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1. Introduction

Multivariate multiple linear regression (MMLR)1 is a natural generalization of tra-
ditional least squares regression (multivariate linear regression) to multiple right-hand 
sides. It is also useful in many large-scale real-world applications including image clas-
sification [28,58], quality control monitoring [15,38], genetic association studies [4,27], 
spatial genetic variation studies [52], climate studies [22], and low-rank tensor factor-
izations [25] to name a few. In the mathematics literature, least squares problems with 
multiple right-hand sides occur in the total least squares context, where both the inde-
pendent and dependent variables may contain errors [18,19,45].

In recent years, randomized approaches have become a popular method of dealing with 
very large data problems in numerical linear algebra [35,57]. The idea is to utilize random 
projections, random sampling, or some combination of the two to reduce the problem to a 
lower dimension while approximately retaining the characteristics of the original problem. 
Referred to as sketching, this has become a popular approach for the fast solution of 
highly overdetermined or underdetermined regression problems [2,9,12,29,30,36,39,41], 
where either the number of rows far exceeds the number of columns, or vice versa.

We view row-sketched MMLR as a multiplicative perturbation of MMLR, and derive 
perturbation bounds that are amenable to geometric interpretation. Following up on our 
recent work [9], which quantifies the effect of sketching on the geometry of traditional 
least squares, we extend our analysis to sketched MMLR in general Schatten p-norms, 
which appear in numerous machine learning problems. In particular, the nuclear (p = 1) 
and Frobenius (p = 2) norms appear in penalized regression [55,58], regularized ma-
trix regression [59], matrix completion [6,7], trace approximation [16,48], image feature 
extraction [14], and image processing and classification [26,53,54].

1.1. Problem setting

We begin with the exact MMLR problem in a Schatten p-norm. Denote the singular 
values of a matrix M ∈ Rm×d by

σ1(M) ≥ σ2(M) ≥ · · · ≥ σmin(m,d)(M) ≥ 0.

The Schatten p-norm [23, page 199] of M is a function of its singular values

‖M‖(p) = p
√

σ1(M)p + · · · + σr(M)p for 1 ≤ p ≤ ∞.

Given a pair of matrices A ∈ Rm×n and B ∈ Rm×d with rank(A) = n, the goal is to 
estimate the solution X̂ ∈ Rn×d satisfying

1 We abbreviate multivariate multiple linear regression as “MMLR” throughout this paper.
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min
X∈Rn×d

‖AX − B‖(p) for 1 ≤ p ≤ ∞. (1)

Popular Schatten p-norms include the

• p = 1 nuclear (trace) norm ‖M‖∗ =
∑min(m,d)

j=1 σj(M) = ‖M‖(1),

• p = 2 Frobenius norm ‖M‖F =
√∑min(m,d)

j=1 σj(M)2 = ‖M‖(2), and
• p = ∞ Euclidean (operator) norm ‖M‖2 = σ1(M) = ‖M‖(∞).

Given a matrix S ∈ Rc×m with n ≤ c ≤ m, the perturbed MMLR problem in a 
Schatten p-norm via randomized row-sketching is

min
X∈Rn×d

‖S(AX − B)‖(p) for 1 ≤ p ≤ ∞. (2)

Row-sketching can be an effective approach to handling large data in the highly over-
constrained case [11,12,30,39,51], where m � n.

1.2. Existing work

Widely considered to have originated in [41], randomized sketching has become a 
popular approach to solving large data problems in machine learning and numerical 
linear algebra [35,57]. In the regression setting, sketching approaches can be broadly 
classified [46, Section 1] according to whether they achieve row compression [3,11,12,
21,29,30,40,51], column compression [2,46], or both [36]. Recent work has improved the 
theoretical understanding of randomized regression from a statistical [9,29,30,39,55] and 
geometric perspective [9].

The sketched MMLR problem in (2) can be viewed as a generalization of weighted least 
squares since S is not required to be positive definite diagonal [24,42,56]. Additionally, 
(2) holds more generally for Schatten p-norms with 1 ≤ p ≤ ∞ rather than only the 
Frobenius norm. Perturbation analysis for weighted least squares quantifies the effect of 
additive perturbations of the weights, A, or both [56]. By contrast, we view the sketched 
problem in (2) as a multiplicative perturbation of (1).

1.3. Our contributions

Our results extend the following: 1) Maher’s work [31–34] on Schatten p-norms; 2) the 
analysis in [9] to the sketched MMLR problem in a Schatten p-norm; and 3) the result 
in [12, Lemma 1] to the d ≥ 1 case and for Schatten p-norms with 1 ≤ p ≤ ∞ under 
weaker assumptions. We also show that the accuracy of the sketched MMLR solution in a 
Schatten p-norm depends on a term that captures both 1) how close the sketching matrix 
S is to approximately preserving orthogonality [10,37,47] for any rank-preserving S and 
2) how close the vectors in a basis for the sketched subspace are to being orthonormal 
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(Proposition 3). We present a geometric interpretation of the action of the sketching 
matrix S in terms of relevant subspaces. We show that a key term in assessing the 
accuracy of the sketched MMLR solution can be interpreted as the tangent of a largest 
principal angle between these subspaces if S has orthonormal rows (Proposition 4) or if 
S preserves rank (Proposition 5). We extend this interpretation to the operator norm 
difference between an orthogonal and oblique projector with the same range when S
preserves rank (Proposition 6).

1.4. Preliminaries

We begin by setting some notation. Let In = (e1 e2 . . . en ) denote the n × n

identity matrix, and let the superscript T denote the transpose. Let A ∈ Rm×n be a 
matrix with rank(A) = n. Then A has the following full (first equality) and thin (second 
equality) QR decompositions

A = (Q Q⊥ )
(

R
0(m−n)×n

)
= QR, (3)

respectively, where R ∈ Rn×n is nonsingular. Thus, Q ∈ Rm×n and Q⊥ ∈ Rm×(m−n)

represent orthonormal bases for range(A) and range(A)⊥ = null(AT ), respectively.
Since A has full column rank, its Moore-Penrose generalized inverse is

A† = (AT A)−1AT = R−1QT .

The two-norm condition number of A with respect to left inversion is

κ2(A) = ‖A‖2 ‖A†‖2.

The following lemma asserts strong multiplicativity for Schatten p-norms and in-
variance under multiplication by matrices with orthonormal columns (rows) on the left 
(right).

Lemma 1 ([34, (2.7)]). For F ∈ Rm×n, G ∈ Rk×m and C ∈ Rn×l with 1 ≤ p ≤ ∞, we 
have

‖GFC‖(p) ≤ ‖G‖2‖F‖2‖C‖(p).

This version of Lemma 1 is obtained from a modification of the proof for [34, (2.5)].

2. Multivariate Multiple Linear Regression

We describe the solution and regression residual for the exact and perturbed MMLR 
problems in a Schatten p-norm in (1) and (2), respectively. The following states that the 
solutions for (1) are the same, regardless of the choice of p ≥ 1 [34].
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Proposition 1 ([31,32,34]). Let matrices A ∈ Rm×n and B ∈ Rm×d be given. The MMLR 
problem in a Schatten p-norm

min
X∈Rn×d

‖AX − B‖(p) for 1 ≤ p ≤ ∞

has the minimal Schatten p-norm solution X̂ ≡ A†B with prediction and regression 
residual

B̂ ≡ AX̂ and

Γ̂ ≡ B − AX̂ = (I − AA†)B,

respectively. If rank(A) = n, then the solution X̂ = R−1QT B is unique with regression 
residual Γ̂ = (I − QQT )B = Q⊥QT

⊥B.

For a proof that X̂ is the minimal Schatten p-norm solution to (1), see [31,32,34]. 
Specifically, [31] shows that ‖AX − B‖(p) ≥ ‖AA†B − B‖(p) for 2 ≤ p < ∞ and [32]
extends the result to 1 ≤ p < ∞. Then, [34] extends the inequality to 1 ≤ p ≤ ∞ by 
showing that σj(AX − B) ≥ σj(AA†B − B) for j = 1, 2, . . . for finite rank operators. 
Finally, [34, Corollary 3.1] shows that X̂ has minimal Schatten p-norm. If rank(A) = n, 
then null(A) = {0} so that the general solution in [34, Corollary 3.1] is also unique.

Let S ∈ Rc×m be a multiplicative perturbation matrix from the left with n ≤ c ≤
m and rank(SA) ≤ rank(A) = n. For example, S may be a sampling matrix that 
extracts rows from A [12,30], a projection matrix [1,41], or a combination of sampling 
and projection matrices [2,12].

Corollary 1. Let matrices A ∈ Rm×n and B ∈ Rm×d be given. The perturbed MMLR 
problem in a Schatten p-norm

min
X∈Rn×d

‖S(AX − B)‖(p) for 1 ≤ p ≤ ∞

in (2) has the minimal Schatten p-norm solution X̃ = (SA)†SB. If rank(SA) =
rank(A) = n, then X̃ is unique.

Following convention [30,39], we define the prediction and regression residual of the 
perturbed MMLR problem to be

B̃ = AX̃ and Γ̃ = B − AX̃.

3. General multiplicative perturbations

We present general multiplicative perturbation bounds for (2) requiring no assump-
tions on S. To enable geometric interpretation, we express the bounds in terms of 
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orthogonal and oblique projectors onto range(A) or a subspace of range(A). For a matrix 
A,

PA = AA†

denotes the orthogonal projector onto range(A) along null(AT ) ([44, Theorem III.1.3]
and [8,20,50]). For the perturbed MMLR problem in (2),

P ≡ A(SA)†S

denotes the corresponding oblique projector onto a subspace of range(A). If rank(SA) =
rank(A), then range(P) = range(PA) although null(P) = null(AT ST S) [49, Theorem 
3.1], and null(AT ST S) 	= null(PA) in general [9, Lemma 3.1]. Oblique projectors appear 
in [43,49] for constrained least squares, [17] for discrete inverse problems, and [5,42] for 
weighted least squares. The oblique projector P can be viewed as an extension of the 
oblique projector

PD = A(AT DA)−1AT D

in [42] if D = ST S is a diagonal matrix with positive elements on the diagonal and 
(AT DA)−1 exists. If S is a sketching matrix that samples without replacement and 
c = m, then ST S = Im satisfies the requirements for D in [42]. In this case, however, 
the sketched MMLR problem in (2) becomes the exact MMLR problem in (1). If d = 1
and p = 2 in (2), the oblique projector P appears in [39] if rank(SA) = rank(A) and 
in [9, Lemma 3.1] for any sketching matrix S. Oblique projectors also appear in other 
problems, such as the discrete empirical interpolation method (DEIM) oblique projector 
D = Ur(ST Ur)†ST in [13, Section 3.1].

Since A† is a left inverse of A, the exact and perturbed solutions are X̂ = A†PAB
and X̃ = A†PB, respectively [9, Lemma 3.1]. Therefore, the absolute error between the 
solution and regression residual is

X̃ − X̂ = [(SA)†S − A†]B = A†(P − PA)B and

Γ̃ − Γ̂ = A[A† − (SA)†S]B = (PA − P)B.

Proposition 2 bounds the absolute error of the perturbed solution and regression 
residual for the MMLR problem in a Schatten p-norm with 1 ≤ p ≤ ∞ in terms of the 
above projection matrices.

Proposition 2. For the perturbed MMLR problem in (2), the absolute error bounds on the 
solution and regression residual in a Schatten p-norm are

‖X̃ − X̂‖(p) ≤ ‖A†‖2 ‖P − PA‖2 ‖B‖(p) and

‖Γ̃ − Γ̂‖(p) ≤ ‖P − PA‖2 ‖B‖(p).
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If AT B 	= 0, the relative error bound in a Schatten p-norm is

‖X̃ − X̂‖(p)

‖X̂‖(p)
≤ κ2(A) ‖P − PA‖2

‖B‖(p)

‖A‖2‖X̂‖(p)
.

Proof. Lemma 1 implies the bounds for the absolute error in a Schatten p-norm. �
Proposition 2, which extends [9, Corollary 3.5] to multiple right-hand sides and Schat-

ten p-norms with 1 ≤ p ≤ ∞, shows that the accuracy of the sketched solution and 
regression residual depends on the operator norm projector difference ‖P − PA‖2.

4. Multiplicative perturbations that preserve rank

We present multiplicative perturbation bounds for (2) that hold if rank(SA) =
rank(A). We begin by rewriting the difference between PA and P in terms of an or-
thonormal basis for the column space of A. Since rank(SA) = n, (SA)† = R−1(SQ)†

so that

PA − P = QQT − Q(SQ)†S.

Although the results in this section require the additional assumption that rank(SA) =
rank(A), they enable geometric interpretation beyond the difference between the pro-
jectors PA and P.

Proposition 3. For the perturbed MMLR problem in (2), if rank(SA) = rank(A), the 
absolute error bound in a Schatten p-norm for 1 ≤ p ≤ ∞ is

‖X̃ − X̂‖(p) ≤ ‖A†‖2 ‖(SQ)†SQ⊥‖2 ‖Γ̂‖(p).

Proof. Since rank(SA) = n, we have (SA)† = R−1(SQ)†. Thus,

X̃ − X̂ = (SA)†SB − A†B

= R−1[(SQ)†S − QT ]B. (4)

Multiplying B on the left by the identity matrix I = QQT + Q⊥QT
⊥ and inserting it in 

(4) gives

X̃ − X̂ = R−1[(SQ)†S − QT ](QQT + Q⊥QT
⊥)B

= R−1(SQ)†SQ⊥QT
⊥B. (5)

Lemma 1 implies the following upper bound on the Schatten p-norm of the absolute 
error difference between the sketched and exact MMLR solutions
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‖X̃ − X̂‖(p) ≤ ‖R−1‖2 ‖(SQ)†SQ⊥‖2 ‖Q⊥QT
⊥B‖(p).

Finally, applying the definition of the exact regression residual Γ̂ = Q⊥QT
⊥B concludes 

the proof. �
Since ‖A†‖2 and ‖Γ̂‖(p) are fixed for any pair of A and B, only ‖(SQ)†SQ⊥‖2 is 

affected by the choice of the sketching matrix S. We compare this to the approximate 
isometry term ‖(SQ)T SΓ̂‖2 from [12, Equation 9], where (SQ)T SΓ̂ is a vector. Notice 
that we can arrive at the ‖(SQ)T SΓ̂‖2 term if we revert to (5) in the above proof and 
assume that the columns of SQ are orthonormal so that (SQ)† = (SQ)T . If we further 
restrict our analysis to the d = 1 and p = 2 case, we recover the same normed quantity 
as in [12, Equation 9]. Thus, we compare Proposition 3 to [12, Lemma 1], where the 
absolute solution error for the d = 1 and p = 2 case is

‖X̂ − X̃‖2 ≤ ‖A†‖2
√

ε‖Γ̂‖2 (6)

for ε and S satisfying [12, Equations 8 and 9]:

‖(SQ)†‖2 ≤ 2 1
4 and (7)

‖(SQ)†SΓ̂‖2 ≤
√

ε

2‖Γ̂‖2. (8)

Proposition 3 can be viewed as an extension of [12, Lemma 1] in the following ways. 
First, Proposition 3 extends the result in [12, Lemma 1] for d ≥ 1 and for Schatten 
p-norms with 1 ≤ p ≤ ∞. Second, [12, Lemma 1] is a special case of Proposition 3 when 
d = 1, p = 2, and 

√
ε = ‖(SQ)†SQ⊥‖2. Third, in contrast with [12, Lemma 1], the bound 

in Proposition 3 holds without requiring the assumptions (7) or (8).

5. Angle between the original and perturbed subspaces

We show that ‖(SQ)†SQ⊥‖2 is the tangent of a largest principal angle under two 
conditions: if S has orthonormal rows, or if S preserves rank. Furthermore we show that 
if S preserves rank, then ‖(SQ)†SQ⊥‖2 equals the operator norm difference between the 
orthogonal projector PA and the oblique projector P. Therefore, if an orthogonal and 
an oblique projector have the same range, then their operator norm difference can be 
interpreted in terms of principal angles. We begin with a decomposition of range(ST )
with respect to range(Q) and range(Q⊥).

5.1. A decomposition of range(ST )

The following geometric interpretations depend on a decomposition of S into three 
subspaces. Let Q ≡ range(Q), Q⊥ ≡ range(Q⊥), and S ≡ range(ST ). Following the 
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notation in [60, Section 2], we can decompose S into the direct sum of the following 
subspaces

S1 ≡ S ∩ Q, S0 ≡ S ∩ Q⊥, and S10 ≡ S ∩ (Q ⊕ Q⊥)⊥.

We summarize and interpret these subspaces of S as follows. The subspace S1 con-
tains the directions in S that are also in Q. Specifically, S1 = {s ∈ S : sT q =
‖s‖2‖q‖2 for some q ∈ Q}, where ‖ · ‖2 denotes the Euclidean vector norm.

The subspace S0 contains the directions in S that are also in Q⊥. Therefore, these 
are the directions in S that are orthogonal to directions in Q. Specifically, S0 = {s ∈ S :
sT q = 0 for all q ∈ Q}.

The subspace S10 contains the directions in S that are in neither Q nor Q⊥. There-
fore, these are the directions in S that are not orthogonal to Q but are also not in Q. 
Specifically, S10 = {s ∈ S : 0 < |sT q| < ‖s‖2‖q‖2 for all q ∈ Q}.

The subspace

SQ ≡ S1 ⊕ S10,

then comprises the directions in S that are not orthogonal with directions in Q. Specif-
ically, SQ = {s ∈ S : 0 < |sT q| ≤ ‖s‖2‖q‖2 for all q ∈ Q}.

Section 5.3.1 presents an illustrative example of these subspaces in the context of 
Proposition 5. In general, we have

dim(S1) ≤ dim(Q) = n

and

dim(S1) ≤ dim(SQ) ≤ dim(S) ≤ c.

If rank(SA) = n, then we additionally have

dim(S1) ≤ n ≤ dim(SQ) ≤ dim(S) ≤ c.

5.2. Interpretation of ‖(SQ)†SQ⊥‖2 if S has orthonormal rows

If S has orthonormal rows, the quantity ‖(SQ)†SQ⊥‖2 has geometric interpretation 
even with no additional requirements on S or rank(SA). One example is sketching via 
random sampling without replacement where one row is selected in each sample. The 
following relies on a key result on the angles between subspaces from [60, Theorem 3.1].

Proposition 4. For the perturbed MMLR problem in (2) with the subspaces defined in 
Section 5.1, if S has orthonormal rows, then
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‖(SQ)†(SQ⊥)‖2 = tan θ1(S, Q),

where θ1(S, Q) denotes a largest principal angle between S and Q. The absolute error 
bound in a Schatten p-norm is

‖X̃ − X̂‖(p) ≤ tan θ1(S, Q) ‖A†‖2 ‖Γ̂‖(p).

This result follows from [60, Theorem 3.1] using the orthogonal matrix (Q Q⊥ ) and 
ST with S having orthonormal rows. Thus, the positive singular values of (SQ)†SQ⊥
are the tangents of the principal angles between S and Q. Therefore, the absolute error 
in a Schatten p-norm between the sketched and exact MMLR solutions depends on the 
tangent of a largest principal angle between S and Q. Notice that without additional 
assumptions on rank(SA), the tangent of a principal angle between S and Q may be ∞.

5.3. Interpretation of ‖(SQ)†SQ⊥‖2 if rank(SA) = rank(A)

If the sketching matrix S preserves rank so that rank(SA) = rank(A), the quantity 
‖(SQ)†SQ⊥‖2 has geometric interpretation without requiring additional assumptions on 
S. This interpretation is based on [60, Theorem 3.1 and Remark 3.1].

Proposition 5. For the perturbed MMLR problem in (2) with the subspaces defined in Sec-
tion 5.1, if rank(SA) = rank(A) and Z ≡ (SQ)†S, then the singular values of (SQ)†SQ⊥
represent the tangents of the principal angles between Z ≡ range(ZT ) and Q. Therefore,

‖(SQ)†(SQ⊥)‖2 = tan θ1(Z, Q),

where θ1(Z, Q) denotes a largest principal angle between Z and Q. Moreover, tan θ1(Z, Q)
is strictly less than ∞ and the absolute error bound in a Schatten p-norm is

‖X̃ − X̂‖(p) ≤ tan θ1(Z, Q) ‖A†‖2 ‖Γ̂‖(p).

Proof. The proof is adapted from [60, Remark 3.1]. The proof strategy is to construct 
an orthonormal basis for a subspace of SQ and then to apply [60, Theorem 3.1] with the 
orthonormal basis and Q.

We begin with a basis transformation of S by constructing the orthogonal matrix

QB ≡ (Q Q⊥ ) ∈ Rm×m.

Rewriting S in terms of QB gives

S = SQBQT
B = (SQ SQ⊥ ) QT

B .

Since rank(SQ) = n, (SQ)† is a left inverse of SQ and so applying it to S on the left 
gives
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Z = (SQ)†S =
(
In (SQ)†SQ⊥

)
QT

B ∈ Rn×m.

Let T ≡ (SQ)†SQ⊥ ∈ Rn×(m−n). We will show that the singular values of T represent 
the tangents of the principal angles between Z and Q.

Notice that the Gram matrix

ZZT = In + TTT ∈ Rn×n

is symmetric positive definite. Therefore, its inverse has the unique symmetric positive 
definite square root (ZZT )− 1

2 = (In + TTT )− 1
2 . Now define

Z0 ≡ (ZZT )− 1
2 Z ∈ Rn×m.

Then Z0 has orthonormal rows and the columns of ZT
0 represent a basis for range(ZT ). 

Since rank(SQ) = n, range(ZT ) = range(ST SQ) ⊆ range(ST ) = S.
Applying [60, Theorem 3.1] with ZT

0 and Q shows that the singular values of 
(SQ)†SQ⊥ are the tangents of the principal angles between Z = range(ZT ) and Q. 
Since (ZT

0 )T Q = Z0Q = (ZZ)− 1
2 = (In + TTT )− 1

2 is nonsingular, Z ⊆ SQ and the 
tangents of the principal angles between Z and Q are strictly less than ∞. �

Clearly, Z ⊆ SQ. One might ask the question: Is Z = SQ? Notice that rank(SA) = n

and rank(ST ) ≤ c imply that

n ≤ dim(SQ) ≤ c and dim(S1) ≤ c − n.

Although Z 	= SQ in general, if dim(SQ) = n, then dim(Z) = n implies that Z = SQ. 
Meanwhile, if dim(SQ) > n, then n = dim(Z) < dim(SQ) so that Z 	= SQ. The example 
in Section 5.3.1 illustrates this concretely.

Propositions 4 and 5 show that if rank(SA) = rank(A), ‖(SQ)†SQ⊥‖2 has geometric 
interpretation as the tangent of a largest principal angle between a subspace of SQ

and Q. Moreover, the tangents of the principal angles between these two subspaces are 
bounded. If rank(SA) < rank(A), then ‖(SQ)†SQ⊥‖2 still has geometric interpretation 
as the tangent of a largest principal angle between S and Q if S has orthonormal rows. 
Proposition 5 implies that if rank(SA) = rank(A), then the operator norm difference 
between P and PA has the following geometric interpretation.

Proposition 6. For the perturbed MMLR problem in (2) with the subspaces defined in 
Section 5.1, if rank(SA) = rank(A),

‖P − PA‖2 = tan θ1(Z, Q),

where Z is a subspace of SQ and θ1(Z, Q) denotes a largest principal angle between Z
and Q. Moreover, tan θ1(Z, Q) is strictly less than ∞.
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Proof. We decompose Im into the sum of orthogonal projectors and rewrite the operator 
norm difference between PA and P as the following

PA − P = QQT − Q(SQ)†S(QQT + Q⊥QT
⊥).

After we expand and cancel terms, the result follows from unitary invariance of spectral 
norms and Proposition 5. �

This result is implied from the absolute error bound in Proposition 5. However, the 
direct statement of this result ties the interpretation of ‖(SQ)†SQ⊥‖2 as the tangent 
of a largest principal angle between a subspace of SQ and Q to the operator norm 
difference between P and PA. In this way, we have additional geometric interpretation 
of the difference between an orthogonal and oblique projector with the same range if S
preserves rank.

5.3.1. Illustrative example of the subspaces in Proposition 5
We provide an example illustrating the subspaces of Section 5.1 in the context of 

Proposition 5. Let

Q =

⎛
⎜⎜⎜⎜⎝

1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0

⎞
⎟⎟⎟⎟⎠ , Q⊥ =

⎛
⎜⎜⎜⎜⎝

0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

⎞
⎟⎟⎟⎟⎠ , and ST =

⎛
⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎟⎟⎠ .

Then S has the following subspaces

S1 = range

⎛
⎜⎜⎜⎜⎝

1 0
0 1
0 0
0 0
0 0
0 0

⎞
⎟⎟⎟⎟⎠ , S10 = range

⎛
⎜⎜⎜⎜⎝

0 0
0 1
1 0
0 0
0 1
1 0

⎞
⎟⎟⎟⎟⎠ , and SQ = range

⎛
⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎟⎟⎠ .

This example illustrates how S1 contains directions in S that are in Q, and S10 contains 
directions in S that cannot be represented solely by directions in Q or directions in 
Q⊥. This is because vectors in S10 are obtained from a non-trivial linear combination 
of vectors in Q with vectors in Q⊥. Thus, for any v ∈ S10 and any q ∈ Q, we have 
vT q 	= 0. However, v /∈ Q and v /∈ Q⊥.

Notice that in this example, there are no non-zero directions in S that are also in Q⊥. 
Since rank(SA) = n and rank(ST ) ≤ c require that dim(SQ) ≥ n and dim(S1) ≤ c − n, 
S0 = {0} is an artifact of this example.
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Proceeding with the example, we have

SQ =

⎛
⎜⎝

1 0 0
0 1 0
0 0 1
0 1 0

⎞
⎟⎠ and Z = (SQ)†S =

⎛
⎝1 0 0 0 0 0

0 1 0 0 1
2 0

0 0 1 0 0 1

⎞
⎠ ,

where SQ has full column rank. This gives us

ZZT =

⎛
⎝1 0 0

0 5
4 0

0 0 2

⎞
⎠ and Z0 = (ZZT )− 1

2 Z =

⎛
⎝1 0 0 0 0 0

0 2
√

5
5 0 0

√
5

5 0
0 0

√
2

2 0 0
√

2
2

⎞
⎠ .

Thus, ZT
0 has orthonormal columns and

Z0Q =

⎛
⎝1 0 0

0 2
√

5
5 0

0 0
√

2
2

⎞
⎠

is nonsingular so that Z ⊆ SQ since all three directions in Z are not orthogonal with 
directions in Q. However, dim(Z) = 3 = n while dim(SQ) = 4 = c so that Z 	= SQ.

6. Conclusion

This paper extends recent sketched least squares analyses [9,12] and Maher’s results on 
Schatten p-norms [31–34] to sketched MMLR in general Schatten p-norms by interpreting 
the sketched problem as a multiplicative perturbation. Our expressions for the exact 
and perturbed solutions in terms of projectors enable geometric interpretations of: 1) 
the action of the sketching matrix in terms of relevant subspaces, and 2) the difference 
between an orthogonal and oblique projector with the same range. As the results in the 
paper focus on general sketching matrices, we leave as future work investigating their 
implications for specific sketching algorithms.
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