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Abstract
Combining the classical theory of optimal transport with modern operator splitting
techniques, we develop a new numerical method for nonlinear, nonlocal partial differ-
ential equations, arising in models of porous media, materials science, and biological
swarming. Our method proceeds as follows: first, we discretize in time, either via
the classical JKO scheme or via a novel Crank–Nicolson-type method we introduce.
Next, we use the Benamou–Brenier dynamical characterization of the Wasserstein
distance to reduce computing the solution of the discrete time equations to solving
fully discrete minimization problems, with strictly convex objective functions and
linear constraints. Third, we compute the minimizers by applying a recently intro-
duced, provably convergent primal dual splitting scheme for three operators (Yan in
J Sci Comput 1–20, 2018). By leveraging the PDEs’ underlying variational structure,
our method overcomes stability issues present in previous numerical work built on
explicit time discretizations, which suffer due to the equations’ strong nonlinearities
and degeneracies. Our method is also naturally positivity and mass preserving and,
in the case of the JKO scheme, energy decreasing. We prove that minimizers of the
fully discrete problem converge to minimizers of the spatially continuous, discrete
time problem as the spatial discretization is refined. We conclude with simulations
of nonlinear PDEs and Wasserstein geodesics in one and two dimensions that illus-
trate the key properties of our approach, including higher-order convergence our novel
Crank–Nicolson-type method, when compared to the classical JKO method.
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1 Introduction

Gradient flow methods are classical techniques for the analysis and numerical sim-
ulation of partial differential equations. Historically, such methods were exclusively
based on gradient flows arising from a Hilbert space structure, particularly L2(Rd),
but since the work of Jordan, Kinderlehrer, and Otto in the late 90’s [75,93,94], interest
has emerged in a range of nonlinear, nonlocal partial differential equations that are
gradient flows in the Wasserstein metric,

{
∂tρ = ∇ · (ρ∇V ) + ∇ · (ρ∇W ∗ ρ) + αΔρm, x ∈ Ω ⊆ R

d , V ,W : Ω → R,

ρ(x, 0) = ρ0(x) , m ≥ 1, α ≥ 0.
(1)

When Ω �= R
d , we consider no-flux boundary conditions.

Equations of this form arise in a number of physical and biological applications,
including models in granular media [12,45,46,102], material science [71], and biolog-
ical swarming [6,39,77]. Furthermore, many well-known equations may be written in
this way: when V = W = 0 and α = 1, Eq. (1) reduces to the heat equation (m = 1),
porous medium equation (m > 1), and fast diffusion equation (m < 1) [103]. In
the presence of a drift potential V , it becomes a Fokker–Planck equation (m = 1)
or nonlinear Fokker–Planck equation (m > 1), as used in models of tumor growth
[96,100]. When the interaction potential W is given by a repulsive–attractive Morse
or power-law potential,

W (x) = −Cae
−|x |/la + Cre

−|x |/lr , Cr/Ca < (lr/la)
−d , 0 < lr < la, 0 < Ca < Cr ,

W (x) = |x |a
a

− |x |b
b

, −d < b < a, (2)

we recover a range of nonlocal interaction models, which are repulsive at short length
scales and attractive at long length scales [4,5,34,101].WhenW = (Δ)−1, the Newto-
nian potential, we have the Keller–Segel equation and its nonlinear diffusion variants
[17,19,25,26,32,41,76]. Finally, as the diffusion exponentm → +∞, we recover con-
gested aggregation and drift equations arising inmodels of pedestrian crowd dynamics
and shape optimization problems [23,58,67,84,90,91].

In order to describe the gradient flow structure of equation (1), we begin by rewriting
it as a continuity equation in ρ(x, t) for a velocity field v(x, t),

{
∂tρ = −∇ · (ρv) := ∇ · [ρ∇ (αU ′

m(ρ) + V + W ∗ ρ
)]

,

ρ(x, 0) = ρ0(x) ,

Um(s) =
{
s ln(s) for m = 1,
sm
m−1 for m > 1.

(3)

In this form, two key properties of the equation become evident: it is positivity preserv-
ing and conserves mass. In what follows, we will always consider nonnegative initial
data, and we will typically renormalize so that the mass of the initial data equals one,
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i.e., ρ0 ∈ Pac(Ω), wherePac(Ω) is the set of probability measures onΩ that are abso-
lutely continuous with respect to Lebesgue measure. Furthermore, as our objective is
to develop a numerical method for these equations, we will exclusively consider the
case when Ω is a bounded domain. Throughout, we commit a mild abuse of notation
and identify all such probability measures with their densities, dρ(x) = ρ(x)dx .

As discovered by Otto [93], given an energy E : Pac(Ω) → R ∪ {+∞}, we
may formally define its gradient with respect to the Wasserstein metric dW using the
formula

∇dWE(ρ) = −∇ ·
(

ρ∇ δE
δρ

)
.

(See Sect. 2.1 for the definition of the Wasserstein metric dW .) In this way, gradient
flows of E , ∂tρ = −∇dWE(ρ), correspond to solutions of the continuity equation with
velocity v = −∇ δE

δρ
. In particular, Eq. (3) is the gradient flow of the energy

E(ρ) =
∫

Ω

[αU (ρ(x)) + V (x)ρ(x)] dx + 1

2

∫
Ω×Ω

W (x − y)ρ(x)ρ(y)dxdy . (4)

Differentiating the energy (4) along solutions of (3), one formally obtains that the
energy is decreasing along the gradient flow

d

dt
E(ρ)(t) = −

∫
Rd

|v(t, x)|2ρ(t, x)dx , (5)

which coincides with the theoretical interpretation of gradient flows as solutions that
evolve in the direction of steepest descent of an energy, where the notion of steepest
descent is induced by the Wasserstein metric structure.

A key feature of equations of the form (3) is the competition between repulsive and
attractive effects. For repulsive–attractive interaction kernels W , as in equation (2),
these effects can arise purely through nonlocal interactions, leading to rich structure
of the steady states [4,13,14,34,65]. For purely attractive interaction kernels W , as
in the Keller–Segel equation, the competition instead arises from the combination of
nonlocal interaction with diffusion. In this case, different choices of interaction kernel
W , diffusion exponent m, and initial data ρ0 can lead to widely different behavior—
from bounded solutions being globally well posed to smooth solutions blowing up in
finite time [17,19,25,26,32,41].

1.1 Summary of Numerical Approach

The goal of the present work is to develop new numerical approach for partial dif-
ferential equations of the form (1) that combine gradient flow methods with modern
operator splitting techniques. Our approach applies to equations of this form with any
combination of diffusion αU ′

m(ρ) (α ≥ 0), drift V , or interaction W ∗ ρ terms—in
particular, it is not necessary for diffusion to be present in order for our scheme to
converge.
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Fig. 1 Levels of discretization: τ is the outer JKO time step, Δt is the inner time step, and Δx is the spatial
discretization

The main idea of our approach is to discretize the PDE/Wasserstein gradient flow at
two levels. First, we consider a time discretization of the gradient flowwith time step τ

(see Fig. 1b), either given by the classical JKO scheme (Eq. (6) below) or a newCrank–
Nicolson inspired variant (Eq. (7) below). This reduces computation of the gradient
flow to solving a sequence of infinite-dimensional minimization problems. Then, we
consider a dynamical reformulation of these minimization problems, stemming from
Benamou and Brenier’s dynamic characterization of theWasserstein metric, by which
the problem becomes the minimization of a strictly convex integral functional subject
to a linear PDE constraint (see Fig. 1c). At this level, the problem remains continuous
in space and time. We conclude by considering a further discretization of the problem,
with inner time step (Δt) and spatial discretization (Δx), by taking piecewise constant
approximations of the functions and using a finite difference approximation of the
PDE constraint (see Fig. 1d). In this final, fully discrete form, we then compute the
minimizer usingmodern operator splitting techniques, applyingYan’s recent extension
of the classical primal dual algorithm for minimizing sums of three convex functions
[106].

Our paper is organized as follows. In Sect. 1.2, we discuss the relationship between
our numerical approach and previous work. In Sect. 1.3, we summarize our con-
tribution. In Sect. 2, we describe the details of our numerical method. Along with
numerically simulating Wasserstein gradient flows, our method also provides, as a

123



Foundations of Computational Mathematics

special case, a new method for computing Wasserstein geodesics and the Wasser-
stein distance between probability densities; see Remark 1. In Sect. 3, we prove that,
provided a smooth, positive solution of the continuum JKO scheme exists and the
energy corresponding to the PDE is sufficiently regular, then minimizers of the fully
discrete problem exist (Theorem1), the objective functions of the discrete problemsΓ -
converge to the objective function of the continuum problem (Theorem 2), and thus,
solutions of the fully discrete scheme converge, up to a subsequence, to a solution
of the continuum scheme (Theorem 3). As a special case, we also recover conver-
gence of a numerical method for computing Wasserstein geodesics, similar to that
introduced by Papadakis, Péyre, and Oudet [95]. Finally, in Sect. 4, we provide sev-
eral numerical simulations illustrating our approach in both one and two dimensions,
computing Wasserstein geodesics, nonlinear Fokker–Planck equations, aggregation
diffusion equations, and other related equations.

1.2 Details of Approach and Comparison with PreviousWork

1.2.1 Classical Numerical PDE Methods

We now compare our approach to existing numerical methods. Perhaps the most
common numerical approach for equations of the form (1) is to consider the equation
as an advection–diffusion equation and apply classical finite difference, finite volume,
or Galerkin discretizations [3,29,54,66,85]. However, when such methods are based
on explicit time discretizations, they suffer from stability constraints due either to
the degeneracy of the diffusion (when m > 1) or the nonlocality from the interaction
potentialW . (See for instance themesa problem [83].) Implicit time discretizations, on
the other hand, are computationally intensive, due to the difficulty of matrix inversion,
even when the implicit steps are solved by smart iterative methods to avoid the high
computation cost of convolution [3].

Another common approach is to leverage structural similarities between (3) and
equations from fluid dynamics to develop particle methods [14,27,30,36,43,48,57,
60,88,92]. Until recently, the key limitation of such methods has been developing
approaches to incorporate diffusion. Following the analogy with the Navier–Stokes
equations, stochastic particle methods have been proposed in the case of linear diffu-
sion (m = 1) [72–74,86].More recently the first two authors and Patacchini developed
a deterministic blob method for linear and nonlinear diffusion (m ≥ 1) [31]. On the
one hand, particle methods naturally conserve mass and positivity, and they can also
be designed to respect the underlying gradient flow structure of the equation, including
the energy dissipation property (5). On the other hand, a large number of particles are
often required to resolve finer properties of solutions.

In contrast with such classicalmethods, ourmethod introduces an auxiliarymomen-
tum variable m and an additional inner layer of time discretization, which enlarges
the dimension of the problem. However, as later pointed out in [80], the inner layer of
time can be discretized with just one step without violating the overall first-order accu-
racy, there completely eliminating the additional cost introduced by the inner layer.
Another major advantage of our approach is that, by reforming the PDE problem into
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an optimization problem, we obtain unconditional stability (for the JKO discretiza-
tion, see Eq. (6) below) while avoiding the inversion of a full matrix in the general
implicit setting, which is extremely expensive, especially in higher dimensions; see for
instance [3]. Finally, compared to other implicit methods, such as the backward Euler
method, the suboptimization problems can be solved independently at each gridpoint,
and therefore aremassively parallelizable and suitable for high-dimensional problems.

1.2.2 Variational Methods

Compared to the classical numerical PDEapproaches described in the previous section,
a more modern class of numerical methods leverages the gradient flow structure of (1)
to approximate solutions of the PDE by solving a sequence of minimization problems.
This is the approach we take in the present work. Originally introduced by Jordan,
Kinderlehrer, and Otto as a technique for computing solutions of the Fokker–Planck
equation (Eq. (1),W = 0,m = 1) [75], this scheme approximates the solution ρ(x, t)
at time t by solving the following sequence of n minimization problems with time
step τ = t/n,

ρn
τ ∈ argmin

ρ∈Pac(Ω)

{
d2W (ρ, ρn−1

τ ) + 2τE(ρ)
}

, ρ0
τ = ρ0(x). (6)

The JKO scheme is precisely the analogue of the implicit Euler method in the infinite-
dimensional Wasserstein space. The constraint ρ ∈ Pac(Ω) ensures that the method
is positivity and mass preserving, and the fact that d2W (ρ, ρn) ≥ 0 ensures the energy
decreasing along the scheme, E(ρn+1

τ ) ≤ E(ρn
τ ).

Under sufficient assumptions on the underlying domain Ω , drift potential V , inter-
action potential W , and initial data ρ0 (see Sect. 2.1), the solution of the JKO scheme
ρn

τ converges to the solution ρ(x, t) of the partial differential equation (1), with a
first-order rate in terms of the time step τ = t/n [2, Theorem 4.0.4],

dW (ρn(·), ρ(·, t)) ≤ Cτ.

In our numerical simulations, we observe that this discretization error dominates
other errors in our numerical method; see Sects. 4.2.1 and 4.2.2. Consequently, we
also introduce a new time discretization, in analogy with the Crank–Nicolson method

ρn+1 ∈ argmin
ρ∈Pac(Ω)

{
d2W (ρ, ρn) + τE(ρ) + τ

∫
Ω

δE
δρ

(ρn)ρ

}
. (7)

The connection between the above scheme and the classical Crank–Nicolson dis-
cretization can be seen by considering the optimality conditions for (7):

1

τ
(ρn+1 − ρn) = 1

2
∇ ·
(

ρn+1∇
(

δE(ρn+1)

δρ
+ δE(ρn)

δρ

))
.
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Like the JKOscheme, ourCrank–Nicolson inspiredmethod is also positivity andmass-
preserving, though it is not energy decreasing. In Figs. 7, 8, and 10 of our numerics
section, we conduct a preliminary analysis of the rate of convergence of this method,
which verifies that it is indeed higher order than the JKO scheme. As the goal of the
present work is primarily the development of fully discrete numerical schemes, we
leave a thorough analysis of the rate of convergence of our Crank–Nicolson inspired
method as τ → 0 to future work.

On the one hand, our Crank–Nicolson inspired method (7) is not the first
higher-order method proposed for metric space gradient flows: Matthes and Plazotta
developed a provably second-order scheme for general metric space gradient flows by
generalizing the backward differentiation formula [89]. TheMatthes–Plazottamethod,
however, requires two evaluations of the Wasserstein distance at each outer time step
and thus is less practical for our purpose of numerically computing gradient flows in
higher dimensions. Another method was introduced by Legendre and Turinici [79]
based on the midpoint method. This method can be reformulated as the classical JKO
step with half time step followed by an extrapolation. This extrapolation step could
be implemented by solving the corresponding continuity equation either explicitly
or implicitly; however, solving the equation explicitly could potentially violate con-
servation of positivity, while solving it implicitly would require an additional matrix
inversion. Another higher-order variational method was also proposed in [78], which
resembles explicit Runge–Kutta methods and, again, require two or more evaluations
of the Wasserstein distance at each outer time step.

1.2.3 Numerical Methods for the Wasserstein Distance

Touse either the classical JKO scheme (6) or our newCrank–Nicolson inspired scheme
(7) as a basis for numerical simulations, one must first develop a fully discrete approx-
imation of the minimization problem at each step of the scheme. Here, the main
numerical difficulty arises in approximating the Wassserstein distance, and there are
several different approaches for dealing with this term. First, one can reformulate
the Wasserstein distance in terms of a Monge–Ampére equation with nonstandard
boundary conditions [11,68], though difficulties arise due to the lack of a comparison
principle [70]. Second, one can reframe the problem as a classical L2(Rd) gradient
flow at the level of diffeomorphisms [16,37,47,49,69], but to pursue this approach, one
has to overcome complications arising from the underlying geometry and the structure
of the PDE system for the diffeomorphisms. Third, one can discretize the Wasserstein
distance term as a finite-dimensional linear program, overcoming the lack of strict
convexity of the objective function by adding a small amount of entropic regulariza-
tion [8,55,61]. (For a detailed survey of computational optimal transport, we refer the
reader to the recent book by Péyre and Cuturi for [97].)

A fourth approach for computing the Wasserstein distance, and the one which we
develop in the present work, is to consider a dynamic formulation due to Benamou and
Brenier [7]. This reframes the problem as a strictly convex optimization problem with
linear PDE constraints, which can be discretized usingBenamou andBrenier’s original
augmented Lagrangian method ALG2 or, more generally, a range of modern proximal
splitting methods, as shown by Papadakis, Peyre, and Oudet [95]. (See also [21,22]
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for related work on mean field games.) Adding an additional Fisher information term
in this dynamic formulation (in analogy with entropic regularization) has also been
explored in [82].

Only recently have these above approaches for computing theWasserstein distance
been integrated with the JKO scheme (6) in order to simulate partial differential equa-
tions of the form (1). The Monge–Ampére approach extends naturally, though the
presence of a diffusion term αU ′

m(ρ) for α > 0 is required to enforce convexity con-
straints at the discrete level [10]. Similarly, entropic regularization (or the addition of
a Fisher information term) vastly accelerates the computation of gradient flows, but at
the level of the partial differential equation, this corresponds to introducing numerical
diffusion, which may disrupt the delicate balance between aggregation and diffusion
inherent in PDEs of this type [28,55,82]. Finally, Benamou and Brenier’s dynamic
reformulation of the Wasserstein distance has also been adopted in recent work to
approximate gradient flows [9]. A key benefit of this latter approach when compared
to entropic regularization is that it leads to an optimization problem in Nd

x × Nt vari-
ables, where Nx and Nt are the number of spatial and temporal gridpoints, whereas
the latter leads to an optimization problem in N 2d

x variables.
In the present work, we further develop this last approach, using Benamou and

Brenier’s dynamic reformulation of the Wasserstein distance to simulate Wasserstein
gradient flows, via both the classical JKO scheme (6) and our new Crank–Nicolson
inspired scheme (7). This leads to a sequence of minimization problems (Fig. 1C),
whichwe discretize (Fig. 1D) and then solve using amodern primal dual three operator
splitting scheme due to Yan [106], instead of the classical ALG2 method. See Sect. 2
for a detailed description of our approach.

Due to the fact that we use operator splitting methods to compute the minimizer in
Benamou and Brenier’s dynamic formulation of the Wasserstein distance, our work
can be seen as an extension of previous work by Papadakis, Peyre, and Oudet [95],
which applied similar two operator splitting schemes to simulate the Wasserstein
distance. However, there are a few key differences between our approach and previous
work. First, we are able to implement the primal dual splitting scheme in a manner
that does not require matrix inversion of the finite difference operator, which reduces
the computational cost. Second, we succeed in obtaining the exact expression for the
proximal operator, which allows our method to be truly positivity preserving, while
other similar methods are only positivity preserving in the limit as Δx,Δt → 0;
see Remark 5. Third, instead of imposing the linear PDE constraint in Benamou and
Brenier’s dynamic reformulation exactly, via a finite difference approximation, we
allow the linear PDE constraint to hold up to an error of order δ > 0, which can be
tuned according to the spatial discretization (Δx), the inner temporal discretization
(Δt), and the outer time step τ to respect the order of accuracy of the finite difference
approximation; see Remark 3. Numerically, this allows our method to converge in
fewer iterations, without any reduction in accuracy, as demonstrated in Fig. 3. From
a theoretical perspective, the fact that we only require the PDE constraint to hold up
to an error of order δ > 0 makes it possible to prove convergence of minimizers of
the fully discrete problem to minimizers of the JKO scheme (6), since minimizers of
the fully discrete problem always exist for δ > 0, which is not the case when the PDE
constraint is enforced exactly (δ = 0); see Remark 8 and Theorem 1.
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1.3 Contribution

The main components of our numerical method for computing solutions to (1) are:

(a) an outer time discretization, of either JKO (6) orCrank–Nicolson type (7) (Fig. 1B)
(b) a dynamic interpretation of the Wasserstein distance (Fig. 1C), which when dis-

cretized via finite difference approximations leads to a sequence of constrained
optimization problems (Fig. 1D)

(c) an application of modern three operator splitting schemes for solving these opti-
mization problems.

Our main contributions are:

– Unlike classical explicit methods, our JKO-type method is unconditionally stable.
Unlike classical implicit methods, it achieves this stability without an expensive
matrix inversion.

– In practice, we observe that our Crank–Nicolson-typemethod performs even better
than our JKO-typemethod, in terms of rate of convergencewith respect to the outer
time step (see Figs. 7, 8, and 10). We leave a thorough analysis of the rate of this
convergence of this method to future work.

– By formulating our optimization problemwith a linear inequality constraint instead
of a linear equality constraint, our algorithm converges in fewer iterations when
compared to related algorithms forWasserstein geodesics; seeRemark 3 andFig. 3.

– We prove convergence of our fully discrete method (Fig. 1D) to the JKO scheme
(Fig. 1B, C) as the spatial discretization and inner time discretization go to zero.

2 Numerical Method

2.1 Dynamic Formulation of JKO Scheme

As described in the previous section, our numerical method for computing the JKO
scheme is based on the following dynamic reformulation of the Wasserstein distance
due to Benamou and Brenier [7]:

dW (ρ0, ρ1) = inf
(ρ,v)∈C0

{∫ 1

0

∫
Ω

|v(x, t)|2dρ(x, t)dt

}1/2
, (8)

where (ρ, v) ∈ AC(0, 1;P(Ω)) × L1(0, 1; L2(ρ)) belongs to the constraint set C0
provided that

∂tρ + ∇ · (ρv) = 0 on Ω × [0, 1] (9)

(ρv) · ν = 0 on ∂Ω × [0, 1], (10)

ρ(·, 0) = ρ0, ρ(·, 1) = ρ1 on Ω, (11)

where ν is the outer unit normal on the boundary of the domain Ω . A curve ρ in
P(Ω) is absolutely continuous in time, denoted ρ ∈ AC(0, 1;P(Ω)), if there exists
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w ∈ L1(0, 1) so that dW (ρ(·, t0), ρ(·, t1)) ≤ ∫ t1
t0

w(s)ds for all 0 < t0 ≤ t1 < 1.
The PDE constraint (9 and 10) holds in the duality with smooth test functions on
R
d × [0, 1], i.e., for all f ∈ C∞

c (Rd × [0, 1]),
∫ 1

0

∫
Ω

[∂t f (x, t)ρ(x, t) + ∇ f (x, t) · v(x, t)ρ(x, t)] dxdt

+
∫

Ω

f (x, 0)ρ0(x) − f (x, 1)ρ1(x)dx = 0 .

This dynamic reformulation reduces the problemoffinding theWasserstein distance
between any two measures to identifying the curve in P(Ω) that connects them with
minimal kinetic energy. However, the objective function (8) is not strictly convex,
and the PDE constraint (9) is nonlinear. For these reasons, in Benamou and Brenier’s
original work, they restrict their attention to the case ρ(·, t) ∈ Pac(Ω) and introduce
the momentum variables m = vρ, in order to rewrite (8) as

d2W (ρ0, ρ1) = min
(ρ,m)∈C1

∫ 1

0

∫
Ω

Φ(ρ(x, t),m(x, t))dxdt, (12)

where

Φ(ρ,m) =

⎧⎪⎨
⎪⎩

‖m‖2
ρ

if ρ > 0 ,

0 if (ρ,m) = (0, 0) ,

+∞ otherwise,

(13)

and (ρ,m) ∈ AC(0, 1;Pac(Ω)) × L1(0, 1; L2(ρ−1)) belong to the constraint set C1
provided that

∂tρ + ∇ · m = 0 on Ω × [0, 1]
m · ν = 0 on ∂Ω × [0, 1].

ρ(·, 0) = ρ0, ρ(·, 1) = ρ1 on Ω.

After this reformulation, the integral functional

(ρ,m) �→
∫ 1

0

∫
Ω

Φ(ρ,m) (14)

is strictly convex along linear interpolations and lower semicontinuous with respect
to weak-* convergence [1, Example 2.36], and the PDE constraint is linear. As an
immediate consequence, one can conclude that minimizers are unique. Furthermore,
for any ρ0, ρ1 ∈ Pac(Ω), a direct computation shows that the minimizer (ρ̄, m̄) is
given by the Wasserstein geodesic from ρ0 to ρ1,

ρ̄(x, t) = Tt#ρ0, v̄(x, t) = T ◦ T−1
t (x) − T−1

t (x), m̄

= v̄ρ̄, for Tt (x) := (1 − t)x + tT (x), (15)
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where T is the optimal transport map from ρ0 to ρ1. (See [2,98,105] for further
background on optimal transport.) Consequently, given any minimizer (ρ̄, m̄) of (12),
we can recover the optimal transport plan T via the following formula:

T (x) = x + v̄(x, 0) = x + m̄(x, 0)/ρ̄(x, 0). (16)

Building upon Benamou and Brenier’s dynamic reformulation of the Wasserstein
distance, one can also consider a dynamic reformulation of the JKO scheme (6). In
particular, substituting (12) in (6) leads to the following dynamic JKO scheme:

Problem 1 (Dynamic JKO) Given τ > 0,E , andρ0, solve the constrainedoptimization
problem,

inf
(ρ,m)∈C

∫ 1

0

∫
Ω

Φ(ρ(x, t),m(x, t))dxdt + 2τE(ρ(·, 1)),

where (ρ,m) ∈ AC(0, 1;Pac(Ω)) × L1(0, 1; L2(ρ−1)) belong to the constraint set
C provided that

∂tρ + ∇ · m = 0 on Ω × [0, 1], m · ν = 0 on ∂Ω × [0, 1], and ρ(·, 0) = ρ0 on Ω. (17)

We emphasize that the requirement ρ(x, t) ∈ Pac(Ω) for all t ∈ [0, 1] ensures that
ρ(x, t) ≥ 0.

Remark 1 (Wasserstein geodesics) Note that for any ρ1 ∈ Pac(Ω), we may take

E(ρ(·, 1)) = Gρ1(ρ(·, 1)) :=
{
0 if ρ(·, 1) = ρ1,

+∞ otherwise,
(18)

in which case Problem 1 reduces to the Benamou–Brenier formulation of the Wasser-
stein distance (12). Consequently, the numerical method we develop for Problem 1
offers, as a particular case, a provably convergent numerical method for computing the
Wasserstein geodesic and Wasserstein distance between ρ0 and ρ1. On the one hand,
there are many alternative methods for computingWasserstein geodesics in Euclidean
space. Indeed, the many algorithms described in the introduction for computing the
Wasserstein distance also provide an optimal transport plan, which can be linearly
interpolated to give the Wasserstein geodesic [8,11,55,61,68,97]. On the other hand,
our method is distinguished because it could be more naturally extended to variants
of the Wasserstein metric built on the Benamou–Brenier formulation [33,64,87], as
well as to Wasserstein geodesics on non-Euclidean manifolds, where the geodesic
equations on the underlying manifold may no longer be explicit, so that one cannot
pass directly from the optimal transport plan to the Wasserstein geodesic.

Remark 2 (existence and uniqueness of minimizers) If the underling domain Ω is
convex and the energy E is proper, lower semicontinuous, coercive, and λ-convex
along generalized geodesics, and also satisfies {μ : E(μ) < +∞} ⊆ Pac(Ω), then,
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for τ > 0 sufficiently small, there exists a unique solution to Problem 1 [2, Theorem
4.0.4, Theorem 8.3.1]. In particular, these assumptions are satisfied by the energy Gρ1

(18), as well as by the drift–diffusion interaction energy from the introduction (4), for
U as in Eq. (3), V ,W ∈ C2(Ω). (See, for example, [2, Section 9.3] or [56] for more
general conditions on U , V , W .)

Thus, if we denote by (ρ̄, m̄) theminimizer of Problem 1, then for τ > 0 sufficiently
small, the proximal map,

Jτ (ρ0) := ρ(·, 1) ,

is well defined for all ρ0 ∈ D(E). Furthermore, the energy decreases under the proxi-
mal map,

E(Jτ (ρ0)) ≤ E(ρ0), (19)

which can be seen by comparing the value of the objective function at the mini-
mizer (ρ,m) to the value of the objective function at (ρ(x, 0), 0) ∈ C and using that
Φ(ρ,m) ≥ 0.

Given ρ0 ∈ D(E), if we recursively define the discrete time gradient flow sequence

ρn
τ = Jτ (ρ

n−1
τ ), for all n ∈ N, (20)

then, taking τ = t/n, ρn
τ converges to ρ(x, t), the gradient flow of the energy E with

initial data ρ0 at time t , and under mild regularity assumptions on ρ0, we have

dW (ρn(·), ρ(·, t)) ≤ Cτ. (21)

In this way, the classical JKO scheme provides a first-order approximation of the
gradient flow [2, Theorem 4.0.4]. In our numerical simulations, we observe that this
discretization error dominates other errors in our numerical method; see Sects. 4.2.1
and 4.2.2. For this reason, we introduce the following new scheme, inspired by the
Crank–Nicolson method.

Problem 2 (Crank–Nicolson Inspired Dynamic JKO) Given τ > 0, E , and ρ0, solve
the constrained optimization problem,

inf
(ρ,m)∈C

∫ 1

0

∫
Ω

Φ(ρ(x, t),m(x, t))dxdt + τE(ρ(x, 1)) + τ

∫
Ω

δE
δρ

(ρ(x, 0))ρ(x, 1)dx,

where (ρ,m) ∈ AC(0, 1;Pac(Ω)) × L1(0, 1; L2(ρ−1)) belong to the constraint set
C provided that

∂tρ + ∇ · m = 0 on Ω × [0, 1], m · ν = 0 on ∂Ω × [0, 1], and ρ(·, 0) = ρ0 on Ω.

In Sect. 4.2.2, we provide numerical examples comparing the above method to the
classical JKO scheme from Problem 1, illustrating that it achieves a higher-order rate
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of convergence in practice (see Figs. 7, 8, and 10), in spite of the fact that that it
lacks the energy decay property of Problem 1. Under what conditions a higher-order
analogue of inequality (21) holds for the new scheme is an interesting open question
that we leave to future work, as the main goal of the present work is the development
of fully discrete numerical methods for computing minimizers of Problem 1 and 2. By
iterating either of these minimization problems, as in Eq. (20), we obtain a numerical
method for simulating Wasserstein gradient flows.

2.2 Fully Discrete JKO

We now turn to the discretization of the dynamic JKO scheme, Problem 1, and the
Crank–Nicolson inspired scheme, Problem 2. We begin by noting that the Crank–
Nicolson inspired Problem 2 can be rewritten in the same form as Problem 1 by
considering the energy

Hρ0(ρ) := 1

2
E(ρ(x, 1)) + 1

2

∫
Ω

δE
δρ

(ρ(x, 0))ρ(x, 1)dx . (22)

Using this observation, we will now describe our discretization of both problems
simultaneously.

2.2.1 Discretization of Functions and Domain

Given an n-dimensional hyperrectangle S = Πn
I=1[aI , bI ] ⊆ R

n , we discretize it as
a union of cubes Qi , i ∈ N

n , where in the lth direction, we suppose there are Nl
intervals of spacing (z)l = (bl − al)/Nl :

S =
⋃

i :Qi⊆S

Qi , Qi := {(z1, z2, . . . , zn) ∈ R
n : zl ∈ [(il − 1)(z)l , il (z)l ] ∀l = 1, . . . , n}.

Piecewise constant functions with respect to this discretization are given by

f h :=
∑

i :Qi⊆S

fi1Qi , for fi ∈ R and 1Qi (z) =
{
1 if z ∈ Qi

0 otherwise.

To discretize Problem 1,we take S = Ω×[0, 1] ⊆ R
d+1, whereΩ = Πn

i=1[ai , bi ].
For any i ∈ N

d+1, write i = ( j, k), for the spatial index j ∈ N
d and the temporal

index k ∈ N. We let Nx ∈ N denote the number of intervals in each spatial direction
and Nt ∈ N denote the number of intervals in the temporal direction. Take z = (x,Δt)
for (x)l = (Δx) > 0 for all l = 1, . . . , d and Δt > 0.

We consider piecewise constant approximations (ρh,mh) of the functions (ρ,m),
with coefficients denoted by (ρ j,k,m j,k). For any (ρ,m) ∈ C(Ω × [0, 1]), one such
approximation is the pointwise piecewise approximation (ρ̂h, m̂h), obtained by defin-
ing the coefficients (ρ̂ j,k, m̂ j,k) to be the value of (ρ,m) on a regular grid of spacing
(Δx) × (Δt):

ρ̂ j,k := ρ(x j , tk), m̂ j,k := m(x j , tk),
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(x j , tk) = (x̂ + ( j − 1)(Δx), t̂ + (k − 1)(Δt))

x̂ ∈ Πd
l=1[0,Δx], t̂ ∈ [0,Δt]. (23)

where 1 = [1, 1, . . . , 1]t ∈ N
d . Note that, whenever (ρ,m) ∈ C(Ω ×[0, 1]), we have

that (ρ̂h, m̂h) converges to (ρ,m) uniformly.

2.2.2 Discretization of Energy Functionals

Next, we approximate the energy functionals by discrete energies Eh , beginning with
energies of the form (4). Given a piecewise constant function ρh with coefficients ρ j ,

Fh(ρ j ) :=
∑
j

(
U (ρ j ) + Vjρ j

)
(Δx)d + 1

2

∑
j,l

W j,lρ jρl(Δx)2d , (24)

where V h(x) = ∑
j V j1Q j (x) is a piecewise constant approximation of V (x) and

Wh(x, y) =∑ j,l W j,l1Q j (x)1Q j (y) is a piecewise constant approximation ofW (x−
y). Here, Wj,l = W (|x j − xl |) symmetric, i.e., Wj,l = Wl, j .

Likewise, for energies of the form (4), we consider the following discretization of
the energy Hρ0 from Eq. (22) for the Crank–Nicolson inspired scheme, Problem 2,

Hh
ρ0

(ρ j ) := 1

2
Fh(ρ j ) + 1

2

∑
j

(
U ′((ρ0) j ) + Vj +

∑
l

W j,l(ρ0)l(Δx)d
)

ρ j (Δx)d .

(25)

Finally, to computeWasserstein geodesics between twomeasuresρ0, ρ1 ∈ Pac(Ω),
we consider a discretizationof the energyGρ1 fromEq. (18).Given apiecewise constant
approximation ρh

1 of ρ1 and δ ≥ 0, define

Gh
ρ1

(ρ j ) :=
{
0 if

∑
j |ρ j − (ρh

1 ) j |2(Δx)d ≤ δ2

+∞ , otherwise.
(26)

2.2.3 Discretization of Derivative Operators

Let Dh
t ρh and Dh

xm
h denote the discrete time derivative and spatial divergence on

Ω ×[0, 1] and let νh denote the discrete outer unit normal ofΩ . (See Hypothesis 3 for
the precise requirements we impose on each of these discretizations). For example,
in one dimension we may choose a centered difference in space and a forward Euler
method in time,

Dh
t ρ j,k = ρ j,k+1 − ρ j,k

Δt
, Dh

xm j,k = m j+1,k − m j−1,k

2Δx
. (27)
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or a Crank–Nicolson method,

Dh
t ρ j,k = ρ j,k+1 − ρ j,k

Δt
, Dh

xm j,k = m j+1,k − m j−1,k + m j+1,k+1 − m j−1,k+1

4Δx
.

(28)

We compute these discretizations of the derivatives at the boundary by extendingm j,k

to be zero in the direction of the outer unit normal vector. As we can only expect these
approximations of the temporal and spatial derivatives to hold up to an error term,
we relax the equality constraints from (17) in the following discrete dynamic JKO
scheme.

2.2.4 Discrete Dynamic JKO

The discretizations described in the previous sections lead to a fully discrete dynamic
JKO problem:
Problem 1 j,k (Discrete Dynamic JKO) Fix τ, δ1, δ2, δ3, δ4 > 0, Eh , and ρh

0 . Solve
the constrained optimization problem,

inf
(ρ j,k ,m j,k )∈Ch

∑
j

∑
k

Φ(ρ j,k,m j,k)(Δx)dΔt + 2τEh(ρ j,Nt ), (29)

where (ρ j,k,m j,k) belong to the constraint set Ch provided that for all j, k,

∑
j,k

|Dh
t ρ j,k + Dh

xm j,k |2(Δx)d(Δt) ≤ δ21,

∑
j∈∂Ω,k

|m j,k · ν j |2(Δx)d−1(Δt) ≤ δ22, (30)

∑
k

|
∑
j

ρ j,k(Δx)d −
∑
j

(ρh
0 ) j (Δx)d |2(Δt) ≤ δ23,

∑
j

|ρ j,0 − (ρh
0 ) j |2(Δx)d ≤ δ24 . (31)

The inequalities (30) enforce the PDE constraint and the boundary condition; the
inequalities (31) enforce the mass constraint and the initial conditions. Recall that,
by definition of Φ in Eq. (13), Φ(ρ j,k,m j,k) < +∞ only if ρ j,k is nonnegative.
Consequently, if a minimizer ρ j,k exists, it must be nonnegative.

Remark 3 (relaxation of PDE constraints) A key element of our numerical method is
that we relax the equality constraint (17) at the fully discrete level. This reflects the
fact that even an exact solution of the continuum PDE will only satisfy the discrete
constraints (30-31) up to an error term depending on the order of the finite difference
operators.
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We allow the choice of δi to vary for each of the above constraints. However,
when the desired exact solution is sufficiently smooth, the optimal choice of δi for a
second-order discretization of the spatial and temporal derivatives is

δ1 ∼ (Δx)2 + (Δt)2τ and δ2, δ3, δ4 ∼ (Δx)2,

where τ > 0 is the size of the timestep in the outer time discretization; see equations
(6-7). As we will demonstrate in Fig. 3 of our numerics section, relaxing the PDE
constraint accelerates convergence to a minimizer of the fully discrete Problem 1 j,k

without any loss of accuracy with respect to the exact continuum solution.
Finally, note that while the discrete PDE constraint (30) automatically enforces the

mass constraint up to order δ21+δ22, we choose to impose themass constraint separately
via the first Eq. in (31). This leads to better performance in examples where the exact
solution is not smooth enough to satisfy the discrete PDE constraint up to a high order
of accuracy but imposing a stricter mass constraint leads to a higher quality numerical
solution; see Fig. 4.

Under sufficient hypotheses on the discrete energy Eh and the initial data ρh
0 , mini-

mizers of Problem 1 j,k exist; see Theorem 1. Furthermore, this discrete dynamic JKO
scheme preserves the energy decreasing property of the original JKO scheme. To see
this, note that, given an energy Eh , time step τ > 0, and initial data (ρh

0 ) j we may
define the fully discrete proximal map by

Jhτ ((ρ0) j ) := ρ j,Nt
,

where (ρ j,k,m j,k) is any minimizer of Problem 1 j,k . Independently of which mini-
mizer is chosen, we have

Eh(Jhτ ((ρ0) j ) ≤ Eh((ρ0) j ),

which can be seen by comparing the value of the objective function at the minimizer
(ρ j,k,m j,k) to the value of the objective function at (ρ j,k,m j,k) = ((ρ0) j , 0) ∈ C
and using the fact that Φ ≥ 0. Furthermore, by iterating the fully discrete proximal
map, we may construct a fully discrete gradient flow sequence

(ρn
τ ) j = Jhτ ((ρn−1

τ ) j ) for all n ∈ N, ρ0
τ = ρh

0 .

In analogy with the continuum case, we will use this fully discrete JKO scheme to
simulate gradient flows. (See Algorithm 3.)

2.3 Primal Dual Algorithms for Fully Discrete JKO

In order to find minimizers of Problem 1 j,k , we apply a primal dual operator splitting
method. Since the constraints in Problem 1 j,k are linear inequality constraints, wemay
rewrite them in the form ‖Ãi u− b̃i‖2 ≤ δi for i = 1, 2, 3, 4, where u = (æ,m), andæ
andm are vector representations of the matrices ρ j,k and m j,k . (See the Appendix A
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for explicit formulas for Ãi and b̃i , in one spatial dimension). Similarly, wemay rewrite
the first term of the objective function (29) in terms of u, defining

Φ(u) =
∑
k

∑
j

Φ(ρ j,k,m j,k)(Δx)dΔt .

We consider two cases for the energy term in the objective function. When the
energy is of the form Gh

ρ1
, as in Eq. (26), we reframe the problem by removing the

energy from the objective function and adding
∑

j |ρ j,Nt − (ρh
1 ) j |2(Δx)d ≤ δ25 to

the constraints (30) and (31), denoting ‖Ai u − bi‖2 ≤ δi , for i = 1, 2, 3, 4, 5, as the
modified constraints. On the other hand, when the energy is of the form (24) or (25),
we rewrite it in terms of u as

F(u) =
∑
j

(
U (ρ j,Nt ) + Vjρ j,Nt

)
(Δx)d + 1

2

∑
j,l

(
Wj,lρ j,Ntρl,Nt

)
(Δx)2d ,

H(u) = 1

2
F(u) + 1

2

∑
j

(
U ′(ρ j,0) + Vj +

∑
l

W j,lρl,0(Δx)d
)

ρ j,Nt (Δx)d .

(32)

In particular, if we let S be the selection matrix

S : RN → R
Nx : u �→ ρ j,Nt ,

then F(u) = Fh(Su) and H(u) = Hh
ρ0

(Su), where Fh and Hh
ρ0

are defined in (24)
and (25), respectively.

This leads to the following two optimization problems:

Problem 3(a) minu Φ(u) + i(Au), iδ(Au) =
{

0 ‖Ai u − bi‖2 ≤ δi , i = 1, . . . , 5
+∞, otherwise.

Problem 3(b) minu Φ(u)+2τ E(u)+ i
δ̃
(Ãu), i

δ̃
(Ãu) =

{
0 ‖Ãi u − b̃i‖2 ≤ δ̃i , i = 1, . . . , 4

+∞, otherwise.

To compute the Wasserstein distance, we solve Problem 2.3, and to compute the
gradient flow of an energy, we iterate Problem 2.3 O( 1

τ
) times, for either E(u) = F(u)

(classical JKO) or E(u) = H(u) (Crank–Nicolson inspired scheme).
Primal-dual methods for solving optimization problems in which the objective

function is the sum of two convex functions, as in Problem 2.3, are widely available
[52]. However, analogous methods for optimizations problems in which the objective
function is the sum of three convex functions, as in Problem 2.3, have only recently
emerged [62,106]. In particular, in Algorithm 1, for Problem 2.3, we use Chambolle
and Pock’s well-known primal dual algorithm, and in Algorithm 2, for Problem 2.3,
we use Yan’s recent extension of this algorithm to objective functions with three
convex terms. Both algorithms offer an extended range of primal and dual step sizes
λ and σ and low per-iteration complexity, due to the sparseness of S, A, and Ã. Note
specifically that the success of Algorithm 1 depends on the ease of computing the
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proximal operators related to φ and iδ , and therefore if we simply group the additional
energy term in Problem 2.3 to either φ or iδ , it would violate such property. Instead,
we shall consider E(u) as a separate term and take advantage of its smoothness, as
shown in Algorithm 2. Finally, in Algorithm 3, we describe how Algorithm 2 can be
iterated to approximate the full JKO sequence and, consequently, solutions of a range
of nonlinear partial differential equations of Wasserstein gradient flow type.

Algorithm 1: Primal-Dual for Wasserstein distance

Input: u0, φ0, Itermax , λ, σ > 0
Output: u∗ = (ρ∗,m∗) and the Wasserstein distance Φ(u∗)1/2

1 Let ū0 = u0 and l = 0;
2 while l < Itermax do
3 repeat
4 φ(l+1) = Proxσ i∗

δ
(φ(l) + σAū(l)),

5 u(l+1) = ProxλΦ(u(l) − λAT φ(l+1)),

6 ū(l+1) = 2u(l+1) − u(l) ,
7 until stopping criteria are achieved;
8 end
9 u∗ = u(l+1)

Algorithm 2: Primal-Dual for one step of dynamic JKO

Input: u0, φ0, Itermax, λ, σ, τ > 0
Output: u∗, φ∗

1 Let ū0 = u0 and l = 0;
2 while l < Itermax do
3 repeat
4 φ(l+1) = Proxσ i∗

δ
(φ(l) + σ Ãū(l)),

5 u(l+1) = ProxλΦ(u(l) − λ∇E(u(l)) − λÃ
t
φ(l+1)),

6 ū(l+1) = 2u(l+1) − u(l) + λ∇E(u(l)) − λ∇E(u(l+1)) ,
7 until stopping criteria is achieved;

8 u∗ = u(l+1)

9 φ∗ = φ(l+1)

10 end

To initialize both algorithms, we choose φ0 and m0 to be zero vectors, and for ρ0,
we let its components at the initial time (i.e., k = 0) be ρ0(x) evaluated on an equally
spaced grid of width Δx , and other times to be zero. The stopping criteria consist of
checking the PDE constraint (30)–(31) along with the convergence monitors:

|F(u(l)) − F(u(l−1))|
|F(u(l))| < ε1, (33)
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max

{
‖u(l) − u(l−1)‖

‖u(l)‖ ,
‖φ(l) − φ(l−1)‖

‖φ(l)‖

}
< ε2. (34)

The proximal operator, which appears in Algorithms 1 and 2, is defined by

Proxh(x) = argminu

{
1

2
‖u − x‖2 + h(u)

}
.

For both h = σ i∗δ and h = λΦ, there are explicit formulas for the proximal operators.
By Moreau’s identity, we may write Proxσ i∗

δ
(x) in terms of projections onto balls of

radius δi centered at bi for the i th portion of vector x :

Proxσ i∗(x) = x − σProjBδ
(x/σ)

ProjBδ
(x) =

{
xi ‖xi − bi‖2 ≤ δi ,

δ
xi−bi‖xi−bi‖2 + bi otherwise,

i = 1, 2, 3, 4 . (35)

For the proximal operator of Φ, as shown by Peyré, Papadakis, and Oudet [95, Propo-
sition 1],

ProxλΦ(u) = (Proxλϕ(ρ j,k ,m j,k)
)
j,k for Proxλϕ(ρ,m) =

{
(ρ∗,m∗) if ρ∗ > 0,

(0, 0) otherwise,
(36)

where ρ∗ is the largest real root of the cubic polynomial equation P(x) := (x−ρ)(x+
λ)2 − λ

2 |m|2 = 0, andm∗ can be obtained bym∗ = ρ∗m/(ρ∗ +λ). By computing the

proximal operator exactly, our primal dual method is positivity preserving, respecting
a key property of the original Problems 1 and 1 j,k .

As the computations of both proximal operators (35), (36) are component-wise,
they can easily be parallelized. Likewise, the computation of the gradient ∇E is also
component-wise:

(∇u F(u)) j = (U ′(ρ j,Nt ) + Vj +
∑
l

W j,lρl,Nt (Δx)d)(Δx)d ,

(∇u H(u)) j = 1

2
(∇u F(u)) j + 1

2
(U ′(ρ j,0) + Vj +

∑
l

W j,lρl,0(Δx)d)(Δx)d .

Remark 4 (discrete convolution) As written, the above functionals involves a com-
putation of the convolutions

∑
l W j,lρl,Nt and

∑
l W j,lρl,0, which can be achieved

efficiently using the fast Fourier transform. Note that since the product of the discrete
Fourier transforms of two vectors is the Fourier transform of the circular convolution
and the interaction potential Wj−k = W (x j − xk) is not a periodic function, we need
zero-padding for computing the convolution. For the 1D case, we can first use the
fast Fourier transform to compute the circular convolution of W = (Wj )

Nx−2
j=−Nx+2

and (æ, (0)Nx−2), and then extract the last Nx − 1 elements, which are the desired
convolution

∑
k W j−kρk for 1 ≤ j ≤ Nx − 1.
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Embedding Algorithm 2 to the JKO iteration, we have the following algorithm for
Wasserstein gradient flows. Note that line 6 in Algorithm 3 is to construct a better

Algorithm 3: Primal-Dual for JKO sequence
Input: ρ(x, t0), Itermax, λ, σ, τ, n > 0
Output: ρ(x, tk ) for 0 ≤ k ≤ n and the corresponding energy E(ρ(x, tk ))

1 Given u0, φ0;
2 for k = 1, 2, . . . , n do
3 u∗, φ∗ = Algorithm 2(u0, φ0, Itermax, λ, σ, τ )
4 ρ(x, tk ) = Su∗
5 φ0 = φ∗
6 u0 = max

{
u∗ − [1Nt+1, 0Nt+1]t ⊗ ρ(x, tk−1) + [1Nt+1, 0Nt+1]t ⊗ ρ(x, tk ), 0

}
.

7 end

initial guess for ρ at each JKO iteration by applying an extrapolation.

Remark 5 (Comparison of our numerical method to previous work) Our definition of
the indicator function in Problems 3(a) and 3 (b) differs from previous work, and as
a result, our primal-dual algorithm does not require the inversion of the matrix AAT

[7,95], which makes it quite efficient in high dimensions thanks to the sparsity of A.
A similar approach is taken in a recent preprint [81] to compute the earth mover’s
distance W1, though, in this context, the earth mover’s distance is dissimilar from the
Wasserstein distance, since it does not require an extra time dimension and is thus a
lower-dimensional problem.

A second difference between our method and the approach in previous works is
that, since P(x) has at most one strictly positive root, it can be obtained by the gen-
eral solution formula for cubic polynomials with real coefficients. Therefore, in our
numerical simulations, we may compute the proximal operator ProxλΦ(u) by using
this general solution formula, rather than via Newton iteration [95]. As a consequence,
our method is truly positivity preserving, as opposed to positivity preserving in the
limit as Δx,Δt → 0.

We close this section by recalling sufficient conditions on the primal and dual step
sizes σ and λ that ensure Algorithms 1 and 2 converge to minimizers of Problems 2.3
and 2.3.

Proposition 1 (Convergence of Algorithm 1, c.f. [52]) Suppose σλ < 1/λmax (AAt )
and a minimizer of Problem 2.3 exists. Then, as Itermax → +∞, and ε1, ε2 → 0 in
the stopping criteria (33) (34), the output u∗ of Algorithm 1 converges to a minimizer
of Problem 2.3.

Proposition 2 (Convergence of Algorithm 2, c.f. [106]) Suppose that the discrete
energy E(u) defined in Eq. (32) is proper, lower semi-continuous, convex, and there
exists β > 0 such that 〈u1 − u2,∇u E(u1) − ∇u E(u2)〉 ≥ β‖∇E(u1) − ∇E(u2)‖2.
Suppose further that σλ < 1/λmax (ÃÃ

t
), λ < 2β, and a minimizer of Problem 2.3

exists. Then, as Itermax → +∞ and ε1, ε2 → 0, the output u∗ converges to aminimizer
of Problem 2.3.
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Note here that the co-coercivity requirement on ∇E in the above proposition is
equivalent to require the Lipschitz continuity of ∇E , i.e., ‖∇u E(u1) − ∇u E(u2)‖ ≤
1
β
‖u1 − u2‖. For the energy of the form (4), this requirement reduces to the bounded-

ness ofU ′′(ρ) and W , which can be satisfied independent of the numerical resolution
if we consider bounded solution (no finite time blow up in ρ) and nonsingular inter-
action kernel. In the case when W is singular, for example when W is a Newtonian
interaction potential, we approximate W by a continuous function via convolution
with a mollifier; see Remark 7.

3 Convergence

We now prove the convergence of solutions of the fully discrete JKO scheme, Prob-
lem1 j,k , to a solution of the continuum JKOscheme, Problem1.Webegin, in Sect. 3.1,
by describing the hypotheses we place on the underlying domain Ω , the energy E ,
the initial data ρ0, and the discretization operators. Then, in Sect. 3.2, we show that
minimizers of Problem 1 j,k exist, provided the discretization is sufficiently refined.
Finally, in Sect. 3.3, we prove that any sequence of minimizers of Problem 1 j,k has
a subsequence that converges to a minimizer of Problem 1. In order for our finite
difference approximation to converge, we assume throughout that a smooth, positive
minimizer of the continuum JKO scheme Problem 1 exists. See hypothesis (H6) and
Remark 9 for further discussion of this assumption.

3.1 Hypotheses

We impose the following hypotheses on the underlying domain, energy, and discretiza-
tion operators.

(H1) Ω = Πd
i=1(ai , bi ) ⊆ R

d , for ai < bi ∈ R. We assume that the spacing of the
spatial discretization (Δx) > 0 and the temporal discretization (Δt) > 0 are both
functions of h satisfying limh→0(Δx) = limh→0(Δt) = 0.

(H2) For any piecewise constant function ρh on Ω , the discrete energy functional Eh

has one of the following forms, as described in Sect. 2.2.2:

(a) Fh(ρh) =∑ j

(
U (ρ j ) + Vjρ j

)
(Δx)d +∑ j,l W j,lρ jρl(Δx)2d

(b) Hh
ρ0

(ρh) = 1
2Fh(ρh) + 1

2

∑
j

(
U ′((ρ0) j ) + Vj +∑l W j,l(ρ0)l(Δx)d

)
ρ j (Δx)d

(c) Gh
ρ1

(ρ j ) :=
{
0 if

∑
j |ρ j − (ρh

1 ) j |2(Δx)d ≤ δ25
+∞ otherwise.

We place the following assumptions on U , V , and W and the target measure ρ1:
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(i) Either U ≡ 0 or U ∈ C([0,+∞)) is convex, U ∈ C1((0,+∞)),
limr→+∞ U (r)

r = +∞, and U (0) = 0;
(ii) V h(x) := ∑

j∈Zd Vj1Q j (x) and Wh(x, y) := ∑
( j,l)∈Zd×Zd W j,l1Q j (x)1Ql

(y) are piecewise constant approximations of V ,W ∈ C(Ω) converging uni-
formly on Ω .

(iii) ρ1 ∈ C1(Ω) and ρh
1 is a pointwise piecewise constant approximation of ρ1.

(H3) Dh
t and D

h
x are finite difference approximations of the time derivative and spatial

divergence. We assume that Dh
t is a forward Euler method in time, whereas Dh

x
can be given by an explicit or implicit scheme of first or higher order. We denote
by D−h

t and D−h
x the dual operators with respect to the �2 inner product, and we

assume the following integration by parts formulas hold for all piecewise constant
functions ρh, f h : [0, 1] → R,

∫ 1

0
Dh
t ρh f hdt =

(
ρh f h

∣∣∣1
0

)
−
∫ 1

0
ρh D−h

t f hdt

and if mh : Ω → R
d , f h : Ω → R,

∫
Ω

Dh
xm

h f hdx =
∫

∂Ω

f hmh · νhdx −
∫

Ω

mhD−h
x f hdx,

where νh : Ω → R
d is the discrete outer unit normal of Ω . Finally, we assume

there exists C > 0 depending on the domain Ω × [0, 1], so that, for any f ∈
C1(Ω×[0, 1];R) and v ∈ C1(Ω×[0, 1];Rd), if ( f h, vh) are pointwise piecewise
constant approximations,

‖Dh
t f h − ∂t f ‖∞ ≤ C‖∂2t f ‖∞(Δt), ‖D−h

t f h − ∂t f ‖∞ ≤ C‖∂2t f ‖∞(Δt)

‖Dh
x v

h − ∇ · v‖∞ ≤ C‖D2v‖∞(Δx), ‖D−h
x f h − ∇ f ‖∞ ≤ C‖D2 f ‖∞(Δx)

‖vh · νh − v · ν‖∞ ≤ C‖v‖∞(Δx).

(See Sect. 2.2.3 for finite difference approximations satisfying these hypotheses.)
(H4) The constraint relaxation parameters δ1, δ2, δ3, δ4 ≥ 0 are functions of h with

limh→0 δi = 0, for all i . If the energy is of the form (H2c), we require that δ5 is a
function of h satisfying limh→0 δ5 = 0 and limh→0 (Δx + Δt) /δ5 = 0.

(H5) The initial data of the continuum problem satisfy ρ0 ∈ C1(Ω) and ρh
0 is a

pointwise piecewise constant approximation of ρ0.
(H6) Given the domain, energy, and initial data described in the previous hypothe-

ses, there exists a minimizer (ρ,m) of the continuum Problem 1 satisfying
ρ ∈ C2([0, 1];C1(Ω)), ρ > 0, and m ∈ C1([0, 1];C2(Ω)).

To ease notation in the following convergence proof, we observe that Problem 1 j,k

may be rewritten as follows in terms of (ρh,mh), the piecewise constant functions on
Ω × [0, 1] corresponding to the coefficients (ρ j,k,m j,k).
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Problem 1h (Discrete Dynamic JKO) Fix τ, δ1, δ2, δ3, δ4 > 0, Eh , and ρh
0 . Solve the

constrained optimization problem,

inf
(ρh ,mh)∈Ch

∫ 1

0

∫
Ω

Φ(ρh,mh)dxdt + 2τEh(ρh(·, 1)),

where (ρh,mh) belong to the constraint set Ch provided that they are piecewise con-
stant functions on Ω × [0, 1] and the following inequalities hold

‖Dh
t ρh + Dh

xm
h‖L2(Ω×[0,1]) ≤ δ1 , ‖mh · νh‖L2(∂Ω×[0,1]) ≤ δ2 , (37)∥∥∥∥

∫
Ω

ρh(x, ·)dx −
∫

Ω

ρh
0 (x)dx

∥∥∥∥
L2([0,1])

≤ δ3 , ‖ρh(·, 0) − ρh
0 ‖L2(Ω) ≤ δ4. (38)

Similarly, we may rewrite the definition of the discrete energies in hypothesis (H2)
in terms of a piecewise constant functions ρh on Ω corresponding to ρ j ,

Fh(ρh) =
∫

Ω

U (ρh(x)) + V h(x)ρh(x)dx + 1

2

∫∫
Ω×Ω

Wh(x, y)ρh(x)ρh(y)dxdy,

Hh
ρ0

(ρh) = 1

2
Fh(ρh) + 1

2

∫
Ω

(
U ′(ρh

0 (x)) + V h(x) +
∫

Ω

Wh(x, y)ρh
0 (y)dy

)
ρ(x)dx,

Gh
ρ1

(ρh) =
{
0 if ‖ρh − ρh

1 ‖L2(Ω) ≤ δ5

+∞ otherwise.

Recall that, by definition of Φ in equation (13), Φ(ρh,mh) < +∞ only if ρh is
nonnegative. Consequently, if a minimizer ρ exists, it must be nonnegative.

We conclude this section with several remarks on the sharpness of the preceding
hypotheses.

Remark 6 (assumption on domain Ω) In hypothesis (H1), we assume that Ω is an n-
dimensional hyperrectangle. We impose this assumption for simplicity, as it provides
an natural interpretation of the discretized outer unit normal νh , which is essential in
imposing the boundary conditions for our PDE constraint at the discrete level. More
generally, our convergence result can be extended to any Lipschitz domain, as long as
sufficient care is taken to define the discrete outer unit normal and the corresponding
no flux boundary conditions.

Remark 7 (assumption on energy) As described in hypothesis (H2), our convergence
result applies to internal U , drift V , and interaction W potentials that are sufficiently
regular on Ω . Our assumptions on U are classical and ensure that the internal energy
is lower semicontinuous with respect to weak-* convergence [2, Remark 9.3.8]. Our
assumptions on V and W , on the other hand, are somewhat stronger, and in practice,
one often encounters partial differential equations for which the corresponding choices
of V andW are not continuous. However, there are robust methods for approximating
these potentials by continuous functions that ensure convergence of the gradient flows.
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For example, the second author and Topaloglu provide sufficient conditions on discon-
tinuous interaction potentialsW for which gradient flows of the regularized interaction
potential, Wε := W ∗ ϕε for a smooth mollifier ϕε, converge to gradient flows of the
original interaction potential W , as well as conditions that ensure minimizers of Wε

converge to minimizers of W [59]. (The convergence of general stationary points of
Wε that are not global minimizers to stationary point of W remains open.)

Remark 8 (assumption on δ5) In hypothesis (H4), it is essential that δ5 not vanish too
quickly with respect to other parameters in the discretization. A simple illustration of
this fact arises in the case that δ1 ≡ δ2 ≡ δ3 ≡ δ4 ≡ 0. In this case, we cannot choose
δ5 ≡ 0, since our pointwise piecewise approximation of the initial data ρh

0 will not
generally have the same mass as our pointwise piecewise approximation of the target
measure ρh

1 , and if they do not have the same mass,minimizers of the discrete problem
do not exist. Consequently, it would be impossible to prove that minimizers of the fully
discrete problem converge to minimizers of the continuum problem. On the one hand,
this does not greatly impact the performance of our numerical method, as can be seen
by considering previous work by Papadakis, Péyre, and Oudet, which numerically
implements this approach [95]. On the other hand, our numerical simulation in Fig. 3
indicates that poor choice of the relaxation parameters can cause the method to iterate
longer than necessary, without any improvement in accuracy.

Our requirement that limh→0(Δx + Δt)/δ5 = 0 is sufficient to fix this problem
and ensure convergence of the method, and this requirement is nearly sharp. To see
this, note that, for an arbitrary pointwise piecewise approximation ρh

0 of a continuous
function ρ0, we cannot in general achieve accuracy of | ∫

Ω
ρh
0 − ∫

Ω
ρ0| better than

O(Δx). If either δ1 and δ3, the parameters for the PDE constraint and the mass con-
straint, are chosen arbitrarily small, then | ∫

Ω
ρh(·, 1) − ∫

Ω
ρh
0 | can likewise be made

arbitrarily small. Thus, since ρ0, ρ1 ∈ Pac(Ω),

O(Δx) ≈
∣∣∣∣
∫

Ω

ρh
0 −

∫
Ω

ρ0

∣∣∣∣
≈
∣∣∣∣
∫

Ω

ρh
0 −

∫
Ω

ρ0

∣∣∣∣−
∣∣∣∣
∫

Ω

ρ0 −
∫

Ω

ρ1

∣∣∣∣
−
∣∣∣∣
∫

Ω

ρh(·, 1) −
∫

Ω

ρh
0

∣∣∣∣
≤
∣∣∣∣
∫

Ω

ρh(·, 1) −
∫

Ω

ρ1

∣∣∣∣
≤ |Ω|1/2‖ρh(·, 1) − ρ1‖L2(Ω) ≤ |Ω|1/2δ5,

so we much have δ5 ≥ O(Δx). While a CFL-type condition is not necessary for the
stability of our discretization of the PDE constraint, since ρ and m indeed become
coupled in the continuum limit (see Eqs. (8) and (12)), one should expect (Δt) ≤
O(Δx) to give the best balance between computational accuracy and cost, and we
indeed observe this numerically. Combining these facts shows that enforcing that δ5
cannot decay faster than O(Δx + Δt) by assuming limh→0(Δx + Δt)/δ5 = 0 is
nearly optimal.
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Remark 9 (assumption on existence of smooth, positive minimizer) In hypothesis
(H6), we suppose that there exists a sufficiently regular minimizer (ρ,m), ρ̄ > 0,
of the continuum problem. Our proof of the existence of minimizers of the fully
discrete problem and our proof that minimizers of the discrete problems converge to
a minimizer of the continuum problem as h → 0 strongly rely on this assumption.
In particular, the smoothness assumption allows us to use convergence of the finite
difference operators, described in hypothesis (H3), to construct an element of Ch
in Proposition 3. The positivity assumption allows us to conclude that ∇ρ,mΦ is
uniformly bounded on the range of ρ̄, which we use to prove the lim sup inequality
for the recovery sequence in Theorem 2(b).

From the perspective of approximating gradient flows, which are solutions of diffu-
sive partial differential equations (3), such regularity and positivity can be guaranteed
as long as the initial data are smooth and positive and either the diffusion is sufficiently
strong or the drift and interaction terms do not cause loss of regularity. On the other
hand, developing conditions on the energy and initial data that ensure such regularity
and positivity holds at the level of the JKO scheme, for minimizers of Problem 1,
remains largely open: results on the propagation of L p(Rd) or BV bounds along the
scheme have only recently emerged [17,50,63].

From the perspective of approximating Wasserstein geodesics, the now classical
regularity theory developed byCaffarelli andUrbas ensures that if the source and target
measures ρ0 and ρ1 are smooth and strictly positive, then the minimizer of Problem 1
(ρ̄, m̄) is also smooth and strictly positive. (See, for example, [105, Section 4.3] and
[2, Section 8.3].)

Along with this analytical justification for our smoothness and positivity assump-
tions, our numerical results also indicate that such assumptions are in general
necessary. For example in Fig. 4, we observe that if the source and target measure
of a Wasserstein geodesic are not sufficiently smooth, the numerical solution intro-
duces artificial regularity. Likewise, even in Fig. 6, we observe that the numerical
simulation is strictly positive (though very close to zero in places), while the exact
solution is identically zero outside of its support. Still, in spite of the fact that our theo-
retical convergence result requires smoothness and positivity assumptions, in practice
our numerical method still performs well on nonsmooth or nonpositive problems, pro-
vided that the spatial and temporal discretization are taken to be sufficiently small; see
Figs. 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, and 18.

Finally, these types of smoothness and positivity assumptions are typically needed
in convergence proofs for numerical methods based on the JKO scheme. For example,
in a method based on the Monge Ampére approximation of the Wasserstein distance,
the exact solution is required to be uniformly bounded above and below [10]. Like-
wise, while rigorous convergence results for fully discrete numerical methods based
on entropic or Fisher information regularization remain open, since thesemethods cor-
respond to introducing numerical diffusion at the level of the PDE, they automatically
enforce smoothness and positivity [28,55,82].
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3.2 Existence of Minimizers

We now show that, under the hypotheses described in the previous section, minimizers
of the fully discrete JKO scheme, Problem 1h , exist for all h > 0 sufficiently small.
We begin with the following proposition, which constructs a specific element in the
constraint set Ch , which we will use both in our proof of existence of minimizers and
in our Γ -convergence results in the next section.

Proposition 3 (construction of element in Ch) Suppose that hypotheses (H1)–(H6)
hold, and choose (ρ,m) ∈ C satisfying ρ ∈ C2([0, 1];C1(Ω)), ρ > 0, and m ∈
C1([0, 1];C2(Ω)). Then for h > 0 sufficiently small, there exists (ρ̃h, m̃h) ∈ Ch
satisfying (ρ̃h, m̃h)

h→0−−−→ (ρ,m) uniformly on Ω × [0, 1] and

inf
h>0,(x,t)∈Ω×[0,1] ρ̃

h(x, t) > 0. (39)

If, in addition, the energy satisfies hypothesis (H2c) and E(ρ(·, 1)) < +∞, then
we have

‖ρ̃h(·, 1) − ρh
1 ‖L2(Ω) ≤ δ5, (40)

for all h > 0 sufficiently small.

Proof We construct (ρh,mh) ∈ Ch as follows. Let m̂h be a pointwise piecewise
constant approximation of m; see Eq. (23). Recall that νh is the discrete outer unit
normal vector. We define m̃h : Ω × [0, 1] → R

d component-wise to respect the no
flux boundary conditions, letting (m̃h)l denote the lth component of the vector for
l = 1, . . . , d. If x ∈ ∂Ω , then we define

(m̃h(x, t))l =
{

(m̂h(x, t))l for el · νh(x) = 0,

0 for el · νh(x) �= 0.

Otherwise, we take m̃h(x, t) = m̂h(x, t). Define ρ̃h : Ω × [0, 1] → R so that
ρ̃h(x, 0) = ρh

0 and Dh
t ρ̃h(x, t) + Dh

x m̃
h(x, t) ≡ 0.

We begin by showing that (ρ̃h, m̃h) ∈ Ch . By construction, for all h > 0,

‖Dh
t ρ̃h + Dh

x m̃
h‖L2(Ω×[0,1]) = 0

‖m̃h · νh‖L2(∂Ω×[0,1]) = 0

‖ρ̃h(·, 0) − ρh
0 ‖L2(Ω) = 0.

Taking f h ≡ 1 in Hypothesis (H3) and applying the PDE constraint ensures that, for
all s ∈ [0, 1] and k ∈ N so that k(Δt) ≤ s < (k + 1)Δt ,

∫
Ω

ρ̃h(x, s)dx −
∫

Ω

ρ̃h(x, 0)dx =
∫ k(Δt)

0

∫
Ω

Dh
t ρ̃h(x, t) f h(x, t)dxdt
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= −
∫ k(Δt)

0

∫
Ω

Dh
x m̃

h(x, t) f h(x, t)dxdt

= −
∫ k(Δt)

0

∫
∂Ω

m̃h(x, t) · νh(x, t)dxdt = 0.

Thus, we also obtain

∥∥∥∥
∫

Ω

ρ̃h(x, ·)dx −
∫

Ω

ρh
0 (x)dx

∥∥∥∥
L2([0,1])

= 0, for all h > 0.

This concludes the proof that (ρ̃h, m̃h) ∈ Ch .
We now show that (ρ̃h, m̃h) → (ρ,m) uniformly on Ω × [0, 1] as h → 0. We

begin by proving convergence of m̃h to m. Due to hypothesis (H1) on our domain
Ω , whenever ei · νh(x) �= 0, there exists y ∈ ∂Ω so that |y − x | ≤ 2

√
d(Δx)

and ν(y) = ei . Thus, whenever ei · νh(x) �= 0, the continuum boundary condition
m(y, t) · ν(y) = 0 ensures that for all t ∈ [0, 1],

|(m̃h(x, t) − m(x, t))i | = |m(x, t) · ei | ≤ |(m(x, t) − m(y, t)) · ei |
+ |m(y, t) · ei | ≤ 2

√
d(Δx)‖Dm‖∞.

We also have that, for all (x, t) ∈ Ω × [0, 1],

|m̂h(x, t) − m(x, t)| ≤ (Δx)‖Dm‖∞ + (Δt)‖∂tm‖∞.

Therefore, for all (x, t) ∈ Ω ×[0, 1], there exists Cm = Cm(d, ‖Dm‖∞, ‖∂tm‖∞) >

0 so that

|m̃h(x, t) − m(x, t)| ≤ Cm(Δt + Δx)
h→0−−−→ 0.

We now prove the convergence of ρ̃h to ρ. Since (ρ,m) is a classical solution
of the PDE constraint and ρ̃h : Ω × [0, 1] → R is defined by the conditions that
ρ̃h(x, 0) = ρ̂h

0 and Dh
t ρ̃h(x, t) + Dh

x m̃
h(x, t) ≡ 0, for (x, t) ∈ Ω × [0, 1] and k ∈ N

so that k(Δt) ≤ t < (k + 1)(Δt), we have

|ρ̃h(x, t) − ρ(x, t)|

=
∣∣∣∣∣ρ̃h(x, 0) +

∫ k(Δt)

0
Dh
t ρ̃h(x, s)ds − ρ(x, 0) −

∫ t

0
∂sρ(x, s)ds

∣∣∣∣∣
=
∣∣∣∣∣ρh

0 (x) −
∫ k(Δt)

0
Dh
x m̃

h(x, s)ds − ρ(x, 0) +
∫ t

0
∇ · m(x, s)ds

∣∣∣∣∣
=
∣∣∣ρh

0 (x) − ρ(x, 0)
∣∣∣+
∣∣∣∣∣
∫ k(Δt)

0
Dh
x m̃

h(x, s)ds −
∫ k(Δt)

0
∇ · m(x, s)ds

∣∣∣∣∣
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+
∣∣∣∣
∫ t

k(Δt)
∇ · m(x, s)ds

∣∣∣∣
≤ ‖∇ρ‖∞(Δx) + C‖D2m‖∞(Δx)

+ ‖∇ · m‖∞(Δt)
h→0−−−→ 0. (41)

Since ρ̃h → ρ uniformly and ρ > 0, we immediately obtain (39).
Finally, suppose the energy satisfies (H2c). SinceE(ρ(·, 1)) = Gρ1(ρ(·, 1)) < +∞,

we have ρ(·, 1) = ρ1. By inequality (41) and the fact that ρh
1 is a pointwise piecewise

approximation of ρ(·, 1),

‖ρ̃h(·, 1) − ρh
1 ‖L2(Ω) ≤ |Ω|1/2

(
‖ρ̃h(·, 1) − ρ(·, 1)‖∞

+‖ρ(·, 1) − ρh
1 ‖∞

)
≤ Cρ,m(Δx + Δt)

where Cρ,m = Cρ,m(Ω, ‖∇ρ‖∞, ‖∇ · m‖∞, ‖D2m‖∞) > 0. By hypothesis (H4),
limh→0

(Δx+Δt)
δ5

→ 0. Thus, for h sufficiently small,

‖ρ̃h(·, 1) − ρh
1 ‖L2(Ω) ≤ δ5,

which completes the proof.
��

Theorem 1 (minimizers of discrete dynamic JKO exist) Suppose that hypotheses
(H1)–(H6) hold. Then for all h > 0 sufficiently small, a minimizer of Problem 1h

exists.

Proof First, we note that Proposition 3 ensures that, for h > 0 sufficiently small, the
constraint set Ch is nonempty and contains some (ρh,mh) satisfying ρh > 0. If the
energy satisfies (H2a) or (H2b), then we immediately obtain Eh(ρh(·, 1)) < +∞.
Similarly, if the energy satisfies (H2c), then inequality (40) in Proposition 3 again
ensures that Eh(ρh(·, 1)) < +∞.

Since Φ(ρh,mh) < +∞ whenever ρh ≥ 0, this ensures that value of the objec-
tive function in the discrete minimization problem 1h is not identically +∞ on the
constraint set. Therefore,

inf
(ρh ,mh)∈Ch

∫ 1

0

∫
Ω

Φ(ρh(x, t),mh(x, t))dxdt + 2τEh(ρh(·, 1)) < +∞, (42)

and we may choose a minimizing sequence (ρh
n ,mh

n) ∈ Ch that converges to the
infimum. We may assume, without loss of generality, that

sup
n

∫ 1

0

∫
Ω

Φ(ρh
n (x, t),mh

n(x, t))dxdt + 2τEh(ρh
n (·, 1)) < +∞, (43)
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To conclude the proof of the theorem, we will now show that there exists (ρh∗ ,mh∗)
so that a subsequence of (ρh

n ,mh
n) converges to (ρh∗ ,mh∗) uniformly on Ω × [0, 1].

Then, since the objective functional Eh is lower semi-continuous along uniformly
convergent sequences [1, Example 2.36] and the constraint set Ch is closed under
uniform convergence for fixed h > 0, (ρh∗ ,mh∗) must be a minimizer of the fully
discrete problem.

In order to obtain compactness of (ρh
n ,mh

n), first note that (42) ensuresΦ(ρh,mh) <

+∞ onΩ×[0, 1], so ρh ≥ 0 onΩ . Furthermore, themass constraint (38) ensures that
there exists R = R(h) > 0, depending onΩ , (Δx), (Δt), and δ3 so that |ρh

n (x, t)| ≤ R
for all (x, t) ∈ Ω × [0, 1]. Therefore, the vector of coefficients (ρh

n ) j,k for this piece-

wise constant function satisfies (ρh
n ) j,k ∈ BR(0) ⊆ R

Nd
x Nt . Consequently, by the

Heine–Borel theorem, there exists a vector (ρh∗ ) j,k ∈ R
Nd
x Nt so that, up to a sub-

sequence, (ρh
n ) j,k → (ρh∗ ) j,k . Therefore, if ρh∗ denotes the corresponding piecewise

constant function, we have that, up to taking a subsequence which we again denote by
ρh
n (x, t), limn→+∞ ρh

n (x, t) = ρh∗ (x, t) uniformly on Ω × [0, 1].
Next, we show that

inf
n
Eh(ρh

n (·, 1)) > −∞. (44)

If the energy satisfies (H2c), then Eh(ρh
n (·, 1)) ≥ 0 for all n, and the above inequality

is immediate. If the energy satisfies (H2a) or (H2b), then this follows from the fact that
U is bounded below on [0,+∞], V and W are bounded below on Ω and ρh

n (x, t) →
ρh∗ (x, t) uniformly.

Combining (43) and (44), we obtain

sup
n

∫ 1

0

∫
Ω

Φ(ρh
n (x, t),mh

n(x, t))dxdt < +∞. (45)

Furthermore, since 0 ≤ ρh
n (x, t) ≤ R for all (x, t) ∈ Ω × [0, 1], n ∈ N, we have

Φ(ρh
n (x, t),mh

n(x, t)) ≥ |mh
n(x, t)|2/R. (46)

Therefore, combining (45) and (46), we obtain that there exists R′ = R′(h) > 0,
depending on Ω , (Δx), (Δt), and δ3, so that |mh

n(x, t)| ≤ R′ for all (x, t) ∈ Ω ×
[0, 1]. Arguing as before, the Heine–Borel theorem ensures that, up to a subsequence,
limn→+∞ mh

n(x, t) = mh∗(x, t) uniformly on Ω ×[0, 1], for some piecewise constant
function mh∗(x, t). This gives the result.

��

3.3 Convergence of Minimizers

We now prove that minimizers of the discrete dynamic JKO scheme, Problem 1h

converge to minimizers of Problem 1 as h → 0. We begin with the following lemma,
showing that any (ρh,mh) ∈ Ch satisfies a weak form of the PDE constraint, in the
limit as h → 0.
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Lemma 1 (properties of Ch) Suppose that hypotheses (H1)–(H6) hold, and fix
(ρh,mh) ∈ Ch so that

∫ 1
0

∫
Ω

Φ(ρh,mh) < +∞ for each h > 0. Then ρh(·, 0) → ρ0

in L2(Ω), and there exist ρ ∈ P(Ω × [0, 1]) and μ ∈ P(Ω) so that, up to a subse-

quence, ρh ∗
⇀ ρ and ρh(·, 1) ∗

⇀ μ. Furthermore, for any piecewise constant function
f h with suph>0 ‖ f h‖L2(Ω×[0,1]) + ‖ f h‖L2(∂Ω×[0,1]) < +∞, we have

∫ 1

0

∫
Ω

(
D−h
t f hρh + D−h

x f h · mh
)
dxdt

+
∫

Ω

(
f h(·, 0)ρh(·, 0) − f h(·, 1)ρh(·, 1)

)
dxdt

h→0−−−→ 0 . (47)

Proof By hypothesis (H6), ρh
0 → ρ0 uniformly on Ω . Likewise, the constraint on

the initial data (38) and (H4) ensure limh→0 ‖ρh(·, 0) − ρh
0 ‖L2(Ω) ≤ limh→0 δ4 = 0.

Thus, ρh(·, 0) → ρ0 in L2(Ω).
We now turn to Eq. (47). By the PDE constraint and boundary conditions (37) and

summation by parts, via hypotheses (H3),

∣∣∣∣
∫ 1

0

∫
Ω

(
D−h
t f hρh + D−h

x f h · mh
)
dxdt

+
∫

Ω

(
f h(·, 0)ρh(·, 0) − f h(·, 1)ρh(·, 1)

)
dx

∣∣∣∣
=
∣∣∣∣
∫ 1

0

∫
Ω

(
f h Dh

t ρh + f h Dh
xm

h
)
dxdt −

∫ 1

0

∫
∂Ω

f hmh · νhdx

∣∣∣∣
≤ ‖ f h‖L2(Ω×[0,1])‖Dh

t ρh + Dh
xm

h‖L2(Ω×[0,1])
+ ‖ f h‖L2(∂Ω×[0,1])‖mh · νh‖L2(∂Ω×[0,1])

≤ δ4‖ f h‖L2(Ω×[0,1]) + δ2‖ f h‖L2(∂Ω×[0,1])
h→0−−−→ 0,

where, in the last line, we use that (H4) ensures δ2, δ4 → 0 and the fact that f h is
bounded uniformly in h in L2(Ω × [0, 1] and L2(∂Ω × [0, 1]).

Next, we show that there exist ρ ∈ P(Ω × [0, 1]) and μ ∈ P(Ω) so that, up

to a subsequence, ρh ∗
⇀ ρ and ρh(·, 1) ∗

⇀ μ. By Hölder’s inequality and the mass
constraint (38),

∥∥∥∥
∫

Ω

ρh(x, ·)dx −
∫

Ω

ρh
0 (x)dx

∥∥∥∥
L1([0,1])

≤
∥∥∥∥
∫

Ω

ρh(x, ·)dx −
∫

Ω

ρh
0 (x)dx

∥∥∥∥
L2([0,1])

≤ δ3
h→0−−−→ 0,
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where, in the last line, we use that (H4) ensures δ3 → 0. Since hypothesis (H6) ensures
ρh
0 → ρ0 uniformly and

∫
Ω

ρ0 = 1, we obtain,

∫ 1

0

∫
Ω

ρh(x, s)dxds → 1.

Furthermore, since
∫ 1
0

∫
Ω

Φ(ρh,mh) < +∞ for each h > 0, we must have ρh ≥ 0
on Ω × [0, 1], and the above equation ensures suph>0 ‖ρh‖L1(Ω×[0,1]) < +∞. Thus,
classical functional analysis results ensure there exists a subsequence that converges
to some ρ ∈ P(Ω × [0, 1]) in the weak-* topology (see, e.g., [20, Section 3]).

Finally, taking f h ≡ 1 in Eq. (47) gives,

lim
h→0

∫
Ω

ρh(·, 0) − ρh(·, 1)dx = 0 �⇒ lim
h→0

∫
Ω

ρh(·, 1)dx = 1

�⇒ sup
h>0

‖ρh(·, 1)‖L1(Ω) < +∞.

Arguing as above, we obtain that, up to a further subsequence, ρh(·, 1) ∗
⇀ μ(·) for

μ ∈ P(Ω). ��
We now prove that the discrete energies Eh are lower semicontinuous along weak-*

convergent sequences.

Proposition 4 (Lower semicontinuity of energies alongweak-* convergent sequences)
Suppose that hypotheses (H1)–(H6) hold. Then, for any sequenceof piecewise constant

functions ρh : Ω → R such that ρh ∗
⇀ ρ, we have lim infh→0 Eh(ρh) ≥ E(ρ).

Proof First, suppose the energy satisfies (H2a). Since the piecewise constant approx-

imations V̂ h and Ŵ h converge to V and W uniformly, for any sequence ρh ∗
⇀ ρ,

lim
h→0

∫
Ω

V hρhdx =
∫

(V h − V )ρhdx +
∫

Vρhdx =
∫

Vρ dx, (48)

lim
h→0

∫
Ω×Ω

Wh(x, y)ρh(x)ρh(y)dxdy =
∫

Ω×Ω

W (x − y)dρ(x)dρ(y). (49)

Furthermore, our assumptions on U guarantee that the internal energy term is
lower semicontinuous with respect to weak-* convergence [2, Remark 9.3.8], so
lim infh→0

∫
Ω
U (ρh(x))dx ≥ ∫

Ω
U (ρ(x))dx . Combining this with equations (48-

49) gives the result.
Next, suppose the energy satisfies (H2b). Since ρ0 > 0 on the compact setΩ andU ′

is uniformly continuous on ρ0(Ω) ⊂ (0,+∞), the fact that hypothesis (H6) ensures
ρ̂h
0 → ρ0 uniformly ensures U ′(ρ̂h

0 ) → U ′(ρ0) uniformly. Therefore,

lim
h→0

∫
Ω

U ′(ρ̂h
0 )ρhdx =

∫
Ω

U ′(ρ0)ρdx .
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Likewise, since V̂ h and Ŵ h converge to V and W uniformly, we also have

lim
h→0

∫
Ω

(
V̂ h(x) +

∫
Ω

Ŵ h(x, y)ρh
0 (y)dy

)
ρh(x)dx

=
∫

Ω

(
V (x) +

∫
Ω

W (x, y)ρ0(y)dy

)
ρ(x)dx . (50)

Combining these limits with the lim inf inequality for energies of the form (H2a) gives
the result.

Finally, suppose the energy satisfies (H2c). Without loss of generality, we may
assume that lim infh→0 Gh

ρ1
(ρh) < +∞, so that up to a subsequence, Gh

ρ1
(ρh) ≡ 0

and limh→0 ‖ρh − ρh
1 ‖L2(Ω) = 0. By uniqueness of limits, ρ = ρ1. Thus, since

Gh
ρ1

≥ 0, we have lim infh→0 Gh
ρ1

(ρh) ≥ 0 = Gρ1(ρ).
��

We now apply Proposition 4 to prove the Γ -convergence of Problem 1h to Problem
1.

Theorem 2 (Γ -convergence of discrete to continuumJKO) Suppose hypotheses (H1)–
(H6) hold.

(a) If (ρh,mh) ∈ Ch with (ρh,mh)
∗
⇀ (ρ,m), then (ρ,m) ∈ C and

lim inf
h→0

∫ 1

0

∫
Ω

Φ(ρh,mh)dxdt + 2τEh(ρh(·, 1))

≥
∫ 1

0

∫
Ω

Φ(ρ,m)dxdt + 2τE(ρ(·, 1)).

(b) For any (ρ,m) ∈ C satisfying ρ ∈ C2([0, 1];C1(Ω)), ρ > 0, and m ∈
C([0, 1];C2(Ω), there exists a sequence (ρ̃h, m̃h) ∈ Ch so that (ρ̃h, m̃h) →
(ρ,m) uniformly and

lim sup
h→0

∫ 1

0

∫
Ω

Φ(ρ̃h, m̃h)dxdt + 2τEh(ρ̃h(·, 1))

≤
∫ 1

0

∫
Ω

Φ(ρ,m)dxdt + 2τE(ρ(·, 1)).

Proof We first prove part (a). Suppose (ρh,mh) ∈ Ch , with ρh ∗
⇀ ρ and mh ∗

⇀ m.
We begin by showing that the limit (ρ,m) belongs to C. Fix f ∈ C∞(Ω × [0, 1])
and let f h be a pointwise piecewise constant approximation of f . (See Eq. (23).) By
Lemma 1 and hypothesis (H3),

∫ 1

0

∫
Ω

( ftρ + ∇ f · m) dxdt +
∫

Ω

f (·, 0)ρ(·, 0) − f (·, 1)μdx = 0.
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We conclude that (ρ,m) satisfies the PDE constraint in the sense of distributions
(17), which gives ρ ∈ AC([0, 1],P(Ω)) [2, Lemma 8.1.2]. In particular, since ρ is
continuous in time, we have that the μ defined in Lemma 1 satisfies μ = ρ(·, 1).

We now consider the inequality in part (a). Since the integral functional (ρ,m) �→∫ 1
0

∫
Ω

Φ(ρ,m) is lower semicontinuous with respect to weak-* convergence of mea-
sures [1, Example 2.36], we immediately obtain

lim inf
h→0

∫ 1

0

∫
Ω

Φ(ρh,mh)dxdt ≥
∫ 1

0

∫
Ω

Φ(ρ,m)dxdt .

This ensures m ∈ L1([0, 1], L2(ρ−1)) and completes the proof that (ρ,m) ∈ C.
Finally, since Lemma 1 ensures ρh(·, 1) ∗

⇀ μ = ρ(·, 1), applying Proposition 4
gives

lim inf
h→0

Eh(ρh(·, 1)) ≥ E(ρ(·, 1)),

which completes the proof of part (a).
We now turn to part (b). Let (ρ̃h, m̃h) ∈ Ch be the sequence constructed in Propo-

sition 3, so (ρ̃h, m̃h) → (ρ,m) uniformly. By inequality (39), there exists c > 0 so
that ρh(x, t) ≥ c for h sufficiently small. Therefore,

∣∣∣∣
∫ 1

0

∫
Ω

Φ(ρ̃h, m̃h) −
∫ 1

0

∫
Ω

Φ(ρ,m)

∣∣∣∣
≤ |Ω|‖∇ρ,mΦ‖L∞({ρ≥c})

(
‖m̃h − m‖∞ + ‖ρ̃h − ρ‖∞

)
h→0−−−→ 0.

It remains to show that

lim sup
h→0

Eh(ρ̃h(·, 1)) ≤ E(ρ(·, 1)).

First, suppose the energy satisfies either (H2a) or (H2b). By Eqs. (48)–(50), which
hold for anyweak-* convergent sequence, and the fact thatU ′(ρ̃h(·, 0)) → U ′(ρ(·, 0))
uniformly, it suffices to show

lim sup
h→0

∫
Ω

U (ρ̃h(·, 1))dx ≤
∫

Ω

U (ρ(·, 1))dx .

Since U ∈ C([0,+∞]), ρ(·, 1) ∈ L∞(Rd), and ρ̃h(·, 1) → ρ(·, 1) uniformly,
U (ρ̃h(·, 1)) → ∫

U (ρ(·, 1)) uniformly, which gives the result.
Finally, suppose the energy satisfies (H2c). Without loss of generality, suppose

E(ρ(·, 1)) = Gρ1(ρ(·, 1)) < +∞. Inequality (40) ensures that, for h sufficiently
small,

‖ρ̃h(·, 1) − ρh
1 ‖L2(Ω) ≤ δ5.
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By definition of Gh
ρ1
, this implies Gh

ρ1
(ρ̃h(·, 1)) ≡ 0. Therefore,

lim sup
h→0

Gh
ρ1

(ρ̃h(·, 1)) = 0 ≤ Gρ1(ρ1),

which gives the result. ��
We conclude this section by applying the Γ -convergence proof from Theorem 2 to

prove that any sequence of minimizers of the discrete Problem 1h converges, up to a
subsequence, to a minimizer of the continuum Problem 1.

Theorem 3 (Convergence of minimizers) Suppose that hypotheses (H1)–(H6) hold.
Then, for any sequence of minimizers (ρh,mh) of Problem 1h, we have, up to a

subsequence, ρh ∗
⇀ ρ and mh ∗

⇀ m, where (ρ,m) is a minimizer of Problem 1.

Note that, if the minimizer of the continuum Problem 1 is unique, then this theorem
ensures that any sequence of minimizers of the discrete Problem 1 j,k has a further
subsequence that converges to this minimizer. Therefore, the sequence itself must
converge to the unique minimizer of the continuum problem. (See Remark 2 for
sufficient conditions that ensure the minimizer of the continuum problem is unique.)

Proof of Theorem 3 First, note that Lemma 1 ensures that there exist ρ ∈ P(Ω×[0, 1])
and μ ∈ P(Ω) so that, up to a subsequence, ρh ∗

⇀ ρ and ρh(·, 1) ∗
⇀ μ. In order

to prove an analogous weak-* compactness result for mh we first prove that, up to a
subsequence,

sup
h>0

∫ 1

0

∫
Ω

Φ(ρh,mh) < +∞. (51)

By (H6), there exists a minimizer (ρ̄, m̄) of the continuum Problem 1 satisfying ρ̄ ∈
C2([0, 1];C1(Ω)), ρ̄ > 0, and m̄ ∈ C1([0, 1];C2(Ω)). Comparing the recovery
sequence (ρ̃h, m̃h) ∈ Ch from Theorem 2(b) for (ρ̄, m̄) with the discrete minimizer
(ρh,mh) ∈ Ch , we obtain

lim sup
h→0

∫ 1

0

∫
Ω

Φ(ρh,mh) + 2τEh(ρh(·, 1))

≤ lim sup
h→0

∫ 1

0

∫
Ω

Φ(ρ̃h, m̃h) + 2τEh(ρ̃h(·, 1))

≤
∫ 1

0

∫
Ω

Φ(ρ̄, m̄) + 2τE(ρ̄(·, 1)). (52)

Furthermore, Proposition 4 ensures that

lim inf
h→0

2τEh(ρh(·, 1)) ≥ 2τE(μ),
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which is bounded below by some constant, since hypothesis (H2c) ensures E ≥ 0 and
hypotheses (H2a) or (H2b) ensures E(μ) > −∞, since U , V , and W are bounded
below andU ′ is bounded below on the range of the strictly positive density ρ0. There-
fore, up to a subsequence, we obtain (51).

We now deduce weak-* convergence of mh . By Hölder’s inequality, the fact that

ρh ∗
⇀ ρ, and the definition of Φ, we have

sup
h>0

‖mh‖L1(Ω×[0,1]) ≤ sup
h>0

(∫ 1

0

∫
Ω

Φ(ρh,mh)

)(∫ 1

0

∫
Ω

12ρh
)1/2

< +∞.

Thus, up to another subsequence, mh ∗
⇀ m on Ω × [0, 1].

It remains to show that the limit (ρ,m) of (ρh,mh) is a minimizer of Problem 1.
By Theorem 2, part (a), we have (ρ,m) ∈ C and

∫ 1

0

∫
Ω

Φ(ρ,m) + 2τE(ρ(·, 1)) ≤ lim inf
h→0

∫ 1

0

∫
Ω

Φ(ρh,mh) + 2τEh(ρh(·, 1)).

Combining this with inequality (52) above, we conclude that (ρ,m) ∈ C is also a
minimizer of Problem 1, which completes the proof. ��

4 Numerical Results

In this section, we provide several examples demonstrating the efficiency and accuracy
of our algorithms. We begin by using Algorithm 1 to compute Wasserstein geodesics
between given source and target measures, and we then turn to Algorithm 3 to com-
pute solutions of nonlinear gradient flows. In the following simulations, we take our
computational domain Ω to be a square, imposing the no flux boundary conditions
on m dimension by dimension. In practice, unless otherwise specified, we always
impose the discrete PDE constraint via the Crank–Nicolson finite difference opera-
tors (28), and we choose ε1 = ε2 = ε in the stopping criteria to be 10−5 unless
otherwise specified. For the relaxation of the constraints in (30) and (31), we choose
δ1 = δ2 = δ4 = δ5 = δ, and δ3 differently, as specified in each example.

4.1 Wasserstein Geodesics

As described in Remark 1, a particular case of our numerical scheme provides a
method for computing the Wasserstein geodesic between two probability densities.
We begin by computing the Wasserstein geodesic between rescaled Gaussians in one
dimension:

gμ,θ (x) = 1

(2πθ2)d/2 e
− (x−μ)2

θ2 . (53)
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Fig. 2 We compute the Wasserstein geodesic between two Gaussians on the domain Ω = [−4, 4], with
Nt = 20 temporal grid points (Δt = 1

20 ) and Nx = 200 spatial points (Δx = 8
200 ). We choose σ = 0.1

and σλ = 1.5/λmax (AAt ) and compute 105 iterations. Left: evolution of geodesic from time t = 0 to
t = 1. Right: rate of convergence of numerical solution to exact solution, as a function of the number of
iterations in Algorithm 1

The target measure is simply a translation and dilation of the initial measure, ρ0(x) =
(0.5)gμ0,θ0(x) and ρ1(x) = (0.5)gμ1,θ1(x). The optimal transport map T (x) from
ρ0(x) to ρ1(x) is given explicitly by1

T (x) = θ1

θ0
(x − μ0) + μ1.

Rewriting Eq. (15) for the geodesic ρ(x, t) and velocity v(x, t) induced by this trans-
port map, via the definition of the push forward, we obtain

ρ(x, t) = ρ0(T
−1
t (x))det(∇x T

−1
t ) and m(x, t)

= ρ(x, t)v(x, t) = ρ(x, t)(T ◦ T−1
t (x) − T−1

t (x))),

T−1
t (x) = x + ( θ1

θ0
μ0 − μ1)t

1 − t + t θ1
θ0

, det(∇x T
−1
t ) = 1

1 − t + t θ1
θ0

.

In Fig. 2, we apply Algorithm 1 to compute the Wasserstein geodesic ρ(x, t)
between the initial and target densities (53), with means and variances μ0 =
−1.5, θ0 = 0.3, μ1 = 1.5, and θ1 = 0.6. On the left, we plot the evolution of the
geodesic at various times. On the right, we plot the �1 error of the densities, momenta,
and Wasserstein distance as a function of the number of iterations, l, observing a rate
of convergence of order O(1/l) (dashed black line). Here, the error is defined as

‖ρ(l) − ρ∗‖ = 1

Nx (Ns + 1)

Ns∑
k=0

Nx−1∑
j=1

|ρ(l)
j,k − ρ∗

j,k | . (54)

1 One way to see that this is the unique optimal transport map from ρ0 to ρ1 is to note that T #ρ0 = ρ1 and
T (x) is the gradient of a convex function; see, for example, [2, Section 6.2.3].
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Fig. 3 Analysis of how the scaling relationship between the relaxation parameter δ and the spatial discretiza-
tion (Δx) affects the accuracy of the numerical method and the number of iterations required to converge.
We contrast the choices δ = (Δx)2, δ = (Δx)3 and δ = 10−8 for the example of the Wasserstein distance
between geodesics, illustrated in Fig. 2. We take Nt = 30, Nx = 300, σ = 1, σλ = 0.99/λmax (AAt ) and
δ3 = δ

In Fig. 3, we illustrate how choosing the optimal scaling relationship between the
relaxation parameter δ and the spatial and temporal discretizations (Δx), (Δt) allows
the method to converge in fewer iterations. We contrast the choices δ = (Δx)2,
δ = (Δx)3, and δ = 10−8, for the example of the Wasserstein distance between
geodesics, illustrated in Fig. 2, where the outer time step τ = 1, (Δx) ∼ (Δt), and
δ3 = δ. Based on the order of accuracy of our Crank–Nicolson approximation of the
PDE constraint, we expect that δ = (Δx)2 should give the optimal balance between
accuracy and computational efficiency. (See Remark 3.)

In the plot on the left, we observe that for all choices of δ, the error between the
numerical solution ρ(l) and the exact solution ρ∗ is identical, with the error saturating
after 105 iterations. Thus, all three choices of δ provide the same level of accuracy,
and the best way to distinguish between them is to identify which choice of δ causes
the stopping criteria (33 and 34) to be satisfied in the least number of excess iterations
after 105. The behavior of two key stopping criteria is shown in the plot on the right—
the PDE constraint ‖Au(l) − b‖ and the convergence monitor for the relative error of
the dual variables ‖φ(l) − φ(l−1)‖/‖φ(l)‖. Of the four stopping criteria we consider
(PDE constraint and three convergence monitors), these two are the last to be satisfied
in all of the numerical simulations contained in this manuscript, hence these determine
when our method terminates its iterations.

For the case of δ = (Δx)2 (red lines), we indeed observe that the PDE constraint
(solid line) satisfies its stopping criteria (dashed line) by 104 iterations and the dual
variables (starred line) satisfy their stopping criteria of 10−5 by 105 iterations. On the
other hand, for the cases of δ = (Δx)3 (blue lines) and δ = 10−8 (green lines), we
see that while the dual variables (starred lines) have satisfied their stopping criteria of
10−5 by 104 iterations, the PDE constraints (solid lines) do not satisfy their stopping
criteria (dashed lines) until later—it takes more than 105 iterations for δ = (Δx)3 and
more than 107 iterations for δ = 10−8. This example shows that choosing δ without
respecting the order of accuracy of the finite difference approximation in the PDE
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Fig. 4 Computation of the Wasserstein geodesic between two translations of British parliament on the
domain, with Nt = 40 temporal grid points (Δt = 1

40 ) and Nx = 2000 spatial grids (Δx = 40
2000 ). Here,

σ = 0.1, σλ = 0.99/λmax (AAt ) and then λ = 0.9727, δ = 10−5, and δ3 = 10−8

constraint, one wastes computational effort without improving the accuracy of the
numerical solution.

Next, we compute Wasserstein geodesics between initial and target measures when
neither are smooth nor strictly positive. In Fig. 4, we compute the geodesic between a
profile of the British Parliament and its translation. We do not observe convergence to
the exact geodesic, which would be a constant speed translation, and instead observe
degradation of the parliamentary building at intermediate times, due to numerical
smoothing. Similarly, in Fig. 5, we compute the geodesic between Pac-Man and a
ghost, visualized as characteristic functions on sets in two dimensions. Again, we
observe numerical smoothing around the edges of discontinuity. Both of these exam-
ples offer a numerical justification for the smoothness assumption we impose in our
main convergence Theorem 3. In the absence of such smoothness, it appears that the
method does not converge. Similar smoothness assumptions are required in the other
numerical methods for Wasserstein geodesics for which rigorous convergence has
been analyzed, including Monge Ampére-type methods [11,68].

4.2 Wasserstein Gradient Flows: One Dimension

In this and the next section, we consider several examples of Wasserstein gradient
flows, including somewhich have appeared in previous numerical studies [3,29,49,99],
to demonstrate the performance of our method for simulating solutions of nonlinear
partial differential equations.
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Fig. 5 Computation of the Wasserstein geodesic between Pac-Man and a ghost, with Nt = 40 temporal
points (Δt = 1

40 ) and Nx = Ny = 120 spatial grids (Δx = Δy = 0.0458). From left to right, up to down,
the plots correspond to t = 0, t = 0.15, t = 0.275, t = 0.4, t = 0.525, t = 0.65, t = 0.775, t = 0.9, and
t = 1. Here, λ = 40, σλ = 1.2/λmax (AAt ) then σ = 0.0036, δ = 10−5, and δ3 = 10−5

4.2.1 Porous Medium Equation

The porous medium equation

∂tρ = Δρm , m > 1, (55)

is the Wasserstein gradient flow of the energy (4), with U (ρ) = 1
m−1ρ

m and V =
W = 0 . A well-known family of exact solutions is given by Barenblatt profiles (c.f.
[104]), which are densities of the form

ρ(x, t) = (t + t0)
− 1

m+1

(
C − α

m − 1

2m(m + 1)
x2(t + t0)

− 2
m+1

) 1
m−1

+
, for C, t0 > 0.(56)

We now apply Algorithm 3 to simulate solutions of the m = 2 porous medium
equation with Barenblatt initial data, t0 = 10−3 and C = (3/16)1/3. Here, the Euler
discretization (27) is used. In Fig. 6, we plot the evolution of the numerical solution
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Fig. 6 Evolution of the solution
ρ(x, t) to the one-dimensional
porous medium equation, with
m = 2 on the domain
Ω = [−1, 1]. We choose
τ = 0.5 × 10−3, Δx = 0.02,
Δt = 0.1, λ = 0.2,
σλ = 1.1/λmax (AAt ) then
σ = 0.1954, δ = 10−5, and
δ3 = 10−5

over time, and we observe good agreement with the exact solution of the form (56),
which is displayed in dashed curve.

In Fig. 7, we analyze how the rate of convergence depends on the inner time stepΔt ,
the spatial discretization Δx , and outer time step of the JKO scheme τ . We compute
the error between the exact solution and the numerical solution in the �1 norm, i.e.,

‖ρ − ρ∗‖�1 = 1

Nx (n + 1)

Nt∑
k=0

Nx−1∑
j=1

|ρ j (kτ) − ρ∗
j (kτ)|.

In the plot on the left of Fig. 7, we consider two fixed values of τ and examine how
the error depends on Nt and Nx = 10Nt . In both cases, the error quickly saturates,
indicating that the outer time step τ dominates the error. In the plot on the right, we fix
Nt = 20 and Nx = 200 and consider how the error depends on τ . We observe slightly
less than first-order convergence in τ for the classical JKO scheme (Eh = Fh) and
higher-order convergence for the Crank–Nicolson inspired scheme (Eh = Hh). We
believe these slower rates of convergence are due to the lower regularity of solutions to
the porous medium equation with compactly supported initial data, which are merely
Hölder continuous.

In Fig. 8, we consider the case of smooth, strictly positive initial data, given by a
Gaussian with mean μ = 0 and variance θ = 0.2 (53), in which case solutions of the
PDE remain smooth over time. On the left, we show the evolution of the solutions
over time, and on the right, we illustrate that the classical JKO scheme indeed attains
first-order accuracy, though the Crank–Nicolson inspired scheme is still less than
second-order accurate.

4.2.2 Nonlinear Fokker–Planck Equation

We now consider a nonlinear variant of the Fokker–Planck equation,

∂tρ = ∇ · (ρ∇V ) + Δρm , V : Rd → R, m > 1,
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Fig. 7 Analysis of rate of convergence for a solution of porous medium equation, as in Fig. 6. Left:
Convergence to exact solution for Nx/Nt = 10 for choices of τ . Right: Convergence to exact solution for
Nt = 20 and Nx = 200 and various choices of τ , contrasting the traditional first-order JKO scheme with
the new Crank–Nicolson inspired scheme

Fig. 8 Evolution and the rate of convergence for a solution of porousmedium equation with smooth positive
initial density. We choose Nt = 10, Nx = 100, σ = 10, λ = 0.0148. Left: Evolution of the solution ρ(x, t)
to the one-dimensional porous medium equation, with m = 2 on the domain Ω = [−2, 2] for τ = 0.005.
Right: The rate of convergence for various choices of τ , contrasting the traditional first-order JKO scheme
with the new Crank–Nicolson inspired scheme. For each choice of τ in our computation of the higher-order
method, we choose our stopping criteria ε = 10−4 ∗ 2−0.01/τ

inspired by the porous medium equation described in the previous section (55). When
V is a confining drift potential, all solutions approach the unique steady state

ρ∞(x) =
(
C − m − 1

m
V (x)

) 1
m−1

+
,

where C > 0 depends on the mass of the initial data, so that
∫

ρ∞dx = ∫ ρ0dx , see
[44,51].

In Fig. 9, we simulate the evolution of solutions to the nonlinear Fokker–Planck
equation with V (x) = x2, m = 2, and initial data given by a Gaussian with mean
μ = 0 and variance θ = 0.2 (53). On the left, we plot the evolution of the density
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Fig. 9 Evolution of the solution ρ(x, t) to the one-dimensional nonlinear Fokker–Planck equation, with
m = 2 and V (x) = x2. We choose τ = 0.05, Δx = 0.04, Δt = 0.1, λ = 0.1641, σ = 1, δ = 10−5,
and δ3 = 10−5. Left: evolution of density ρ(x, t) toward equilibrium ρ∞(x). Right: Rate of decay of
corresponding energy with respect to time

Fig. 10 Analysis of rate of convergence for a solution of the nonlinear Fokker–Planck equation, as in Fig. 9.
We choose Δt = 0.1, Δx = 0.04 and consider the error (57) for various choices of τ , contrasting the
traditional first-order JKO scheme with the new Crank–Nicolson inspired scheme

ρ(x, t) toward the steady state ρ∞(x). On the right, we compute the rate of decay of
the corresponding energy (4) as a function of time, observing exponential decay as
the solution approaches equilibrium. In this way, our method recovers analytic results
on convergence to equilibrium of Carrillo, DiFrancesco, and Toscani [35,51].

In Fig. 10, we analyze how the rate of convergence depends on the outer time step τ

of the scheme, for sufficiently small inner time stepΔt = 0.1 and spatial discretization
Δx = 0.04. We compute the error

eτ = ‖ρτ (x, t) − ρτ/2(x, t)‖�1 (57)
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Fig. 11 Evolution of the solutionρ(x, t) to the one-dimensional aggregation equation, withW (x) = x2/2−
ln(|x |), x ∈ [−4, 4]. We choose τ = 0.05, Δx = 0.04, Δt = 0.05, λ = 0.01, σλ = 0.99/λmax (AAt ) then
σ = 18.8, δ = 10−6, and δ3 = 10−6. Left: evolution of density ρ(x, t) toward equilibrium ρ∞(x). Right:
Rate of decay of corresponding energy with respect to time

We observe slightly faster than first-order convergence for the traditional JKO scheme
(Eh = Fh) andhigher-order convergence for the newCrank–Nicolson inspired scheme
(Eh = Hh). We believe this improvement in the rate of convergence as compared to
our previous example for the porous medium equation, Fig. 7, is due to the rapid
convergence to the steady state ρ∞.

4.2.3 Aggregation Equation

In this section, we consider a nonlocal partial differential equation of Wasserstein
gradient flow type, known as the aggregation equation

∂tρ = ∇ · (ρ∇W ∗ ρ) , W : Rd → R . (58)

In recent years, there has been significant interest in interaction kernels W that are
repulsive at short length scales and attractive at longer distances, such as the kernel
with logarithmic repulsion and quadratic attraction

W (x) = |x |2
2

− ln(|x |) . (59)

For this particular choice of W , there exists a unique equilibrium profile [38], given
by

ρ∞(x) = 1

π

√
(2 − x2)+.

In Fig. 11, we simulate the solution to the aggregation equationwithGaussian initial
data (53) with meanμ = 0 and variance θ = 1, analyzing convergence to equilibrium.
On the left, we plot the evolution of the density ρ(x, t) at varying times, observing
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Fig. 12 We compute the steady state of a solution to the two-dimensional aggregation equation with inter-
action potential W (x) = |x |4/4 − |x |2/2, which is a Dirac ring of radius 0.5, centered at the origin. The
computational domain is [-1,1]×[-1,1]. We choose τ = 0.05, Δx = Δy = 0.04, Δt = 0.1, λ = 20,
σ = 0.0052, and ε1 = ε2 = 10−6. The steady state shown is the solution at time t = 10. Left: side view of
equilibrium. Center: bird’s eye view of equilibrium. Right: rate of decay of energy as solution approaches
equilibrium

convergence to the equilibrium profile ρ∞(x). On the right, we compute the rate of
the decay of the energy as a function of time, observing exponential decay as obtained
by Carrillo, Ferreira, and Precioso [38] with a slightly slower numerical rate.

As the interaction potential W defined in Eq. (59) is not continuous, we make the
following modifications to our discretization of the JKO scheme. To avoid evaluation
of W (x) at x = 0, we set W (0) to equal the average value of W on the cell of width
2h centered at 0, i.e., W (0) = 1

2h

∫ h
−h W (x)dx , where we apply Gauss-Legendre

quadrature rule with four grid points to evaluate the integral. In addition to modifying
the interaction kernel in this way, we also introduce an artificial diffusion term of the
form ε∂x (ρ∂xρ) with ε = 1.6 × (Δx)2 to the right-hand side of (58), to avoid the
possible overshoot at the boundary. (See also [29] for a similar treatment.)

4.3 Wasserstein Gradient Flows: Two Dimensions

In the following, we consider a few gradient flows in two dimensions. Here, the
constraint relaxation parameters are always chosen as δ = δ3 = 10−6.

4.3.1 Aggregation Equation

We now continue our study of the aggregation equation (58) with repulsive–attractive
interaction potentials in two dimensions, with interaction kernels of the form

W (x) = |x |a
a

− |x |b
b

, a > b ≥ 0 , (60)

using the convention that |x |0
0 = ln(|x |). It is well known that the repulsion near the

origin of the potential determines the dimension of the support of the steady state
measure, see [4,34]. In the following simulations, we take the initial data to be a
gaussian (53) with mean μ = 0 and variance θ = 0.25.
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Fig. 13 We compute steady state of a solution to the two-dimensional aggregation equation with interaction
potential W (x) = |x |2/2 − ln(|x |), which is the characteristic function on a disk of radius 1, centered at
the origin. The computational domain is [-1.5,1.5]×[-1.5,1.5]. We choose τ = 0.05, Δx = Δy = 0.06,
Δt = 0.05, λ = 50, and σ = 0.0037. The steady state is plotted at time t=3. Left: side view of equilibrium.
Center: bird’s eye view of equilibrium. Right: rate of decay of energy as solution approaches equilibrium

In Fig. 12, we simulate the evolution of solutions to the aggregation equation, with
a = 4 and b = 2 in the interaction potential W , defined in Eq. (60). We observe
that the solution concentrates on a Dirac ring with radius 0.5 centered at the origin,
recovering analytical results on the existence of a stable Dirac ring equilibrium for
these values of a and b [5,13].

In Fig. 13, we simulate the evolution of solutions to the aggregation equation,
with a = 2 and b = 0. We observe that the solution converges to a characteristic
function on the disk of radius 1, centered at the origin, recovering analytic results on
solutions of the aggregation equation with Newtonian repulsion [14,34,65].We follow
the same strategy described in Sect. 4.2.3 with ε = 1.6 × (Δx2 + Δy2) to overcome
the singularity of the interaction potential at x = 0 and potential overshooting.

4.3.2 Aggregation Drift Equation

Next, we compute solutions of aggregation-drift equations

∂tρ = ∇ · (ρ∇W ∗ ρ) + ∇ · (ρ∇V ),

whereW (x) = |x |2/2−ln(|x |) andV (x) = −α
β
ln(|x |).As shown in several analytical

and numerical results [29,42,53], the steady state is a characteristic function on a torus
or “milling profile”, with inner and outer radius given by

Ri =
√

α

β
, Ro =

√
α

β
+ 1 .

In Fig. 14, we simulate the long time behavior of a solution of the aggregation-drift
equation with α = 1 and β = 4 and Gaussian initial data (53), μ = 0, θ = 0.25, as
well as the rate of the decay of the entropy as the solution converges to equilibrium. In
Fig. (15), we plot the evolution of the density from a nonradially symmetric initial data,
given by five Gaussians to the same equilibrium profile. We follow the same strategy
described in Sect. 4.2.3 to overcome the singularity of the interaction potential at x = 0
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Fig. 14 We compute steady state of a solution to the two-dimensional aggregation-drift equation with
interaction potential W (x) = |x |2/2 − ln(|x |) and drift potential V (x) = −(1/4) ln(|x |), which is the
characteristic function on a torus, centered at the origin. The computational domain is [-1.5,1.5]×[-1.5,1.5].
We choose τ = 0.1, Δx = Δy = 0.06, Δt = 0.05, λ = 40, and σ = 0.0046. The steady state is the
solution at time t=4. Left: side view of equilibrium. Center: bird’s eye view of equilibrium. Right: rate of
decay of energy as solution approaches equilibrium

Fig. 15 Evolution of the solutionρ(x, y, t) to the two-dimensional aggregation-drift equation,withW (x) =
x2/2− ln(|x |) and V (x) = −(1/4) ln(|x |). The computational domain is [-1.5,1.5]×[-1.5,1.5]. We choose
τ = 0.2, Δx = Δy = 0.06, Δt = 0.1, λ = 10, and σ = 0.0244. We observe convergence to the
characteristic function on a torus centered at the origin

and potential overshooting (ε = 2×(Δx2+Δy2) in Fig. 14 and ε = 2.6×(Δx2+Δy2)
in Fig. 15.)

4.3.3 Aggregation–Diffusion Equation

We close by simulating several examples of aggregation–diffusion equations

∂tρ = ∇ · (ρ∇W ∗ ρ) + νΔρm, W : Rd → R, m ≥ 1. (61)
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Fig. 16 Evolution of solution ρ(x, y, t) to the two-dimensional aggregation–diffusion equation, with

W (x) = −e−|x |2/π , ν = 0.1, and m = 3 on the domain Ω = [−4, 4] × [−4, 4]. We choose τ = 0.5,
Δx = Δy = 0.1, Δt = 0.1, σ = 0.1144, and λ = 0.5. The total iteration number for 40 JKO time steps is
197852. We observe convergence to the a single bump centered at the origin

In recent years, there has been significant activity studying equations of this form,
both analytically and numerically. When the interaction kernel W is attractive, the
competition between the nonlocal aggregation ∇ · (ρ∇W ∗ρ) and nonlinear diffusion
νΔρm causes solutions to blow up in certain regimes and exist globally in time in
others, see for example [18,19,25,26,41] and the survey [32]. With fixed m, and in
the presence of nonlocal interaction, the equation has a unique steady state which is
radially decreasing up to a translation [15,40].

In Fig. 16, we simulate a solution of the aggregation–diffusion equation with
W (x) = −e−|x |2/π , ν = 0.1, and m = 3, and initial data given by a rescaled
characteristic function on the square,

ρ0(x, y) = 1

4
χ[−3,3]×[−3,3](x, y) ,

Diffusion dominates both the short and long ranges, and the medium range aggrega-
tion leads to the formation of four bumps, which ultimately approach a single bump
equilibrium. (See also [29].)

In Fig. 17, we simulate solutions of the Keller–Segel equation, which is an
aggregation–diffusion equation (61) with aNewtonian interaction kernel, i.e.,W (x) =
1
2π ln(|x |) in two dimensions for ν = 1 and both m = 1 and m = 2, illustrating the
role of the diffusion exponent in blowup or global existence of solutions. We choose
the initial data to be given by a rescaled gaussian, obtained by multiplying equation
(53) by a mass M = 9π , with mean μ = 0 and variance θ = 0.5. On the left, we
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Fig. 17 Plot of solution ρ(x, y, t) to the two-dimensional Keller–Segel equation at t = 2. Left: When
m = 2, the solution approaches a bounded, continuous equilibrium profile. Here, the computational domain
is [-5,5]×[-5,5]. Right: When m = 1, the solution blows up, becoming sharply peaked. The computational
domain here is [-2,2]×[-2,2]. For both we choose τ = 0.05, Δx = Δy = 0.067, Δt = 0.1, λ = 0.5,
σ = 0.042

Fig. 18 The evolution of ρ(x, y, t) for the Keller–Segel equation with U (x) = x2. Here, Δt = 0.1,
hx = hy = 0.167, τ = 0.05

take m = 2 and simulate the steady state of the Keller–Segel equation, which is a
single bump. On the right, we simulate the long-time behavior of solutions form = 1,
in which case we are in the blow up regime. Indeed, at time t = 2, we observe the
formation of a blowup profile, with the solution becoming sharply peaked at the origin.

In Fig. 18, we again simulate solutions of the Keller–Segel equation with m = 2,
but in this case we take the initial data to be given by three localized bumps (Gaussian
rings, i.e., the radial cut of the ring is aGaussianwith a center on the circle.)We observe
a two-stage evolution in which the each of the bumps converges to a localized quasi-
stationary state, and then interact and merge into one single bump in the long time
limit. This is a manifestation of the typical metastability phenomena, which is likely
present in the majority of the diffusion dominated Keller–Segel models [24,29,32].
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A Further Details of Numerical Implementation

In this section, we provide explicit formulas for the matrix Ã and the vectors u and b̃
introduced in Problem 3(b) in Sect. 2.3, which play a key role in the implementation
of Algorithms 1, 2, and 3. For simplicity, we consider the case of one space dimension,
and the discretization takes the form (28). The constructions of A and b in Problem
3(a) are very similar except a slightly different treatment of ρ at final time. From now
on, for simplicity of notation, we will drop the tildes for the matrix Ã and vector b̃.

Define N = (Nx+1)(Nt+1). Let⊗ denote theKronecker tensor product, INx+1 the
identity matrix of size Nx +1, and (x)M the column vector inRM with all components
equal to x . Then we define

u = [(æ.,k)
Nt
k=0; (m.,k)

Nt
k=0

] ∈ R
N , æ.,k = (ρ j,k)

Nx
j=0, m.,k = (m j,k)

Nx
j=0

and the matrix A ∈ R
M×2N takes the form

A =
[

Aρ Am

Amass 0

]
.

Here, Aρ ∈ R
N×N reads

Aρ = D(1)
t ⊗ I(1)x + D(2)

t ⊗ I(1)x := A(1)
ρ + A(2)

ρ ,

where D(1)
t , D(2)

t ∈ R
(Nt+1)×(Nt+1), and I(1)x ∈ R

(Nx+1)×(Nx+1) are

I(1)x =
⎡
⎣0 INx−1

0

⎤
⎦ , D(1)

t =

⎡
⎢⎢⎢⎣

0
−1 1

. . .
. . .

− 1 1

⎤
⎥⎥⎥⎦ , D(2)

t =
[
1
0

]
.

123

http://creativecommons.org/licenses/by/4.0/


Foundations of Computational Mathematics

Here, D(1)
t and D(2)

t correspond to the temporal discretization and initial condition for
ρ. Likewise,

Am ∈ R
N×N = B(1)

t ⊗ D(1)
x + INt+1 ⊗ D(2)

x := A(1)
m + A(2)

m ,

where D(1)
x , D(2)

x ∈ R
(Nx+1), and B(1)

t ∈ R
(Nt+1)×(Nt+1):

D(1)
x = Δt

4Δx

⎡
⎢⎢⎢⎢⎢⎣

0
−1 0 1

. . .
. . .

. . .

−1 0 1
0

⎤
⎥⎥⎥⎥⎥⎦ , D(2)

x =
⎡
⎣1 0

1

⎤
⎦ , B(1)

t =

⎡
⎢⎢⎢⎣
0
1 1

. . .
. . .

1 1

⎤
⎥⎥⎥⎦ .

For mass conservation, let Sρ = (x)tNx+1, then Amass = INt+1 ⊗ Sρ . In sum, different
Ai can be written as

A1 =
[
A(1)

ρ A(1)
m

0 0

]
, A2 =

[
0 A(2)

m
0 0

]
, A3 =

[
0 0

Amass 0

]
, A4(+A5) =

[
A(2)

ρ 0
0 0

]
.

Accordingly, b ∈ R
N+Nt+1 collects all the initial conditions for ρ and boundary

conditions for m. More specifically, it writes

b = [(0; (ρ j,0)
Nx−1
j=1 ; 0); 0(Nt−1)(Nx+1); 0Nx+1; 0Nt+1]

+ [(m0,0; 0;mNx ,0); · · · ; (m0,Nt ; 0;mNx ,Nt ); 0Nt+1]
+ [0N ; 1Nt+1]

:= b4 + (b5) + b2 + b3

and b1 = 0.
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