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Abstract

Combining the classical theory of optimal transport with modern operator splitting
techniques, we develop a new numerical method for nonlinear, nonlocal partial differ-
ential equations, arising in models of porous media, materials science, and biological
swarming. Our method proceeds as follows: first, we discretize in time, either via
the classical JKO scheme or via a novel Crank—Nicolson-type method we introduce.
Next, we use the Benamou—Brenier dynamical characterization of the Wasserstein
distance to reduce computing the solution of the discrete time equations to solving
fully discrete minimization problems, with strictly convex objective functions and
linear constraints. Third, we compute the minimizers by applying a recently intro-
duced, provably convergent primal dual splitting scheme for three operators (Yan in
J Sci Comput 1-20, 2018). By leveraging the PDEs’ underlying variational structure,
our method overcomes stability issues present in previous numerical work built on
explicit time discretizations, which suffer due to the equations’ strong nonlinearities
and degeneracies. Our method is also naturally positivity and mass preserving and,
in the case of the JKO scheme, energy decreasing. We prove that minimizers of the
fully discrete problem converge to minimizers of the spatially continuous, discrete
time problem as the spatial discretization is refined. We conclude with simulations
of nonlinear PDEs and Wasserstein geodesics in one and two dimensions that illus-
trate the key properties of our approach, including higher-order convergence our novel
Crank—Nicolson-type method, when compared to the classical JKO method.
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Foundations of Computational Mathematics

1 Introduction

Gradient flow methods are classical techniques for the analysis and numerical sim-
ulation of partial differential equations. Historically, such methods were exclusively
based on gradient flows arising from a Hilbert space structure, particularly L2(R%),
but since the work of Jordan, Kinderlehrer, and Otto in the late 90’s [75,93,94], interest
has emerged in a range of nonlinear, nonlocal partial differential equations that are
gradient flows in the Wasserstein metric,

Wp=V-(pVV)+V-(pVWxp)+adp™, xcQCRI V.W:2 >R,

(1
p(x,0) = po(x), m=>1, o>0.

When 2 # R?, we consider no-flux boundary conditions.

Equations of this form arise in a number of physical and biological applications,
including models in granular media [12,45,46,102], material science [71], and biolog-
ical swarming [6,39,77]. Furthermore, many well-known equations may be written in
this way: when V. = W = 0 and o = 1, Eq. (1) reduces to the heat equation (m = 1),
porous medium equation (m > 1), and fast diffusion equation (m < 1) [103]. In
the presence of a drift potential V, it becomes a Fokker—Planck equation (m = 1)
or nonlinear Fokker—Planck equation (m > 1), as used in models of tumor growth
[96,100]. When the interaction potential W is given by a repulsive—attractive Morse
or power-law potential,

W(x) = —Cpe Wla 4 Ce=Vl - CL/Cy < (1 /1)74, 0 <1y < 14,0 < Cy < Cr,

a b
Al —ﬁ, —d<b<a, 2)
b

Wx) =

we recover a range of nonlocal interaction models, which are repulsive at short length
scales and attractive at long length scales [4,5,34,101]. When W = (A)’1 , the Newto-
nian potential, we have the Keller—Segel equation and its nonlinear diffusion variants
[17,19,25,26,32,41,76]. Finally, as the diffusion exponent m — 400, we recover con-
gested aggregation and drift equations arising in models of pedestrian crowd dynamics
and shape optimization problems [23,58,67,84,90,91].

In order to describe the gradient flow structure of equation (1), we begin by rewriting
it as a continuity equation in p(x, t) for a velocity field v(x, 1),

dp ==V -(pv) =V [pV (aU,(p) +V +W=xp)].
p(x,0) = po(x),

sin(s) form =1,
Un(s) = { 57 form > 1 3
m—1 .

In this form, two key properties of the equation become evident: it is positivity preserv-

ing and conserves mass. In what follows, we will always consider nonnegative initial

data, and we will typically renormalize so that the mass of the initial data equals one,
Elo [y
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i.e., po € Puc(82), where P, (82) is the set of probability measures on £2 that are abso-
lutely continuous with respect to Lebesgue measure. Furthermore, as our objective is
to develop a numerical method for these equations, we will exclusively consider the
case when §2 is a bounded domain. Throughout, we commit a mild abuse of notation
and identify all such probability measures with their densities, dp(x) = p(x)dx.

As discovered by Otto [93], given an energy £ : Pyc(£2) — R U {400}, we
may formally define its gradient with respect to the Wasserstein metric dyy using the
formula

8
\Y =-V. V— .
awE(P) <P 5,0)

(See Sect. 2.1 for the definition of the Wasserstein metric dyy.) In this way, gradient
flows of £, 3;p = —V4,,,E(p), correspond to solutions of the continuity equation with
velocity v = —V%. In particular, Eq. (3) is the gradient flow of the energy

1
E(p) = /Q [aU(p(x)) + V(x)p(x)]dx + 5/ Wx = y)p(x)p(y)dxdy . (4)

2x82

Differentiating the energy (4) along solutions of (3), one formally obtains that the
energy is decreasing along the gradient flow

d
TEP0 =~ / lu(r, x)1*p(t, x)dx , *)
t R4

which coincides with the theoretical interpretation of gradient flows as solutions that
evolve in the direction of steepest descent of an energy, where the notion of steepest
descent is induced by the Wasserstein metric structure.

A key feature of equations of the form (3) is the competition between repulsive and
attractive effects. For repulsive—attractive interaction kernels W, as in equation (2),
these effects can arise purely through nonlocal interactions, leading to rich structure
of the steady states [4,13,14,34,65]. For purely attractive interaction kernels W, as
in the Keller—Segel equation, the competition instead arises from the combination of
nonlocal interaction with diffusion. In this case, different choices of interaction kernel
W, diffusion exponent m, and initial data py can lead to widely different behavior—
from bounded solutions being globally well posed to smooth solutions blowing up in
finite time [17,19,25,26,32,41].

1.1 Summary of Numerical Approach

The goal of the present work is to develop new numerical approach for partial dif-
ferential equations of the form (1) that combine gradient flow methods with modern
operator splitting techniques. Our approach applies to equations of this form with any
combination of diffusion aU,,(p) (¢ > 0), drift V, or interaction W * p terms—in
particular, it is not necessary for diffusion to be present in order for our scheme to
converge.
EOE';W
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KPDE / Wasserstein gradient ﬁ%
Op =V [pV (Up,(p) +V + W p)]
p(+0) = po

. )

/ B. JKO \ / C. Dynamic JKO (Problem 1) \

€ d3 1) 4 27€
Pr :Ergntln { wlp:pr ™) +27 (p)} p € arg Inm/ / | +278(p(-, 1)),
22 = pol@) Pt =p(:1) (p,m)C
T < (p,m) €C —
S Op+V-m=0onQx][0,1]
- m-v=0ondQ x[0,1]
K J p(0)=pF  on Q
T 27 nr
/ D. Discrete Dynamic JKO (Problem 1; ) \

pjk € argmin Z‘ ikl AzAt + QTSh(p] N,)s
(pym)ech 55 Pk

(p,m) €C" —
N IDy ok + DimyiPAnAt <63, N myk v P(Az)T AL < 63,
jeank

SO oz = () PAL <8, D lpj0 — (p6);17 A < 63
ko J

J

Fig.1 Levels of discretization: 7 is the outer JKO time step, At is the inner time step, and Ax is the spatial
discretization

The main idea of our approach is to discretize the PDE/Wasserstein gradient flow at
two levels. First, we consider a time discretization of the gradient flow with time step t
(see Fig. 1b), either given by the classical JKO scheme (Eq. (6) below) or a new Crank—
Nicolson inspired variant (Eq. (7) below). This reduces computation of the gradient
flow to solving a sequence of infinite-dimensional minimization problems. Then, we
consider a dynamical reformulation of these minimization problems, stemming from
Benamou and Brenier’s dynamic characterization of the Wasserstein metric, by which
the problem becomes the minimization of a strictly convex integral functional subject
to a linear PDE constraint (see Fig. 1¢). At this level, the problem remains continuous
in space and time. We conclude by considering a further discretization of the problem,
with inner time step (At) and spatial discretization (Ax), by taking piecewise constant
approximations of the functions and using a finite difference approximation of the
PDE constraint (see Fig. 1d). In this final, fully discrete form, we then compute the
minimizer using modern operator splitting techniques, applying Yan’s recent extension
of the classical primal dual algorithm for minimizing sums of three convex functions
[106].

Our paper is organized as follows. In Sect. 1.2, we discuss the relationship between
our numerical approach and previous work. In Sect. 1.3, we summarize our con-
tribution. In Sect. 2, we describe the details of our numerical method. Along with
numerically simulating Wasserstein gradient flows, our method also provides, as a
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special case, a new method for computing Wasserstein geodesics and the Wasser-
stein distance between probability densities; see Remark 1. In Sect. 3, we prove that,
provided a smooth, positive solution of the continuum JKO scheme exists and the
energy corresponding to the PDE is sufficiently regular, then minimizers of the fully
discrete problem exist (Theorem 1), the objective functions of the discrete problems I"-
converge to the objective function of the continuum problem (Theorem 2), and thus,
solutions of the fully discrete scheme converge, up to a subsequence, to a solution
of the continuum scheme (Theorem 3). As a special case, we also recover conver-
gence of a numerical method for computing Wasserstein geodesics, similar to that
introduced by Papadakis, Péyre, and Oudet [95]. Finally, in Sect. 4, we provide sev-
eral numerical simulations illustrating our approach in both one and two dimensions,
computing Wasserstein geodesics, nonlinear Fokker—Planck equations, aggregation
diffusion equations, and other related equations.

1.2 Details of Approach and Comparison with Previous Work
1.2.1 Classical Numerical PDE Methods

We now compare our approach to existing numerical methods. Perhaps the most
common numerical approach for equations of the form (1) is to consider the equation
as an advection—diffusion equation and apply classical finite difference, finite volume,
or Galerkin discretizations [3,29,54,66,85]. However, when such methods are based
on explicit time discretizations, they suffer from stability constraints due either to
the degeneracy of the diffusion (when m > 1) or the nonlocality from the interaction
potential W. (See for instance the mesa problem [83].) Implicit time discretizations, on
the other hand, are computationally intensive, due to the difficulty of matrix inversion,
even when the implicit steps are solved by smart iterative methods to avoid the high
computation cost of convolution [3].

Another common approach is to leverage structural similarities between (3) and
equations from fluid dynamics to develop particle methods [14,27,30,36,43,48,57,
60,88,92]. Until recently, the key limitation of such methods has been developing
approaches to incorporate diffusion. Following the analogy with the Navier—Stokes
equations, stochastic particle methods have been proposed in the case of linear diffu-
sion (m = 1) [72-74,86]. More recently the first two authors and Patacchini developed
a deterministic blob method for linear and nonlinear diffusion (m > 1) [31]. On the
one hand, particle methods naturally conserve mass and positivity, and they can also
be designed to respect the underlying gradient flow structure of the equation, including
the energy dissipation property (5). On the other hand, a large number of particles are
often required to resolve finer properties of solutions.

In contrast with such classical methods, our method introduces an auxiliary momen-
tum variable m and an additional inner layer of time discretization, which enlarges
the dimension of the problem. However, as later pointed out in [80], the inner layer of
time can be discretized with just one step without violating the overall first-order accu-
racy, there completely eliminating the additional cost introduced by the inner layer.
Another major advantage of our approach is that, by reforming the PDE problem into

FolCT
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an optimization problem, we obtain unconditional stability (for the JKO discretiza-
tion, see Eq. (6) below) while avoiding the inversion of a full matrix in the general
implicit setting, which is extremely expensive, especially in higher dimensions; see for
instance [3]. Finally, compared to other implicit methods, such as the backward Euler
method, the suboptimization problems can be solved independently at each gridpoint,
and therefore are massively parallelizable and suitable for high-dimensional problems.

1.2.2 Variational Methods

Compared to the classical numerical PDE approaches described in the previous section,
a more modern class of numerical methods leverages the gradient flow structure of (1)
to approximate solutions of the PDE by solving a sequence of minimization problems.
This is the approach we take in the present work. Originally introduced by Jordan,
Kinderlehrer, and Otto as a technique for computing solutions of the Fokker—Planck
equation (Eq. (1), W = 0,m = 1) [75], this scheme approximates the solution p(x, )
at time ¢ by solving the following sequence of n minimization problems with time
step T =t/n,

pr e argmin [d3, (0. p27) +2e8(0)| . p0 = po(x). ©)
PEPuc(R2)

The JKO scheme is precisely the analogue of the implicit Euler method in the infinite-
dimensional Wasserstein space. The constraint p € P,.(£2) ensures that the method
is positivity and mass preserving, and the fact that d%v (p, ") = 0 ensures the energy
decreasing along the scheme, &£ (pf“'l) < &(pH.

Under sufficient assumptions on the underlying domain £2, drift potential V, inter-
action potential W, and initial data pg (see Sect. 2.1), the solution of the JKO scheme
o converges to the solution p(x, ) of the partial differential equation (1), with a
first-order rate in terms of the time step T = ¢/n [2, Theorem 4.0.4],

dw(pn(), p(-,1)) = Cr.

In our numerical simulations, we observe that this discretization error dominates
other errors in our numerical method; see Sects. 4.2.1 and 4.2.2. Consequently, we
also introduce a new time discretization, in analogy with the Crank—Nicolson method

8
p"t! € argmin {dﬁv(p,p”)JrrE(p)H/ —(p”)p} . (7
pEPac(£2) 2 op

The connection between the above scheme and the classical Crank—Nicolson dis-
cretization can be seen by considering the optimality conditions for (7):

n+1 n
(pn+1—pn)zlv-(pn+lv<ag(p )+85()0 )))
2 8p Sp

CToa =

o
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Like the JKO scheme, our Crank—Nicolson inspired method is also positivity and mass-
preserving, though it is not energy decreasing. In Figs. 7, 8, and 10 of our numerics
section, we conduct a preliminary analysis of the rate of convergence of this method,
which verifies that it is indeed higher order than the JKO scheme. As the goal of the
present work is primarily the development of fully discrete numerical schemes, we
leave a thorough analysis of the rate of convergence of our Crank—Nicolson inspired
method as T — 0 to future work.

On the one hand, our Crank—Nicolson inspired method (7) is not the first
higher-order method proposed for metric space gradient flows: Matthes and Plazotta
developed a provably second-order scheme for general metric space gradient flows by
generalizing the backward differentiation formula [89]. The Matthes—Plazotta method,
however, requires two evaluations of the Wasserstein distance at each outer time step
and thus is less practical for our purpose of numerically computing gradient flows in
higher dimensions. Another method was introduced by Legendre and Turinici [79]
based on the midpoint method. This method can be reformulated as the classical JKO
step with half time step followed by an extrapolation. This extrapolation step could
be implemented by solving the corresponding continuity equation either explicitly
or implicitly; however, solving the equation explicitly could potentially violate con-
servation of positivity, while solving it implicitly would require an additional matrix
inversion. Another higher-order variational method was also proposed in [78], which
resembles explicit Runge—Kutta methods and, again, require two or more evaluations
of the Wasserstein distance at each outer time step.

1.2.3 Numerical Methods for the Wasserstein Distance

To use either the classical JKO scheme (6) or our new Crank—Nicolson inspired scheme
(7) as a basis for numerical simulations, one must first develop a fully discrete approx-
imation of the minimization problem at each step of the scheme. Here, the main
numerical difficulty arises in approximating the Wassserstein distance, and there are
several different approaches for dealing with this term. First, one can reformulate
the Wasserstein distance in terms of a Monge—Ampére equation with nonstandard
boundary conditions [11,68], though difficulties arise due to the lack of a comparison
principle [70]. Second, one can reframe the problem as a classical L>(R%) gradient
flow at the level of diffeomorphisms [16,37,47,49,69], but to pursue this approach, one
has to overcome complications arising from the underlying geometry and the structure
of the PDE system for the diffeomorphisms. Third, one can discretize the Wasserstein
distance term as a finite-dimensional linear program, overcoming the lack of strict
convexity of the objective function by adding a small amount of entropic regulariza-
tion [8,55,61]. (For a detailed survey of computational optimal transport, we refer the
reader to the recent book by Péyre and Cuturi for [97].)

A fourth approach for computing the Wasserstein distance, and the one which we
develop in the present work, is to consider a dynamic formulation due to Benamou and
Brenier [7]. This reframes the problem as a strictly convex optimization problem with
linear PDE constraints, which can be discretized using Benamou and Brenier’s original
augmented Lagrangian method ALG?2 or, more generally, a range of modern proximal
splitting methods, as shown by Papadakis, Peyre, and Oudet [95]. (See also [21,22]

EOE';W
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for related work on mean field games.) Adding an additional Fisher information term
in this dynamic formulation (in analogy with entropic regularization) has also been
explored in [82].

Only recently have these above approaches for computing the Wasserstein distance
been integrated with the JKO scheme (6) in order to simulate partial differential equa-
tions of the form (1). The Monge—Ampére approach extends naturally, though the
presence of a diffusion term «U,, (p) for « > 0 is required to enforce convexity con-
straints at the discrete level [10]. Similarly, entropic regularization (or the addition of
a Fisher information term) vastly accelerates the computation of gradient flows, but at
the level of the partial differential equation, this corresponds to introducing numerical
diffusion, which may disrupt the delicate balance between aggregation and diffusion
inherent in PDEs of this type [28,55,82]. Finally, Benamou and Brenier’s dynamic
reformulation of the Wasserstein distance has also been adopted in recent work to
approximate gradient flows [9]. A key benefit of this latter approach when compared
to entropic regularization is that it leads to an optimization problem in N;l X Ny vari-
ables, where N, and N, are the number of spatial and temporal gridpoints, whereas
the latter leads to an optimization problem in N 3‘1 variables.

In the present work, we further develop this last approach, using Benamou and
Brenier’s dynamic reformulation of the Wasserstein distance to simulate Wasserstein
gradient flows, via both the classical JKO scheme (6) and our new Crank—Nicolson
inspired scheme (7). This leads to a sequence of minimization problems (Fig. 1C),
which we discretize (Fig. 1D) and then solve using a modern primal dual three operator
splitting scheme due to Yan [106], instead of the classical ALG2 method. See Sect. 2
for a detailed description of our approach.

Due to the fact that we use operator splitting methods to compute the minimizer in
Benamou and Brenier’s dynamic formulation of the Wasserstein distance, our work
can be seen as an extension of previous work by Papadakis, Peyre, and Oudet [95],
which applied similar two operator splitting schemes to simulate the Wasserstein
distance. However, there are a few key differences between our approach and previous
work. First, we are able to implement the primal dual splitting scheme in a manner
that does not require matrix inversion of the finite difference operator, which reduces
the computational cost. Second, we succeed in obtaining the exact expression for the
proximal operator, which allows our method to be truly positivity preserving, while
other similar methods are only positivity preserving in the limit as Ax, At — 0;
see Remark 5. Third, instead of imposing the linear PDE constraint in Benamou and
Brenier’s dynamic reformulation exactly, via a finite difference approximation, we
allow the linear PDE constraint to hold up to an error of order § > 0, which can be
tuned according to the spatial discretization (Ax), the inner temporal discretization
(At), and the outer time step t to respect the order of accuracy of the finite difference
approximation; see Remark 3. Numerically, this allows our method to converge in
fewer iterations, without any reduction in accuracy, as demonstrated in Fig. 3. From
a theoretical perspective, the fact that we only require the PDE constraint to hold up
to an error of order § > 0 makes it possible to prove convergence of minimizers of
the fully discrete problem to minimizers of the JKO scheme (6), since minimizers of
the fully discrete problem always exist for § > 0, which is not the case when the PDE
constraint is enforced exactly (§ = 0); see Remark 8 and Theorem 1.

Elol:;ﬂ
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1.3 Contribution

The main components of our numerical method for computing solutions to (1) are:

(a) anouter time discretization, of either JKO (6) or Crank—Nicolson type (7) (Fig. 1B)

(b) a dynamic interpretation of the Wasserstein distance (Fig. 1C), which when dis-
cretized via finite difference approximations leads to a sequence of constrained
optimization problems (Fig. 1D)

(c) an application of modern three operator splitting schemes for solving these opti-
mization problems.

Our main contributions are:

— Unlike classical explicit methods, our JKO-type method is unconditionally stable.
Unlike classical implicit methods, it achieves this stability without an expensive
matrix inversion.

— Inpractice, we observe that our Crank—Nicolson-type method performs even better
than our JKO-type method, in terms of rate of convergence with respect to the outer
time step (see Figs. 7, 8, and 10). We leave a thorough analysis of the rate of this
convergence of this method to future work.

— By formulating our optimization problem with a linear inequality constraint instead
of a linear equality constraint, our algorithm converges in fewer iterations when
compared to related algorithms for Wasserstein geodesics; see Remark 3 and Fig. 3.

— We prove convergence of our fully discrete method (Fig. 1D) to the JKO scheme
(Fig. 1B, C) as the spatial discretization and inner time discretization go to zero.

2 Numerical Method
2.1 Dynamic Formulation of JKO Scheme
As described in the previous section, our numerical method for computing the JKO

scheme is based on the following dynamic reformulation of the Wasserstein distance
due to Benamou and Brenier [7]:

! 1/2
dy(po. p1) = inf { /O /Q |v<x,r)|2dp<x,z>dr} , ®)

(p,v)eCo

where (p, v) € AC(0, 1; P(2)) x L'(0, 1; L?>(p)) belongs to the constraint set Co
provided that

op+V-(pv) =00n 2 x [0, 1] )
(pv)-v=00n0as x [0, 1], (10)
p('so)zp()v p(vl)zpl Oan (1])

where v is the outer unit normal on the boundary of the domain £2. A curve p in
P(82) is absolutely continuous in time, denoted p € AC(0, 1; P(£2)), if there exists
FoC
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w € LY0, 1) so that dyy(p(-, t0), p(-, 1)) < jZ)‘ w(s)ds forall0 < 1p <1, < 1.
The PDE constraint (9 and 10) holds in the duality with smooth test functions on
R x [0, 1], i.e., forall f € CX@R? x [0, 1]),

1
/ / [atf(-xv t)lo(‘x7 t) + Vf()C, t) . U()C, t),O()C, t)] dxdr
0 J
+f9 £, 00p0(x) — £x, Dy (x)dx = 0.

This dynamic reformulation reduces the problem of finding the Wasserstein distance
between any two measures to identifying the curve in P(§2) that connects them with
minimal kinetic energy. However, the objective function (8) is not strictly convex,
and the PDE constraint (9) is nonlinear. For these reasons, in Benamou and Brenier’s
original work, they restrict their attention to the case p(-, t) € P,.(£2) and introduce
the momentum variables m = vp, in order to rewrite (8) as

1
d12/\;(/)0,,01)= min //4’(p(x,t),m(x,t))dxdt, (12)
(o.m)eCy Jo Jo
where
urr;nz ifp>0,
D(p,m) =10 if (p, m) = (0,0), (13)

+o00  otherwise,

and (p, m) € AC(0, 1; Pue(£2)) x L1(0, 1; L>(p~")) belong to the constraint set C;
provided that

op+V-m=0on 2 x[0,1]
m-v=0o0nds2 x [0,1].
10(70):/007 p(v 1):)01 on 2.

After this reformulation, the integral functional

1
<p,m>H/ / ®(p, m) (14)
0 2

is strictly convex along linear interpolations and lower semicontinuous with respect
to weak-* convergence [1, Example 2.36], and the PDE constraint is linear. As an
immediate consequence, one can conclude that minimizers are unique. Furthermore,
for any pg, p1 € Puc(£2), a direct computation shows that the minimizer (p, m) is
given by the Wasserstein geodesic from pg to p,

p(x,1) = Ti#tpy, 0(x, 1) =T o T, ' (x) — T, 1 (x), m
=0p, for T;(x) := (1 — )x + 1T (x), (15)
FolCTM
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where T is the optimal transport map from pgy to p;. (See [2,98,105] for further
background on optimal transport.) Consequently, given any minimizer (o, m) of (12),
we can recover the optimal transport plan 7 via the following formula:

Tx)=x+v(x,0)=x+m(x,0)/p(x,0). (16)

Building upon Benamou and Brenier’s dynamic reformulation of the Wasserstein
distance, one can also consider a dynamic reformulation of the JKO scheme (6). In
particular, substituting (12) in (6) leads to the following dynamic JKO scheme:

Problem 1 (Dynamic JKO) Givent > 0, E, and py, solve the constrained optimization
problem,

1
inf //Gb(,o(x,t),m(x,t))dxdt+27:5(p(-,1)),
0 Je

(p,m)eC

where (p, m) € AC(0, 1; Pac(£2)) x LY(0, 1; L*(p~ 1)) belong to the constraint set
C provided that

p+V-m=00n2 x[0,1], m-v=00n032 x[0,1], and p(-,0) = poon 2. (17)

We emphasize that the requirement p(x, t) € P, (§2) for all ¢ € [0, 1] ensures that
px,1) > 0.

Remark 1 (Wasserstein geodesics) Note that for any p; € P,.(£2), we may take

0 if p(-, 1) = p1,
+o00 otherwise,

E(p(, D) =Gp (p(, D) = (18)

in which case Problem 1 reduces to the Benamou—Brenier formulation of the Wasser-
stein distance (12). Consequently, the numerical method we develop for Problem 1
offers, as a particular case, a provably convergent numerical method for computing the
Wasserstein geodesic and Wasserstein distance between pp and p;. On the one hand,
there are many alternative methods for computing Wasserstein geodesics in Euclidean
space. Indeed, the many algorithms described in the introduction for computing the
Wasserstein distance also provide an optimal transport plan, which can be linearly
interpolated to give the Wasserstein geodesic [8,11,55,61,68,97]. On the other hand,
our method is distinguished because it could be more naturally extended to variants
of the Wasserstein metric built on the Benamou—Brenier formulation [33,64,87], as
well as to Wasserstein geodesics on non-Euclidean manifolds, where the geodesic
equations on the underlying manifold may no longer be explicit, so that one cannot
pass directly from the optimal transport plan to the Wasserstein geodesic.

Remark 2 (existence and uniqueness of minimizers) If the underling domain 2 is
convex and the energy & is proper, lower semicontinuous, coercive, and A-convex
along generalized geodesics, and also satisfies {i : E(un) < +o0} € P, (£2), then,
EOE';W
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for > 0O sufficiently small, there exists a unique solution to Problem 1 [2, Theorem
4.0.4, Theorem 8.3.1]. In particular, these assumptions are satisfied by the energy G,
(18), as well as by the drift—diffusion interaction energy from the introduction (4), for
UasinEq.(3),V,W ¢ C?%(£2). (See, for example, [2, Section 9.3] or [56] for more
general conditions on U, V, W.)

Thus, if we denote by (o, m) the minimizer of Problem 1, then for r > 0 sufficiently
small, the proximal map,

Je(po) :==p(, 1),

is well defined for all pg € D(E). Furthermore, the energy decreases under the proxi-
mal map,

E(Jz(po)) = E(po), 19)

which can be seen by comparing the value of the objective function at the mini-
mizer (p, m) to the value of the objective function at (p(x, 0), 0) € C and using that
@ (p,m) > 0.

Given pg € D(&), if we recursively define the discrete time gradient flow sequence

o = Jr(p" 1), foralln €N, (20)

then, taking T = t/n, p} converges to p(x, t), the gradient flow of the energy £ with
initial data pp at time ¢, and under mild regularity assumptions on pp, we have

dw(pn (), p(-, 1)) < Ct. (21)

In this way, the classical JKO scheme provides a first-order approximation of the
gradient flow [2, Theorem 4.0.4]. In our numerical simulations, we observe that this
discretization error dominates other errors in our numerical method; see Sects. 4.2.1
and 4.2.2. For this reason, we introduce the following new scheme, inspired by the
Crank—Nicolson method.

Problem 2 (Crank—Nicolson Inspired Dynamic JKO) Given t > 0, £, and pg, solve
the constrained optimization problem,

1
inf //‘P(p(x,t),m(x,l))dxdt+r5(p(x,1))+r/ g(p(x,o))p(x,l)dx,
(p.meC Jo J@ o op

where (p, m) € AC(0, 1; Pac(82)) x LY(0, 1; L2(p~ 1)) belong to the constraint set
C provided that

p+V-m=00n2 x[0,1], m-v=00nd2 x[0,1], andp(-,0) = pyon £2.

In Sect. 4.2.2, we provide numerical examples comparing the above method to the

classical JKO scheme from Problem 1, illustrating that it achieves a higher-order rate
Elol:;ﬂ
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of convergence in practice (see Figs. 7, 8, and 10), in spite of the fact that that it
lacks the energy decay property of Problem 1. Under what conditions a higher-order
analogue of inequality (21) holds for the new scheme is an interesting open question
that we leave to future work, as the main goal of the present work is the development
of fully discrete numerical methods for computing minimizers of Problem 1 and 2. By
iterating either of these minimization problems, as in Eq. (20), we obtain a numerical
method for simulating Wasserstein gradient flows.

2.2 Fully Discrete JKO

We now turn to the discretization of the dynamic JKO scheme, Problem 1, and the
Crank—Nicolson inspired scheme, Problem 2. We begin by noting that the Crank—
Nicolson inspired Problem 2 can be rewritten in the same form as Problem 1 by
considering the energy

1 1 8&
Hpy(p) = 55(,0()6, D) + 3 [Q %(p(x, 0)p(x, Ddx. (22)

Using this observation, we will now describe our discretization of both problems
simultaneously.

2.2.1 Discretization of Functions and Domain

Given an n-dimensional hyperrectangle S = IT}_,[a;, b;] € R", we discretize it as
a union of cubes Q;, i € N", where in the /th direction, we suppose there are N;
intervals of spacing (z); = (b; — a;)/Ny:

s=J 0 Gi={Gia.. ) eR iy elli— D@ i@V =1,....n}.
i:Q;CS

Piecewise constant functions with respect to this discretization are given by

lifz € Q;
0 otherwise.

fh=Y" filg,, for fi e Rand 1g,(z) =

i:Q0;CS

To discretize Problem 1, we take S = 2 x [0, 1] € RY*! where 2 = IT"__ [a;, b;].
For any i € N+ write i = (j, k), for the spatial index j € N and the temporal
index k € N. We let N, € N denote the number of intervals in each spatial direction
and N; € N denote the number of intervals in the temporal direction. Take z = (x, At)
for (x); = (Ax) >O0foralll=1,...,d and At > 0.

We consider piecewise constant approximations (,oh, mh) of the functions (p, m),
with coefficients denoted by (0} x, m ). For any (o, m) € C (2 x [0, 1]), one such
approximation is the pointwise piecewise approximation (5", "), obtained by defin-
ing the coefficients (5; k, 711 j 1) to be the value of (p, m) on a regular grid of spacing
(Ax) x (At):

Pjk = pXj,t), mj :=mx;, ),
EOE';W
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(. 1) = R+ (j = D(Ax), T + (k — 1)(AD)
% € I, [0, Ax], 7 € [0, At]. (23)

wherel =[1,1,...,1]" € N4, Note that, whenever (p,m) € C(ﬁx [0, 1]), we have
that (5", m") converges to (p, m) uniformly.

2.2.2 Discretization of Energy Functionals

Next, we approximate the energy functionals by discrete energies £”, beginning with
energies of the form (4). Given a piecewise constant function p” with coefficients p s

1
Frpj) =Y (U + Vi) (A0 + 23 Wiipipm(an,  24)
J il

where V" (x) = > j Vijlg;(x) is a piecewise constant approximation of V (x) and
wh (x,y) = Z.i,l Wil 0; )1 0; (y) is a piecewise constant approximation of W (x —
y). Here, W; ; = W(|x; — x;|) symmetric, i.e., W;; = W ;.

Likewise, for energies of the form (4), we consider the following discretization of
the energy H, from Eq. (22) for the Crank—Nicolson inspired scheme, Problem 2,

1 1
Hy07) = 5 F () + 5 ) <U’((po) DVt Wj,z(pon(Ax)d) pj(Ax)".
J

1
(25)

Finally, to compute Wasserstein geodesics between two measures pg, p1 € Py ($2),
we consider a discretization of the energy G, from Eq. (18). Given a piecewise constant
approximation p{‘ of p; and § > 0, define

0 if 3 1pj — (o) P(An? <8

. (26)
+o0o, otherwise.

g (pj) = {

2.2.3 Discretization of Derivative Operators

Let D" p" and Dm" denote the discrete time derivative and spatial divergence on
£ x [0, 1] and let v" denote the discrete outer unit normal of 2. (See Hypothesis 3 for
the precise requirements we impose on each of these discretizations). For example,
in one dimension we may choose a centered difference in space and a forward Euler
method in time,

_ Pjk+1 — Pk

h Mjt1k —Mj—1k
Dipjr = Y =l I

s D'm; =
Jk 2Ax

X

27)
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or a Crank—Nicolson method,

Pjk+1 — Pjk Mjpl e —Mj—1k+Mjt] k+1 — Mj—1 k+1
D,hp/,k= . k+ Lk ngj’k: i+ j J+Lk+ J=Lk+1

’ At : 4Ax
(28)

We compute these discretizations of the derivatives at the boundary by extending m ;
to be zero in the direction of the outer unit normal vector. As we can only expect these
approximations of the temporal and spatial derivatives to hold up to an error term,
we relax the equality constraints from (17) in the following discrete dynamic JKO
scheme.

2.2.4 Discrete Dynamic JKO
The discretizations described in the previous sections lead to a fully discrete dynamic
JKO problem:

Problem 1; ; (Discrete Dynamic JKO) Fix t, 81, 82, 83, 64 > 0, &M and ,og. Solve
the constrained optimization problem,

inf YN "D (pjxmj) (A0 At + 2t (pj ), (29)
k

(pj.k-mjx)ECh ;
where (pj i, mj k) belong to the constraint set C" provided that for all j, k,

D 1D pjx + Dimj > (Ax) (A1) < 67,

J.k
D7 imjxcviF (A (An < 8, (30)
j€oas2,k
DI pja(Ax)y =Y (pg)(Ax)!P(Ar) < 83,
k J J
> lpjo— (o) P (Ax)? < 87 31)

J

The inequalities (30) enforce the PDE constraint and the boundary condition; the
inequalities (31) enforce the mass constraint and the initial conditions. Recall that,
by definition of @ in Eq. (13), ®(pjx.m;jx) < +oo only if p; ; is nonnegative.
Consequently, if a minimizer p; j exists, it must be nonnegative.

Remark 3 (relaxation of PDE constraints) A key element of our numerical method is

that we relax the equality constraint (17) at the fully discrete level. This reflects the

fact that even an exact solution of the continuum PDE will only satisfy the discrete

constraints (30-31) up to an error term depending on the order of the finite difference
operators.
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We allow the choice of §; to vary for each of the above constraints. However,
when the desired exact solution is sufficiently smooth, the optimal choice of §; for a
second-order discretization of the spatial and temporal derivatives is

81 ~ (Ax)2 + (A%t and &, 83,84 ~ (Ax)?,

where 7 > 0 is the size of the timestep in the outer time discretization; see equations
(6-7). As we will demonstrate in Fig. 3 of our numerics section, relaxing the PDE
constraint accelerates convergence to a minimizer of the fully discrete Problem 1;
without any loss of accuracy with respect to the exact continuum solution.

Finally, note that while the discrete PDE constraint (30) automatically enforces the
mass constraint up to order § 12 +82, we choose to impose the mass constraint separately
via the first Eq. in (31). This leads to better performance in examples where the exact
solution is not smooth enough to satisfy the discrete PDE constraint up to a high order
of accuracy but imposing a stricter mass constraint leads to a higher quality numerical
solution; see Fig. 4.

Under sufficient hypotheses on the discrete energy £ and the initial data p{)‘, mini-
mizers of Problem 1; ; exist; see Theorem 1. Furthermore, this discrete dynamic JKO
scheme preserves the energy decreasing property of the original JKO scheme. To see
this, note that, given an energy £”, time step r > 0, and initial data (p(})’) j we may
define the fully discrete proximal map by

I ((p0);) =D N,

where (p ks T k) is any minimizer of Problem 1; ;. Independently of which mini-
mizer is chosen, we have

EMIM((po) ) < EM((po) ),

which can be seen by comparing the value of the objective function at the minimizer
(Pj.k»mj k) to the value of the objective function at (p; x, m ;) = ((p0);,0) € C
and using the fact that @ > 0. Furthermore, by iterating the fully discrete proximal
map, we may construct a fully discrete gradient flow sequence

(P"); = I ) foralln e N, p% = pl.

In analogy with the continuum case, we will use this fully discrete JKO scheme to
simulate gradient flows. (See Algorithm 3.)

2.3 Primal Dual Algorithms for Fully Discrete JKO

In order to find minimizers of Problem 1; i, we apply a primal dual operator splitting

method. Since the constraints in Problem 1 ; are linear inequality constraints, we may

rewrite them in the form ||A,-u —151- I < é;fori = 1,2, 3,4, where u = (2, m), and 2

and m are vector representations of the matrices p; x and m; ;. (See the Appendix A
Elol:;ﬂ
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for explicit formulas for A; and b;, in one spatial dimension). Similarly, we may rewrite
the first term of the objective function (29) in terms of u, defining

D)= Y Ppjumjp)(Ax)! AL
ko j

We consider two cases for the energy term in the objective function. When the
energy is of the form ghl, as in Eq. (26), we reframe the problem by removing the
energy from the objective function and adding j loj.N, — (p{’) i 12(Ax)? < (Sg to
the constraints (30) and (31), denoting ||A;ju — b;||» < §;,fori =1, 2,3,4,5, as the
modified constraints. On the other hand, when the energy is of the form (24) or (25),
we rewrite it in terms of u as

1
F) =3 (Upsn) +Vipjn) (A0 + 23 (Wiapsn o) (40,
J Jil

1 1
Hw) = SF@+ 23 (U’(pj,o) +Vi+ Y. Wj,z,Oz,o(AX)d) pj.n, (Ax)?,
J

1
(32)

In particular, if we let S be the selection matrix
S:RY > RNy Pj.N»

then F(u) = F"(Su) and H(u) = H" (Su), where F" and H!!  are defined in (24)
and (25), respectively.

This leads to the following two optimization problems:
0 |JAiu—>bil <é,i=1,...,5

Problem 3(a) min, @ (1) + i(Au), is(Au) = {+oo, otherwise.

0 [Au—bill2<é,i=1,..., 4

Problem 3(b) min, @ (u) + 27 E(u) +iz(Au), i5(Au) = { oo, otherwise.

To compute the Wasserstein distance, we solve Problem 2.3, and to compute the
gradient flow of an energy, we iterate Problem 2.3 O (%) times, for either E (1) = F(u)
(classical JKO) or E(1) = H (u) (Crank—Nicolson inspired scheme).

Primal-dual methods for solving optimization problems in which the objective
function is the sum of two convex functions, as in Problem 2.3, are widely available
[52]. However, analogous methods for optimizations problems in which the objective
function is the sum of three convex functions, as in Problem 2.3, have only recently
emerged [62,106]. In particular, in Algorithm 1, for Problem 2.3, we use Chambolle
and Pock’s well-known primal dual algorithm, and in Algorithm 2, for Problem 2.3,
we use Yan’s recent extension of this algorithm to objective functions with three
convex terms. Both algorithms offer an extended range of primal and dual step sizes
2 and o and low per-iteration complexity, due to the sparseness of S, A, and A. Note
specifically that the success of Algorithm 1 depends on the ease of computing the

EOE';W
@ Springer Lﬁjog



Foundations of Computational Mathematics

proximal operators related to ¢ and is, and therefore if we simply group the additional
energy term in Problem 2.3 to either ¢ or is, it would violate such property. Instead,
we shall consider E(u) as a separate term and take advantage of its smoothness, as
shown in Algorithm 2. Finally, in Algorithm 3, we describe how Algorithm 2 can be
iterated to approximate the full JKO sequence and, consequently, solutions of a range
of nonlinear partial differential equations of Wasserstein gradient flow type.

Algorithm 1: Primal-Dual for Wasserstein distance

Input: uo, ¢0, Iteryqx, A, 0 >0

Output: u™* = (p*, m*) and the Wasserstein distance @ (u*)1/2

1 Letii® = u0 and 1 = 0;
2 while [ < Iter;,, do

3 repeat

4 ¢ = Prox, 2 (¢ + o Aa D),

5 u*D = Prox; ¢ (u® — AAT ¢U+D)
o 0D = 2, 0+D _ ()

7 until stopping criteria are achieved,

8 end

9 u¥ =4+

Algorithm 2: Primal-Dual for one step of dynamic JKO

Input: uo, qbo, Itermax, A, 0,7 > 0
Output: u*, ¢p*

1 Letii® = u and [ =0;

2 while [ < Iter,q do

3 repeat
4 pU+D = Proxoig‘ @D + ocAi®),
5 uHD = Prox, o (u® — AVEu®) — AA ¢+,

6 D =2, D O L HVEW®D) — AVE@IHD),
7 until stopping criteria is achieved,
8 u* =+
9
0

o* = ¢(l+l)

To initialize both algorithms, we choose ¢O and m° to be zero vectors, and for po,
we let its components at the initial time (i.e., k = 0) be po(x) evaluated on an equally
spaced grid of width Ax, and other times to be zero. The stopping criteria consist of
checking the PDE constraint (30)—(31) along with the convergence monitors:

|Fu®) — Fu!=D)]

FaO)  ~ 49
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max 4 110 =00 18 =0
[ T P '

(34)
The proximal operator, which appears in Algorithms 1 and 2, is defined by
. 1 2
Proxy (x) = argmin,, §||u —x[|"+h); .

Forboth i = oi§ and h = A®, there are explicit formulas for the proximal operators.
By Moreau’s identity, we may write Prox,, i (x) in terms of projections onto balls of
radius §; centered at b; for the ith portion of vector x:

Proxgi+(x) = x — o Projp, (x/0)
Xj llxi —bill2 <6

) ||);i__blj'i”2 + b; otherwise,

Ti=1,2,3,4. (35)

Projg, (x) = !

For the proximal operator of @, as shown by Peyré, Papadakis, and Oudet [95, Propo-
sition 1],

(p*, m*) if p* > 0,
0, 0) otherwise,

(36)

Prox (u) = (Proxg (o). mjk)); ,  for Proxiy(p,m) =

where p* is the largest real root of the cubic polynomial equation P (x) := (x —p)(x +
22— %|m|2 = 0, and m™* can be obtained by m* = p*m/(p* + A). By computing the
proximal operator exactly, our primal dual method is positivity preserving, respecting
a key property of the original Problems 1 and 1; .

As the computations of both proximal operators (35), (36) are component-wise,
they can easily be parallelized. Likewise, the computation of the gradient V E is also
component-wise:

(VuF@)j = U (pj.n) + Vi + Y Wiipin, (A0 (Ax),
I

1 L, d d
(VuH W) j = S(VuF@)j + 5 U (pj.0) + Vi + 3 Wiapro(Anh)(Ax)".
l

Remark 4 (discrete convolution) As written, the above functionals involves a com-
putation of the convolutions ", W; ;01 n, and Y _; W; 101,0, which can be achieved
efficiently using the fast Fourier transform. Note that since the product of the discrete
Fourier transforms of two vectors is the Fourier transform of the circular convolution
and the interaction potential W;_; = W (x; — x) is not a periodic function, we need
zero-padding for computing the convolution. For the 1D case, we can first use the
fast Fourier transform to compute the circular convolution of W = (Wj)jy':":%vx 9
and (2, (0)y,—2), and then extract the last N, — 1 elements, which are the desired
convolution ) ", W;_xpx for1 < j < Ny — 1.
EOE';W
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Embedding Algorithm 2 to the JKO iteration, we have the following algorithm for
Wasserstein gradient flows. Note that line 6 in Algorithm 3 is to construct a better

Algorithm 3: Primal-Dual for JKO sequence
Input: p(x, 79), Itermax, X, 0,7, n >0
Output: p(x, ;) for 0 < k < n and the corresponding energy £(p(x, 1))

1 Given uO, d)o;
2fork=1,2,..., n do

3 u*, * = Algorithm 2, ¢0, Itermax, A, 0, T)

4 p(x, 1) = Su*

s | ¢0 =9

6 | u®=max{u* —[1y,41, 08,411 ® p(x, tk—1) + (1,41, On, 411" ® p(x, 1), O}
7 end

initial guess for p at each JKO iteration by applying an extrapolation.

Remark 5 (Comparison of our numerical method to previous work) Our definition of
the indicator function in Problems 3(a) and 3 (b) differs from previous work, and as
a result, our primal-dual algorithm does not require the inversion of the matrix AAT
[7,95], which makes it quite efficient in high dimensions thanks to the sparsity of A.
A similar approach is taken in a recent preprint [81] to compute the earth mover’s
distance W1, though, in this context, the earth mover’s distance is dissimilar from the
Wasserstein distance, since it does not require an extra time dimension and is thus a
lower-dimensional problem.

A second difference between our method and the approach in previous works is
that, since P(x) has at most one strictly positive root, it can be obtained by the gen-
eral solution formula for cubic polynomials with real coefficients. Therefore, in our
numerical simulations, we may compute the proximal operator Prox;¢ (1) by using
this general solution formula, rather than via Newton iteration [95]. As a consequence,
our method is truly positivity preserving, as opposed to positivity preserving in the
limit as Ax, At — 0.

We close this section by recalling sufficient conditions on the primal and dual step
sizes o and A that ensure Algorithms 1 and 2 converge to minimizers of Problems 2.3
and 2.3.

Proposition 1 (Convergence of Algorithm 1, c.f. [52]) Suppose oA < 1/Ayax(AAT)
and a minimizer of Problem 2.3 exists. Then, as Iterma,x — 400, and €1, €2 — 0 in
the stopping criteria (33) (34), the output u™ of Algorithm 1 converges to a minimizer
of Problem 2.3.

Proposition 2 (Convergence of Algorithm 2, c.f. [106]) Suppose that the discrete
energy E(u) defined in Eq. (32) is proper, lower semi-continuous, convex, and there
exists B > 0 such that (uy — uy, VyE(uy1) — VyE(u2)) > BIIVE(u1) — VEu)l|
Suppose further that oA < 1/Amax (/Z\AI), A < 2B, and a minimizer of Problem 2.3
exists. Then, as Iterymyx — +ooand ey, € — 0, the output u™ converges to a minimizer
of Problem 2.3.
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Note here that the co-coercivity requirement on VE in the above proposition is
equivalent to require the Lipschitz continuity of VE, i.e., |V, E(u1) — V,E(u2)|| <
/13 |lu1 — uz||. For the energy of the form (4), this requirement reduces to the bounded-
ness of U”(p) and W, which can be satisfied independent of the numerical resolution
if we consider bounded solution (no finite time blow up in p) and nonsingular inter-
action kernel. In the case when W is singular, for example when W is a Newtonian
interaction potential, we approximate W by a continuous function via convolution
with a mollifier; see Remark 7.

3 Convergence

We now prove the convergence of solutions of the fully discrete JKO scheme, Prob-
lem 1; 4, to asolution of the continuum JKO scheme, Problem 1. We begin, in Sect. 3.1,
by describing the hypotheses we place on the underlying domain £2, the energy &,
the initial data pg, and the discretization operators. Then, in Sect. 3.2, we show that
minimizers of Problem 1; ; exist, provided the discretization is sufficiently refined.
Finally, in Sect. 3.3, we prove that any sequence of minimizers of Problem 1; ; has
a subsequence that converges to a minimizer of Problem 1. In order for our finite
difference approximation to converge, we assume throughout that a smooth, positive
minimizer of the continuum JKO scheme Problem 1 exists. See hypothesis (H6) and
Remark 9 for further discussion of this assumption.

3.1 Hypotheses

We impose the following hypotheses on the underlying domain, energy, and discretiza-

tion operators.

(HI) 2 = H,-d=1 (ai, bj) € R4, for a; < b; € R. We assume that the spacing of the
spatial discretization (Ax) > 0 and the temporal discretization (A¢) > 0 are both
functions of A satisfying limj_.o(Ax) = limy_.o(At) = 0.

(H2) For any piecewise constant function p” on £2, the discrete energy functional £”
has one of the following forms, as described in Sect. 2.2.2:

(@) F' (") =3 (Uoj) + Vipj) (A + 32, Wiapjpi(Ax)*
o) HE (oM = SFM") + 32 (U0) ) + Vi + X Wii(po)i(Ax)Y)
p;(Ax)?

0 if 3 10j — (o) P(An? < 83

400 otherwise.

(©) G! (p)) =

We place the following assumptions on U, V, and W and the target measure p;:

FolCT
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(i) Either U = 0 or U € C([0,400)) is convex, U € C!((0,+00)),
lim, 40 @ = 400, and U (0) = 0;

(i) V'(x) := Y jepa Vilo,;(x) and W (x, y) = 3 pyezarza Wiilo; (0)1g,
(y) are piecewise constant approximations of V, W € C(£2) converging uni-
formly on £2.

(iii) p1 € C'(2) and ,o{’ is a pointwise piecewise constant approximation of pj.

(H3) Df and D;’Z are finite difference approximations of the time derivative and spatial
divergence. We assume that D/ is a forward Euler method in time, whereas D"
can be given by an explicit or implicit scheme of first or higher order. We denote
by D, " and D;h the dual operators with respect to the ¢2 inner product, and we
assume the following integration by parts formulas hold for all piecewise constant
functions p”, f : [0, 1] - R,

1 1 1
[ oot srar= (o)) - [ onrt st

andif m" : 2 — R4, f": 2 - R,
/;Di‘mhfhdx = /;Q Fhmh - Vhdx —/thD;hfhdx,

where v : 2 — R4 is the discrete outer unit normal of £2. Finally, we assume
there exists C > 0 depending on the domain £ x [0, 1], so that, for any f €
Cl(2x[0,1]; R)yandv € C' (2 x[0, 1]; RY),if (f", v") are pointwise piecewise
constant approximations,

IDE " — 8, flloo < CIZ flloo(AL), D7 — 8, flloo < ClIBZ flloo(AL)

DM — V- v]loo < CID*v)l0o(Ax), IDF" " =V flloo < CID? flloo(Ax)

"y V]l < Cllv]loo(AX).

||vh Y
(See Sect. 2.2.3 for finite difference approximations satisfying these hypotheses.)

(H4) The constraint relaxation parameters &1, 82, 83, 84 > 0 are functions of & with
limy, 0 8; = 0, for all i. If the energy is of the form (H2c), we require that s is a
function of & satisfying limy,_, ¢ 65 = 0 and limy, ¢ (Ax 4+ Atf) /65 = 0.

(HS5) The initial data of the continuum problem satisfy pp € C 1(£2) and p(’)' is a
pointwise piecewise constant approximation of pg.

(H6) Given the domain, energy, and initial data described in the previous hypothe-
ses, there exists a minimizer (p,m) of the continuum Problem 1 satisfying
p € C2([0,1]; C1(2)), p > 0,and m € C'([0, 1]; C2(2)).

To ease notation in the following convergence proof, we observe that Problem 1 ;
may be rewritten as follows in terms of (ph, mh), the piecewise constant functions on
£2 x [0, 1] corresponding to the coefficients (o k. m; k).
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Problem 1" (Discrete Dynamic JKO) Fix , 81, 82, 83, 84 > 0, ", and pf!. Solve the
constrained optimization problem,

1nf / /CD(,O mh)dxdt—i—ZrEh(p( 1)),
h)ech

where (p", m") belong to the constraint set C" provided that they are piecewise con-
stant functions on §2 x [0, 1] and the following inequalities hold

||D[h/0h + Df:mh”LZ(Qx[o,u) <éi, ||mh : Vh||L2(a_Qx[o,1J) <&, 37

H / P (x, dx — f pp (x)dx
2 2

Similarly, we may rewrite the definition of the discrete energies in hypothesis (H2)
in terms of a piecewise constant functions p” on £2 corresponding to p s

<85, 10"¢0) = plll 2 <84 (38)
L2([0,1])

Fhphy = / U(p"(x)) + V" (x)p" (x)dx + % / / Wh(x, )" (x)p" (y)dxdy,
2 2%

1 1
HI (") = Ef’“(p”) +3 /Q (U’(pé(x)) + Vi) + fg wh(x,y)p3<y>dy> p(x)dx,

G (o) — if |p" — pf'l12() < 85
o 400 otherwise.

Recall that, by definition of @ in equation (13), ®(p", m") < 400 only if p"
nonnegative. Consequently, if a minimizer p exists, it must be nonnegative.

We conclude this section with several remarks on the sharpness of the preceding
hypotheses.

Remark 6 (assumption on domain £2) In hypothesis (H1), we assume that £2 is an n-
dimensional hyperrectangle. We impose this assumption for simplicity, as it provides
an natural interpretation of the discretized outer unit normal v, which is essential in
imposing the boundary conditions for our PDE constraint at the discrete level. More
generally, our convergence result can be extended to any Lipschitz domain, as long as
sufficient care is taken to define the discrete outer unit normal and the corresponding
no flux boundary conditions.

Remark 7 (assumption on energy) As described in hypothesis (H2), our convergence
result applies to internal U, drift V, and interaction W potentials that are sufficiently
regular on £2. Our assumptions on U are classical and ensure that the internal energy
is lower semicontinuous with respect to weak-* convergence [2, Remark 9.3.8]. Our
assumptions on V and W, on the other hand, are somewhat stronger, and in practice,
one often encounters partial differential equations for which the corresponding choices
of V and W are not continuous. However, there are robust methods for approximating
these potentials by continuous functions that ensure convergence of the gradient flows.
FoE'ﬂ
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For example, the second author and Topaloglu provide sufficient conditions on discon-
tinuous interaction potentials W for which gradient flows of the regularized interaction
potential, W, := W x ¢, for a smooth mollifier ¢., converge to gradient flows of the
original interaction potential W, as well as conditions that ensure minimizers of W,
converge to minimizers of W [59]. (The convergence of general stationary points of
We that are not global minimizers to stationary point of W remains open.)

Remark 8 (assumption on §5) In hypothesis (H4), it is essential that §5 not vanish too
quickly with respect to other parameters in the discretization. A simple illustration of
this fact arises in the case that §; = §, = 83 = 84 = 0. In this case, we cannot choose
ds = 0, since our pointwise piecewise approximation of the initial data pg will not
generally have the same mass as our pointwise piecewise approximation of the target
measure ,o’f, and if they do not have the same mass, minimizers of the discrete problem
do not exist. Consequently, it would be impossible to prove that minimizers of the fully
discrete problem converge to minimizers of the continuum problem. On the one hand,
this does not greatly impact the performance of our numerical method, as can be seen
by considering previous work by Papadakis, Péyre, and Oudet, which numerically
implements this approach [95]. On the other hand, our numerical simulation in Fig. 3
indicates that poor choice of the relaxation parameters can cause the method to iterate
longer than necessary, without any improvement in accuracy.

Our requirement that lim,_.o(Ax 4+ At)/§5 = 0 is sufficient to fix this problem
and ensure convergence of the method, and this requirement is nearly sharp. To see
this, note that, for an arbitrary pointwise piecewise approximation pé’ of a continuous
function po, we cannot in general achieve accuracy of | f o pg — f o Po| better than
O (Ax). If either §; and &3, the parameters for the PDE constraint and the mass con-
straint, are chosen arbitrarily small, then | f o o, 1) — f o pé’| can likewise be made
arbitrarily small. Thus, since pg, p1 € Pac($2),

O(Ax)%/pg—fpo
2 2
/Pg—/PO—’/PO—/,Ol
2 2 2 2
’/ ph(-,l)—/pé’
2 22
< [p’l(-,n—/ o
22 22

<121"21p" ¢, 1) = pill 20y < 18211285,

&

so we much have §5 > O(Ax). While a CFL-type condition is not necessary for the
stability of our discretization of the PDE constraint, since p and m indeed become
coupled in the continuum limit (see Egs. (8) and (12)), one should expect (Af) <
O (Ax) to give the best balance between computational accuracy and cost, and we
indeed observe this numerically. Combining these facts shows that enforcing that §5
cannot decay faster than O (Ax + At) by assuming limy_.o(Ax + Af)/d5 = 0 is
nearly optimal.
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Remark 9 (assumption on existence of smooth, positive minimizer) In hypothesis
(H6), we suppose that there exists a sufficiently regular minimizer (p, m), p > O,
of the continuum problem. Our proof of the existence of minimizers of the fully
discrete problem and our proof that minimizers of the discrete problems converge to
a minimizer of the continuum problem as 2 — 0 strongly rely on this assumption.
In particular, the smoothness assumption allows us to use convergence of the finite
difference operators, described in hypothesis (H3), to construct an element of C"
in Proposition 3. The positivity assumption allows us to conclude that V,, ,,® is
uniformly bounded on the range of p, which we use to prove the lim sup inequality
for the recovery sequence in Theorem 2(b).

From the perspective of approximating gradient flows, which are solutions of diffu-
sive partial differential equations (3), such regularity and positivity can be guaranteed
as long as the initial data are smooth and positive and either the diffusion is sufficiently
strong or the drift and interaction terms do not cause loss of regularity. On the other
hand, developing conditions on the energy and initial data that ensure such regularity
and positivity holds at the level of the JKO scheme, for minimizers of Problem 1,
remains largely open: results on the propagation of L” (R?) or BV bounds along the
scheme have only recently emerged [17,50,63].

From the perspective of approximating Wasserstein geodesics, the now classical
regularity theory developed by Caffarelli and Urbas ensures that if the source and target
measures pg and p; are smooth and strictly positive, then the minimizer of Problem 1
(p, m) is also smooth and strictly positive. (See, for example, [105, Section 4.3] and
[2, Section 8.3].)

Along with this analytical justification for our smoothness and positivity assump-
tions, our numerical results also indicate that such assumptions are in general
necessary. For example in Fig. 4, we observe that if the source and target measure
of a Wasserstein geodesic are not sufficiently smooth, the numerical solution intro-
duces artificial regularity. Likewise, even in Fig. 6, we observe that the numerical
simulation is strictly positive (though very close to zero in places), while the exact
solution is identically zero outside of its support. Still, in spite of the fact that our theo-
retical convergence result requires smoothness and positivity assumptions, in practice
our numerical method still performs well on nonsmooth or nonpositive problems, pro-
vided that the spatial and temporal discretization are taken to be sufficiently small; see
Figs.5,6,7,8,9,10, 11, 12, 13, 14, 15, 16, 17, and 18.

Finally, these types of smoothness and positivity assumptions are typically needed
in convergence proofs for numerical methods based on the JKO scheme. For example,
in a method based on the Monge Ampére approximation of the Wasserstein distance,
the exact solution is required to be uniformly bounded above and below [10]. Like-
wise, while rigorous convergence results for fully discrete numerical methods based
on entropic or Fisher information regularization remain open, since these methods cor-
respond to introducing numerical diffusion at the level of the PDE, they automatically
enforce smoothness and positivity [28,55,82].
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3.2 Existence of Minimizers

We now show that, under the hypotheses described in the previous section, minimizers
of the fully discrete JKO scheme, Problem 1", exist for all h > 0 sufficiently small.
We begin with the following proposition, which constructs a specific element in the
constraint set Ch, which we will use both in our proof of existence of minimizers and
in our I"-convergence results in the next section.

Proposition 3 (construction of element in C*) Suppose that _hypotheses (HI1)-(H6)
hold, and chooie (p,m) € C satisfying p € C*([0,1]; C'(2)), p > 0, and m €
C([0, 11; C%(2)). Then for h > 0 sufficiently small, there exists (p",m") e C"

satisfying (5", m") e (p, m) uniformly on §2 x [0, 1] and

inf o(x, 1) > 0. (39)
h>0,(x,1)e2x[0,1]

If, in addition, the energy satisfies hypothesis (H2c) and E(p(-, 1)) < +o0, then
we have

1" D) = pYl12() < 8s. (40)
for all h > O sufficiently small.

Proof We construct (p", m") e C" as follows. Let /" be a pointwise piecewise
constant approximation of m; see Eq. (23). Recall that v" is the discrete outer unit
normal vector. We define " : £2 x [0, 1] — R? component-wise to respect the no
flux boundary conditions, letting (72"*); denote the /th component of the vector for
l=1,...,d.If x € 052, then we define

(M (x, 1)) fore - vi(x) =0,

oy _
m"(x,1) = {0 fore; - Vh(x) # 0.

Otherwise, we take iﬁh(x,t) = zﬁh(x, t). Define /Bh : 2 x [0,1] — R so that
A" (x,0) = plt and D!' 5" (x, 1) + DM (x, 1) = 0.
We begin by showing that (5", m") e C". By construction, for all & > 0,
ID} 5" + Df’ﬁhllLZ(nx[o,u) =0
1" V" 1202 xq0,11) = O
15", 0) — P6'||L2(9) =0.

Taking f" = 1 in Hypothesis (H3) and applying the PDE constraint ensures that, for
all s € [0, 1] and k € N so that k(Ar) < s < (k + 1) Az,

k(At)
-/Qﬁh(x,s)dx—/gﬁh(x,O)dx =/0 [(ZDﬁﬁh(x,t)fh(x,t)dxdt
Elol:;ﬂ
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k(Ar)
= —f f Dl (x, 1) £ (x, 1)dxds
0 2

k(At)
= —/ / " (x, 1) v (x, H)dxdr = 0.
0 082

Thus, we also obtain

H / A (x, )dx — / pg (x)dx
2 2

This concludes the proof that (5", m") e C".

We now show that (", m") — (p, m) uniformly on §£2 x [0, 1] as h — 0. We
begin by proving convergence of /i’ to m. Due to hypothesis (H1) on our domain
2, whenever e; - vV (x) # 0, there exists y € 92 so that |[y — x| < 2/d(Ax)
and v(y) = e;. Thus, whenever ¢; - vt (x) # 0, the continuum boundary condition
m(y,t) - v(y) = 0 ensures that for all ¢ € [0, 1],

=0, forallh > 0.
L2([0,1])

(" (x, 1) — m(x, 0))i| = [m(x, 1) - ¢;| < |(m(x, 1) —m(y, 1)) - ]
+m(y, 1) - e;| < 2vd(Ax) || Dm|so.

We also have that, for all (x, ) € £2 x [0, 1],
" (x, 1) — m(x, 1) < (AX)||Dmlloc + (A) ]| oo

Therefore, for all (x, t) € £2 x [0, 1], there exists C,, = C,,(d, || Dm ||, |0:m ]| 00) >
0 so that

i (e, 1) — m(x, 1)) < Cu(Ar + Ax) 225 0.

We now prove the convergence of 5" to p. Since (p,m) is a classical solution
of the PDE constraint and ,5” : £2 x [0, 1] — R is defined by the conditions that
£ (x,0) = pl and D! 5" (x, 1) + DI (x, 1) = 0, for (x,1) € 2 x [0, 1]and k € N
so that k(Ar) <t < (k + 1)(Atr), we have

15" (x, 1) — p(x,1)]
t

k(At)
— ﬁh(x,O)—i—/ D,hﬁh(x,s)ds—p(x,O)—/ dsp(x, s)ds
0 0

k(Ar) t
— pg(x)—/ D)]Znﬁh(x,s)ds—,o(x,O)+/ V- m(x, s)ds
0 0

k(A1) k(AD)
/ Dilnﬁh(x, s)ds — / V- -m(x,s)ds
0 0

= |pb@) - pxr,0)| +
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+

t
/ V- -m(x,s)ds
k

(At)
< IVplloo(Ax) + ClID*m|oo(Ax)

F IV - mleo(ar) 2% 0. 41)

Since 5" — p uniformly and p > 0, we immediately obtain (39).

Finally, suppose the energy satisfies (H2c). Since E(p (-, 1)) = G, (p(:, 1)) < 400,
we have p(-, 1) = p;. By inequality (41) and the fact that ,0{’ is a pointwise piecewise
approximation of p(-, 1),

16 1) = ol 2y = 12172 (17" ¢ D = oG, Dllos

o€, D) = pllloe) < Cpm(Ax + Ar)

where Cpp i = Cpm(2, IVplloo, IV - mlloo, [D*mllec) > 0. By hypothesis (H4),

limy,_¢ (Ax;r A _5 0. Thus, for A sufficiently small,

18" ¢ 1) = ol 2) < 8.

which completes the proof.
O

Theorem 1 (minimizers of discrete dynamic JKO exist) Suppose that hypotheses
(HI)-(HG6) hold. Then for all h > 0 sufficiently small, a minimizer of Problem 1"
exists.

Proof First, we note that Proposition 3 ensures that, for 2 > 0 sufficiently small, the
constraint set C”* is nonempty and contains some (p”, m") satisfying p” > 0. If the
energy satisfies (H2a) or (H2b), then we immediately obtain £ (p" (-, 1)) < +oc.
Similarly, if the energy satisfies (H2c), then inequality (40) in Proposition 3 again
ensures that £ (p" (-, 1)) < +o0.

Since @ (p", m") < +oo whenever p” > 0, this ensures that value of the objec-
tive function in the discrete minimization problem 1” is not identically 400 on the
constraint set. Therefore,

/ / @ (p"(x, 1), m"(x, 1)dxdt + 2t EM(p" (-, 1)) < +o0,  (42)

(o" m")eC"

and we may choose a minimizing sequence (,0,},’, mZ) € C" that converges to the
infimum. We may assume, without loss of generality, that

1
sup/ / () (x, 1), m" (x, 1))dxdr + 20" (p] (-, 1)) < +0o0, (43)

Fo C 'ﬂ
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To conclude the proof of the theorem, we will now show that there exists (,of, mi‘)
so that a subsequence of (,ofl’, mZ) converges to (pi’, mﬁ) uniformly on £2 x [0, 1].
Then, since the objective functional £” is lower semi-continuous along uniformly
convergent sequences [1, Example 2.36] and the constraint set C" is closed under
uniform convergence for fixed 1 > 0, (pZ, m") must be a minimizer of the fully
discrete problem.

In order to obtain compactness of (,off, mﬁ), first note that (42) ensures @ (p", m") <
+ooon £2 x[0, 1], so ,oh > 0 on £2. Furthermore, the mass constraint (38) ensures that
there exists R = R(h) > 0,dependingon §2, (Ax), (At), and §3 so that |,o,’§ x,t)] <R
for all (x, 1) € £2 x [0, 1]. Therefore, the vector of coefficients (pfl’) j .k for this piece-
wise constant function satisfies (,0,},1) jk € Br(0) € RN Consequently, by the
Heine—-Borel theorem, there exists a vector (,oi’) jk € RNde’ so that, up to a sub-
sequence, (pfl’)j’k — (,of)j,k. Therefore, if pf denotes the corresponding piecewise
constant function, we have that, up to taking a subsequence which we again denote by
,ofj (x, 1), lim, s 400 pfl' (x,1) = pi’(x, t) uniformly on £2 x [0, 1].

Next, we show that

igfgh(p,’;(., 1) > —o0. (44)

If the energy satisfies (H2c), then £ B (,ofl' (-, 1)) = O for all n, and the above inequality
is immediate. If the energy satisfies (H2a) or (H2b), then this follows from the fact that
U is bounded below on [0, +00], V and W are bounded below on §2 and ,o,ﬁ‘ (x,1) —>
pi’ (x, t) uniformly.

Combining (43) and (44), we obtain

1
sup/ /qb(pg(x,t),mﬁ,'(x,t))dxdt<+oo. (45)
n 0 2

Furthermore, since 0 < pfl‘(x, t) < Rforall (x,t) € 2 x [0, 1], n € N, we have
®(pp(x, 1), mh(x, 1)) = |mh(x,0)]*/R. (46)

Therefore, combining (45) and (46), we obtain that there exists R* = R’(h) > 0,
depending on £2, (Ax), (At), and &3, so that |mi’l(x, 1| < R forall (x,1) € 2 x
[0, 1]. Arguing as before, the Heine—Borel theorem ensures that, up to a subsequence,
lim,,— 4 oo mZ (x,1) = mi’(x, t) uniformly on £2 x [0, 1], for some piecewise constant
function mi‘(x, t). This gives the result.

O

3.3 Convergence of Minimizers

We now prove that minimizers of the discrete dynamic JKO scheme, Problem 1”

converge to minimizers of Problem 1 as 7 — 0. We begin with the following lemma,

showing that any (,oh, m™") e C" satisfies a weak form of the PDE constraint, in the
limit as & — O.
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Lemma 1 (properties of C") Suppose that hypotheses (HI1)-(H6) hold, and fix
(p", m"y € C" so that fol fo ®(p".m") < +00 for each h > 0. Then p" (-, 0) — po
in L2(£2), and there exist p € P(82 x [0,1]) and u € P(£2) so that, up to a subse-
quence, p" A pand p"(-, 1) A wu. Furthermore, for any piecewise constant function
FMwith supy,_o 1" 2@ xq0,1) + 1/ 12 0@x0,1)) < +00, we have

f / D—hfh o Dx—hfh _mh> dxds

+/ (fh(~,0),0 -,0) — fie., l)ph(-,l)) dxdr =% 0. (47)
2

Proof By hypothesis (H6), pg — po uniformly on £2. Likewise, the constraint on
the initial data (38) and (H4) ensure lims— [|0" (-, 0) — p{1l 2(@) < limp—o8s = 0.
Thus, p" (-, 0) — po in L2(£2).

We now turn to Eq. (47). By the PDE constraint and boundary conditions (37) and
summation by parts, via hypotheses (H3),

(D;h fhoh + Dt mh> dxdr

+ f (/100" 0 = £, D" D) dx

/thh+thhdxdt //f S

ho h h
< ||f 22 xoapll Dy p° + Dym ||L2(.Q><[0 1)

+ " ||L2(BQ><[0,1])||m Y ||L2(3.Q><[0,1])

h h h—0
<&l f 2@ xiony + 821/ I2pex0,1y) — 0,

where, in the last line, we use that (H4) ensures 83, 4 — 0 and the fact that f h s
bounded uniformly in 4 in Lz(.Q x [0, 1] and LZ(B.Q x [0, 1]).
Next, we show that there exist p € P(£2 x [0, 1]) and u € P(£2) so that, up

to a subsequence, p" A p and p"(-, 1) A n. By Holder’s inequality and the mass
constraint (38),

H/ ph(x,')dx—/ Pl (x)dx
I o L1(0.1)

p"(x, dx — / pg (x)dx
2 2

h—0
<é —> 0,

L2([0,1])

Fo C 'ﬂ
@ Springer u.. :‘0 E|



Foundations of Computational Mathematics

where, in the last line, we use that (H4) ensures 63 — 0. Since hypothesis (H6) ensures
pg — po uniformly and |, po = 1, we obtain,

1
//ph(x,s)dxdsel.
0 Ja

Furthermore, since fol fﬂ CD(ph, mh) < +oo for each 7 > 0, we must have ,oh >0

on £ x [0, 1], and the above equation ensures sup;, || 0" 12 x[0,17) < +oo. Thus,

classical functional analysis results ensure there exists a subsequence that converges

to some p € P(£2 x [0, 1]) in the weak-* topology (see, e.g., [20, Section 3]).
Finally, taking f" = 1 in Eq. (47) gives,

lim/ OO =o' Ddx=0 = lim/ o', Ddx =1
h—0 Jo h—0 Jo

= sup 0" . Dl 1oy < +00.
h>0

Arguing as above, we obtain that, up to a further subsequence, ,oh(‘, 1) X () for
n e P(2). O

We now prove that the discrete energies £” are lower semicontinuous along weak-*
convergent sequences.

Proposition 4 (Lower semicontinuity of energies along weak-* convergent sequences)
Suppose that hypotheses (HI )—(H6) hold. Then, for any sequence of piecewise constant

functions p" : 2 — R such that p" A p, we have liminf,_0 EM(p") > E(p).

Proof First, suppose the energy satisfies (H2a). Since the piecewise constant approx-

A A *
imations V" and W” converge to V and W uniformly, for any sequence p — p,

lim [ V'phdx = /(Vh —V)pldx + / Vpldx = / Vp dx, (48)
h—0 Q

lim Whx, )" () p" (y)dxdy = f W(x —y)do(x)dp(y).  (49)
h—0J0ox0 QxR

Furthermore, our assumptions on U guarantee that the internal energy term is
lower semicontinuous with respect to weak-* convergence [2, Remark 9.3.8], so
liminfy,_ o fg U(,oh (x))dx > fg U(p(x))dx. Combining this with equations (48-
49) gives the result.

Next, suppose the energy satisfies (H2b). Since pg > 0 on the compact set £2 and U’
is uniformly continuous on py(£2) C (0, +00), the fact that hypothesis (H6) ensures
[36‘ — po uniformly ensures U’ (,66’) — U’(po) uniformly. Therefore,

lim/ U/(ﬁ(’;)phdx=f U’ (po) pdx.
h—0Jo Q
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Likewise, since V" and W converge to V and W uniformly, we also have

lim (Vh<x>+ / Wh(x,y>p3<y>dy) P (0)dx
h—0 Jo Q

Z/Q(V(X)Jr/QW(x,y)po(y)dy) p(x)dx. (50)

Combining these limits with the lim inf inequality for energies of the form (H2a) gives
the result.

Finally, suppose the energy satisfies (H2c). Without loss of generality, we may
assume that lim inf;, ¢ gf;l (ph) < 400, so that up to a subsequence, g’;l (,oh) =0
and lim,_q ||p" — ,0{'||L2(9) = (. By uniqueness of limits, p = pj. Thus, since
Gh =0, we have liminf, .0 G/ (") = 0 =G, (p).

O

We now apply Proposition 4 to prove the I"-convergence of Problem 1” to Problem
1.

Theorem 2 (I"-convergence of discrete to continuum JKO) Suppose hypotheses (HI )—
(H6) hold.

(a) If (p", m") e C" with (p", m") A (o, m), then (p, m) € C and

1
liminf/ /<D(ph,mh)dxdt+2r€h(,0h(-,1))
h—=0 Jo Jo

1
2/ /@(p,m)dxdt+2r€(p(~, 1)).
0 2

(b) For any (p,@ € C satisfying p € C%([0, 11; C1(2)), p > 0, and m €
C([0, 1]; C*(82), there exists a sequence (p",m") € C" so that (p",m") —
(p, m) uniformly and

1
limsup/ /@(5h,nzh)dxdt+2r5h(5h(.,1))
h—0 0 2

1
5/ /¢(p,m)dxdt+27:5(p(~,1)).
0 2

Proof We first prove part (a). Suppose (p", m") e C", with p" A p and m" Zom.
We begin by showing that the limit (p, m) belongs to C. Fix f € C*°(£2 x [0, 1])
and let f" be a pointwise piecewise constant approximation of f. (See Eq. (23).) By
Lemma 1 and hypothesis (H3),

1
/ / (ﬁp+Vf-m)dxdt+/ £, 0p(,0) — £(-, Hudx = 0.
0 2 2
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We conclude that (p, m) satisfies the PDE constraint in the sense of distributions
(17), which gives p € AC([0, 1], P(£2)) [2, Lemma 8.1.2]. In particular, since p is
continuous in time, we have that the u defined in Lemma 1 satisfies u = p(-, 1).

We now consider the inequality in part (a). Since the integral functional (p, m) —
fol / o ©(p, m) is lower semicontinuous with respect to weak-* convergence of mea-
sures [1, Example 2.36], we immediately obtain

1 1
liminf/ f ¢(ph,mh)dxdt 2/ / D (p, m)dxdr.
h—0 "Jo Jo 0 Je

This ensures m € L([0, 1], Lz(,o_l)) and completes the proof that (p,m) € C.

Finally, since Lemma 1 ensures p” (-, 1) A w = p(-, 1), applying Proposition 4
gives

ngngfshm*‘(-, 1) > Ep(, 1),

which completes the proof of part (a).

We now turn to part (b). Let (p", m"y e C" be the sequence constructed in Propo-
sition 3, so (p", m") — (p, m) uniformly. By inequality (39), there exists ¢ > 0 so
that ,oh (x,t) > c for h sufficiently small. Therefore,

1 1
//cp(,ah,m’“)—/ f<1>(p,m)‘
0 Je 0o Je

h—0

= 12119 @ liqpzeny (" = mllo + 15" = pllos) “= 0.

It remains to show that

limsup &M (3" (-, 1)) < E(p(-, 1)).
h—0

First, suppose the energy satisfies either (H2a) or (H2b). By Egs. (48)—(50), which
hold for any weak-* convergent sequence, and the fact that U’ (,5h -,0) = U'(p(-,0))
uniformly, it suffices to show

limsup/Q U(,5h(-, 1)dx < /Q U(p(-, 1))dx.

h—0

Since U € C([0, +00]), p(-, 1) € L®(RY), and p"(-,1) — p(-, 1) uniformly,
U@pe, 1) — f U (p(-, 1)) uniformly, which gives the result.

Finally, suppose the energy satisfies (H2c). Without loss of generality, suppose
Ep(, 1) = Gy (p(-, 1)) < 4oo. Inequality (40) ensures that, for i sufficiently
small,

15" . 1) = pill ) < 5.
EOE';W
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By definition of g’;l, this implies QZl (,5h(-, 1)) = 0. Therefore,
limsup G2 (5" (-, 1)) = 0 < Gy, (p1).
h—0

which gives the result. O

We conclude this section by applying the I"-convergence proof from Theorem 2 to
prove that any sequence of minimizers of the discrete Problem 1 converges, up to a
subsequence, to a minimizer of the continuum Problem 1.

Theorem 3 (Convergence of minimizers) Suppose that hypotheses (H1)—(H6) hold.

Then, for any sequence of minimizers (o, m") of Problem 1", we have, up to a
* *
subsequence, ,oh — pand mh = m, where (p, m) is a minimizer of Problem 1.

Note that, if the minimizer of the continuum Problem 1 is unique, then this theorem
ensures that any sequence of minimizers of the discrete Problem 1; ; has a further
subsequence that converges to this minimizer. Therefore, the sequence itself must
converge to the unique minimizer of the continuum problem. (See Remark 2 for
sufficient conditions that ensure the minimizer of the continuum problem is unique.)

Proof of Theorem 3 First, note that Lemma 1 ensures that there exist p € P(£2 x [0, 1])

* *k
and € P(£2) so that, up to a subsequence, o = pand p"(-,1) = . In order
to prove an analogous weak-* compactness result for m” we first prove that, up to a
subsequence,

1
sup/ /qs(ph,mh)<+oo. (51)
0 J

h>0

By (H6), there exists a minimizer (p, m) of the continuum Problem 1 satisfying p €
C2([0,11; C'(2)), p > 0, and m e C([0, 1]; C*>(£2)). Comparing the recovery
sequence (5", m") e C" from Theorem 2(b) for (5, i) with the discrete minimizer
(ph, m™") e C", we obtain

1
limsup/ /¢(ph,mh)+215h(/0h(wl))
-0 Jo Je

1
<timsup [ [ @it + 208" 5. 1)
h—0 0 2

1
< / / @(p,m) +2tE(p(, 1)). (52)
0o Jo
Furthermore, Proposition 4 ensures that

lim inf 2eEM (M (-, 1)) > 20E(w),
h—
FoCTM
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which is bounded below by some constant, since hypothesis (H2c) ensures £ > 0 and
hypotheses (H2a) or (H2b) ensures £(u) > —oo, since U, V, and W are bounded
below and U’ is bounded below on the range of the strictly positive density pg. There-
fore, up to a subsequence, we obtain (51).

We now deduce weak-* convergence of m’. By Holder’s inequality, the fact that

ph A p, and the definition of @, we have

172
Zupllm IILI(rzx[01])<Sup(/ /CD(P mh)) (/ / 120h> < +o00.
-0

Thus, up to another subsequence, mh X mon £2 x [0, 1].
It remains to show that the limit (p, m) of (p”, m") is a minimizer of Problem 1.
By Theorem 2, part (a), we have (p, m) € C and

1 1
f /cb(,o,m)—}—ZrE(p(-,l))Sliminf/ /cp(ph,mh)+2r5h(ph(-, 1).
0o Je h—=0 Jo J@

Combining this with inequality (52) above, we conclude that (p,m) € C is also a
minimizer of Problem 1, which completes the proof. O

4 Numerical Results

In this section, we provide several examples demonstrating the efficiency and accuracy
of our algorithms. We begin by using Algorithm 1 to compute Wasserstein geodesics
between given source and target measures, and we then turn to Algorithm 3 to com-
pute solutions of nonlinear gradient flows. In the following simulations, we take our
computational domain 2 to be a square, imposing the no flux boundary conditions
on m dimension by dimension. In practice, unless otherwise specified, we always
impose the discrete PDE constraint via the Crank—Nicolson finite difference opera-
tors (28), and we choose €] = €, = € in the stopping criteria to be 107> unless
otherwise specified. For the relaxation of the constraints in (30) and (31), we choose
81 = &2 = 84 = 85 = &, and 43 differently, as specified in each example.

4.1 Wasserstein Geodesics

As described in Remark 1, a particular case of our numerical scheme provides a
method for computing the Wasserstein geodesic between two probability densities.
We begin by computing the Wasserstein geodesic between rescaled Gaussians in one
dimension:

2
(x—p)
1 ot

ety (53)

FoE'ﬂ
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‘Wasserstein geodesic between Gaussians

0.7 T T T T - T . 102
—t=0
061 —t=0.2 ]
——1t=0.4
051 t=0.6| ]
t=0.8| | &
=04r t=1 |1 ©
0.3F % -
ol A et N
10 l=—m"-m’) 1
01} ] IF(p®.mO)-F(p"m")|
\ \ - =~
0 . . : e 10 - -
-4 -3 2 -1 0 1 2 3 4 102 10° 10*

iteration

Fig. 2 We compute the Wasserstein geodesic between two Gaussians on the domain 2 = [—4, 4], with
N; = 20 temporal grid points (At = %) and N = 200 spatial points (Ax = %). We choose 0 = 0.1
and oA = 1.5/Amax (AA") and compute 103 iterations. Left: evolution of geodesic from time ¢t = 0 to
t = 1. Right: rate of convergence of numerical solution to exact solution, as a function of the number of
iterations in Algorithm 1

The target measure is simply a translation and dilation of the initial measure, pp(x) =
(0.5)8u0,60(x) and p1(x) = (0.5)gu,,6,(x). The optimal transport map 7' (x) from
po(x) to p1(x) is given explicitly by1

0
T(x) = —(x — po) + 1.
Bo

Rewriting Eq. (15) for the geodesic p(x, t) and velocity v(x, #) induced by this trans-
port map, via the definition of the push forward, we obtain
p(x. 1) = po(T;7 ' (x))det(V, T, and  m(x, 1)
p(x, (x, 1) = px, N(T o T, (x) — T, (x))),
X+ (Gtpo — )t 1
b det(Vi Ty = ———
l—t+1g l—1+15

77 ()

In Fig. 2, we apply Algorithm 1 to compute the Wasserstein geodesic p(x, t)
between the initial and target densities (53), with means and variances po =
—1.5,60 = 0.3, u1 = 1.5, and 6; = 0.6. On the left, we plot the evolution of the
geodesic at various times. On the right, we plot the £! error of the densities, momenta,
and Wasserstein distance as a function of the number of iterations, /, observing a rate
of convergence of order O(1/1) (dashed black line). Here, the error is defined as

N —
[
160 = 5" = s 2 Z Pk = Pl G4
k=0 j=1

I One way to see that this is the unique optimal transport map from pg to pp is to note that T#pg = p1 and
T (x) is the gradient of a convex function; see, for example, [2, Section 6.2.3].
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Optimal scaling of relaxation parameter §

102r = |lAu0-bj| —H=i0-g 0 = = ra=(ax)?|
— llAu-b|| =k g0-g e = = rs=(ax)®
e~ 1Au-b) e el — ~ ta=108

10712

10—3 L L L L L A n n n n
10° 10’ 102 10° 10 10° 108 107 10° 10’ 102 10° 10 10° 108 107
number of iterations number of iterations

Fig.3 Analysis of how the scaling relationship between the relaxation parameter § and the spatial discretiza-
tion (Ax) affects the accuracy of the numerical method and the number of iterations required to converge.
We contrast the choices § = (Ax)z, §= (Ax)3 and 8 = 10~8 for the example of the Wasserstein distance
between geodesics, illustrated in Fig. 2. We take Ny = 30, Ny = 300, 0 = 1, oA = 0.99/Apqx (AAT) and
83 =34

In Fig. 3, we illustrate how choosing the optimal scaling relationship between the
relaxation parameter § and the spatial and temporal discretizations (Ax), (At) allows
the method to converge in fewer iterations. We contrast the choices § = (Ax)?,
§ = (A)c)3 cand 8§ = 1078, for the example of the Wasserstein distance between
geodesics, illustrated in Fig. 2, where the outer time step T = 1, (Ax) ~ (At), and
83 = 6. Based on the order of accuracy of our Crank—Nicolson approximation of the
PDE constraint, we expect that § = (Ax)? should give the optimal balance between
accuracy and computational efficiency. (See Remark 3.)

In the plot on the left, we observe that for all choices of §, the error between the
numerical solution p) and the exact solution p* is identical, with the error saturating
after 107 iterations. Thus, all three choices of § provide the same level of accuracy,
and the best way to distinguish between them is to identify which choice of § causes
the stopping criteria (33 and 34) to be satisfied in the least number of excess iterations
after 10°. The behavior of two key stopping criteria is shown in the plot on the right—
the PDE constraint ||Au® — b|| and the convergence monitor for the relative error of
the dual variables || — ¢@=D/||¢®||. Of the four stopping criteria we consider
(PDE constraint and three convergence monitors), these two are the last to be satisfied
in all of the numerical simulations contained in this manuscript, hence these determine
when our method terminates its iterations.

For the case of § = (Ax)? (red lines), we indeed observe that the PDE constraint
(solid line) satisfies its stopping criteria (dashed line) by 10* iterations and the dual
variables (starred line) satisfy their stopping criteria of 107> by 107 iterations. On the
other hand, for the cases of § = (Ax)3 (blue lines) and § = 10~8 (green lines), we
see that while the dual variables (starred lines) have satisfied their stopping criteria of
107> by 10* iterations, the PDE constraints (solid lines) do not satisfy their stopping
criteria (dashed lines) until later—it takes more than 10° iterations for § = (Ax)3 and
more than 107 iterations for § = 1078, This example shows that choosing § without
respecting the order of accuracy of the finite difference approximation in the PDE

EOE';W
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Evolution of geodesic between translations of British Parliament

t = 0.000 t =0.125 t = 0.050

pla,t)

o 2N s o o v o S50 4 v e a o o N @ © o
4 b A e e 4 e o B

t = 0.875 t = 1.000

pla,t)

Fig. 4 Computation of the Wasserstein geodesic between two translations of British parliament on the
domain, with N; = 40 temporal grid points (At = %) and N, = 2000 spatial grids (Ax = %). Here,
o =0.1,0% = 0.99/2max (AA?) and then A = 0.9727,8 = 107>, and 83 = 1078

constraint, one wastes computational effort without improving the accuracy of the
numerical solution.

Next, we compute Wasserstein geodesics between initial and target measures when
neither are smooth nor strictly positive. In Fig. 4, we compute the geodesic between a
profile of the British Parliament and its translation. We do not observe convergence to
the exact geodesic, which would be a constant speed translation, and instead observe
degradation of the parliamentary building at intermediate times, due to numerical
smoothing. Similarly, in Fig. 5, we compute the geodesic between Pac-Man and a
ghost, visualized as characteristic functions on sets in two dimensions. Again, we
observe numerical smoothing around the edges of discontinuity. Both of these exam-
ples offer a numerical justification for the smoothness assumption we impose in our
main convergence Theorem 3. In the absence of such smoothness, it appears that the
method does not converge. Similar smoothness assumptions are required in the other
numerical methods for Wasserstein geodesics for which rigorous convergence has
been analyzed, including Monge Ampére-type methods [11,68].

4.2 Wasserstein Gradient Flows: One Dimension

In this and the next section, we consider several examples of Wasserstein gradient
flows, including some which have appeared in previous numerical studies [3,29,49,99],
to demonstrate the performance of our method for simulating solutions of nonlinear
partial differential equations.

Elol:;ﬂ
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Evolution of geodesic between Pac-Man and a ghost

Fig. 5 Computation of the Wasserstein geodesic between Pac-Man and a ghost, with N; = 40 temporal
points (At = %) and Ny = Ny = 120 spatial grids (Ax = Ay = 0.0458). From left to right, up to down,
the plots correspond tot = 0,¢ = 0.15,1 = 0.275,t = 0.4,t = 0.525,t = 0.65,¢t = 0.775,t = 0.9, and
t = 1. Here, A = 40, 0A = 1.2/Apmax (AA") then o = 0.0036, 5 = 105, and 63 = 107>

4.2.1 Porous Medium Equation
The porous medium equation
dp=2Aap", m>1, (55

is the Wasserstein gradient flow of the energy (4), with U (p) = ﬁ pMand V =
W = 0. A well-known family of exact solutions is given by Barenblatt profiles (c.f.
[104]), which are densities of the form

1
m—1

xz(t+r0)mz+1) . forC, 1y >(66)

plx,t)=(t+ to)fm%l <C —
+

m—1
a —
2m(@m + 1)
We now apply Algorithm 3 to simulate solutions of the m = 2 porous medium
equation with Barenblatt initial data, fo = 1073 and C = (3/16)!/3. Here, the Euler
discretization (27) is used. In Fig. 6, we plot the evolution of the numerical solution
FolCT
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Fig.6 Evolution of the solution Evolution of solution to porous medium equation
p(x, t) to the one-dimensional r
porous medium equation, with —it=1073
m = 2 on the domain 5 —1t=3.5%107
2 = [—1, 1]. We choose B T3
r=0.5x 1073, Ax = 0.02, 41 t=6x10 ,
At =0.1,A=0.2, — —t=8.5x10"
& = L.1/hmax (AA") then X3l —t=11x107
0 =0.1954,8 = 107, and =
83 =107
3 2+
1 L
0

over time, and we observe good agreement with the exact solution of the form (56),
which is displayed in dashed curve.

In Fig. 7, we analyze how the rate of convergence depends on the inner time step Af,
the spatial discretization Ax, and outer time step of the JKO scheme t. We compute
the error between the exact solution and the numerical solution in the £! norm, i.e.,

Ni Ny—1

1
lo =Pl = gy 2o 2 1Pike) = pj ko)1

k=0 j=1

In the plot on the left of Fig. 7, we consider two fixed values of t and examine how
the error depends on N; and Ny = 10N;. In both cases, the error quickly saturates,
indicating that the outer time step T dominates the error. In the plot on the right, we fix
N; = 20 and Ny = 200 and consider how the error depends on 7. We observe slightly
less than first-order convergence in 7 for the classical JKO scheme (" = F"y and
higher-order convergence for the Crank—Nicolson inspired scheme (£ = H"). We
believe these slower rates of convergence are due to the lower regularity of solutions to
the porous medium equation with compactly supported initial data, which are merely
Holder continuous.

In Fig. 8, we consider the case of smooth, strictly positive initial data, given by a
Gaussian with mean © = 0 and variance 8 = 0.2 (53), in which case solutions of the
PDE remain smooth over time. On the left, we show the evolution of the solutions
over time, and on the right, we illustrate that the classical JKO scheme indeed attains
first-order accuracy, though the Crank—Nicolson inspired scheme is still less than
second-order accurate.

4.2.2 Nonlinear Fokker-Planck Equation
We now consider a nonlinear variant of the Fokker—Planck equation,
o=V -(pVV)+24p", V:R{ SR, m>1,

FoC'T
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Rate of convergence to porous medium equation
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Fig. 7 Analysis of rate of convergence for a solution of porous medium equation, as in Fig. 6. Left:
Convergence to exact solution for Ny /N; = 10 for choices of t. Right: Convergence to exact solution for

N; = 20 and Ny = 200 and various choices of t, contrasting the traditional first-order JKO scheme with
the new Crank—Nicolson inspired scheme

Porous medium equation with smooth positive initial density
251
p— 102F .,'Q
t=0 e 2
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-
Fig.8 Evolution and the rate of convergence for a solution of porous medium equation with smooth positive
initial density. We choose N; = 10, Ny = 100, 0 = 10, A = 0.0148. Left: Evolution of the solution p (x, t)
to the one-dimensional porous medium equation, with m = 2 on the domain 2 = [—2, 2] for 7 = 0.005.
Right: The rate of convergence for various choices of 7, contrasting the traditional first-order JKO scheme

with the new Crank—Nicolson inspired scheme. For each choice of t in our computation of the higher-order
method, we choose our stopping criteria € = 1074 27001/t

inspired by the porous medium equation described in the previous section (55). When
V is a confining drift potential, all solutions approach the unique steady state

1

poo () = (c - ’"—_IV(x))"” ,
m

+

where C > 0 depends on the mass of the initial data, so that f Pocdx = f podx, see
[44,51].

In Fig. 9, we simulate the evolution of solutions to the nonlinear Fokker—Planck
equation with V(x) = x2, m = 2, and initial data given by a Gaussian with mean
u = 0 and variance & = 0.2 (53). On the left, we plot the evolution of the density
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Evolution of solution to nonlinear Fokker-Planck equation
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Fig. 9 Evolution of the solution p(x, t) to the one-dimensional nonlinear Fokker—Planck equation, with
m =2 and V(x) = x%. We choose T = 0.05, Ax = 0.04, Ar = 0.1, A = 0.1641, 0 = 1,8 = 1077,
and §3 = 1075, Left: evolution of density p(x, t) toward equilibrium pso (x). Right: Rate of decay of
corresponding energy with respect to time

Rate of convergence to nonlinear Fokker-Planck equation
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Fig. 10 Analysis of rate of convergence for a solution of the nonlinear Fokker—Planck equation, as in Fig. 9.
We choose At = 0.1, Ax = 0.04 and consider the error (57) for various choices of t, contrasting the
traditional first-order JKO scheme with the new Crank—Nicolson inspired scheme

p(x,t) toward the steady state po,(x). On the right, we compute the rate of decay of
the corresponding energy (4) as a function of time, observing exponential decay as
the solution approaches equilibrium. In this way, our method recovers analytic results
on convergence to equilibrium of Carrillo, DiFrancesco, and Toscani [35,51].

In Fig. 10, we analyze how the rate of convergence depends on the outer time step t
of the scheme, for sufficiently small inner time step Az = 0.1 and spatial discretization
Ax = 0.04. We compute the error

er = |lpr(x, 1) = prpa(x, D)o (57)
Elol:;ﬂ
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Evolution of solution to aggregation equation
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Fig. 11 Evolution of the solution p (x, t) to the one-dimensional aggregation equation, with W(x) = x2 /2—
In(|]x]), x € [—4, 4]. We choose = 0.05, Ax = 0.04, Ar = 0.05, A = 0.01, 01 = 0.99/Amax (AA") then
o=18.8,§ = 10_6, and 83 = 1070 Left: evolution of density p(x, t) toward equilibrium peo (x). Right:
Rate of decay of corresponding energy with respect to time

We observe slightly faster than first-order convergence for the traditional JKO scheme
(" = F")and higher-order convergence for the new Crank—Nicolson inspired scheme
(E" = H™). We believe this improvement in the rate of convergence as compared to
our previous example for the porous medium equation, Fig. 7, is due to the rapid
convergence to the steady state poo.

4.2.3 Aggregation Equation

In this section, we consider a nonlocal partial differential equation of Wasserstein
gradient flow type, known as the aggregation equation

dp=V-(pVWxp), W:R! > R. (58)

In recent years, there has been significant interest in interaction kernels W that are
repulsive at short length scales and attractive at longer distances, such as the kernel
with logarithmic repulsion and quadratic attraction

|x|?
Wx) = T —In(|x]) . 59

For this particular choice of W, there exists a unique equilibrium profile [38], given

by
1
Poo(x) = ;\/ (2—x2)4.

InFig. 11, we simulate the solution to the aggregation equation with Gaussian initial
data (53) with mean p = 0 and variance 6 = 1, analyzing convergence to equilibrium.
On the left, we plot the evolution of the density p(x, t) at varying times, observing
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Aggregation equation, smooth interaction potential
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Fig. 12 We compute the steady state of a solution to the two-dimensional aggregation equation with inter-
action potential W(x) = \x|4/4 - |x|2/2, which is a Dirac ring of radius 0.5, centered at the origin. The
computational domain is [-1,1]x[-1,1]. We choose 7 = 0.05, Ax = Ay = 0.04, Ar = 0.1, » = 20,
o =0.0052,and €] = ep = 1076 The steady state shown is the solution at time ¢t = 10. Left: side view of
equilibrium. Center: bird’s eye view of equilibrium. Right: rate of decay of energy as solution approaches
equilibrium

convergence to the equilibrium profile ps(x). On the right, we compute the rate of
the decay of the energy as a function of time, observing exponential decay as obtained
by Carrillo, Ferreira, and Precioso [38] with a slightly slower numerical rate.

As the interaction potential W defined in Eq. (59) is not continuous, we make the
following modifications to our discretization of the JKO scheme. To avoid evaluation
of W(x) at x = 0, we set W(0) to equal the average value of W on the cell of width
2h centered at 0, i.e., W(0) = ﬁ fi’h W (x)dx, where we apply Gauss-Legendre
quadrature rule with four grid points to evaluate the integral. In addition to modifying
the interaction kernel in this way, we also introduce an artificial diffusion term of the
form €3y (pdycp) with € = 1.6 x (Ax)? to the right-hand side of (58), to avoid the
possible overshoot at the boundary. (See also [29] for a similar treatment.)

4.3 Wasserstein Gradient Flows: Two Dimensions

In the following, we consider a few gradient flows in two dimensions. Here, the
constraint relaxation parameters are always chosen as § = 83 = 107°.

4.3.1 Aggregation Equation

We now continue our study of the aggregation equation (58) with repulsive—attractive
interaction potentials in two dimensions, with interaction kernels of the form

a b
I 1 Y (60)

Wx) = b >

using the convention that % = In(Jx]). It is well known that the repulsion near the
origin of the potential determines the dimension of the support of the steady state
measure, see [4,34]. In the following simulations, we take the initial data to be a
gaussian (53) with mean ¢ = 0 and variance 6 = 0.25.
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Aggregation equation, singular interaction potential
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Fig. 13 We compute steady state of a solution to the two-dimensional aggregation equation with interaction
potential W(x) = |x|2/2 — In(|x]), which is the characteristic function on a disk of radius 1, centered at
the origin. The computational domain is [-1.5,1.5]x[-1.5,1.5]. We choose T = 0.05, Ax = Ay = 0.06,
At = 0.05, 1 = 50, and 0 = 0.0037. The steady state is plotted at time t=3. Left: side view of equilibrium.
Center: bird’s eye view of equilibrium. Right: rate of decay of energy as solution approaches equilibrium

In Fig. 12, we simulate the evolution of solutions to the aggregation equation, with
a = 4 and b = 2 in the interaction potential W, defined in Eq. (60). We observe
that the solution concentrates on a Dirac ring with radius 0.5 centered at the origin,
recovering analytical results on the existence of a stable Dirac ring equilibrium for
these values of a and b [5,13].

In Fig. 13, we simulate the evolution of solutions to the aggregation equation,
with a = 2 and b = 0. We observe that the solution converges to a characteristic
function on the disk of radius 1, centered at the origin, recovering analytic results on
solutions of the aggregation equation with Newtonian repulsion [14,34,65]. We follow
the same strategy described in Sect. 4.2.3 with € = 1.6 x (Ax? 4+ Ay?) to overcome
the singularity of the interaction potential at x = 0 and potential overshooting.

4.3.2 Aggregation Drift Equation

Next, we compute solutions of aggregation-drift equations
Ihp=V- (VW =xp)+V.(pVV),

where W (x) = |x|2/2—In(|x|) and V (x) = —% In(|x|). As shown in several analytical
and numerical results [29,42,53], the steady state is a characteristic function on a torus
or “milling profile”, with inner and outer radius given by

R—\/g Ry= |2 +1
r IB’ o — ﬁ .

In Fig. 14, we simulate the long time behavior of a solution of the aggregation-drift
equation with « = 1 and 8 = 4 and Gaussian initial data (53), © = 0, 60 = 0.25, as
well as the rate of the decay of the entropy as the solution converges to equilibrium. In
Fig. (15), we plot the evolution of the density from a nonradially symmetric initial data,
given by five Gaussians to the same equilibrium profile. We follow the same strategy
described in Sect. 4.2.3 to overcome the singularity of the interaction potential at x = 0
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Equilibrium of aggregation-drift equation
15

x time t

Fig. 14 We compute steady state of a solution to the two-dimensional aggregation-drift equation with
interaction potential W(x) = |x|2/2 — In(|x|) and drift potential V(x) = —(1/4)In(|x|), which is the
characteristic function on a torus, centered at the origin. The computational domain is [-1.5,1.5]x[-1.5,1.5].
We choose T = 0.1, Ax = Ay = 0.06, At = 0.05, A = 40, and ¢ = 0.0046. The steady state is the
solution at time t=4. Left: side view of equilibrium. Center: bird’s eye view of equilibrium. Right: rate of
decay of energy as solution approaches equilibrium

Evolution of aggregation-drift equation

t=0.0 t=04 t=10

1 Kl 1 El 1 El
x 15 15 y x 15 15 y x 15 15 y

Fig. 15 Evolution of the solution p (x, y, t) to the two-dimensional aggregation-drift equation, with W (x) =
x2/2 —In(Jx]) and V (x) = —(1/4) In(|x]). The computational domain is [-1.5,1.5]x[-1.5,1.5]. We choose
T =02, Ax = Ay = 0.06, Ar = 0.1, L = 10, and 0 = 0.0244. We observe convergence to the
characteristic function on a torus centered at the origin

and potential overshooting (€ = 2x (Ax?>+Ay?)inFig. 14ande = 2.6 x (Ax’+Ay?)
in Fig. 15.)
4.3.3 Aggregation-Diffusion Equation

We close by simulating several examples of aggregation—diffusion equations

Qo =V-(pVWxp)+vap™, W:R! >R, m>1. (61)
FolCT
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Evolution of aggregation-diffusion equation, smooth interaction kernel

Fig. 16 Evolution of solution p(x, y,t) to the two-dimensional aggregation—diffusion equation, with

W(x) = —e_‘xlz/n, v = 0.1, and m = 3 on the domain 2 = [—4, 4] x [—4, 4]. We choose T = 0.5,
Ax = Ay =0.1, At =0.1,0 = 0.1144, and A = 0.5. The total iteration number for 40 JKO time steps is
197852. We observe convergence to the a single bump centered at the origin

In recent years, there has been significant activity studying equations of this form,
both analytically and numerically. When the interaction kernel W is attractive, the
competition between the nonlocal aggregation V - (o VW x p) and nonlinear diffusion
vAp™ causes solutions to blow up in certain regimes and exist globally in time in
others, see for example [18,19,25,26,41] and the survey [32]. With fixed m, and in
the presence of nonlocal interaction, the equation has a unique steady state which is
radially decreasing up to a translation [15,40].

In Fig. 16, we simulate a solution of the aggregation—diffusion equation with
Wx) = —e"x'z/rr, v = 0.1, and m = 3, and initial data given by a rescaled
characteristic function on the square,

1
po(x,y) = ZX[73,3]X[73,3](X, y),

Diffusion dominates both the short and long ranges, and the medium range aggrega-
tion leads to the formation of four bumps, which ultimately approach a single bump
equilibrium. (See also [29].)

In Fig. 17, we simulate solutions of the Keller—Segel equation, which is an
aggregation—diffusion equation (61) with a Newtonian interaction kernel, i.e., W (x) =
%ln(|x|) in two dimensions for v = 1 and both m = 1 and m = 2, illustrating the
role of the diffusion exponent in blowup or global existence of solutions. We choose
the initial data to be given by a rescaled gaussian, obtained by multiplying equation
(53) by a mass M = 9m, with mean ¢ = 0 and variance & = 0.5. On the left, we
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Keller-Segel equation: blowup vs. global existence for m = 1,2

24 200

5 -5
X y

Fig. 17 Plot of solution p(x, y, ) to the two-dimensional Keller—Segel equation at t = 2. Left: When
m = 2, the solution approaches a bounded, continuous equilibrium profile. Here, the computational domain
is [-5,5]x[-5,5]. Right: When m = 1, the solution blows up, becoming sharply peaked. The computational
domain here is [-2,2]x[-2,2]. For both we choose T = 0.05, Ax = Ay = 0.067, At = 0.1, . = 0.5,
o =0.042

Metastability of solutions to Keller-Segel equation
t = 0.00 t =0.10 t=0.25

3

2
Q

3 1
0

5 5 5 5

0 o 0 0
X 5 5 y X 5 5 y

t = 0.50 t = 1.00 t = 6.00

3 3
2 2
a a
1 1
0 0
s 55 5
0 0 o 0
x 5 5 y X 5 5 y

Fig. 18 The evolution of p(x, y, ) for the Keller—Segel equation with U(x) = x2. Here, At = 0.1,
hy =hy =0.167, 7 = 0.05

take m = 2 and simulate the steady state of the Keller—Segel equation, which is a
single bump. On the right, we simulate the long-time behavior of solutions for m = 1,
in which case we are in the blow up regime. Indeed, at time = 2, we observe the
formation of a blowup profile, with the solution becoming sharply peaked at the origin.
In Fig. 18, we again simulate solutions of the Keller—Segel equation with m = 2,
but in this case we take the initial data to be given by three localized bumps (Gaussian
rings, i.e., the radial cut of the ring is a Gaussian with a center on the circle.) We observe
a two-stage evolution in which the each of the bumps converges to a localized quasi-
stationary state, and then interact and merge into one single bump in the long time
limit. This is a manifestation of the typical metastability phenomena, which is likely
present in the majority of the diffusion dominated Keller—Segel models [24,29,32].
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A Further Details of Numerical Implementation

In this section, we provide explicit formulas for the matrix A and the vectors u and b
introduced in Problem 3(b) in Sect. 2.3, which play a key role in the implementation
of Algorithms 1, 2, and 3. For simplicity, we consider the case of one space dimension,
and the discretization takes the form (28). The constructions of A and b in Problem
3(a) are very similar except a slightly different treatment of p at final time. From now
on, for simplicity of notation, we will drop the tildes for the matrix A and vector b.

Define N = (N, +1)(N;+1). Let ® denote the Kronecker tensor product, |y, 11 the
identity matrix of size N, + 1, and (x) 57 the column vector in RM with all components
equal to x. Then we define

N, . N N N, N
u=[(@ )y M) o] €RY, @ ;= (0j.1) 20, Mk = (mji);%,

RM*2N (akes the form

A, |A
A= |20
|:Amass 0 ]

and the matrix A €

Here, A, € RV*V reads

A, =DV @I + D @I := AD + AP

where Dl(l), D§2> € RNViHDXNiAD g | ¢ ROVG+Dx(Nx+1) gpe
0

1 = OlNX_l U e D§2)=[10]
—11
FoE'ﬂ
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Here, Dfl) and D;z) correspond to the temporal discretization and initial condition for
p. Likewise,

A e RVN =B @D 41y @ DP = AD + AD)

where D)(Cl), Dj(cz) e RVt and B;l) e RWir+Dx(Ni+D).
0
~10 1 :

1
| D@ =10 |, BV =
101 1

0

W _ At
* 4Ax

For mass conservation, let S, = (x)?vx e then Amass = Iy, +1 ® Sp. In sum, different
A; can be written as

(1) A(D) 2) 2)

AD A 0A 0 0 A® o
A= |Po A | A [OAR | A As(+As) = | O
! [0 o] 2 [o o]’ 3 [AmaSSO]’ 4(+As) [0 o}

Accordingly, b € RN*Ni+1 collects all the initial conditions for p and boundary
conditions for m. More specifically, it writes

b = [(0; (,Oj,o);v;l_lz 0); 0N, —1Hy(Ve+1)5 O, 1 O, 11]
+ [(m0,0; 0; my,0); -+ - (mo,n,; 0; my, N, On,+1]
+ [On; 1y, 41]
i=bs + (b5) + by + b3

and b; = 0.
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