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Abstract— A recent development in Lyapunov stability theory
allows for analysis of switched systems evolving on non-
uniform time domains, called Time Scales. We will present new
sufficient conditions to guarantee the stability of a special class
of switched systems, between continuous-time subsystems (on
intervals with variable lengths) and discrete-time subsystems
(with variable discrete-step sizes). By introducing the time scales
theory, the conditions are derived using the concept of Time
Scale Multiple Lyapunov Functions (TSMLF). The results are
applied in the problem of consensus for multi-agent systems
with intermittent information transmission.

keywords: Time scales theory; switched systems; stability
analysis; multiple Lyapunov functions.

I. INTRODUCTION

Stability of switched systems has been a topic of increas-
ing discussion over the past decade, and several methods
have been developed, which can be applied to systems
evolving on either continuous or discrete uniform time
domains (R or hZ, respectively) [3], [4], [6]. Recently,
there is an increasing interest in non-uniform time domains,
called Time Scales, which can contain non-uniformly spaced
discrete points or a mixture of discrete parts with variable
step sizes and continuous parts with variable lengths. There
are many applications of such systems including real-time
communication network [13], population model [14] and
economics [15].

Our interest is a special class of switched systems on
a non-uniform time domain, where the dynamical system
switches between a continuous-time subsystem and discrete-
time subsystems during a certain time. This class can de-
scribe a wide range of physical and engineering systems. For
instance, cooperative control over networks [22], [23], such
that the derived controller assumes that local information
is exchanged over some disconnected time intervals due to
communication obstacles or sensor failure [17]. In this case,
the time domain is neither continuous nor uniformly discrete.
Time scale theory was found promising to study this class of
switched systems because it captures the interplay between
the theories of continuous and discrete dynamics.

One of the most widely used tools for investigating the
stability of switched systems is the Lyapunov stability theory.
So far, a common Lyapunov function (CLF) method was
adopted for all subsystems and the existence of such a
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function guarantees the stability of the system under arbitrary
switching. In this case, it is necessary to require that all
subsystems are asymptotically stable [1]. Note that, a CLF,
in some situations, is not known or does not exist, and
finding a CLF is not an easy task, except for certain special
cases [5], [8]. To seek less conservative results, the Multiple
Lyapunov Functions (MLF) (or Lyapunov-like functions)
approach was introduced to analyze the stability of switched
systems under constrained switching [1], [2], [7]. It was
shown that switched systems, without exception, are prone
to instability problems, and an arbitrary fast switching may
cause large state transients at the switching points.

The objective of this paper is to introduce time scales
theory to extend the MLF approach, to the special class of
switched systems between continuous and discrete dynamics,
by considering nonlinear uncertainties. This class of switched
systems has been studied in [16] by considering the com-
mutativity of the matrices of the subsystems so that a CLF
has been computed. In [18], this problem has been studied
using the solution of the switched system. In [19], an MLF
approach has been introduced to study such class of linear
switched systems (without uncertainties) by considering that
unstable modes may exist. In this paper, we will remove the
condition of commutativity of the matrices of the subsystems,
we will consider the nonlinear uncertainties, and the problem
has been generalized to several discrete-time subsystems.
The result has been applied to the problem of consensus
for multi-agent systems with intermittent information trans-
mission.

II. PRELIMINARIES

Time scale theory is introduced, in this paper, to analyze
the stability of a special class of switched systems between a
nonlinear continuous-time subsystem and a set of nonlinear
discrete-time subsystems during a certain period of time.

We briefly outline the portions of the time scales theory
that are needed for this paper (for more details see [9]). A
time scale T is an arbitrary closed subset of R. The forward
jump operator is defined by σ(t) := inf{s ∈ T : s >
t, t ∈ T}. The graininess function µ : T → R+, is defined
by µ(t) = σ(t) − t, and it measures the distance between
consecutive time instances. For T = R, we have σ(t) = t,
and µ(t) = 0, while for T = hZ, we have σ(t) = t+h, and
µ(t) = h.

Let f : T→ R. The ∆-derivative of f is defined by,
f∆(t) = lims→t

f(σ(t))−f(s)
σ(t)−s , which unifies the continuous

derivative and the difference operator. We say that f is ∆-
differentiable on T, if its ∆-derivative exists ∀t ∈ T. A
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function p : T → R is said regressive (resp. positively
regressive), if 1 + µ(t)p(t) 6= 0 (resp. 1 + µ(t)p(t) > 0),
∀t ∈ T. We denote the set of regressive (resp. positively
regressive) functions by R (resp. R+). A matrix function
A : T→ Rn×n is regressive, if and only if all its eigenvalues
are regressive and we denote A ∈ R(Rn×n). The generalized
exponential function of p ∈ R, on T, is expressed by
ep(t, s) = exp

(∫ t
s

log(1+µ(τ)p(τ))
µ(τ) ∆τ

)
, s, t ∈ T. For T = R

and p constant, ep(t, t0) = ep(t−t0). For T = hZ, ep(t, s) =∏t−h
τ=s(1 + hp(τ)), and ep(σ(t), t) = (1 + µ(t)p(t)). Let

A ∈ Rn×n, we define x(t) = eA(t, t0)x0 as the unique
solution of the dynamical system

x∆(t) = A(t)x(t), x(t0) = x0, t, t0 ∈ T. (1)

Notice that, x(t) is well defined if A ∈ R(Rn×n) (see [9]).
The definitions of stability and asymptotic stability of

dynamical systems on time scales, are similar to the standard
stability concepts. The exponential stability is achieved by
some modifications, such that, the system (1) is exponentially
stable, if ∃β, λ > 0 with −λ ∈ R+, such that ‖x(t)‖ ≤
βe−λ(t, t0)‖x(t0)‖,∀t ≥ t0. Specifically, the condition that
−λ ∈ R+ reduce to λ > 0, for T = R, and to 0 < λ < 1,
for T = Z. Since, it is difficult to determine the region of
exponential stability of (1) on an arbitrary T [10], that is
why the Hilger circle is introduced

Hµ(t) :=

{
z ∈ C : |1 + zµ(t)| < 1, z 6= − 1

µ(t)

}
.

For 0 ≤ µ(t) ≤ µmax and A(t) ≡ A, there exists a Hilger
circle Hmin associated to µmax = supt∈T µ(t), such that
if all the eigenvalues of A are in Hmin, then system (1)
is exponentially stable (see [20]). For the general case, and
to extend Lyapunov’s Second Method to dynamic systems
on time scales, we define a time scale Lyapunov function
(TSLF) [11] A function V : Rn → R is called a time scale
(or a generalized) Lyapunov function (TSLF) for the system
(1), if it satisfies, ∀x : T→ Rn,
(i) V (x(t)) ≥ 0, with equality if and only if x(t) = 0,

(ii) V is ∆-differentiable and V ∆(x(t)) ≤ 0.

Theorem II.1. [21]
Consider the system (1). If there exists an associated TSLF
V (x(t)), then the equilibrium x = 0 is stable. Furthermore,
if V ∆(x(t)) < 0, then x = 0 is asymptotically stable.

The Lyapunov stability on time scales was studied in
several works [12], [16]. To establish asymptotic stability
of system (1), a standard approach is to seek an associated
quadratic Lyapunov function V (x(t)) = xT (t)Px(t), with
P = PT > 0 is a positive definite matrix. The ∆-derivative
of V along the trajectories of system (1) on an arbitrary
time scale T, is given by V ∆(x(t)) = xT (t)(ATP + PA+
µ(t)ATPA)x(t) [11]. Therefore, we seek a solution P to the
following time scale algebraic Lyapunov equation (TSALE)

ATP + PA+ µ(t)ATPA = −Q(t), Q(t) = QT (t) > 0.
(2)

This equation is a generalization of the Lyapunov criteria for
stability of discrete-time and continuous-time linear systems,
such that, if T = R, µ(t) = 0, and (2) reduces to the standard
algebraic equation for continuous-time dynamic. If T = Z,
µ(t) = 1, and (2) reduces to

ATP + PA+ATPA = (I +A)TP (I +A)− P = −Q(t),
(3)

which coincides with the algebraic Lyapunov equation of the
standard recursive equation x(t + 1) = (I + A)x(t). Note
that, the ∆-derivative of x(t) on T = Z, is given by the
difference equation x∆(t) = ∆x(t) = x(t + 1) − x(t) =
Ax(t). Thus changing from difference form to recursive form
just requires a unit shift on the matrix A. If A(t) ≡ A has
all its eigenvalues in the Hilger circle Hmin, then ∀t ∈ T,
the matrix P is determined by (see [12])

P =

∫ t

t0

eAT (s, t0)Q(t)eA(s, t0)∆s, t ≥ t0.

Notice that (2) unifies the TSALE on an arbitrary T and it
is generally time varying because of the time varying µ(t).
If the TSALE (2) is satisfied for µmax, then it is satisfied
for all µ(t), since ATP + PA + µ(t)ATPA ≤ ATP +
PA + µmaxA

TPA = −Q, ∀t ∈ T, which can simplify the
computation of P (see [16]).

III. PROBLEM STATEMENT

In this paper, we will consider the particular time
scale T = P{σ1(tk),σ2(tk),tk+1} = ∪∞k=0{[σ2(tk), tk+1] ∪
σ1(tk+1)}, as shown in Fig 1, without accumulation points
(i.e; There is no Zeno behavior). The forward jump operator
and the corresponding graininess functions are defined, ∀k ∈
N, by:
- For t ∈ ∪∞k=0[σ2(tk), tk+1[; σ(t) = t , µ(t) = 0;
- For t ∈ ∪∞k=0{tk+1}; σ(t) = σ1(tk+1),

µ1(t) = σ(t)− t = σ1(tk+1)− tk+1;

- For t ∈ ∪∞k=0{σ1(tk+1)}; σ(t) = σ2(tk+1);

µ2(t) = σ(t)− t = σ2(tk+1)− σ1(tk+1).

In the following, we suppose that T is unbounded above, and
the graininess functions are bounded (i.e, 0 < µ1 ≤ µ1 max

and 0 < µ2 ≤ µ2 max).

Fig. 1: Time scale T = P{σ1(tk),σ2(tk),tk+1}

Let {Ac, A1, A2} be a set of a constant regressive matrices
in Rn×n. The considered nonlinear switched system on T =
P{σ1(tk),σ2(tk),tk+1} is given by, for x(t) ∈ Rn

x∆(t) =


Acx(t) + fc(x(t)); t ∈ ∪∞k=0[σ2(tk), tk+1[

A1x(t) + f1(x(t)); t ∈ ∪∞k=0{tk+1}

A2x(t) + f2(x(t)); t ∈ ∪∞k=0{σ1(tk+1)},
(4)
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where t0 = σ2(t0) = 0 is the initial time. The first equation
of (4) describes the continuous-time dynamic. The second
and third equations, describe the discrete-time dynamics (i.e,
the states jumps) during certain periods µ1(t) and µ2(t),
which are considered to be variable in time. Uncertainties
are modeled by functions fc : Rn → Rn, which act on the
continuous-time subsystem, and fi : Rn → Rn, i ∈ {1, 2},
which act on the discrete-time subsystems. Suppose that the
conditions of existence and uniqueness of the solution of
each subsystem in (4) are satisfied (i.e, fi, i ∈ {c, 1, 2}, are
rd-continuous, bounded and Lipschitz continuous [9]).

IV. STABILITY ANALYSIS

Stability of switched system (4), has been studied in
[16], by considering one continuous-time subsystem, and
one discrete-time subsystem described by matrix Ad. The
matrices Ac and Ad were supposed to be commutative, such
that, a CLF exists and it has been computed. In this paper,
the commutativity condition of matrices of (4) is removed.
In this case, the CLF may not be known, or does not
exist. Therefore, one can investigate the stability of switched
system (4) using TSML. The following theorem, provides
a generalization of the standard MLF method [1] to the
nonlinear switched systems (4) on T.

Theorem IV.1. Consider the switched system (4), such that
all the subsystems are asymptotically stable. Let the positive
definite radially unbounded functions Vi : Rn → R+, i ∈
{c, 1, 2}, be the corresponding time scale Lyapunov function
(TSLF). Suppose that there exists a family of a positive
definite continuous functions Wi : Rn → R+, i ∈ {c, 1, 2},
such that, ∀k ∈ N,

Vc(x(σ2(tk+1)))− Vc(x(σ2(tk))) ≤ −Wc(x(σ2(tk))) (5)

V1(x(tk+2))− V1(x(tk+1)) ≤ −W1(x(tk+1)) (6)

V2(x(σ1(tk+2)))− V2(x(σ1(tk+1))) ≤ −W2(x(σ1(tk+1))).
(7)

Then, the system (4) is asymptotically stable.

Inequalities (5), (6) and (7), means that, ∀i ∈ {c, 1, 2}, the
value of Vi at every entering time of each subsystem, form
a decreasing sequence.

Proof. The proof is based on Lyapunov functions theory,
and is similar to the continuous case (see [1]).

Note that, the TSMLF conditions in Theorem IV.1 can be
satisfied, when the switching signal is constrained such that,
the desired relationships between the values of the Lyapunov
functions at switching times is ensured.

A. Main results

In this section, constraints on the switching signal are de-
rived, to ensure the desired relationships between the values
of the TSMLF at switching times, described in Theorem IV.1.

First, the stability of the linear switched system, without
uncertainties (i.e; fi(x(t)) = 0, i ∈ {c, 1, 2}) is discussed.
Let us consider the switched system

x∆(t) =


Acx(t); t ∈ ∪∞k=0[σ2(tk), tk+1[

A1x(t); t ∈ ∪∞k=0{tk+1}

A2x(t); t ∈ ∪∞k=0{σ1(tk+1)}.

(8)

Theorem IV.2. Consider the switched system (8), and
suppose that the following conditions are satisfied,
(i) The matrices Ai, i ∈ {c, 1, 2} are exponentially stable.

(ii) There exist functions Vi : Rn → R+, defined by

Vi(x) = xTPix, Pi = PTi > 0, i ∈ {c, 1, 2}, (9)

such that, for a positive constants αi, βi, γi,

βi‖x‖2 ≤ Vi(x) ≤ αi‖x‖2, (10)

V ∆
i (x) ≤ −γi‖x‖2, (11)

−γi
αi
∈ R+, i ∈ {1, 2}. (12)

(iii) The duration of each continuous-time subsystem satis-
fies

tk+1−σ2(tk) ≥
log
[∏2

i=1
αcαi
βcβi

(
1 + µi(tk+1)−γiαi

)]
γc
αc

,

(13)
for all k ∈ N. Then system (8) is exponentially stable.

Proof.
Let the TSMLF Vi : Rn → R+, i ∈ {c, 1, 2}, defined by
(9). Condition (10) is satisfied for αi = λmax(Pi) and βi =
λmin(Pi), the lowest and the largest eigenvalues of Pi, i ∈
{c, 1, 2}, respectively. According to (i), there exists a positive
definite matrices Qc, Q1 and Q2, such that, the ∆-derivative
of Vi along the trajectories of (8), is given by (see [16])

V ∆
i (x(t)) =



xT (ATc Pc + PcAc)x ≤ −xTQcxT ,
t ∈ ∪∞k=0[σ2(tk), tk+1[,

xT (AT1 P1 + P1A1 + µ1(t)AT1 P1A1)x
≤ −xTQ1x

T , t ∈ ∪∞k=0{tk+1},

xT (AT2 P2 + P2A2 + µ2(t)AT2 P2A2)x
≤ −xTQ2x

T , t ∈ ∪∞k=0{σ1(tk+1)}.

(14)

The ∆-derivative of Vi(x) satisfies condition (11) for γi =
λmin(Qi) > 0, i ∈ {c, 1, 2}, the lowest eigenvalue of Qi.
From (10) and (11), we have

V ∆
i (x(t)) ≤ −γi

αi
Vi(x(t)), ∀i ∈ {c, 1, 2}. (15)

Using differential inequalities on time scales [9], we obtain,
for σ2(tk) ≤ t ≤ tk+1, ∀k ∈ N,

Vc(x(t)) ≤ e
−γc
αc

(t−σ2(tk)) Vc(x(σ2(tk))). (16)

For t = tk+1, ∀k ∈ N,

V1(x(σ1(tk+1))) ≤ e−γ1
α1

(σ1(tk+1), tk+1)V1(x(tk+1))
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= (1 + µ1(tk+1)(−γ1/α1))V1(x(tk+1)), (17)

and for t = σ1(tk+1), ∀k ∈ N,

V2(x(σ2(tk+1))) ≤ e−γ2
α2

(σ2(tk+1), σ1(tk+1))V2(x(σ1(tk+1)))

=

(
1 + µ2(tk+1)

−γ2

α2

)
V2(x(σ1(tk+1))). (18)

From (10), (16), (17) and (18), we can derive the following
relationship, for k ∈ N,

Vc(x(σ2(tk+1)))

≤
∏2
i=1

(
αcαi
βcβi

)(
1 + µi(tk+1)−γiαi

)
Vc(x(tk+1))

≤
∏2
i=1

(
αcαi
βcβi

)(
1 + µi(tk+1)−γiαi

)
×e

−γc
αc

(tk+1−σ2(tk))Vc(x(σ2(tk))).
(19)

It is now straightforward to compute an explicit time condi-
tion, which guarantees that conditions of Theorem IV.1 are
satisfied. In fact, it is sufficient to ensure that

Vc(x(σ2(tk+1)))−Vc(x(σ2(tk))) ≤ −η‖x(σ2(tk))‖2, (20)

for some η > 0. According to (19), this will be true, if[∏2
i=1

(
αcαi
βcβi

)(
1 + µi(tk+1)−γiαi

)
e

−γc
αc

(tk+1−σ2(tk)) − 1
]

×Vc(x(σ2(tk))) ≤ −η‖x(σ2(tk))‖2.

This holds, by virtue of (10), if

2∏
i=1

(
αcαi
βcβi

)(
1 + µi(tk+1)

−γi
αi

)
e

−γc
αc

(tk+1−σ2(tk))−1 < 0,

which can be equivalently rewritten as

tk+1 − σ2(tk) >
log
[∏2

i=1

(
αcαi
βcβi

)(
1 + µi(tk+1)−γiαi

)]
γc
αc

,

(21)
which concludes the proof.

B. Stability analysis of uncertain switched system

Based on the above result, sufficient conditions are de-
rived to guarantee the asymptotic stability of the uncertain
nonlinear switched system (4).

Theorem IV.3. Consider the nonlinear switched system (4).
It is assumed that the following hold:
(1) The conditions (i) and (ii) of Theorem IV.2 are satisfied.
(2) The uncertainties are bounded as follows

‖fi(x(t))‖ ≤ Li‖x(t)‖, i ∈ {c, 1, 2}, such that

Lc <
γc

2αc
, (22)

2Li(1 + µimax‖Ai‖)αi + µimaxL
2
iαi < γi,∀i ∈ {1, 2}

(23)

(3) The duration of the continuous-time subsystems satisfy,

tk+1 − σ2(tk) >
log
[∏2

i=1

(
αcαi
βcβi

)
(1 + µi(tk+1)ξi)

]
ξc

,

(24)
where ξc = γc

αc
− 2Lc, and for i = {1, 2},

ξi =
−γi
αi

+ 2Li(1 + µimax‖Ai‖) + µimaxL
2
i .

Then the switched system (4) is asymptotically stable.

Proof.
Let the TSMLF, Vi(x) = xTPix, i ∈ {c, 1, 2} satisfying
(10). The ∆-derivative of Vc(x) along the trajectories of the
continuous-time subsystem of (4), is given by (see [16])

V ∆
c (x) = xT (ATc Pc + PcAc)x+ fTc (x)Pcx+ xTPcfc(x)

≤ −λmin(Qc)‖x‖2 + 2‖Pc‖‖fc(x)‖‖x‖

≤ [−γc + 2Lcαc]‖x‖2.
(25)

Since Lc is bounded according to (22), Vc(x) is a quadratic
TSLF. From (10), we can derive the following inequality

V ∆
c (x) ≤ [

−γc
αc

+ 2Lc]Vc(x) = ξcVc(x). (26)

On the other hand, V ∆
i (x), i ∈ {1, 2} along the trajectories

of the discrete-time subsystems is given by (see [16])

V ∆
i (x) = xT∆Pix(σi(t)) + xTPix

∆

= xT (ATi Pi + PiAi + µi(t)A
T
i PiAi)x

+2xT (µ(t)ATi + I)Pifi(x) + µi(t)f
T
i (x)Pifi(x)

≤ [−γi + 2Li(1 + µimax‖Ai‖)αi + µimaxL
2
iαi] ‖x‖2.

(27)
Since fi(x) is bounded according to (23), Vi(x) is a quadratic
TSLF. Similarly to the proof of Theorem (IV.2), and from
(10), we can derive the following inequality:

V ∆
i (x) ≤ [

−γi
αi

+ 2Li(1 + µmax i‖Ai‖) + µmax iL
2
i ]Vi(x)

(28)
From (19), (26) and (28), we conclude that, ∀k ∈ N,

Vc(x(σ2(tk+1))) =∏2
i=1

αcαi
βcβi

(1 + µi(tk+1)ξi) e
ξc(tk+1−σ2(tk))Vc(x(σ2(tk)))

Condition (20) is ensured if (24) is satisfied, which concludes
the proof.

C. Generalisation to N -discrete subsystem

We can generalize the result to N -discrete subsystems
by considering {Ac, Ai}, i = 1, 2, . . . , N be a set of
N + 1 constant regressive matrices in Rn×n, and the
switched system determined as (4) on the time scale T =
P{σi(tk),tk+1} = ∪∞k=0{[σN (tk), tk+1] ∪ (∪N−1

i=1 σi(tk+1))}.
Suppose that conditions (1)-(3) of Theorem IV.3 are fulfilled
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for i ∈ {c, 1, . . . , N}, and the duration of each continuous-
time subsystem satisfies,

tk+1 − σN (tk) >
log
[∏N

i=1

(
αcαi
βcβi

)
(1 + µi(tk+1)ξi)

]
ξc

.

Then, the considered switched system is asymptotically
stable.

V. CONSENSUS PROBLEM UNDER INTERMITTENT
INFORMATION TRANSMISSIONS

The consensus problem for linear multi-agent systems
(MASs) with intermittent information transmissions, has
been studied in [17] by introducing time scale theory. The
considered MAS consists of N agents and described by

ẋi = Axi +Bui i ∈ {1, · · · , N}
ẋ0 = Ax0,

(29)

xi ∈ Rn and ui ∈ Rm are the state and the control input
of agent i, respectively. x0 ∈ Rn is the state of the leader.
A ∈ Rn×n and B ∈ Rn×m are constant real matrices. The
communication network graph G(V, E) consists of a node set
V = {1, 2, . . . , N} and an edge set E ⊆ V × V , such that,
each edge (i, j) ∈ E in the directed graph [24], corresponds
to an information link from agent i to agent j. Let aij = 1
if (j, i) ∈ E and aij = 0, otherwise. The Laplacian matrix of
G is defined as L = (mij) ∈ RN×N , with mii =

∑N
j=1 aij

and mij = −aij for i 6= j. The topology of G is described
by the weighted matrix H = L + D ∈ RN×N , where D =
diag(d1, ..., dN ), with di = 1 if the leader state is available
to follower i, and di = 0 otherwise. Let zi be the local
information available for agent i, such that

zi =
∑
j∈Ni

(xj − xi) + di(x0 − xi), (30)

where Ni is the set of neighbours of agent i. It is assumed
that, the local information is exchanged between neighboring
agents through a communication channel over some discon-
nected time intervals because of possible sensor failures or
communication obstacles. Suppose that the communication
channel is modeled with an additive uncertainty δ(t) ∈ R,
such that |δ(t)| ≤ δmax, where δmax > 0. Based on
the available local information, the following distributed
intermittent controller is proposed, ∀i ∈ {1, · · · , N} and
K ∈ Rm×n

ui(t) =

{
K(1 + δ(t))zi(t), t ∈ ∪∞k=0[σ(tk), tk+1[
K(1 + δ(t))zi(tk+1), t ∈ ∪∞k=0[tk+1, σ(tk+1)[.

The agents can communicate with their neighbours over the
set ∪∞k=0[σ(tk), tk+1[. At tk+1, k ∈ N, the communication
fails during a period µ(tk+1) = σ(tk+1)−tk+1, and the con-
trol is held on (i.e; does not evolve) until the communication
resumes at times t = σ(tk+1), and it will be updated. The
state error between the leader and agent i is determined by
ei = xi − x0. Let z = (zT1 , . . . , z

T
N )T , u = (uT1 , . . . , u

T
N )T .

The dynamic of the tracking error e = (eT1 , . . . , e
T
N )T can be

written in the compact form as (⊗ is the Kronecker product)

ė(t) = (IN ⊗A)e(t) + (IN ⊗B)u(t),

u(t) =

 −(1 + δ(t))(H ⊗K)e(t), t ∈ ∪∞k=0[σ(tk), tk+1[
−(1 + δ(tk+1))(H ⊗K)e(tk+1),
t ∈ ∪∞k=0[tk+1, σ(tk+1)[

(31)
The closed-loop system (31) can be written as

ė =


[(IN ⊗A)− (1 + δ(t))(H ⊗BK)]e(t),
t ∈ ∪∞k=0[σ(tk), tk+1[.

(IN ⊗A)e(t)− (1 + δ(tk+1))(H ⊗BK)
×e(tk+1), t ∈ ∪∞k=0[tk+1, σ(tk+1)[

(32)

Using the definition of the ∆-derivative and considering the
specific time scale T = ∪∞k=0[σ(tk), tk+1], the closed-loop
system (32) is written as (see [16], [17] for more details):

e∆(t) =



Ace(t)− δ(t)(H ⊗BK)e(t);
t ∈ ∪∞k=0[σ(tk), tk+1[

Ade(t)+

δ(t)

(
e(IN⊗A)µmax − I

µmax

)
(H ⊗A−1BK);

×e(t) t ∈ ∪∞k=0{tk+1}

(33)

with Ac = [(IN ⊗ A) − (H ⊗ BK)] and

Ad =

(
e(IN⊗A)µmax − I

µmax

)
[I − (H ⊗ A−1BK)].

Notice that, if A is not invertible, we can always
determine the discrete matrix via the convergence
power series E(Aµ(t)) =

∑∞
n=1

(Aµ(t))n−1

n! , and

Ad =

(
e(IN⊗A)µmax − I

µmax

)
[E(Aµ(t))(H ⊗ BK)]. The

objective is to determine an upper bound of the duration
of communication to be respected, such that the consensus
problem is solved, even when the communication fails for
some period of time.

Consider now the consensus for MAS which consists of
one leader and two followers (N = 2, (Fig. 2)), described by

A =

(
0 1

0.1 0.05

)
, B =

(
0
1

)
and H =

(
1 0
−1 2

)
.

Ac =


0 1.0000 0 0

−0.9000 −0.4500 0 0
0 0 0 1.0000

1.0000 0.5000 −1.9000 −0.9500

 .

For µmax = 0.9, the discrete subsystem is described by

Ad =


−0.4139 0.8067 0 0
−0.9330 −0.4205 0 0
0.4599 0.2300 −0.8739 0.5768
1.0367 0.5184 −1.9697 −0.9389

 .

The control gain, such that Ac is stable, is set as
K =

(
1 0.5

)
. Let us define, for Qc = Qd = I4 (the

4× 4 identity matrix), the positive definite matrices
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Fig. 2: Communication topology.
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Fig. 3: Trajectories of the tracking error e.

Pc =


3.4328 1.0914 −0.2435 0.4823
1.0914 3.6620 −0.7257 0.1130
−0.2435 −0.7257 1.7763 0.2632
0.4823 0.1130 0.2632 0.8033

 and

Pd =


6.1883 0.0235 −0.0415 0.0008
0.0235 5.3271 −0.0032 −0.0121
−0.0415 −0.0032 0.0421 0.0006
0.0008 −0.0121 0.0006 0.0126

 ,

which is computed according to Remark II. We have, αc =
4.8367, βc = 0.6331, αd = 6.1892, βd = 0.0126 and γc =
γd = 1. For δmax = 0.003, we have Lc = 0.01 and Ld =
0.002, that satisfies conditions (22), (23), and we get ξc =
0.9033, ξd = 0.9164. Condition (24) is satisfied if

tk+1 − σ(tk) ≥ 7.183, ∀k ∈ N,

which guarantee the stability of switched system (33). The
error signals are plotted in Fig. 3 on time scale T =
∪∞k=0[8.1k + k

1.11k+0.8 , 8.1(k + 1)], such that 0.523 ≤
µ(tk) = k

1.11k+0.8 ≤ 0.9, and 7.19 ≤ tk+1 − σ(tk) =

8.1 − k
1.11k+0.8 ≤ 8.1, which shows that they converge to

zero.

VI. CONCLUSION

Time scale theory was introduced to derive new conditions
for stability of a class of uncertain switched systems between
a continuous-time subsystem and several discrete-time sub-
systems, using the concept of TSMLF. The proposed scheme
has been applied to solve the problem of consensus for multi-
agent systems with intermittent information transmissions.
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