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ABSTRACT

Binary neural networks (BNNs) have 1-bit weights and activations.
Such networks are well suited for FPGAs, as their dominant com-
putations are bitwise arithmetic and the memory requirement is
also significantly reduced. However, compared to start-of-the-art
compact convolutional neural network (CNN) models, BNNs tend
to produce a much lower accuracy on realistic datasets such as Im-
ageNet. In addition, the input layer of BNNs has gradually become
a major compute bottleneck, because it is conventionally excluded
from binarization to avoid a large accuracy loss.

This work proposes FracBNN, which exploits fractional activa-
tions to substantially improve the accuracy of BNNs. Specifically,
our approach employs a dual-precision activation scheme to com-
pute features with up to two bits, using an additional sparse binary
convolution. We further binarize the input layer using a novel ther-
mometer encoding. Overall, FracBNN preserves the key benefits of
conventional BNNs, where all convolutional layers are computed
in pure binary MAC operations (BMACs). We design an efficient
FPGA-based accelerator for our novel BNN model that supports
the fractional activations. To evaluate the performance of FracBNN
under a resource-constrained scenario, we implement the entire op-
timized network architecture on an embedded FPGA (Xilinx Ultra96
v2). Our experiments on ImageNet show that FracBNN achieves an
accuracy comparable to MobileNetV2, surpassing the best-known
BNN design on FPGAs with an increase of 28.9% in top-1 accuracy
and a 2.5% reduction in model size. FracBNN also outperforms a
recently introduced BNN model with an increase of 2.4% in top-
1 accuracy while using the same model size. On the embedded
FPGA device, FracBNN demonstrates the ability of real-time image
classification.!
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Figure 1: Comparison of ImageNet top-1accuracy and model
size of various compact CNN models.

International Symposium on Field Programmable Gate Arrays (FPGA °21),
February 28-March 2, 2021, Virtual Event, USA. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3431920.3439296

1 INTRODUCTION

Binary neural network (BNN) is a promising approach to improv-
ing the efficiency of deep learning execution, especially for CNNs
[21, 31, 37, 40]. With binarized weights and activations, the dom-
inant computations of a BNN model are binary multiply-accumulate
(BMAC) operations, which can be implemented in a highly hardware-
efficient way using XNORs and population counts (popcnt). The
extreme quantization can also reduce the memory requirement for
storing the model.

FPGAs are a great match for implementing the BNN models, as
the BMAC operations can be mapped and executed on the LUT-
based logic fabric in a massively parallel fashion. The reduced
memory footprint is also attractive since FPGAs tend to have lim-
ited on-chip SRAM capacity. For these reasons, extensive studies
have been devoted to the FPGA acceleration of BNNs. Umuroglu
et al. [45] and Zhao et al. [57] are among the first to implement an
off-the-shelf binarized VGG network on CIFAR-10 [21] using high-
level synthesis (HLS). Later, several hardware-friendly BNN models
are proposed to make inference more efficient [11, 15, 28, 37, 50].
For example, [15] improves the latency of the BNN CIFAR-10 accel-
erator to 1.9ms per inference on a Xilinx Zynq device; FP-BNN [28]
implements a binarized AlexNet [26] for the ImageNet dataset and
delivers a latency of 1.16ms on an Intel Stratix V FPGA.

While BNNs provide obvious benefits in hardware implementa-
tion, it is facing two major challenges that are detailed as follows.



BNNs produce alow accuracy on realistic datasets — Hubara
et al. [21] pioneered the recent advances in BNNs. This work shows
competitive accuracy on small datasets such as MNIST and CIFAR-
10. Unfortunately, a binarized AlexNet on ImageNet only achieves
a top-1 accuracy of 36.1%, which is more than 20% lower (in abso-
lute difference) than the original full-precision model. The state-
of-the-art ImageNet BNN accelerator on FPGAs is based on the
same model [28]. Not surprisingly, its accuracy remains very low
at 42.9%. Most recently, ReActNet [30] modifies the MobileNet V1
architecture [20] and dramatically increases the accuracy to 69.4%
through activation shifting and reshaping. However, this model has
as many as 29.3 million parameters (29.3 million bits). In contrast,
compact CNN models such as MobileNet V2 [41] can achieve an
accuracy of 72% with 3.4 million parameters (27.2 million bits).

The first convolutional layer is not binarized - Existing
BNN models commonly use floating-point weights and activations
in the input layer to avoid a large degradation in accuracy [2, 30, 31,
40, 51]. The first layer copes with three input channels, thus involv-
ing fewer floating-point MAC operations compared to other layers
in a conventional CNN. On embedded FPGA devices, however, it is
difficult to exploit high parallelism to compute the floating-point
input layer due to limited DSP resources. Moreover, a dedicated
floating-point convolution engine must be instantiated to execute
the input layer, which is not resource-efficient since this engine
cannot be reused by other layers. Some prior efforts have attempted
to quantize the input layer using fixed-point types [21, 57]. Unfor-
tunately, these techniques typically incur a nontrivial accuracy loss,
especially on realistic datasets such as ImageNet.

To overcome the aforementioned challenges, we propose FracBNN,
an efficient and accurate binary neural network with fractional acti-
vations. All convolutional layers in FracBNN are computed in pure
BMACs (input layer included). We first construct a baseline BNN
model motivated by ReActNet [30]. To improve the accuracy, we
compute an extra sparse binary convolutional layer to update a
fraction of the features using two bits, thus exploiting fractional
activations. As shown in Figure 1, FracBNN outperforms state-of-
the-art BNNs and low-bitwidth networks by a large margin. In
particular, it achieves MobileNetV2-level accuracy with a competi-
tive model size. We further design an efficient FPGA-based BNN
accelerator that supports fractional activations. We implement the
entire FracBNN accelerator using HLS, and accelerate the inference
on an embedded FPGA (Xilinx Ultra96 v2). FracBNN demonstrates
the ability of real-time image classification by achieving a frame
rate of 48.1 fps.

Our main technical contributions are as follows:

e We propose FracBNN, an accurate and efficient BNN archi-
tecture with fractional activations, where all convolutional
layers are computed in BMACs. On ImageNet, FracBNN out-
performs the best-known FPGA-targeted BNN by 28.9% and
the state-of-the-art ReActNet model by 2.4% in top-1 accu-
racy. For the first time, we show a CNN with pure BMACs
can achieve the same level of accuracy with MobileNet V2.

e In an end-to-end trainable BNN, we propose to use ther-
mometer encoding to preprocess the images and binarize the
input layer. We show that thermometer encoding helps with

preserving the feature similarity, thus incurring minimal
accuracy degradation.

e We design a novel FPGA-based BNN accelerator that sup-
ports fractional activations. We implement our design in
HLS and demonstrate real-time performance for inference
on an embedded FPGA. In terms of frame rate, our FPGA
implementation outperforms the most accurate BNN accel-
erator for CIFAR-10 [57] and a state-of-the-art 4-bit CNN
accelerator for ImageNet [51].

2 BNN PRELIMINARIES

In this section, we first describe conventional BNN models used
for FPGA implementation. We then introduce a recently proposed
BNN model that has achieved a dramatic improvement in accuracy.

2.1 Conventional BNN Models
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Figure 2: Convolution in a BNN model.

In BNNs, we define a binary convolutional layer as
0=w?«xb

0 is the convolution results. W? is the kernel weight tensor, and
XY is the activation tensor. Both W? and X? are binarized to either
—1 or +1 using the sign function. Specifically,

+1 x" >0

x? = sign(x") = {_1 <0

b . N+ W =0
w —51gn(w)—{_1 W0’

The superscripts b and r denote binary and real values, respectively.

As shown in Figure 2, due to the binarization of weights and ac-
tivations, a multiplication and addition (MAC) can be implemented
as a bitwise XNOR followed by a popcnt. We can therefore rewrite
the binary convolutional layer as

0 = popent(XNOR(W?, XP))

Since XNOR and popcnt operations can easily be mapped and
parallelized on the LUT fabric, it is highly efficient to perform the
BNN inference on FPGAs.

Note that the BNN models for realistic datasets such as ImageNet
implemented by existing FPGA accelerators [28, 57] are typically
binarized AlexNet [26] or VGG [42]. The stacked building block
consists of a sign function, a binary convolutional layer, and a
normalization layer in sequence. Although the binarized layers are
efficient on FPGAs, the accuracy of the aforementioned binarized
models is low. Moreover, the entire model size is usually more than
10 MB, which exceeds the typical on-chip SRAM capacity of modern
embedded FPGAs.



2.2 An Improved BNN Model
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Figure 4: Biased parametric ReLU (BPReLU).

Most recently, a more accurate BNN model named ReActNet [30],
is proposed to mitigate the accuracy gap between the binarized
model and its full-precision counterpart. The building blocks of
ReActNet is shown in Figure 3. ReActNet is based on MobileNet [20]
architecture. It achieves a top-1 accuracy of 69.4% on ImageNet
dataset using 4.82G BMACs with a model size of 4.6 MB.

The key feature of ReActNet is a biased PReLU (BPReLU) activa-
tion function that shifts and reshapes the feature maps between two
convolutional layers [18]. This substantially improves the model
accuracy. As shown in Figure 4, BPReLU translates the PReLU func-
tion to a new origin point (,y). It is implemented as a PReLU
function sandwiched by two learnable channelwise biases o and
y- Based on the same idea, ReActNet introduces a learnable bias
to the sign function to learn the binarization threshold through
optimization. Similar to Bi-RealNet [31], ReActNet also adds a full-
precision shortcut connection to each convolutional layer in the
model. In the downsample layer, the average pooling layer and the
channel duplication ensure the shortcut matches the spatial and
channel dimensions of the residual. ReActNet uses full instead of
depthwise convolutional layers since they increase the capacity of
the binarized model. The ReLU activation functions in the original

MobileNet are all removed. The limitation of ReActNet is that the
input layer is floating-point. Moreover, its accuracy remains low
compared to compact networks such as MobileNetV2 which has
72% top-1 accuracy and 3.4 million parameters.

3 THE FRACTIONAL BNN MODEL

In this section, we will present our fractional BNN model. We first
describe how we improve the building block of ReActNet to achieve
a higher accuracy. We then propose a novel method of binarizing
the input layer with minimal accuracy degradation. Finally, we
introduce the fractional convolutional layer to further improve
model accuracy. FracBNN preserves the key hardware benefits of
conventional BNNs. Meanwhile, it achieves a top-1 accuracy of
71.8% on ImageNet, which rivals that of 8-bit MobileNetV2-level
with a slightly larger model size.

3.1 New Building Blocks
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Figure 5: Our model building blocks — Differences from ReAct-
Net are highlighted.

The building block used in our baseline BNN model is illustrated
in Figure 5. Different from ReActNet, we move the BPReLUs before
the shortcut connections, given that previous works have pointed
out that activation functions residing before the shortcuts tend
to perform better [6, 33]. We also add a BatchNorm layer [22]
after each shortcut connection. The affine transformation of the
BatchNorm layer serves as learning a new distribution for both
branches in the next block such that the number of positive and
negative values in the activations are more balanced. This shift in
distribution is shown to be crucial for feature learning in binary
convolutional layers in ReActNet. We generalize it to the shortcut
connections as well. Since BPReLU and BatchNorm layers only
contain channelwise parameters, their impact on the total number
of model parameters is negligible. We further find that a learnable
threshold is unnecessary for the sign function after adding the
BatchNorm layer since it is already included in the bias term.



Table 1: Comparison with SOTA ResNet-20 BNN on CIFAR-
10 dataset — The first and last layers are in floating-point.

Model Method Precision (W/A) Acc. %
DoReFa [58] 1/1 79.3
DSQ [13] 11 84.1
ResNet-20 | IR-Net [38] 11 86.5
ReActNet [30] 1/1 85.8
Ours 1/1 87.2

On the CIFAR-10 dataset, we observe that the ResNet-20 BNN
model with our proposed building block outperforms other state-
of-the-art binarized ResNet-20 variants. We modify the popular
ResNet-20 model using the top half of the proposed block in Fig-
ure 5 that contains a 3x3 convolutional layer. Table 1 shows the
comparison against other methods. DoReFa [58], DSQ [13], and
IR-Net [38] explore different backward approximations for the Sign
function. As the result shows, the binarized ResNet-20 model con-
structed with our proposed building blocks achieves the highest
accuracy (87.2%). The nontrivial accuracy improvement over the
ReActNet structure is gained by moving the activation function
right after the convolutional layer and shifting the distribution of
both the convolutional branch and the shortcut.

Table 2: Accuracy on ImageNet of the corresponding real-
valued models before binarization.

Model Params MACs Acc. %
(x10%)  (x10%)
Full Conv MobileNet [20] 29.3 4.8 71.7
Real-Valued ReActNet [30] 29.3 4.8 72.4
Ours 29.3 4.8 75.6

For ImageNet dataset, we replace the depthwise separable con-
volutional layer in the MobileNet architecture with our proposed
building block shown in Figure 5.

To estimate the potential of the binarized model, we first syn-
chronize the forward and backward behaviors of the sign function
to be the straight-through estimator, and train the corresponding
real-valued model on ImageNet. The results are in Table 2. All three
models have the same number of parameters and MACs. We ob-
serve that our approach is 3.2% more accurate than the real-valued
ReActNet. Compared with the base full convolution MobileNet, the
accuracy increment is 3.9%, even higher than that with ReActNet.
The dramatic improvement of our model on ImageNet indicates
the efficacy of the pre-shortcut BPReLU activation function and the
balance of both branches in a convolutional block.

3.2 Binary Input Layer

A binary input layer can reduce the resource consumption of an
FPGA accelerator, since a separate floating- or fixed-point convo-
lution engine is no longer required. The challenge of binarizing
both weights and activations in the input layer is the lack of input
channels. Anderson et al. [1] show that high-dimensional binary
vectors can approximately preserve the dot products in the con-
tinuous space. Given the 3x3 kernels, the dimensionality of dot
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Figure 6: Encoding input images.

products in the input layer depends on the number of input chan-
nels. Three RGB channels are insufficient for binarization. It is
therefore necessary to split the images into more channels.

Directly using the fixed-point representation of a pixel incurs a
large loss. As shown in Figure 6a, a natural way of enriching the
channels is to treat each pixel as an 8-dimensional binary vector
since pixels are 8-bit fixed-point numbers. Nevertheless, each binary
digit has its own associated weight, labeled at the top right corner
of each bit. By the time a pixel is converted to a binary vector, the
weight information is lost. The magnitude of each bit becomes the
same. One may argue that neural network can learn the weights of
the binary digits to make an equivalent transformation. However,
this is a very challenging task for the BNN training.

In this work, we propose to use thermometer encoding to trans-
form a pixel to a thermometer vector. Previous work has used
thermometer encoding to resist adversarial attacks to neural net-
works [5]. There is also a study [15] that binarizes the input images
but the dimension of the encoded vector must be a power of two.
Here we use thermometer encoding to binarize the input layer in
an end-to-end trainable BNN, and our method supports a flexible
vector length. Given a pixel intensity p, i € {1, el L} is the index

of its thermometer vector TV € {O, 1}L, then TV is defined as

_J0 1<i<L-p
TV’_{I L-p<i<L

Namely, the number of 1s in TV is exactly equal to p. The integer
L is the dimensionality of TV. In this case L = 255. An input image
with RGB channels is now converted to 765 (255*3) binary channels.
The dimensionality of the dot products hence increases, and there
is no associated weights on each bit.

To provide a flexibility on the dimensionality of TV, we further
introduce a hyperparameter, resolution R. As depicted in Figure 6b
where R = 32, each ‘1’ in the encoded thermometer vector rep-
resents an intensity of 32. An intensity less than 16 (i.e., 0.5 * R)
will be rounded to ‘0’. Therefore, p = 109 is converted to a binary
vector with three ‘1’s. Formally, the new thermometer vector TV is
defined as:

Lo _fo i<i<[E]-|p
TV“{l 155~ 5] <i <[5
5.

where |] is the round operation, and L = [% Throughout the

R
experiments in this work, we select R = 8. Hence, each input
channel is expanded to 32 binary channels.
Finally, we transform the thermometer encoded input images
to the {-1, +1} bipolar representation to keep consistent with other



activations in the network. Namely, we replace all 0s with —1s in the
thermometer vectors. The weights in the input layer are binarized
using the regular sign function.

Table 3: Results of binarizing the input layer using ther-
mometer encoding on CIFAR-10 — ResNet-20 BNN has 0.27 mil-
lion parameters and 40.9 million BMACs.

Model Method Acc. (%) A (%)
Base 87.2 0.0
ResNet-20 DBID [10] 789  -83
BNN BIL (K=256) [10] 837  -35
Thermometer (R=8) 87.2 0.0

The evaluation of binarizing the input layer is in Table 3. Prior
works [10] attempted direct unpacking of the 8-bit fixed-point input
data, dubbed as DBID, and adding an additional binary pointwise
convolutional layer between the unpacked input data and the first
layer to increase the number of channels, dubbed as BIL. We imple-
ment and compare our proposed method against these techniques
on the ResNet-20 BNN introduced in Section 3.1.

Our binarized ResNet-20 model has an accuracy of 87.2%. On such
a lightweight model, directly unpacking the 8-bit fixed-point data
and binarizing the input layer leads to an 8.3% accuracy degradation.
This shows that the hidden associated weight information is critical
to feature learning. On the basis of that, adding an extra pointwise
convolutional layer expands the number of channels from 24 to 256
(K=256), thus increasing the model capacity. This does not address
the fundamental problem of losing the associated weights, and
still results in a 3.5% degradation. Our proposed method of using
thermometer encoding works very well in this case. It preserves
the model accuracy after binarizing the first layer. In the meantime,
it has 2.7x less BMAC:s in the input layer compared to BIL since
our approach only requires 96 channels. Hence a binarized input
layer with thermometer encoding can enjoy a reduced latency and
FPGA resources without sacrificing the accuracy.

To understand how an increment in input channels helps with
the binarization, we analyze the correlation of the dot products
before and after binarization in the input layer. In Figure 7, for
both CIFAR-10 and ImageNet models, we plot the 2D histogram of
the dot products of the activations and binarized weights (vertical
axis) and the dot products of the activations and floating-point
weights (horizontal axis) in the input layer. As shown in the first
column, the correlation is weak if the inputs are RGB images and
have three channels. This is consistent with the observation by
Anderson et al. [1]. While using a 96-channel thermometer encoding
in the second column, we see that the pre- and post-binarization
dot products are highly correlated. This means that thermometer
encoding preserves the feature similarity after binarizing the input
layer, thus achieving minimal accuracy degradation.

3.3 Fractional Convolution

Low-precision quantized networks usually suffer from accuracy
degradation compared to their full-precision counterparts [9]. Prior
work proposes an end-to-end trainable technique precision gating
(PG) [55] that dynamically updates important features to high preci-
sion to improve the model accuracy. Binarization is an extreme case
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of quantization. Hence, our fractional convolutional layer (Frac-
Conv) adopts PG in the binarized network, except for the input
layer and the classifier, to further increase the accuracy. During
inference, we dynamically identify important features and compute
an additional BMAC to update their popent results.

The specific execution flow of FracConv is shown in Figure 8.
Instead of binarizing the activations, we store the 2-bit activations in
memory. The weight kernels are 1-bit as usual. Each convolutional
layer now consists of a base phase and an update phase. The base
phase is a regular binary convolutional layer where the inputs
are the 1-bit weights and the most-significant bit (MSB) of the
activations. During the computation, we maintain a flag bit for each
output feature that indicates whether its popent result is larger
than a learnable threshold A. If the flag bit is 1, the output feature is
considered to contribute more to the model predictions. It will then
be updated by an additional BMAC in the update phase that takes
the least-significant bit (LSB) of the activations and the same 1-bit
kernels as inputs. Formally, we write the outputs of a FracConv as:

_ { OpmsB <<1 Opsp < A
(Omsp << 1) +Orsp  Opmsp > A



where
Opsp = popent(XNOR(W?, X5, ¢ 1))

Oisp = popcnt(XNOR(Wb, X]ljSB))
and << is the left shift operation. The learnable threshold A is
channelwise, and can be viewed as scoring the importance of an
output feature based on its popent result in the base phase.

Although FracConv incurs extra computation, it still enjoys the
benefit of the efficient kernels in BNNs. All of the MACs in the
convolutional layers in our model are binary. Moreover, the update
phase in FracConv is sparse, thus additional compute effort is not
significant. While the activations are quantized to two bits, the
memory footprint of FracBNN is similar to a regular BNN since the
weights remain binary. Also note that the popcnt accumulations
produce multi-bit integers regardless. Hence the increased size of
the activation/feature buffer in the update phase is small compared
to the weight storage.

We integrate the binary input layer and fractional convolution
into our base BNN model introduced in Section 3.1 and construct
FracBNN. We then evaluate FracBNN on the ImageNet dataset. The
results are in Table 4. We measure that the sparsity in the update
binary convolutional layer is 56%. Hence, the equivalent precision
of activations in FracBNN is calculated by 1b + (1 — 56%)b ~ 1.4b.
The baselines include state-of-the-art BNNs, low-precision net-
works from FPGA accelerator designs, as well as some popular full-
precision compact models. To estimate the size of the full-precision
models, we assume that they use 8-bit weights and activations since
prior studies have shown that 8-bit quantization usually incurs a
small accuracy loss [9, 29, 56].

From the ImageNet results we have several key observations:

The accuracy of FracBNN significantly outperforms prior
BNN and low-precision FPGA accelerators. FracBNN is 28.9%
higher in top-1 accuracy than FP-BNN [28], an FPGA BNN accelera-
tor which implements the binarized AlexNet. Among low-precision
networks, DiracDeltaNet constructed in Synetgy [51] is based on
ShuffleNetV2 [32]. It replaces the compute-intensive 3X3 convo-
lutional layer by a shift and a pointwise convolutional layer. This
results in a higher efficiency for FPGA implementation, but at the
expense of reduced model capacity. The JPEGCompress [34] uses
a model that is very similar to Synetgy, but is deeper. On the Ima-
geNet dataset, the top-1 accuracy of FracBNN is 3.5% and 1% higher
than Synetgy and JPEGCompress, respectively.

The accuracy of FracBNN surpasses SOTA BNNs by a large
margin. At a similar model size, FracBNN outperforms MeliusNet-
29 [2] and ReActNet-A [30] by 6% and 2.4% in top-1 accuracy, re-
spectively. Even with a 2.2X smaller model size, FracBNN is 2.6%
more accurate than MeliusNet-42. Compared to BNN Ensemble [59]
that aggregates six binarized ResNet-18 models, FracBNN is 2.5%
smaller in size but 10.8% higher in accuracy.

FracBNN achieves MobileNetV2 level accuracy. We com-
pare FracBNN with popular full-precision compact network ar-
chitectures, and observe that FracBNN achieves the same accuracy
level as MobileNetV2. While its convolutional layers are computed
in pure BMACs, FracBNN can still reach and even surpass the ac-
curacy of compact CNNs such as MobileNet [20] and ShuffleNet
1.5% [54]. It is also worth noting that FracBNN is more accurate
than ResNet-18 (+2%) with a 2.6X smaller model size.

FracBNN has the lowest number of floating-point MACs.
With the help of the binary input layer and the fractional convo-
lutional layers, the dominant arithmetic operations in FracBNN
are BMACs. Only the classifier is computed in integer MACs, and
there are no floating-point MACs. Other models in the baselines
have floating-point or 8-bit input layers. Though FracBNN has a
considerable number of BMACs, they can be massively parallelized
on FPGAs.

We also show the CIFAR-10 results of FracBNN in Table 5. Com-
pared to previous FPGA BNN accelerators [28, 57], FracBNN achieves
the highest accuracy, meanwhile with 50X reduction in model size.
This enables fully unrolling the network on an embedded FPGA.
With the same model size, FracBNN is also 2.6% more accurate than
IR-Net [38], the state-of-the-art ResNet-20 BNN variant.

4 FRACBNN ACCELERATOR DESIGN
Our FracBNN consists of the following types of operations:

e 3X3 fractional convolution (stride 1 and 2)

e 1x1 fractional convolution

e 3X3 binary convolution (the input layer)

e Average pooling

e Linear classifier (matrix multiplication)

e Batch normalization and BPReLU activation function
o Residual connection and concatenation

We have designed and implemented an efficient accelerator that
supports these operations on an embedded FPGA. In the following,
we will describe the hardware engines in detail.

4.1 3x3 and 1x1 Fractional Convolution Engine

One of the key contributions in our network architecture is the frac-
tional convolutional layer introduced in Section 3.3. The fractional
convolution scheme improves the accuracy from a single binary
convolution with a small resource overhead.
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Figure 9: FracBNN accelerator architecture.
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Figure 9 illustrates the overall architecture of the accelerator.
The entire life cycle of a fractional convolution starts with fetching



Table 4: Comparison of FracBNN with other efficient models on ImageNet — The effective bitwidth of activations in FracBNN is 1.44
bits since the average sparsity in fractional convolution is 56%. IMAC denotes integer MACs. FPMAC denotes floating-point MACs.

Network Precision Model Size IMAC BMAC FPMAC Top-1 Top-5
(W/A) (MB) (x108)  (x10%)  (x10%) (%) (%)
Bi-RealNet-34 [31] 1/1 3.18 0 3.53 1.39 62.2 83.9
MeliusNet-29 [2] 11 5.10 0 5.47 129 658 862
MeliusNet-42 [2] 1/1 10.1 0 9.69 1.74 69.2 88.3
Real-to-Binary Net [33] 1/1 1.92 0 1.68 1.56 65.4 86.2
ReActNet-A [30] 1/1 4.56 0 4.82 0.12 69.4 -
BNN Ensemble [59] 1/1 11.52 0 10.10 8.34 61.0 -
FP-BNN [28] 1/1 11.4 1.10 1.03 0 429 66.8
JPEGCompress [34] 1/8 0.72 6.21 0 0 70.8 90.1
Synetgy [51] 4/4 2.16 3.30 0 0.09 68.3 88.1
ResNet-18 [17] 8/8 11.69 0 0 18.2 69.8 89.1
MobileNet [20] 8/8 4.20 0 0 5.69 70.6 -
MobileNet V2 [41] 8/8 3.47 0 0 3.00 71.8 91.0
ShuffleNet 1.5 [54] 8/8 3.40 0 0 2.92 71.5 90.2
FracBNN 1/14 4.56 0.01 7.30 0 71.8 90.1

Table 5: Comparison of FracBNN with other BNNs on CIFAR-
10 — The effective precision of activations in FracBNN is 1.4 bits
since the average sparsity in fractional convolution is 60%.

Model Model Size  BMAC IMAC Top-1
(MB) (x10%)  (x10%) (%)

IR-Net [38] 0.03 40.5 04 865
FP-BNN [28] 1.67 58.1 3.6 86.3
BNN [57] 1.67 58.2 3.5 88.9
FracBNN 0.03 71.5 0 89.1

the 2-bit feature maps from the on-chip Block RAM and the 1-bit
weights from the off-chip DDR memory. We manage to store the
low-precision feature maps on the Block RAM for faster loading.

After obtaining the feature maps, we first split each 2-bit feature
into MSB and LSB. We then pack bits along the channel dimension
into B-bit arbitrary precision integers for concurrent access. As we
acquire weights from the DDR, we pack them into B-bit vectors to
align the precision with the feature maps. In order to balance be-
tween parallelism and resource utilization, we select B = 64 for the
CIFAR-10 design and B = 32 for the ImageNet design. The packed
weights and feature maps are fed to the convolution engine. Mean-
while, auxiliary parameters, including thresholds, and weights in
the BatchNorm and activation functions are fetched from the DDR.
We also load the fixed-point shortcuts from the DDR to prepare for
the residual connection summation.

The pseudo code of the fractional convolution engine is described
in Algorithm 1. As we introduced in Section 3.3, the fractional
convolution consists of a base phase and an update phase.

In the base phase (line 5 to 8), the MSB feature maps are con-
volved with the weights. The computation is the same as a binary
convolution. We first compute bitwise XNOR on the B-bit features
and weights, and then perform a popcnt on the outcome as the
final result. We find that the straight-forward implementation for
popent of directly adding each bit is sufficiently resource efficient.
The combined XNOR and popcnt operations are able to be finished
in one cycle. As completing the base path, the output feature maps

of the MSB convolution are stored in an on-chip buffer, and we
proceed to the update phase.

In the update phase (line 9 to 18), a conditional binary convo-
lution is executed based on the per channel gating thresholds. As
shown in the algorithm, an LSB output feature will be computed
only when its corresponding MSB output feature exceeds the thresh-
old. The fractional convolution promotes to a binary convolution
if the sparsity is 100%; on the other hand, it degenerates to a 2-bit
convolution if the sparsity is 0%. Otherwise it is in between. If
the sparsity is low enough, it then becomes more straightforward
to directly parallelize the MSB and LSB convolutions to a 2-bit
convolution at the cost of more hardware resources.

The binary convolutions are pipelined on the spatial dimension
and parallelized on the channel dimension. Within the resource
constraint, we fully unroll the computation in a 3X3 window to
maximize the parallelism. The point-wise fractional convolution is
essentially the same as the 3X3 convolution other than the size of
the window. Upon finishing the convolution operations, we perform
BatchNorm and BPReLU activation on the results and produces the
output of a block. Finally, we organize the outputs into a buffer and
transfer them to DDR.

4.2 3x3 Binary Convolution Engine

The pure binary convolutional layer takes place only at the ther-
mometer encoded inputs. We reuse the 3x3 convolution engine in
the fractional convolutional layer to handle this occasion. Since
the input layer is excluded from fractional activations, we only
execute the base phase. For ImageNet, we pack 32 bits together
along the input channel and feed into the convolution engine. It
outputs 32 channels as well. Since the input has 96 channels after
the thermometer encoding, we iterate three times for each spatial
position and accumulate the results for the output of the layer.

4.3 Average Pooling, Classifier, and Other
Operations

In addition to the accelerators for convolution operations, which
account for the majority of the computations in the network, we also



Algorithm 1 Fractional Convolution

1: function FRACCONV(FMAP, WEIGHTS, THRESHOLD, OUTPUT)
2 W « Width

3 H < Height

4 fmap o < Split(fmap, msb)

5 fmap,y, < Split(fmap, Isb)

6 for chgyt in 0, 1, ... Cout — 1 do

7 for ch;;, in0,1,..Cj, —1do

8 w « LoadWeights(chout, chin)

9 output[choyt] + = BinaryConv(fmap g [chin ], W)
10: end for

11 for ch;, in0, 1, .. Cj, —1do

12: w « LoadWeights(choyt, chiy)

13: for pixelin 0, 1, ..., H+ W — 1 do

14: if output[choyt][pixel] > threshold[choyt] then
15: act < LoadWindowg,(fmapyg,, chi, H, W)
16: output[choyt][pixel] + =

17: popcnt(XNOR(act, w))

18: end if

19: end for

20: end for

21: end for

22: end function

implement hardware accelerators for less frequent operations such
as average pooling and matrix multiplications. An average pooling
layer sums up features in the spatial dimension, and is divided by the
number of features summed together. The challenge of designing
this kernel is determining the amount of parallelism and the trade-
off between resource and latency. We use an adder tree to serve as a
sum engine to compute the sum in one dimension in a pooling tile
in one cycle and then pipeline the addition operation for the other
dimension to achieve the optimal concurrency. Even though it is
possible to maximize the parallelism by accessing all the elements in
a tile at once and compute the sum with the fewest number of cycles,
it requires partitioning the array in both dimensions. The cost of
resource utilization may not be worth the performance gain. Our
implementation achieves comparable performance with economic
resource consumption. The matrix multiplication unit serves as
the linear classifier at the final state of the network. It computes
the class dimension in parallel. For further optimization, it can
be assigned to CPU and executed in parallel with the accelerator.
This compact accelerator design is the balanced choice between
performance and resource usage. Other miscellaneous operations
such as BatchNorm, BPReLU activation, and channel concatenation
are fused seamlessly with adjacent operations.

5 EVALUATION

In this section, we first describe the experiment setup, and then
present our results on FPGAs.

5.1 Modeling Training Setup

We evaluate FracNN on both CIFAR-10 [25] and ILSVRC12 Ima-
geNet [23] classification datasets. We augment the input images
using random horizontal flip and random crop. Color jitter is used

only for ImageNet. We follow the two-step training strategy as de-
scribed in Real-to-Binary Net [33]. In the first step, the activations
are binarized but the weights are floating-point. The weight decay
is 1le-5. In the second step, weights are binarized and initialized
from the first step. Activations are still binary. The weight decay is
zero. To train the FracBNN, the first two steps are the same except
that the activations are quantized to 2 bits. We add a third step that
initializes the weights from the second step, and applies the frac-
tional convolutional layer. The first and the last layer are excluded.
We use cross-entropy loss during the training on CIFAR-10. For
ImageNet, we calculate the KL divergence between the softmax
output of a teacher model and that of the trained model as the loss
function, same as ReActNet [30]. In our experiments the teacher
model is a pretrained ResNet-50.

For CIFAR-10, we train the model for 300 epochs in each training
step with a batch size of 128. The initial learning rate is 1e-3, and
decays linearly to 0 in each epoch. For ImageNet, we train the
model for 120 epochs in each step. The batch size is 256. The initial
learning rate is 5e-4 and also decays linearly to 0 in each epoch. We
use PyTorch [36] to specify models and training scripts. All training
experiments are completed on NVIDIA RTX 2080Ti GPUs.

5.2 FPGA Implementation

We evaluate the performance of the FracBNN accelerator archi-
tecture on a Xilinx Ultra96 v2 FPGA board. This board uses the
Zynq UltraScale+ MPSoC device (ZU3EG), which contains an em-
bedded ARM CPU. The programmable logic fabric has 71k LUTs,
360 DSPs, and 7.6 Mb BRAMs. Ultra96 v2 is supported by PYNQ,
which can import and invoke the accelerator as an overlay in a
Python environment. Programmers can feed data and control sig-
nals from software via AXI/DMA interfaces to the accelerator. We
have implemented accelerators for both CIFAR-10 and ImageNet.
The CIFAR-10 accelerator is fully unrolled on the board. Both de-
signs run at a clock frequency of 250MHz. The post-implementation
resource utilization is summarized in Table 8.

Table 6 compares our ImageNet accelerators against other pre-
vious works. Notably, our ImageNet model provides a significant
advantage in the model accuracy. The top-1 accuracy is the best
amongst the other comparable network models that are imple-
mented on FPGAs. To map the entire model on the FPGA, it takes
72% LUTs and 93% BRAM usage. Our DSP utilization is allocated
mainly for the index calculation, normalization, and activation
functions. Due to the limited available resource, we store the in-
termediate feature maps on the DDR memory upon completing a
combination of convolutional, BatchNorm, and BPReLU layers, and
fetch them when computing the residual connection. We are able
to achieve 48.1 frames per second (FPS) as we test our design in the
PYNQ environment. Our hardware logic runs at 16 ms. We allocate
double buffers to overlap part of the communication overhead and
compute. Our design can perform real-time image classifications,
and the attainable frame rate surpasses current state-of-the-art
embedded hardware accelerators on the same task. In Table 6, the
designs that have significantly higher frame rates either target a
server-class FPGA such as Intel Stratix V or have a lower accuracy
than ours. It is worth noting that Synetgy [51] take a different



Table 6: Hardware performance of FracBNN on ImageNet at batch size of 1.

ReBNet [11] AlexNet [28] FINN-R [3] T-DLA [7] MobileNetV2 [49] Synetgy [51] JPEGComp [34] FracBNN
Device Virtex Stratix-V Zynq Zynq Zynq Zynq VirtexUS+ Zynq
VCU108 ZU3EG 72020 ZU2EG ZU3EG XCVU9P ZU3EG
FPS 170 862.1 200.0 20.48 205.3 41.1 3321.2 48.1
Top-1 (%) 41.43 42.9 50.3 65.6 68.1 68.3 70.8 71.8
Top-5 (%) - 66.8 - - - 88.1 90.1 90.1
Bits (W/A) 1/1 1/1 1/2 2/2 8/8 4/4 1/8 1/1.4
Fmax (MHz) 200 150 220 250 430 250 300 250
Power (W) - 26.2 10.2 2.58 - 5.5 75 6.1
LUT 537600 230918 36249 37921 31198 51776 274795 50656
BRAM 3456 2210 432 97 145 159 2746 201
DSpP 768 384 - 202 212 360 2370 224

Table 7: FracBNN performance on CIFAR-10 (batch size 1).

ReBNet BNN FBNA FracBNN
[11] [57] [15]
Device Zynq Zynq Zynq Zynq
ZC702 72020 ZC702 ZU3EG
FPS 2000 168.4 520.8 2806.9
Top-1(%) | 8698 888 886 89.1
Bits (W/A) 11 11 11 1/1.4
Fmax (MHz) | 200 143 - 250
Power (W) - 4.7 3.3 4.1
Table 8: Resource utilization of the FracBNN accelerator.
DSPs BRAM LUTs
CIFAR-10 | 126 (35%) 212 (98.1%) 51444 (72.9%)
ImageNet | 224 (62.2%) 201 (93.0%) 50656 (71.8%)

approach in their FPGA implementation — the system consists of
independent accelerators, which the CPU invokes them as needed.

Table 7 compares our results against other works that target
CIFAR-10. FracBNN once again achieves the best model accuracy.
Compared to the BNN accelerator in [57] and FBNA [15], our de-
sign achieves the highest frame rate with a better accuracy on a
comparable embedded FPGA platform. Since our CIFAR-10 network
model is very compact, we are able to unroll the entire network on
the FPGA logic to eliminate unnecessary transactions between the
logic blocks and the DDR memory. The only data transmissions
are the input image and prediction results. Under this setting, we
achieve an FPS of 2806.9 with 72.9% of LUT utilization. The frame
rate is 1.4% higher than ReBNet [11], which has the highest frame
rate among the baselines but with a lower accuracy (by 2.1%).

5.3 Ablation Study

We further validate the efficacy of the binary input layer and the
fractional convolutional layer.

We observe that our binary input layer runs significantly faster
than a conventional fixed-point input layer with trivial additional
resource consumption. Table 9 shows the comparison in resource
utilization and latency. As described in Section 4.2, our binary input
layer reuses the convolution engine in the fractional convolutional
layer. The only resource consumption occurs in loading the image
and the weights, therefore remains low. Moreover, the latency of
our binary input layer is very low since the convolution engine is

highly parallelized when designed for the fractional convolution.
In contrast, the conventional input layer with 8-bit inputs and
weights requires DSP to compute the the results. The number of
DSPs, however, is limited on the target FPGA device. This resource
constraint makes it difficult for the 8-bit design to achieve the same
parallelism as binary computations, thus resulting in a much higher
latency.

Table 9: Comparison between the implementation of our bi-
nary input layer and an 8-bit conventional input layer.

Conv. DSPs BRAM LUTs Latency(ms)
1-bit | 3(08%)  25(1.2%) 3603 (5.1%) 2.0
8-bit | 287 (79.7%) 34 (15.6%) 22509 (31.9%) 65.9

To evaluate the efficiency of the fractional convolution, we im-
plement and compare the logic part of three networks — each with
1-bit convolutional layers, fractional convolutional layers, and 2-bit
convolutional layers, respectively. In the previous sections, we dis-
cuss the expectation that a neural network exploiting the fractional
convolution should perform slightly worse than a pure binary (1-bit
weights and 1-bit activation) model, but have significant improve-
ments over a conventional 2-bit activations and 1-bit weights model.
Table 10 shows a side-by-side comparison among the three models.
Clearly, the implementation results confirm our expectations on
the fractional network. We expend some extra resource to ensure
the same concurrency as the 1-bit model to match the performance.
The model with fractional convolutional layers has a slightly worse
latency compared to the 1-bit network, but it is more than 3x better
than a conventional 2-bit convolutional network. The only differ-
ence in the models is the precision of the convolution accelerator
modules. The reason behind such difference is that the conventional
2-bit convolution accelerator requires more resources than either
1-bit or fractional ones. If we hope to ensure the same concurrency,
there is no room to fit a much more expensive 2-bit convolution
accelerator. Eventually, we have to tune down the concurrency
to fit the network on the hardware, resulting in a higher latency
but slightly less resource utilization than the 1-bit and fractional
convolution models.

6 RELATED WORK

Binary Neural Networks. The pioneering works on BNN [8, 21]
establish the end-to-end training flow for the discrete networks.



Table 10: Comparisons among the 1-bit, fractional, and 2-bit
Networks on ImageNet.

Network DSPs BRAM LUTs Latency

Bitwidth (ms)
1-bit | 87(23.7%) 137 (63.4%) 59488 (84.3%)  15.0
2-bit | 85(23.8%) 169 (78.5%) 53419 (75.7%) 613
Frac. | 224 (62.2%) 201(93.0%) 50656 (71.8%) 163

Courbariaux et al. [21] binarize the weights and activations using
the sign function. This incurs nearly no loss in accuracy on small
datasets such as MNIST [27], SVHN [35], and CIFAR-10 [25]. While
its preliminary result of binarized AlexNet [26] only achieves 36.1%
top-1 accuracy on the ImageNet dataset, this work demonstrates
the feasibility of BNNs. There have been extensive follow-up ef-
forts to improve the accuracy of BNNs. Most of the attempts are
along the line of modifying BNN network architectures [2, 31, 40].
There are also works that explore different training strategies of
BNNs [33, 44, 60]. Recently, PReLU is found to be a better activa-
tion function for BNNs [6]. With an additional shift on the basis of
PReLU, ReActNet [30] binarizes MobileNet [20] and obtains ResNet-
18 level accuracy. In addition, [59] explores using an ensemble of
multiple BNN models to improve the accuracy, albeit at the cost of
higher compute complexity. There is also a study that tailors BNNs
for FPGAs by constructing LUTNet, an area-efficient LUT-based
neural network [46]. Unlike the aforementioned research, the pro-
posed approach exploits fractional activations to achieve efficient
and accurate quantization. Specifically, we leverage our recent work
on precision gating (PG) [55], a dynamic dual-precision scheme
that updates important features to a high precision at the inference
time based on a learnable threshold. We adopt PG in our baseline
BNN model motivated by ReActNet, and update a small portion of
features to two bits to improve the model accuracy.

Quantization of Input Layer. One visible drawback about cur-
rent BNNs in terms of hardware design is that the first layer remains
full-precision. Hirtzlin et al. [19] propose to use stochastic comput-
ing for the binarization of the input images. This method expands
the 3 input color channels from images in CIFAR-10 to more than
1500 binary channels. Consequently, it increases the number of
parameters and MACs in the input layer by nearly 16X. Diirichen
et al. [10] discuss two other options. The first one is using the 8-bit
fixed-point representation of a pixel, named DBID. However, the
associated weight of each binary digit is lost when converted to
a binary vector. In the second option, a pointwise convolutional
layer is added between the images and the input layer while using
DBID. It does not address the fundamental problem in DBID. Unfor-
tunately, when applied to the VGG-8 model on CIFAR-10, these two
methods degrade the accuracy by at least 4.6%. Our method is very
different from these techniques as we use thermometer encoding
to split the pixels into a binary vector. It incurs minimal or even no
accuracy degradation. FBNA [15] expands each pixel to a sum of
a binary vector for a pretrained model; but the dimension of that
vector must be a power of two. Our proposed method is different as
it can encode a pixel to an arbitrary dimension between 1 and 255,
and BNNs with it are still end-to-end trainable. In MeliusNet [2], a
grouped stem architecture is proposed to reduce the MACs in the
input layer by 40%. The technique replaces the 7 x 7 convolutional

layer with three 3 X 3 group convolutional layers. Though there is
MAC:s reduction, the input layer is still floating-point. Our proposed
method is different as we use a binary input layer.

FPGA-Based CNN Accelerators. There have been extensive stud-
ies on accelerating low-precision neural networks [37]. Qiu et
al. [39] first show convolutional layers are computation-bound
while fully-connected layers are memory-bound, and propose a
dynamic-precision data quantization method to accelerate CNN.
Different hardware architectures are then proposed to address the
bottleneck in computation and memory bandwidth [34, 48, 53], and
high-level programming frameworks are proposed to help efficient
quantization [3, 7, 12, 43, 52]. However, most of these works tar-
get AlexNet and VGG, which are much less efficient than more
recent CNN models such as ResNet and MobileNet. As another
approach, algorithm-hardware co-design method is leveraged to
develop hardware-efficient networks with fewer bits in weights
and activations [14, 16, 24, 47, 49, 51]. Our work is very different as
all of the convolutional layers in the model are computed in pure
BMAC:s.

There is also an active body of research on accelerating BNN
models on FPGAs. Zhao et al. [57] make the first attempt imple-
menting a BNN accelerator on FPGA, which introduces a BitSel
module and variable-width length buffers to make the network
inference efficient. FINN [4, 45] provides a framework for fast BNN
inference. ReBNet [11] leverages multi-level residual binarization
to improve the accuracy. FBNA [15] binarizes all the network layers
but only targets the CIFAR-10 dataset. Liang et al. [28] implement
the binarized AlexNet on ImageNet. The top-1 accuracy is 42.9%,
which is 13% lower than its full-precision model. Our work uses
fractional activations to create an accurate model.

7 CONCLUSIONS

This work proposes FracBNN, which exploits fractional activations
to substantially improve the accuracy of BNNs. FracBNN employs
a dual-precision activation scheme. Features are computed with
up to two bits, using an additional sparse binary convolution. The
input layer is also binarized using a novel thermometer encod-
ing. FracBNN preserves the key hardware benefits of conventional
BNNs. We design an efficient FPGA-based accelerator for our novel
fractional convolution kernel. We also implement the entire opti-
mized network on an embedd FPGA (Xilinx Ultra96 v2). Experi-
ments show that FracBNN achieves a top-1 accuracy comparable
to MobileNetV2, surpassing that of the best-known BNN FPGA
accelerator and a recently introduced BNN by a large margin. On
the embedded FPGA, FracBNN demonstrates the ability of real-time
image classification.
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