOI setting. Each LUT determines

a mapping from the selected IM circuit signals (NN input) to a

particular NOI setting. If for a given key the LUT output is 1, this

indicates the IM should run for the NOI corresponding to that LUT.

In the event that multiple LUTs have an output of 1 for a given

input, the NOI will default to the highest one. If none of the LUTs

have a corresponding output of one, the predictor will default to the

average NOI, rounded up, determined when generating the training

data. In order to determine the output mapping, the majority vote

of all inputs that map to a given key is used. Figure 5 illustrates the

process.

NN logic conversion. The number of possible keys is very large

for even a simple IM circuit. Therefore, we reduce the number of

possible input keys in the LUTs by merging keys that are likely to

map to similar outputs. During training, features that have higher

importance when they go high will have larger corresponding

weights in the Hadamard product. If the weight is small, prun-

ing out that particular input will result in negligible changes to

the overall model output. We pick and prune the 𝑛 inputs with

smallest associated importance iteratively increasing the 𝑛 until

the accuracy is maximized. As there are much fewer samples than

possible key combinations, the output is undefined (don’t-cares) for

the majority of the key combinations, and low pruning levels will

result in a high miss rate for the LUT. As we prune out unimportant

features, however, we will observe fewer misses and as a result an

improvement in the LUTs prediction accuracy, leading to overall

accuracy improvements. We continue to prune out features until

the maximum accuracy is obtained. Further pruning will begin to

decrease accuracy as LUT inputs begin to be mislabeled.
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Figure 6: Example approximate logic minimization prob-

lem.

Power capping. After all predictors are converted to hardware

LUTs, the controller is synthesized and the power consumption

is checked against the constraint 𝛽 . If the constraint is violated,

beginning with the predictor with the highest power consumption,

approximate onset logic minimization is performed to reduce the

power to below the average. The importance of correctly specifying

each input is determined based on the average improvement in error

by increasing the NOI prediction to the average NOI. In this way,

input keys in the LUT that will have larger error improvements

should be set to zero first during approximate logic minimization.

If fully pruning all bits is required to meet the 𝛽 , the predictor is

replaced by the fastest fixed NOI predictor satisfying the average

error constraint 𝛼𝑖 . Approximate onset logic reduction is explained

further in Section 5.2.

5.2 Power Capping through Approximate
Onset Logic Minimization

In this section, we further discuss power capping to ensure that

the power overhead of the quality controller meets the power con-

straint 𝛽 . In order to reduce power consumption beyond what can

be attainable by conventional logic minimization, we leverage that

the logic minimization of quality predictors does not have to ex-

actly conserve the functional mapping since the consequence of the

errors is the occasional misprediction of quality, thus non-optimal

NOI. Therefore, by a novel approximate onset logic minimization

algorithm, we trade quality prediction accuracy for power reduc-

tion.

Consider a partially specified LUT in which each input-output

mapping has corresponding importance. The goal is to produce

a minimum sum-of-products (SOP) of the onset where we can

tolerate some 𝜖 threshold of error over the error-weighted onset.

Error is incurred by setting the output for a corresponding input in

the initial LUT from 1 to 0. Inputs with larger importance should

be set to 0 with lower priority than those with less. Additionally,

we do not consider the don’t-care set as unspecified inputs are

assumed to map to 0. This is because LUT misses in the predictor

may correspond to other NOI predictions. At the algorithm level,

we specify some overall tolerance 𝜖 which we may violate which

determines the aggressiveness of approximation. Setting an output

from logic one to zero introduces a corresponding error annotated

during LUT construction.

For example, Figure 6 maps a set of 2-bit input signals𝐴 and 𝐵 to

a single bit output. We determine a corresponding importance for

correctly specifying each row in the table and want to produce a

minimum SOP for the onset. If we are unable to incorrectly specify

any rows the solution will be 𝐴|𝐵. However, if we are allowed to
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Algorithm 1 Generate Onset Primes

procedure GenerateOnsetPrimes(𝑜𝑛𝑠𝑒𝑡 )
mergings = {}

primes = {}

for (𝑦,𝑑𝑐 ′) ∈ 𝑜𝑛𝑠𝑒𝑡 𝑠 .𝑡 . 𝑑𝑖𝑠𝑡 (𝑦 ◦ 𝑑𝑐 ′, 𝑥 ◦ 𝑑𝑐) = 1 do

add (𝑥, 𝑑𝑐 ◦ ¬(𝑥 ⊕ 𝑦)) to mergings

end for

if did not add 𝑥 to a merging then

add (𝑥, 𝑑𝑐) to primes

end if

return GenerateOnsetPrimes(mergings) ∪ primes

end procedure

violate some of the outputs in the onset, we can find a simpler

solution. For example, if we can violate at most 15 total importance,

the most we can violate is rows two (𝐴𝐵 = 01) and four (𝐴𝐵 = 11). In

this case, violating only row two provides the simplest approximate

solution of 𝐴. It is worth mentioning here that in general optimal

solutions will consist solely of prime cubes.

The proposed approximate logic minimization for quality predic-

tors can be formulated as a simple integer linear problem (ILP). For

the ILP construction, we consider an 𝑒-implicant to be any input

𝑥𝑖 mapping to logic 1 with associated error 𝑒 . A cube is defined to

be a pair 𝑥, 𝑑𝑐 ∈ {0, 1}𝑛 s.t. {𝑦 : 𝑦 ◦ 𝑑𝑐 = 𝑥 ◦ 𝑑𝑐, 𝑓 (𝑦) = 0} is empty.

We define a prime 𝑝 to be a cube that is maximal, i.e., there is no

cube that contains 𝑝 as a strict subset.

In order to generate the set of all primes based on the onset we

consider Algorithm 1 which performs repeated distance one merges

within the onset.

The ILP formulation for finding aminimum SOP for 𝜖-approximate

logic minimization is as follows:

minimize
∑

𝑖

𝑐𝑖𝑝𝑖

subject to
∑

𝑖 :𝑥 𝑗 ∈𝑐𝑢𝑏𝑒 (𝑝𝑖 )

𝑝𝑖 ≥ 1 − 𝑦 𝑗 ,∀𝑗

∑

𝑗

𝑒 𝑗𝑦 𝑗 ≤ 𝜖

𝑝𝑖 , 𝑦 𝑗 ∈ {0, 1}

where 𝑝𝑖 is 1 if we include 𝑐𝑢𝑏𝑒 (𝑝𝑖 ), the 𝑖𝑡ℎ prime cube for the onset,

and 0 otherwise; 𝑐𝑖 is the associated hardware cost for adding the 𝑖𝑡ℎ

prime cube and is larger for smaller cubes; 𝑥 𝑗 is the 𝑗𝑡ℎ implicant

in our LUT and 𝑒 𝑗 is its corresponding error, the inverse of the

average error improvement, larger improvements have a smaller

𝑒 𝑗 and should be set to 0 first; and 𝑦 𝑗 is one if the 𝑗𝑡ℎ implicant is

set to zero and zero if it is correctly labeled in the reduced LUT. In

this way, we may leave at most 𝜖 worth of implicants uncovered

when finding a minimum SOP within the onset. We note that the

exact solution to this ILP is optimal. Furthermore, if 𝜖 is zero, this

will give the solution for exact onset logic minimization.

6 EXPERIMENTAL RESULTS

In this section, we demonstrate that the proposed quality controller

effectively improves the output quality of various IM circuits.
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Figure 7: Error distribution of div with MIPAC constrained

by various target MRE (𝛼) power constraints (𝛽) in compari-

son to the fixed-NOI baseline.

6.1 Experimental Setup

We evaluate the accuracy and latency of MIPAC implemented in

Verilog HDL and present the energy-accuracy trade-off for vari-

ous design-time and runtime parameters. We restrict the overall

power consumption of the MIPAC controller to 10% of the target

IM power consumption. MIPAC controller is generated for 8 quality

settings for each application to provide fine-grained tunability. IM

circuits and quality predictors are synthesized using Synopsis De-

sign Compiler, targeting the NanGate 45 nm CMOS Technology. We

compare and apply MIPAC to three IM circuits: a 16-bit multiplier

(mult) [2], a 16-bit divider (div) [3], and an 8-bit exponentiation

function (exp) [17]. Both div and exp are based on Taylor approxi-

mation, and mult is based on Mitchell’s algorithm [11], which are

widely used iterative approximation methods. As a baseline, we

implement a DT-based NOI predictor similar to [7]. We assume

uniformly distributed input data.

6.2 Experimental Results

We first evaluate the improvement in error distribution achieved by

the proposed quality controller as a function of the power constraint

𝛽 . Figure 7 shows the distribution of MRE of div for three target

MREs under three different power constraints 𝛽 . We vary 𝛽 as

a percentage of the target IM circuit’s power consumption: 0.5%

(most constrained), 1%, and ∞ (unconstrained). The ‘Fixed NOI’

is the baseline without quality control, equivalent to 𝛽 = 0. The

three target MREs 8.3%, 3.1%, and 1.2% correspond to those of fixed

NOIs of 2, 3, and 4, respectively. The results show that MIPAC can

significantly reduce the distribution of output quality to close to

the target MRE. With only a 1% power constraint (𝛽 = 1%), the

output quality improvement is as substantial as unconstrained case

(𝛽 = ∞). More specifically, when 𝛽 is set to 1%, the maximum MRE

is improved by up to 53%. The results confirm the efficacy of the

proposed quality controller with only a minimal power overhead

as well as the proposed design framework.

Next, we evaluate the output quality improvement by MIPAC in

comparison to the DT-based controller and the baseline without

any quality control. Both MIPAC and the DT-based controller are

generated with the same WCE 𝛾-values, determined to satisfy the

corresponding target 𝛼-values. At each node in the DT, we consider

the specified bit signals from the IM circuit as individual features

and choose the split based on information gain. For iso-power com-

parison, we impose the same power constraint on the DT as MIPAC,
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Figure 8: MRE, WCE, and standard deviation of relative

errors without any control (Baseline) and with DT- and

MIPAC-based quality control.

by restricting its maximum depth such that the overall power con-

sumption for the set of DT predictors does not exceed 10% of the

target IM power consumption. From Figure 8, we observe that MI-

PAC requires fewer average NOI for most quality settings, leading

to additional energy savings. For the same average NOI, MIPAC

also presents tighter average error variation than the baseline and

DT. Although DT is unable to improve the output quality, it does

provide finer-grained energy-accuracy control.

Finally, to compare the trade-off between energy efficiency and

accuracy, we show the total energy consumption (including the

quality controller’s energy overhead) versus target MRE in Fig-

ure 9. With the input-dependent quality control, MIPAC exhibits

significantly better energy-accuracy trade-off than the baseline and

DT in almost all target MRE range. This is because MIPAC selec-

tively runs each input for the minimum NOI needed to satisfy the

overall target MRE, improving both energy and latency MIPAC

achieves finer-grained energy-accuracy trade-off, which is essential

for better energy-quality scaling of the application. This is possible

because MIPAC incorporates input signals, allowing it to make

input-dependent rather than input-agnostic NOI predictions.

7 CONCLUSIONS

Iterative approximation methods, such as Taylor approximation

and Mitchell’s algorithm, can dramatically improve the power effi-

ciency of basic arithmetic operations. However, the lack of proper

input-aware quality control has resulted in a wide input-dependent

variation of output quality. In this paper, we presented a novel
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Figure 9: Comparison of energy-accuracy trade-off.

quality controller design called MIPAC, which adjusts the number

of iterations depending on the input to better satisfy the desired

quality. We also provided a design framework that generates the

controller under a designer specified power constraint. By decou-

pling the underlying approximate hardware from compiler-driven

control, MIPAC achieves high accuracy, low total energy consump-

tion, and fine-grained quality control with only a minor power

overhead. We apply MIPAC to an approximate divider, multiplier,

and exponentiation function and demonstrated up to 53% worst-

case output quality improvement compared to the baseline with

only 1% energy overhead.
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