












Table 4: Comparison of FracBNN with other efficient models on ImageNet ś The effective bitwidth of activations in FracBNN is 1.44

bits since the average sparsity in fractional convolution is 56%. IMAC denotes integer MACs. FPMAC denotes floating-point MACs.

Network Precision Model Size IMAC BMAC FPMAC Top-1 Top-5

(W/A) (MB) (×108) (×109) (×108) (%) (%)

Bi-RealNet-34 [31] 1/1 3.18 0 3.53 1.39 62.2 83.9

MeliusNet-29 [2] 1/1 5.10 0 5.47 1.29 65.8 86.2

MeliusNet-42 [2] 1/1 10.1 0 9.69 1.74 69.2 88.3

Real-to-Binary Net [33] 1/1 1.92 0 1.68 1.56 65.4 86.2

ReActNet-A [30] 1/1 4.56 0 4.82 0.12 69.4 -

BNN Ensemble [59] 1/1 11.52 0 10.10 8.34 61.0 -

FP-BNN [28] 1/1 11.4 1.10 1.03 0 42.9 66.8

JPEGCompress [34] 1/8 0.72 6.21 0 0 70.8 90.1

Synetgy [51] 4/4 2.16 3.30 0 0.09 68.3 88.1

ResNet-18 [17] 8/8 11.69 0 0 18.2 69.8 89.1

MobileNet [20] 8/8 4.20 0 0 5.69 70.6 -

MobileNet V2 [41] 8/8 3.47 0 0 3.00 71.8 91.0

ShuffleNet 1.5× [54] 8/8 3.40 0 0 2.92 71.5 90.2

FracBNN 1/1.4 4.56 0.01 7.30 0 71.8 90.1

Table 5: Comparison of FracBNNwith other BNNs onCIFAR-

10 ś The effective precision of activations in FracBNN is 1.4 bits

since the average sparsity in fractional convolution is 60%.

Model Model Size BMAC IMAC Top-1

(MB) (×106) (×106) (%)

IR-Net [38] 0.03 40.5 0.4 86.5

FP-BNN [28] 1.67 58.1 3.6 86.3

BNN [57] 1.67 58.2 3.5 88.9

FracBNN 0.03 71.5 0 89.1

the 2-bit feature maps from the on-chip Block RAM and the 1-bit

weights from the off-chip DDR memory. We manage to store the

low-precision feature maps on the Block RAM for faster loading.

After obtaining the feature maps, we first split each 2-bit feature

into MSB and LSB. We then pack bits along the channel dimension

into 𝐵-bit arbitrary precision integers for concurrent access. As we

acquire weights from the DDR, we pack them into 𝐵-bit vectors to

align the precision with the feature maps. In order to balance be-

tween parallelism and resource utilization, we select 𝐵 = 64 for the

CIFAR-10 design and 𝐵 = 32 for the ImageNet design. The packed

weights and feature maps are fed to the convolution engine. Mean-

while, auxiliary parameters, including thresholds, and weights in

the BatchNorm and activation functions are fetched from the DDR.

We also load the fixed-point shortcuts from the DDR to prepare for

the residual connection summation.

The pseudo code of the fractional convolution engine is described

in Algorithm 1. As we introduced in Section 3.3, the fractional

convolution consists of a base phase and an update phase.

In the base phase (line 5 to 8), the MSB feature maps are con-

volved with the weights. The computation is the same as a binary

convolution. We first compute bitwise XNOR on the 𝐵-bit features

and weights, and then perform a popcnt on the outcome as the

final result. We find that the straight-forward implementation for

popcnt of directly adding each bit is sufficiently resource efficient.

The combined XNOR and popcnt operations are able to be finished

in one cycle. As completing the base path, the output feature maps

of the MSB convolution are stored in an on-chip buffer, and we

proceed to the update phase.

In the update phase (line 9 to 18), a conditional binary convo-

lution is executed based on the per channel gating thresholds. As

shown in the algorithm, an LSB output feature will be computed

only when its correspondingMSB output feature exceeds the thresh-

old. The fractional convolution promotes to a binary convolution

if the sparsity is 100%; on the other hand, it degenerates to a 2-bit

convolution if the sparsity is 0%. Otherwise it is in between. If

the sparsity is low enough, it then becomes more straightforward

to directly parallelize the MSB and LSB convolutions to a 2-bit

convolution at the cost of more hardware resources.

The binary convolutions are pipelined on the spatial dimension

and parallelized on the channel dimension. Within the resource

constraint, we fully unroll the computation in a 3×3 window to

maximize the parallelism. The point-wise fractional convolution is

essentially the same as the 3×3 convolution other than the size of

the window. Upon finishing the convolution operations, we perform

BatchNorm and BPReLU activation on the results and produces the

output of a block. Finally, we organize the outputs into a buffer and

transfer them to DDR.

4.2 3×3 Binary Convolution Engine

The pure binary convolutional layer takes place only at the ther-

mometer encoded inputs. We reuse the 3×3 convolution engine in

the fractional convolutional layer to handle this occasion. Since

the input layer is excluded from fractional activations, we only

execute the base phase. For ImageNet, we pack 32 bits together

along the input channel and feed into the convolution engine. It

outputs 32 channels as well. Since the input has 96 channels after

the thermometer encoding, we iterate three times for each spatial

position and accumulate the results for the output of the layer.

4.3 Average Pooling, Classifier, and Other
Operations

In addition to the accelerators for convolution operations, which

account for themajority of the computations in the network, we also



Algorithm 1 Fractional Convolution

1: function FracConv(fmap, weights, threshold, output)

2: 𝑊 ←Width

3: 𝐻 ← Height

4: fmapmsb ← Split(fmap, msb)

5: fmaplsb ← Split(fmap, lsb)

6: for chout in 0, 1, ... 𝐶out − 1 do

7: for chin in 0, 1, ... 𝐶in − 1 do

8: w← LoadWeights(chout, chin)

9: output[chout] + = BinaryConv(fmapmsb [chin], w)

10: end for

11: for chin in 0, 1, ... 𝐶in − 1 do

12: w← LoadWeights(chout, chin)

13: for pixel in 0, 1, ..., 𝐻 ∗𝑊 − 1 do

14: if output[chout][pixel] > threshold[chout] then

15: act← LoadWindowlsb(fmaplsb, chin, H, W)

16: output[chout][pixel] + =

17: popcnt(XNOR(act, w))

18: end if

19: end for

20: end for

21: end for

22: end function

implement hardware accelerators for less frequent operations such

as average pooling and matrix multiplications. An average pooling

layer sums up features in the spatial dimension, and is divided by the

number of features summed together. The challenge of designing

this kernel is determining the amount of parallelism and the trade-

off between resource and latency. We use an adder tree to serve as a

sum engine to compute the sum in one dimension in a pooling tile

in one cycle and then pipeline the addition operation for the other

dimension to achieve the optimal concurrency. Even though it is

possible to maximize the parallelism by accessing all the elements in

a tile at once and compute the sumwith the fewest number of cycles,

it requires partitioning the array in both dimensions. The cost of

resource utilization may not be worth the performance gain. Our

implementation achieves comparable performance with economic

resource consumption. The matrix multiplication unit serves as

the linear classifier at the final state of the network. It computes

the class dimension in parallel. For further optimization, it can

be assigned to CPU and executed in parallel with the accelerator.

This compact accelerator design is the balanced choice between

performance and resource usage. Other miscellaneous operations

such as BatchNorm, BPReLU activation, and channel concatenation

are fused seamlessly with adjacent operations.

5 EVALUATION

In this section, we first describe the experiment setup, and then

present our results on FPGAs.

5.1 Modeling Training Setup

We evaluate FracNN on both CIFAR-10 [25] and ILSVRC12 Ima-

geNet [23] classification datasets. We augment the input images

using random horizontal flip and random crop. Color jitter is used

only for ImageNet. We follow the two-step training strategy as de-

scribed in Real-to-Binary Net [33]. In the first step, the activations

are binarized but the weights are floating-point. The weight decay

is 1e-5. In the second step, weights are binarized and initialized

from the first step. Activations are still binary. The weight decay is

zero. To train the FracBNN, the first two steps are the same except

that the activations are quantized to 2 bits. We add a third step that

initializes the weights from the second step, and applies the frac-

tional convolutional layer. The first and the last layer are excluded.

We use cross-entropy loss during the training on CIFAR-10. For

ImageNet, we calculate the KL divergence between the softmax

output of a teacher model and that of the trained model as the loss

function, same as ReActNet [30]. In our experiments the teacher

model is a pretrained ResNet-50.

For CIFAR-10, we train the model for 300 epochs in each training

step with a batch size of 128. The initial learning rate is 1e-3, and

decays linearly to 0 in each epoch. For ImageNet, we train the

model for 120 epochs in each step. The batch size is 256. The initial

learning rate is 5e-4 and also decays linearly to 0 in each epoch. We

use PyTorch [36] to specify models and training scripts. All training

experiments are completed on NVIDIA RTX 2080Ti GPUs.

5.2 FPGA Implementation

We evaluate the performance of the FracBNN accelerator archi-

tecture on a Xilinx Ultra96 v2 FPGA board. This board uses the

Zynq UltraScale+ MPSoC device (ZU3EG), which contains an em-

bedded ARM CPU. The programmable logic fabric has 71k LUTs,

360 DSPs, and 7.6 Mb BRAMs. Ultra96 v2 is supported by PYNQ,

which can import and invoke the accelerator as an overlay in a

Python environment. Programmers can feed data and control sig-

nals from software via AXI/DMA interfaces to the accelerator. We

have implemented accelerators for both CIFAR-10 and ImageNet.

The CIFAR-10 accelerator is fully unrolled on the board. Both de-

signs run at a clock frequency of 250MHz. The post-implementation

resource utilization is summarized in Table 8.

Table 6 compares our ImageNet accelerators against other pre-

vious works. Notably, our ImageNet model provides a significant

advantage in the model accuracy. The top-1 accuracy is the best

amongst the other comparable network models that are imple-

mented on FPGAs. To map the entire model on the FPGA, it takes

72% LUTs and 93% BRAM usage. Our DSP utilization is allocated

mainly for the index calculation, normalization, and activation

functions. Due to the limited available resource, we store the in-

termediate feature maps on the DDR memory upon completing a

combination of convolutional, BatchNorm, and BPReLU layers, and

fetch them when computing the residual connection. We are able

to achieve 48.1 frames per second (FPS) as we test our design in the

PYNQ environment. Our hardware logic runs at 16 ms. We allocate

double buffers to overlap part of the communication overhead and

compute. Our design can perform real-time image classifications,

and the attainable frame rate surpasses current state-of-the-art

embedded hardware accelerators on the same task. In Table 6, the

designs that have significantly higher frame rates either target a

server-class FPGA such as Intel Stratix V or have a lower accuracy

than ours. It is worth noting that Synetgy [51] take a different



Table 6: Hardware performance of FracBNN on ImageNet at batch size of 1.

ReBNet [11] AlexNet [28] FINN-R [3] T-DLA [7] MobileNetV2 [49] Synetgy [51] JPEGComp [34] FracBNN

Device Virtex Stratix-V Zynq Zynq Zynq Zynq VirtexUS+ Zynq

VCU108 ZU3EG 7Z020 ZU2EG ZU3EG XCVU9P ZU3EG

FPS 170 862.1 200.0 20.48 205.3 41.1 3321.2 48.1

Top-1 (%) 41.43 42.9 50.3 65.6 68.1 68.3 70.8 71.8

Top-5 (%) - 66.8 - - - 88.1 90.1 90.1

Bits (W/A) 1/1 1/1 1/2 2/2 8/8 4/4 1/8 1/1.4

Fmax (MHz) 200 150 220 250 430 250 300 250

Power (W) - 26.2 10.2 2.58 - 5.5 75 6.1

LUT 537600 230918 36249 37921 31198 51776 274795 50656

BRAM 3456 2210 432 97 145 159 2746 201

DSP 768 384 - 202 212 360 2370 224

Table 7: FracBNN performance on CIFAR-10 (batch size 1).

ReBNet BNN FBNA FracBNN

[11] [57] [15]

Device Zynq Zynq Zynq Zynq

ZC702 7Z020 ZC702 ZU3EG

FPS 2000 168.4 520.8 2806.9

Top-1 (%) 86.98 88.8 88.6 89.1

Bits (W/A) 1/1 1/1 1/1 1/1.4

Fmax (MHz) 200 143 - 250

Power (W) - 4.7 3.3 4.1

Table 8: Resource utilization of the FracBNN accelerator.

DSPs BRAM LUTs

CIFAR-10 126 (35%) 212 (98.1%) 51444 (72.9%)

ImageNet 224 (62.2%) 201 (93.0%) 50656 (71.8%)

approach in their FPGA implementation Ð the system consists of

independent accelerators, which the CPU invokes them as needed.

Table 7 compares our results against other works that target

CIFAR-10. FracBNN once again achieves the best model accuracy.

Compared to the BNN accelerator in [57] and FBNA [15], our de-

sign achieves the highest frame rate with a better accuracy on a

comparable embedded FPGA platform. Since our CIFAR-10 network

model is very compact, we are able to unroll the entire network on

the FPGA logic to eliminate unnecessary transactions between the

logic blocks and the DDR memory. The only data transmissions

are the input image and prediction results. Under this setting, we

achieve an FPS of 2806.9 with 72.9% of LUT utilization. The frame

rate is 1.4× higher than ReBNet [11], which has the highest frame

rate among the baselines but with a lower accuracy (by 2.1%).

5.3 Ablation Study

We further validate the efficacy of the binary input layer and the

fractional convolutional layer.

We observe that our binary input layer runs significantly faster

than a conventional fixed-point input layer with trivial additional

resource consumption. Table 9 shows the comparison in resource

utilization and latency. As described in Section 4.2, our binary input

layer reuses the convolution engine in the fractional convolutional

layer. The only resource consumption occurs in loading the image

and the weights, therefore remains low. Moreover, the latency of

our binary input layer is very low since the convolution engine is

highly parallelized when designed for the fractional convolution.

In contrast, the conventional input layer with 8-bit inputs and

weights requires DSP to compute the the results. The number of

DSPs, however, is limited on the target FPGA device. This resource

constraint makes it difficult for the 8-bit design to achieve the same

parallelism as binary computations, thus resulting in a much higher

latency.

Table 9: Comparison between the implementation of our bi-

nary input layer and an 8-bit conventional input layer.

Conv. DSPs BRAM LUTs Latency(ms)

1-bit 3 (0.8%) 2.5 (1.2%) 3603 (5.1%) 2.0

8-bit 287 (79.7%) 34 (15.6%) 22509 (31.9%) 65.9

To evaluate the efficiency of the fractional convolution, we im-

plement and compare the logic part of three networks Ð each with

1-bit convolutional layers, fractional convolutional layers, and 2-bit

convolutional layers, respectively. In the previous sections, we dis-

cuss the expectation that a neural network exploiting the fractional

convolution should perform slightly worse than a pure binary (1-bit

weights and 1-bit activation) model, but have significant improve-

ments over a conventional 2-bit activations and 1-bit weights model.

Table 10 shows a side-by-side comparison among the three models.

Clearly, the implementation results confirm our expectations on

the fractional network. We expend some extra resource to ensure

the same concurrency as the 1-bit model to match the performance.

The model with fractional convolutional layers has a slightly worse

latency compared to the 1-bit network, but it is more than 3x better

than a conventional 2-bit convolutional network. The only differ-

ence in the models is the precision of the convolution accelerator

modules. The reason behind such difference is that the conventional

2-bit convolution accelerator requires more resources than either

1-bit or fractional ones. If we hope to ensure the same concurrency,

there is no room to fit a much more expensive 2-bit convolution

accelerator. Eventually, we have to tune down the concurrency

to fit the network on the hardware, resulting in a higher latency

but slightly less resource utilization than the 1-bit and fractional

convolution models.

6 RELATED WORK

Binary Neural Networks. The pioneering works on BNN [8, 21]

establish the end-to-end training flow for the discrete networks.



Table 10: Comparisons among the 1-bit, fractional, and 2-bit

Networks on ImageNet.

Network DSPs BRAM LUTs Latency

Bitwidth (ms)

1-bit 87 (23.7%) 137 (63.4%) 59488 (84.3%) 15.0

2-bit 85 (23.8%) 169 (78.5%) 53419 (75.7%) 61.3

Frac. 224 (62.2%) 201 (93.0%) 50656 (71.8%) 16.3

Courbariaux et al. [21] binarize the weights and activations using

the sign function. This incurs nearly no loss in accuracy on small

datasets such as MNIST [27], SVHN [35], and CIFAR-10 [25]. While

its preliminary result of binarized AlexNet [26] only achieves 36.1%

top-1 accuracy on the ImageNet dataset, this work demonstrates

the feasibility of BNNs. There have been extensive follow-up ef-

forts to improve the accuracy of BNNs. Most of the attempts are

along the line of modifying BNN network architectures [2, 31, 40].

There are also works that explore different training strategies of

BNNs [33, 44, 60]. Recently, PReLU is found to be a better activa-

tion function for BNNs [6]. With an additional shift on the basis of

PReLU, ReActNet [30] binarizes MobileNet [20] and obtains ResNet-

18 level accuracy. In addition, [59] explores using an ensemble of

multiple BNN models to improve the accuracy, albeit at the cost of

higher compute complexity. There is also a study that tailors BNNs

for FPGAs by constructing LUTNet, an area-efficient LUT-based

neural network [46]. Unlike the aforementioned research, the pro-

posed approach exploits fractional activations to achieve efficient

and accurate quantization. Specifically, we leverage our recent work

on precision gating (PG) [55], a dynamic dual-precision scheme

that updates important features to a high precision at the inference

time based on a learnable threshold. We adopt PG in our baseline

BNN model motivated by ReActNet, and update a small portion of

features to two bits to improve the model accuracy.

Quantization of Input Layer. One visible drawback about cur-

rent BNNs in terms of hardware design is that the first layer remains

full-precision. Hirtzlin et al. [19] propose to use stochastic comput-

ing for the binarization of the input images. This method expands

the 3 input color channels from images in CIFAR-10 to more than

1500 binary channels. Consequently, it increases the number of

parameters and MACs in the input layer by nearly 16×. Dürichen

et al. [10] discuss two other options. The first one is using the 8-bit

fixed-point representation of a pixel, named DBID. However, the

associated weight of each binary digit is lost when converted to

a binary vector. In the second option, a pointwise convolutional

layer is added between the images and the input layer while using

DBID. It does not address the fundamental problem in DBID. Unfor-

tunately, when applied to the VGG-8 model on CIFAR-10, these two

methods degrade the accuracy by at least 4.6%. Our method is very

different from these techniques as we use thermometer encoding

to split the pixels into a binary vector. It incurs minimal or even no

accuracy degradation. FBNA [15] expands each pixel to a sum of

a binary vector for a pretrained model; but the dimension of that

vector must be a power of two. Our proposed method is different as

it can encode a pixel to an arbitrary dimension between 1 and 255,

and BNNs with it are still end-to-end trainable. In MeliusNet [2], a

grouped stem architecture is proposed to reduce the MACs in the

input layer by 40%. The technique replaces the 7 × 7 convolutional

layer with three 3 × 3 group convolutional layers. Though there is

MACs reduction, the input layer is still floating-point. Our proposed

method is different as we use a binary input layer.

FPGA-Based CNNAccelerators. There have been extensive stud-

ies on accelerating low-precision neural networks [37]. Qiu et

al. [39] first show convolutional layers are computation-bound

while fully-connected layers are memory-bound, and propose a

dynamic-precision data quantization method to accelerate CNN.

Different hardware architectures are then proposed to address the

bottleneck in computation and memory bandwidth [34, 48, 53], and

high-level programming frameworks are proposed to help efficient

quantization [3, 7, 12, 43, 52]. However, most of these works tar-

get AlexNet and VGG, which are much less efficient than more

recent CNN models such as ResNet and MobileNet. As another

approach, algorithm-hardware co-design method is leveraged to

develop hardware-efficient networks with fewer bits in weights

and activations [14, 16, 24, 47, 49, 51]. Our work is very different as

all of the convolutional layers in the model are computed in pure

BMACs.

There is also an active body of research on accelerating BNN

models on FPGAs. Zhao et al. [57] make the first attempt imple-

menting a BNN accelerator on FPGA, which introduces a BitSel

module and variable-width length buffers to make the network

inference efficient. FINN [4, 45] provides a framework for fast BNN

inference. ReBNet [11] leverages multi-level residual binarization

to improve the accuracy. FBNA [15] binarizes all the network layers

but only targets the CIFAR-10 dataset. Liang et al. [28] implement

the binarized AlexNet on ImageNet. The top-1 accuracy is 42.9%,

which is 13% lower than its full-precision model. Our work uses

fractional activations to create an accurate model.

7 CONCLUSIONS

This work proposes FracBNN, which exploits fractional activations

to substantially improve the accuracy of BNNs. FracBNN employs

a dual-precision activation scheme. Features are computed with

up to two bits, using an additional sparse binary convolution. The

input layer is also binarized using a novel thermometer encod-

ing. FracBNN preserves the key hardware benefits of conventional

BNNs. We design an efficient FPGA-based accelerator for our novel

fractional convolution kernel. We also implement the entire opti-

mized network on an embedd FPGA (Xilinx Ultra96 v2). Experi-

ments show that FracBNN achieves a top-1 accuracy comparable

to MobileNetV2, surpassing that of the best-known BNN FPGA

accelerator and a recently introduced BNN by a large margin. On

the embedded FPGA, FracBNN demonstrates the ability of real-time

image classification.

ACKNOWLEDGEMENTS

This work was supported in part by the Semiconductor Research

Corporation (SRC) and DARPA, NSF Award #2007832, the Xilinx

Center of Excellence and Xilinx Adaptive Compute Clusters (XACC)

program at the University of Illinois Urbana-Champaign. One of

the Titan Xp GPUs used for this research was donated by the

NVIDIA Corporation. We thank Yuwei Hu, Yuan Zhou, Yi-Hsiang

Lai, Hanchen Jin, and Ecenur Ustun of the Zhang Research Group

at Cornell for their helpful discussions.



REFERENCES
[1] Alexander G. Anderson and Cory P. Berg. The High-Dimensional Geometry of

Binary Neural Networks. Int’l Conf. on Learning Representations (ICLR), 2018.
[2] Joseph Bethge, Christian Bartz, Haojin Yang, Ying Chen, and Christoph Meinel.

MeliusNet: Can Binary Neural Networks Achieve MobileNet-level Accuracy?
arXiv preprint arXiv:2001.05936, 2020.

[3] Michaela Blott, Thomas B. Preußer, Nicholas J. Fraser, Giulio Gambardella, Ken-
neth O’brien, Yaman Umuroglu, Miriam Leeser, and Kees Vissers. FINN-R: An
End-to-End Deep-Learning Framework for Fast Exploration of Quantized Neural
Networks. ACM Trans. Reconfigurable Technol. Syst., Dec 2018.

[4] Michaela Blott, Thomas B. Preußer, Nicholas J. Fraser, Giulio Gambardella, Ken-
neth O’brien, Yaman Umuroglu, Miriam Leeser, and Kees Vissers. FINN-R: An
End-to-End Deep-Learning Framework for Fast Exploration of Quantized Neural
Networks. ACM Trans. Reconfigurable Technol. Syst., Dec 2018.

[5] Jacob Buckman, Aurko Roy, Colin Raffel, and Ian Goodfellow. Thermometer
Encoding: One Hot Way To Resist Adversarial Examples. Int’l Conf. on Learning
Representations (ICLR), 2018.

[6] Adrian Bulat, Georgios Tzimiropoulos, Jean Kossaifi, and Maja Pantic. Improved
training of binary networks for human pose estimation and image recognition.
arXiv preprint arXiv:1904.05868, 2019.

[7] Y. Chen, K. Zhang, C. Gong, C. Hao, X. Zhang, T. Li, and D. Chen. T-DLA:
An Open-source Deep Learning Accelerator for Ternarized DNN Models on
Embedded FPGA. IEEE Computer Society Annual Symp. on VLSI (ISVLSI), 2019.

[8] Zhiyong Cheng, Daniel Soudry, Zexi Mao, and Zhenzhong Lan. Training Bi-
nary Multilayer Neural Networks for Image Classification using Expectation
Backpropagation. arXiv preprint arXiv:1503.03562, 2015.

[9] Jungwook Choi, ZhuoWang, Swagath Venkataramani, Pierce I-Jen Chuang, Vijay-
alakshmi Srinivasan, and Kailash Gopalakrishnan. PACT: Parameterized Clipping
Activation for Quantized Neural Networks. arXiv preprint arXiv:1805.06085, 2018.

[10] Robert Dürichen, Thomas Rocznik, Oliver Renz, and Christian Peters. Binary
Input Layer: Training of CNN models with binary input data. arXiv preprint
arXiv:1812.03410, 2018.

[11] M. Ghasemzadeh, M. Samragh, and F. Koushanfar. ReBNet: Residual Binarized
Neural Network. IEEE Symp. Field Programmable Custom Computing Machines
(FCCM), 2018.

[12] C. Gong, Y. Chen, Y. Lu, T. Li, C. Hao, and D. Chen. VecQ: Minimal Loss DNN
Model Compression With Vectorized Weight Quantization. IEEE Trans. on Com-
puters, 2020.

[13] Ruihao Gong, Xianglong Liu, Shenghu Jiang, Tianxiang Li, Peng Hu, Jiazhen
Lin, Fengwei Yu, and Junjie Yan. Differentiable Soft Quantization: Bridging Full-
Precision and Low-Bit Neural Networks. Int’l Conf. on Computer Vision (ICCV),
Oct 2019.

[14] K. Guo, S. Han, S. Yao, Y. Wang, Y. Xie, and H. Yang. Software-Hardware Codesign
for Efficient Neural Network Acceleration. IEEE Micro, 2017.

[15] P. Guo, H. Ma, R. Chen, P. Li, S. Xie, and D.Wang. FBNA: A Fully Binarized Neural
Network Accelerator. Int’l Conf. on Field Programmable Logic and Applications
(FPL), 2018.

[16] Cong Hao, Xiaofan Zhang, Yuhong Li, Sitao Huang, Jinjun Xiong, Kyle Rupnow,
Wen-mei Hwu, and Deming Chen. FPGA/DNN Co-Design: An Efficient Design
Methodology for IoT Intelligence on the Edge. Design Automation Conf. (DAC),
2019.

[17] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition.
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2016.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving Deep into
Rectifiers: Surpassing Human-Level Performance on ImageNet Classification.
Int’l Conf. on Computer Vision (ICCV), 2015.

[19] T. Hirtzlin, B. Penkovsky,M. Bocquet, J. Klein, J. Portal, andD. Querlioz. Stochastic
Computing for Hardware Implementation of Binarized Neural Networks. IEEE
Access, 2019.

[20] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. MobileNets: Ef-
ficient Convolutional Neural Networks for Mobile Vision Applications. arXiv
preprint arXiv:1704.04861, 2017.

[21] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua
Bengio. Binarized Neural Networks. Conf. on Neural Information Processing
Systems (NeurIPS), 2016.

[22] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift. Int’l Conf. on Machine
Learning (ICML), 2015.

[23] Deng J., Dong W., Socher R., Li L., Li Kai, and Fei-Fei Li. ImageNet: A large-
scale hierarchical image database. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2009.

[24] L. Jiao, C. Luo, W. Cao, X. Zhou, and L. Wang. Accelerating low bit-width convo-
lutional neural networks with embedded FPGA. Int’l Conf. on Field Programmable
Logic and Applications (FPL), 2017.

[25] Alex Krizhevsky and Geoffrey Hinton. Learning Multiple Layers of Features
from Tiny Images. Tech report, 2009.

[26] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet Classifica-
tion with Deep Convolutional Neural Networks. Conf. on Neural Information
Processing Systems (NeurIPS), 2012.

[27] Yann LeCun, Corinna Cortes, and CJ Burges. MNIST handwritten digit database.
ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist, 2010.

[28] Shuang Liang, Shouyi Yin, Leibo Liu, Wayne Luk, and Shaojun Wei. FP-BNN:
Binarized neural network on FPGA. Neurocomputing, 2018.

[29] Darryl D. Lin, Sachin S. Talathi, and V. Sreekanth Annapureddy. Fixed Point
Quantization of Deep Convolutional Networks. Int’l Conf. on Machine Learning
(ICML), 2016.

[30] Zechun Liu, Zhiqiang Shen, Marios Savvides, and Kwang-Ting Cheng. ReActNet:
Towards Precise Binary Neural Network with Generalized Activation Functions.
European Conf. on Computer Vision (ECCV), 2020.

[31] Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang, Wei Liu, and Kwang-Ting
Cheng. Bi-Real Net: Enhancing the Performance of 1-bit CNNs with Improved
Representational Capability and Advanced Training Algorithm. European Conf.
on Computer Vision (ECCV), Sep 2018.

[32] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. ShuffleNet V2:
Practical Guidelines for Efficient CNN Architecture Design. European Conf. on
Computer Vision (ECCV), Sep 2018.

[33] Brais Martinez, Jing Yang, Adrian Bulat, and Georgios Tzimiropoulos. Training
binary neural networks with real-to-binary convolutions. Int’l Conf. on Learning
Representations (ICLR), 2020.

[34] H. Nakahara, Z. Que, and W. Luk. High-Throughput Convolutional Neural
Network on an FPGA by Customized JPEG Compression. IEEE Symp. Field
Programmable Custom Computing Machines (FCCM), 2020.

[35] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and An-
drew YNg. Reading Digits in Natural Images with Unsupervised Feature Learning.
Conf. on Neural Information Processing Systems (NeurIPS), 2011.

[36] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,
and Soumith Chintala. PyTorch: An Imperative Style, High-Performance Deep
Learning Library. Conf. on Neural Information Processing Systems (NeurIPS), 2019.

[37] Haotong Qin, Ruihao Gong, Xianglong Liu, Xiao Bai, Jingkuan Song, and Nicu
Sebe. Binary Neural Networks: A Survey. arXiv preprint arXiv:2004.03333, 2020.

[38] HaotongQin, Ruihao Gong, Xianglong Liu,Mingzhu Shen, ZiranWei, Fengwei Yu,
and Jingkuan Song. Forward and Backward Information Retention for Accurate
Binary Neural Networks. arXiv preprint arXiv:1909.10788, 2019.

[39] Jiantao Qiu, Jie Wang, Song Yao, Kaiyuan Guo, Boxun Li, Erjin Zhou, Jincheng
Yu, Tianqi Tang, Ningyi Xu, Sen Song, Yu Wang, and Huazhong Yang. Going
Deeper with Embedded FPGA Platform for Convolutional Neural Network. Int’l
Symp. on Field-Programmable Gate Arrays (FPGA), 2016.

[40] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. XNOR-
Net: ImageNet Classification Using Binary Convolutional Neural Networks. Eu-
ropean Conf. on Computer Vision (ECCV), 2016.

[41] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. MobileNetV2: Inverted Residuals and Linear Bottlenecks. IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR), Jun 2018.

[42] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks
for Large-Scale Image Recognition. Int’l Conf. on Learning Representations (ICLR),
2015.

[43] Naveen Suda, Vikas Chandra, Ganesh Dasika, Abinash Mohanty, Yufei Ma, Sarma
Vrudhula, Jae-sun Seo, and Yu Cao. Throughput-Optimized OpenCL-Based FPGA
Accelerator for Large-Scale Convolutional Neural Networks. Int’l Symp. on
Field-Programmable Gate Arrays (FPGA), 2016.

[44] Wei Tang, Gang Hua, and Liang Wang. How to Train a Compact Binary Neural
Network with High Accuracy? AAAI Conf. on Artificial Intelligence (AAAI), 2017.

[45] Yaman Umuroglu, Nicholas J. Fraser, Giulio Gambardella, Michaela Blott, Philip
Leong, Magnus Jahre, and Kees Vissers. FINN: A Framework for Fast, Scalable
Binarized Neural Network Inference. Int’l Symp. on Field-Programmable Gate
Arrays (FPGA), 2017.

[46] E. Wang, J. J. Davis, P. Y. K. Cheung, and G. A. Constantinides. LUTNet: Re-
thinking Inference in FPGA Soft Logic. IEEE Symp. Field Programmable Custom
Computing Machines (FCCM), 2019.

[47] Junsong Wang, Qiuwen Lou, Xiaofan Zhang, Chao Zhu, Yonghua Lin, and Dem-
ing Chen. Design Flow of Accelerating Hybrid Extremely Low Bit-Width Neural
Network in Embedded FPGA. Int’l Conf. on Field Programmable Logic and Appli-
cations (FPL), 2018.

[48] Xuechao Wei, Cody Hao Yu, Peng Zhang, Youxiang Chen, Yuxin Wang, Han Hu,
Yun Liang, and J. Cong. Automated systolic array architecture synthesis for high
throughput cnn inference on fpgas. Design Automation Conf. (DAC), 2017.

[49] D. Wu, Y. Zhang, X. Jia, L. Tian, T. Li, L. Sui, D. Xie, and Y. Shan. A High-
Performance CNN Processor Based on FPGA for MobileNets. Int’l Conf. on Field
Programmable Logic and Applications (FPL), 2019.

[50] Li Yang, Zhezhi He, and Deliang Fan. A Fully Onchip Binarized Convolutional
Neural Network FPGA Impelmentation with Accurate Inference. Int’l Symp. on



Low Power Electronics and Design, 2018.
[51] Yifan Yang, Qijing Huang, Bichen Wu, Tianjun Zhang, Liang Ma, Giulio Gam-

bardella, Michaela Blott, Luciano Lavagno, Kees Vissers, John Wawrzynek, and
Kurt Keutzer. Synetgy: Algorithm-Hardware Co-Design for ConvNet Accelera-
tors on Embedded FPGAs. Int’l Symp. on Field-Programmable Gate Arrays (FPGA),
2019.

[52] C. Zhang, Zhenman Fang, Peipei Zhou, Peichen Pan, and Jason Cong. Caffeine:
Towards uniformed representation and acceleration for deep convolutional neural
networks. Int’l Conf. on Computer-Aided Design (ICCAD), 2016.

[53] Jialiang Zhang and Jing Li. Improving the Performance of OpenCL-Based FPGA
Accelerator for Convolutional Neural Network. Int’l Symp. on Field-Programmable
Gate Arrays (FPGA), 2017.

[54] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. ShuffleNet: An
Extremely Efficient Convolutional Neural Network for Mobile Devices. IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), Jun 2018.

[55] Yichi Zhang, Ritchie Zhao, Weizhe Hua, Nayun Xu, G. Edward Suh, and Zhiru
Zhang. Precision Gating: Improving Neural Network Efficiency with Dynamic

Dual-Precision Activations. Int’l Conf. on Learning Representations (ICLR), 2020.
[56] Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Chris De Sa, and Zhiru Zhang. Improving

Neural Network Quantization without Retraining using Outlier Channel Splitting.
Int’l Conf. on Machine Learning (ICML), Jun 2019.

[57] Ritchie Zhao, Weinan Song, Wentao Zhang, Tianwei Xing, Jeng-Hau Lin, Mani
Srivastava, Rajesh Gupta, and Zhiru Zhang. Accelerating Binarized Convolutional
Neural Networks with Software-Programmable FPGAs. Int’l Symp. on Field-
Programmable Gate Arrays (FPGA), Feb 2017.

[58] Shuchang Zhou, Zekun Ni, Xinyu Zhou, He Wen, Yuxin Wu, and Yuheng Zou.
DoReFa-Net: Training Low Bitwidth Convolutional Neural Networks with Low
Bitwidth Gradients. CoRR, 2016.

[59] Shilin Zhu, Xin Dong, and Hao Su. Binary Ensemble Neural Network: More
Bits per Network or More Networks per Bit? IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), Jun 2019.

[60] Bohan Zhuang, Chunhua Shen, Mingkui Tan, Lingqiao Liu, and Ian Reid. Towards
Effective Low-Bitwidth Convolutional Neural Networks. IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), Jun 2018.


	Abstract
	1 Introduction
	2 BNN Preliminaries
	2.1 Conventional BNN Models
	2.2 An Improved BNN Model

	3 The Fractional BNN Model
	3.1 New Building Blocks
	3.2 Binary Input Layer
	3.3 Fractional Convolution

	4 FracBNN Accelerator Design
	4.1 33 and 11 Fractional Convolution Engine
	4.2 33 Binary Convolution Engine
	4.3 Average Pooling, Classifier, and Other Operations

	5 Evaluation
	5.1 Modeling Training Setup
	5.2 FPGA Implementation
	5.3 Ablation Study

	6 Related Work
	7 Conclusions
	References

