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Abstract

Key message Arabidopsis pollen transcriptome analysis revealed new intergenic transcripts of unknown function,
many of which are long non-coding RNAs, that may function in pollen-specific processes, including the heat stress
response.

Abstract The male gametophyte is the most heat sensitive of all plant tissues. In recent years, long noncoding RNAs (IncR-
NAs) have emerged as important components of cellular regulatory networks involved in most biological processes, including
response to stress. While examining RNAseq datasets of developing and germinating Arabidopsis thaliana pollen exposed to
heat stress (HS), we identified 66 novel and 246 recently annotated intergenic expressed loci (XLOCSs) of unknown function,
with the majority encoding IncRNAs. Comparison with HS in cauline leaves and other RNAseq experiments indicated that
74% of the 312 XLOCs are pollen-specific, and at least 42% are HS-responsive. Phylogenetic analysis revealed that 96%
of the genes evolved recently in Brassicaceae. We found that 50 genes are putative targets of microRNAs and that 30% of
the XLOCs contain small open reading frames (ORFs) with homology to protein sequences. Finally, RNAseq of ribosome-
protected RNA fragments together with predictions of periodic footprint of the ribosome P-sites indicated that 23 of these
ORF:s are likely to be translated. Our findings indicate that many of the 312 unknown genes might be functional and play a
significant role in pollen biology, including the HS response.
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Introduction

High temperatures have profound harmful effects on
plants’ reproduction, often causing severe damages to
complete loss of crops (Slattery and Ort 2019; Jacott and
Boden 2020; Lohani et al. 2020). The male gametophyte
is thought to be the most sensitive to heat stress (HS) com-
pared to all other organs and tissues in most plants, includ-
ing the female gametophyte (Zinn et al. 2010; Muller and
Rieu 2016; Rieu et al. 2017). The male gametophyte exists
as a short cell lineage, beginning with the completion of
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the pollen mother cell meiosis within the anther, produc-
ing four haploid microspores. These microspores undergo
an asymmetric cell division (pollen mitosis I) to produce
a vegetative cell and generative cell. The generative cell
divides once more (pollen mitosis II), giving rise to two
sperm cells, followed by a maturation stage of the pollen
in preparation for dehiscence. At pollination, pollen lands
on a receptive stigma and then grows a tube that is guided
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toward the ovule. In species that underwent one round of
pollen mitosis in the anther, the mitotic division of the
generative cell takes place during pollen tube growth.
Upon arrival at the ovule, the sperm cells are released
from the pollen tube and go on to fertilize the egg and
central cell (Suzuki 2009). These delicate stages of pollen
developmental are extremely vulnerable to HS, with even
a short moderate or mild chronic heat stress causing an
increase in pollen abortion, reduced fitness, tube growth
arrest, or even tube rupture (Mesihovic et al. 2016; Luria
et al. 2019). Also, the expression of many heat shock pro-
teins (HSPs) and heat shock transcription factors (HSFs)
is poor in pollen compared to other plant cells (Mascaren-
has and Crone 1996; Muller and Rieu 2016). These find-
ings have contributed to the perception that pollen lacks a
robust HS response (HSR).

RNAseq experiments in pollen from different species
indicated that HS has a profound impact on pollen gene
expression and suggested that pollen may have different
HSRs than other types of plant cells (Fragkostefanakis et al.
2016; Muller and Rieu 2016; Begcy et al. 2019). The first
RNAseq reports in Arabidopsis and maize mature pollen
identified a significant number of novel transcribed loci,
including transcripts with homologies to known proteins
and long noncoding RNAs (IncRNAs) (Loraine et al. 2013;
Chettoor et al. 2014). Interestingly, the reproductive tissues
of maize, including pollen and embryo sac, had more exam-
ples of IncRNA expression than any other tissues character-
ized (Chettoor et al. 2014). LncRNAs are transcripts exceed-
ing 200 nucleotides in length that lack open reading frames
longer than 100 amino acids. This somewhat arbitrary limit
distinguishes IncRNAs from small noncoding RNAs such as
microRNAs (miRNAs), small interfering RNAs (siRNAs),
small nucleolar RNAs (snoRNAs), and other short RNAs
(Ma et al. 2013). LncRNAs are generally polyadenylated
and often have highly tissue-specific expression (Yu et al.
2019). LncRNAs mainly include intergenic ncRNAs (lin-
cRNAs), intronic ncRNAs (incRNAs), and natural antisense
transcripts (NATSs) that overlap with coding regions. They
are associated with a broad range of biological processes,
including plant development and stress response, influencing
gene expression by acting as molecular scaffolds, decoys or
target mimics of microRNAs (miRNAs), and small inter-
fering RNA precursors (Liu et al. 2012; Yu et al. 2019).
As molecular scaffolds, IncRNAs may bind both DNA and
protein recruiting regulatory components such as chromatin
modulators to specific gene loci. As decoys, some IncRNAs
may bind transcription factors to prevent them from interact-
ing with DNA to induce target gene expression. Functional
analyses of several plant IncRNAs demonstrated their pro-
found involvement in plant development and physiology,
including that of the male gametophyte (Liu et al. 2012; Yu
et al. 2019). For example, a single polymorphism change in
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the sequence of long-day-specific male-fertility—associated
RNA (LDMAR) in rice alters the secondary structure of the
RNA molecule and its ability to function, causing defective
anthers and pollen grains resulting in male sterility (Ding
et al. 2012).

Many IncRNAs contain small open reading frames
(smORFs) that can be translated into small polypeptides
(> 100 amino acids), also known as micropeptides or micro-
proteins, with growing evidence supporting that they are
biologically functional, regulating target genes in cis or
trans (Liu et al. 2012; Plaza et al. 2017). The pollen-specific
Zm908 IncRNA gene in maize encodes microproteins that
interact with profilin 1, sequestering it from binding actin
filaments. Overexpression of Zm908 caused developmental
defects in maize pollen development and reduced germina-
tion (Dong et al. 2013). The potential involvement of IncR-
NAs in cytoplasmic male sterility (CMS) has been recently
suggested; however, conclusive evidence directly implicat-
ing IncRNAs with CMS is still missing (Mishra and Bohra
2018). An extensive data survey of RNAseq experiments in
several plants, including wheat, maize, rice, and Arabidop-
sis, showed that a relatively large proportion of IncRNAs
are responsive to abiotic stresses (Di et al. 2014; Yuan et al.
2018; Lv et al. 2019). The expression of HSFB2a, which is
essential for the fertility of both the female and male game-
tophytes in Arabidopsis, is controlled by heat stress-induced
NAT (Wunderlich et al. 2014). The study of IncRNAs in
plants is still an emerging area of research with the function
of most IncRNAs awaiting discovery (Yu et al. 2019). Thus,
research is needed to identify additional functional examples
of IncRNAs involved in the HSR in both vegetative tissues
and male gametophyte.

The latest complete Arabidopsis thaliana reference
genome annotation, Araportl1v4, significantly expanded
the number of genes compared with the earlier TAIR10
annotation, including a massive increase in the number of
long noncoding RNAs (lincRNAs and NATSs) from 259 to
3559 genes. The updated annotation version also included
508 intergenic novel transcribed regions (Cheng et al. 2017,
Krishnakumar et al. 2017) and resulted from an assembly of
tissue-specific RNAseq libraries from 113 datasets, which
also included pollen. However, the transcriptome coverage
and number of expressed genes in these pollen datasets were
relatively small, including only 6301 pollen-expressed genes
(Cheng et al. 2017).

In this study, we report on the identification of 312
uncharacterized polyadenylated expressed loci (XLOCs)
from three independent RNAseq experiments with Arabi-
dopsis pollen exposed to HS. Sixty-six of those pollen
XLOCs are entirely novel. Ninety-two percent of the 312
XLOCs encode for IncRNAs, and 73% were not present in
other sporophytic tissues RNAseq datasets, suggesting that
they are pollen-specific. Also, most of the XLOCs show
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differential expression in pollen matured under HS. Phylo-
genetic classification revealed that more than half of these
genes are A. thaliana-specific, but nine are highly conserved
in eudicots. We identified 50 of the XLOCs as putative tar-
gets of microRNAs, suggesting potential involvement in
gene expression regulation. Many of the identified IncRNAs
contain smORFs for potential microproteins with homology
to protein sequences. Lastly, ribosome elongating footprint
analysis of ribosome-protected RNAseq data showed that
23 of the ORF-containing transcripts are very likely to be
translated. Our findings support the perception that pollen
has a unique HSR and provide multiple targets for functional
analyses of new pollen-specific genes with the potential of
profoundly impacting pollen development and physiology.

Materials and methods

Plant material, growth conditions, and pollen
collection

Arabidopsis thaliana (Col-0) were grown in 16:8 light
regime and at 21 °C for 5 weeks until flowering had estab-
lished. Pollen was harvested from open flowers using a
customized pollen vacuum wand (Johnson-Brousseau and
McCormick 2004). The customized pollen vacuum wand
consisted of nylon mesh filters (Membrane Solutions, USA)
of three grades: 80 um, 40 pm, and 10 pm. Pollen deposited
on the 10-micron filter was washed off using 0.3 M manni-
tol, pelleted, frozen in liquid nitrogen, and stored at — 80 °C
until required. After vacuuming, plants were then moved to
a heat stress regime during the light photoperiod, consisting
of a stepwise increase in temperature from the beginning
of the light period from 22 °C to 38 °C over 6 h, holding
at 38 °C for 2 h, then a decrease to 22 °C overnight. Plants
were maintained at 22 °C during the night (Figure S1). This
heat stress regime was repeated for 3 days, and pollen was
collected on the morning of the fourth day. In parallel with
pollen sampling, cauline leaves representing control and
heat stress conditions were collected from the same plants.
Cauline leaf control samples were collected on the same day
as pollen control samples, while heat-stressed cauline leaf
samples were collected at the heat stress maximum (38 °C)
on the third day of heat stress. Three independent biological
replicates were collected for each sample type and growth
condition.

RNA isolation, library preparation, and sequencing

For RNA sequencing, total RNA was extracted from pollen
and cauline leaf samples using RNA were extracted using
the TRizolTM reagent (Life Technologies, Carlsbad, CA)
according to the manufacturer’s recommendations. RNA

was shipped to Beijing Genomics Institute (BGI, China) for
multiplexed Illumina HiSeq 2000 paired-end sequencing.
Sequencing was performed at 2 X 50 bp for all samples.

Sequence quality control (QC) and novel gene
prediction

Sequence pairs were trimmed and filtered using Trimmo-
matic v. 032 (Bolger et al. 2014). After filtering sequences
to remove multiplexing barcodes and sequencing adapters
using NGS QC Toolkit (v.2.3), sequence pairs were aligned
to TAIR10 A. thaliana reference genome using the spliced
aligner tool Tophat2 (V.2.0.13) and Bowtie 2 (v.2.2.4).

Unannotated transcripts (i.e., transcripts not mapped to
the TAIR10 reference transcriptome) were identified and
mapped using the in-house services of the Nevada INBRE
Bioinformatics Core at the University of Reno (USA).
Briefly, genome alignments generated by Tophat2 were
processed using the Cufflinks package (v.2.2.1) reference
annotation-based transcript (RABT) assembly method. Pre-
dictions from the independent Cufflinks runs were combined
using the cuffmerge command to produce a single set of
predicted transcripts. To determine which of the unannotated
transcripts were annotated in the Araportl1 genome annota-
tion, we used IntersectBed from the Bedtools suite (Quinlan
and Hall 2010) to compare Araportl1 with our novel tran-
scripts. Those transcripts that overlapped with an Araport11
annotated gene were considered annotated.

Gene quantification

Generating sequence alignments: Sequence pairs were
aligned to the A. thaliana TAIR10 genome using HISAT
spliced read alignment tool (v.0.1.6; (Kim et al. 2015)).
Genomic coordinates of the putative novel transcripts were
combined with the exon coordinates of all known TAIR10
genes (Swarbreck et al. 2008), as annotated in Ensembl build
27 into a Gene Transfer Format (GTF) file and together sup-
plied to the HISAT aligner via the included extract_splice_
sites.py tool and ‘-known-splice-site-infile’ option, with
all other options set as default. Novel genes were assigned
intergenic XLOCs identifiers. For expression quantification,
the number of read pairs aligned to each gene was counted
using the featureCounts tool from the subread package (v.
0.30; (Liao et al. 2014)). Read pairs were counted just once
per pair, summarized to gene loci. Ambiguous or multiply-
aligned read pairs were excluded from count totals. These
raw read counts were used as input for DESeq2 (v1.18.1)
(Love et al. 2014). Reads were then normalized to Reads Per
Million reads (RPM).
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GP_HS data analysis

The bioinformatics protocols for the GP_HS libraries fol-
lowed the same procedures as described (Poidevin et al.
2020) with a few changes. First, during the cleaning steps
the noncoding RNAs were not bioinformatically removed.
The GTF file used for the htseq-count included the identified
XLOC:s both in forward and in reverse orientation. Finally,
the htseqg-count used the ‘nonunique all’ function to attrib-
ute a read to both RNAs when the mapping overlapped two
RNAs.

RNA-seq data analysis

Transcript counts were filtered to exclude those with < 10
counts in all samples. Filtered count data were then nor-
malized via the median ratio method (Anders and Huber
2010). Differential gene expression between control and HS
conditions was examined using DESeq2 (Love et al. 2014).
Comparisons were considered using simple contrasts. Fold
changes in gene expression were transformed to log, fold
change values. Correction for multiple testing was per-
formed within each comparison to adjust for the false dis-
covery rate. XLOCs with>1 or< — 1 log, fold changes and
adjusted p value < 0.05 were considered to meet the standard
significance threshold for this study. Principal component
analysis (PCA) was performed using DESeq2 with the var-
iance-stabilized normalized RNA-Seq data to validate the
clear separation between the different conditions.

Validation of RNA-Seq data by real-time
quantitative PCR (qRT-PCR)

For validation of gene expression using qRT-PCR: Total
RNA was extracted from Col-0 wild-type control inflores-
cences, following the heat stress regime using Trizol reagent
(Thermo Fisher Scientific). First-strand cDNA synthesis was
performed using qScript Flex cDNA synthesis kit (Quanta-
bio). qRT-PCR was performed in CFX96Connect (Bio-Rad).
The gene HTRS (AT4G40040) served as a reference gene.
Relative normalized expressed was calculated using 2—244
method. Primer sequences are listed in Table S1.

Phylostratigraphic analysis

To understand the conservation of these novel transcripts, we
performed megablast at the NCBI using the novel transcripts
as the query and requiring an E value of < =1e —05. We ran
the search twice using the nr/nt database once excluding hits
within Brassicaceae and second time only searching within
Brassicaceae but eliminating hits to Arabidopsis thaliana.
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We then extracted the full taxonomic lineage for each
hit and were then able to assign hits to a given level in the
phylogenetic tree.

Other bioinformatics tools used

CANTATAGdD (http://cantata.amu.edu.pl/) was used to iden-
tify conserved IncRNAs (Szczesniak et al. 2016). psRNA-
Target V2 (2017 release) (http://plantgrn.noble.org/psRNA
Target/) (Dai and Zhao 2011) was used to identify putative
miRNA targets among novel genes. Hits were filtered using
an expectation threshold of <3. IVG (v.2.4.3.) was used to
visualize mapped reads to the Arabidopsis genome, import-
ing Araportl1.bed files.

Results

Mapping and identification of novel
pollen-expressed transcripts

In a transcriptome experiment designed to identify differen-
tially expressed genes that are pollen-specific and respon-
sive to temperature stress, we compared the transcriptome
of maturing pollen and cauline leaves exposed to heat stress
(HS) (Rutley et al. in preparation; stress regime plot in Fig-
ure S1). Paired-end RNAseq data were generated from poly-
adenylated RNA from Arabidopsis (Col-0) mature pollen
(MP) and cauline leaves grown under control (22 °C) or
exposed to heat stress cycle for 3 days, referred to herein as
MP_HS dataset and CL_dataset, respectively. The analy-
sis of the RNAseq filtered raw data was performed using
an in-house de novo assembly pipeline with the TAIR10
genome build as reference (Fig. 1a;Materials and methods
section). Principal component analysis (PCA) of the normal-
ized RNA-Seq data (Figure S2) showed that 78% and 83%
of the variance in pollen and cauline leaf samples, respec-
tively, could be explained by differences in conditions (con-
trol vs. HS). We also similarly analyzed recently published
RNAseq data from mature pollen developed under a diur-
nal cycle of hot day and cold nights and control conditions
(Rahmati Ishka et al. 2018), referred to herein as MP_Hot/
Cold dataset. While interrogating the three RNAseq data-
sets, we assembled 400 transcriptional units (TUs, assigned
with TCONS identifiers) originating from 312 intergenic
expressed loci (XLOCs) that did not overlap with any loci
annotated in TAIR10, with 41 of the XLOCs having two
or more splice variants TCONS (Tables S2, S3). About
80% (246/312) of these transcripts were later annotated in
the Araportl1 database as expressed genes mostly without
any other functional annotations (i.e., ‘unknown genes’)
(v1.10.4, release 06/2016; Cheng et al. 2017), referred
herein as ‘Araport recent’ genes. The remaining 66 genes are
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Fig. 1 Identification and characterization of novel transcriptional
units (TUs). a The workflow pipeline for the identification of TUs
in MP_HS and MP_Hot/Cold RNA-seq data. b Pie chart of the dis-
tribution between expressed loci (XLOCs) annotated at the previous
update of Araportll (‘Araport-recent’) and XLOCs that remained
as unannotated Araportll genome annotation (v1.10.4, release

yet to be annotated (Fig. 1b, Table S3). The average depth of
the MP_HS, MP_Hot/Cold, and CL_HS datasets was 63.7,
30.7, and 60.7 million reads, respectively (Table S4). Not-
withstanding, while reads for all 312 XLOCs with overlap-
ping coordinates were present in the MP datasets (all but
one in MP_Cold/Hot dataset), 190 were absent in the CL
dataset, suggesting that these transcripts are enriched in pol-
len (Fig. 2, Table 1, Table S4).

with TUs identified by
Deforges et al. (2019)
in sporophytic tissues

75-99.9%
_/ (1e) [~
/ /- 50-74.9%
o (6)
<25% -
0]

06/2016). ¢ Breakdown of XLOCs by class: long noncoding RNA
(IncRNA), long intergenic noncoding RNA (lincRNA), open reading
frame (ORF)> 100 amino acids, and RNA length <200 nucleotides.
d 230 TUs identified in pollen libraries from MP_HS and MP_Hot/
Cold that were not found among MP_HS cauline leaf libraries or spo-
rophytic IncRNAs from Deforges et al. (2019)

The majority of the newly discovered XLOC genes
encode pollen-specific long noncoding RNAs

Based on the criteria of RNA longer than 200 nucleotides
or having ORF(s) shorter than 100 amino acids (Yu et al.
2019), 286 of the XLOCs were categorized as encoding long
noncoding RNAs (IncRNAs) and 29 XLOCs contain ORFs
ranging between 100 and 379 amino acids, suggesting that
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Fig. 2 Heatmap of the expression abundance of XLOCs in the four RNAseq datasets under control and HS conditions
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Table 1 Summary of novel genes from three independent pollen HS RNAseq experiments. Clear reads refer to the filtered raw data after remov-

ing adapter sequences, contamination, and low-quality reads

Total clean reads Mean reads per PEXs (RPM > 1) hPEXs DEXs (Log2>1, PSXs Pollen-
(million) sample (million) (RPM > 10) P<0.05) specific
DEX
MP_HS 382.0 63.7 312/312 269 37/312 230/312 21/230
MP_Hot/Cold 184.0 30.7 311/312 213 96/311 229/311 73/229
GP_HS 609.7 101.6 61/312 9 12/61 30/61 10/30

PEXSs pollen-expressed XLOC genes; hPEXs high PEX

DEXSs differentially expressed XLOC genes, PSXs pollen-specific XLOC gene

they may be protein-coding genes (Fig. 1c and Table S3).
Indeed, 19/29 overlap with gene models in Araportll
(Table S3). Three remaining TUs transcribe RNA shorter
than 200 nucleotides, and so do not meet the criteria of IncR-
NAs (Fig. 1c¢).

A subclass of IncRNAs are referred to as long intergenic
noncoding RNAs (IlincRNAs), defined as being located 500
or more bp away from annotated protein-coding genes, not
encoding transposable elements (TEs), and not overlapping
with natural antisense transcripts (NATs; Liu et al. 2012).
As the MP_HS and MP_Hot/Cold RNAseq datasets are non-
strand-specific, we employed only the two former criteria
mentioned above, searching for lincRNAs. Among the 286
IncRNAs, 65% are located > 500 bp from the nearest gene
model and 51% show overlaps with TEs (Table S3). Only 38
XLOCs (13.3%) meet two of these additional requirements
for long intergenic noncoding RNA (referred to here as puta-
tive lincRNA; Fig. 1c).

Similarly, Deforges and co-authors recently identified
862 new IncRNA genes in RNAseq experiments in Arabi-
dopsis seedlings that had no prior annotation in TAIR10,
with about half of them later independently annotated in
Araport11 v1.10.4 database release before their publication
(Deforges et al. 2019). The dataset of Deforges et al. 2019
included RNAseq from whole Arabidopsis seedlings or roots
and shoots from 12 experimental conditions, including high
or low phosphate concentrations, and treatments with the
plant hormones auxin (indole acetic acid, IAA), abscisic
acid (ABA), methyl jasmonate (MeJA), or the ethylene pre-
cursor 1-aminocyclopropane-1-carboxylic acid (ACC). We,
therefore, compared the coordinates of the newly identified
TUs encoding genes in our pollen datasets with those of
the genes identified in the Deforges et al. (2019) datasets.
Of the 312 XLOCs identified in the MP_HS dataset, 14.4%
and 7.1% overlapped completely or partially, respectively,
whereas 230 of the pollen-identified expressed XLOC loci
were not present within the sporophytic RNAseq datasets of
Deforges et al. (2019) or our cauline leaves libraries (Fig. 1d,
Table S5). Thus, this comparison between the pollen and
sporophytic RNAseq datasets suggested that 78.5% of the
identified XLOCs may exclusively express in pollen.

The majority of the TUs are pollen-specific

We interrogated yet another pollen RNAseq dataset from
an HS experiment in which pollen was germinated in vitro
for 5 h at 24 °C or 35 °C for 5 h (GP_HS dataset; (Poidevin
et al. 2020)). The GP_HS libraries are strand-specific, add-
ing a higher order of resolution for producing gene models,
providing us with the ability to exclude a potential expres-
sion of overlapping TEs on the opposite strand (Table S6).
The average sequencing depth of the GP_HS sequencing was
101.6 million reads per sample (Table 1, Table S4). Yet, 75
of the 312 XLOCs were either absent or had a negligible
abundance of mean read per million (RPM) lower than 0.05
in both the control and HS samples (Fig. 2, Table S5). Thus,
given the depth of the RNAsegs, the differences in the pres-
ence of the XLOCs between the MP and GP experiments
reflect the differences in the physiological and developmen-
tal phases of mature dry versus hydrated germinating pollen.
Moreover, all the 312 XLOCs detected in mature pollen had
the expression level > 1 RPM, whereas in the GP_HS, only
61 had > 1 RPM (Fig. 3a, Table 1, Table S5).

Therefore, we set the threshold indicating pollen
expressed XLOC genes (PEXs) to 1 RPM.

We verified the expression of TUs in the RNAseq datasets
using endpoint PCRs for five selected stress-responsive PEX
with cDNA pooled from inflorescences grown under control
and heat stress (Fig. 3b).

Among pollen-expressed genes, 269 and 213 from MP_
HS and MP_Hot/Cold datasets, respectively, were shown
higher than 10 mean RPM. All of these genes had none or
low expression level (RPM < 1) in cauline leaves (Table 1,
Table S5). As an example, using the Integrative Genome
Viewer (IGV) tool, we verified that XLOC_0265858
lacks detectable reads in cauline leaves (Fig. 3c). In con-
trast, as a non-pollen exclusive example, we show IGV of
XLOC_020133, one of only eight PEXs with higher expres-
sion in cauline leaves compared to pollen (Fig. 3d). Thus,
we defined a total of 230 pollen-specific XLOCs (PSXs) as
those genes not present and with RPM < 1 in either CL_HS
or Deforges et al. (2019) RNAseq datasets. Interestingly, out
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of 61 PEXSs in germinating pollen only 30 are pollen-specific
(Table 1).

Conservation among land plants

To search for conserved genes among the 312 XLLOCs, we
used CANTATAdb 2.0, a database of putative IncRNAs
predicted from hundreds of RNAseq libraries from 39 spe-
cies covering a broad diversity of land plant species (Szcz-
esniak et al. 2019). Query entry for each of the 312 XLOC
main TCONSs identified homologs for only 30 genes in A.
lyrata and an additional four genes in three species of other
Brassicaceae family members (Table S7). All the identi-
fied conserved genes were expressed in both MP libraries,
and six were also expressed in germinating pollen. In addi-
tion, around half (18/34) were pollen-specific. However,
no putative IncRNA homologs were identified from more
evolutionarily diverse species, suggesting that the majority
of TUs encoding loci identified here originated within the
Brassicaceae lineage (Table S7). The relatively low num-
ber of IncRNA homologs hits from CANTATAdD 2.0 may
result from the libraries used to construct the database, as
it is curated from transcriptomic studies not including pure
pollen or pollen-enriched samples.
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Because of the low number of matches obtained from
CANTATA, we conducted a more comprehensive search
for homologous genes using BLASTn megablast within the
standard databases nucleotide collection (nr/nt). We then
used the BLASTn results in a phylostratigraphic approach to
determine the phylogenetic origin of each XLOC, assigning
each XLOC to a phylostratum according to the oldest phylo-
genetic node to which the XLLOC can be traced (Fig. 4). We
found that the vast majority of XLOCs (301 of 312) evolved
within the Brassicaceae family, including all novel yet unan-
notated TUs. Eleven PEXs matched homologous sequence
in earlier divergent species, including four XLOCs assigned
to the Magnoliopsida node, which have homologs in mono-
cots (XLOC_013590, XLOC_008192, XLOC_006026, and
XLOC_030237). Among the nine phylogenetically oldest
PEXs, belonging to Eudicotyledons and Magnoliopsida, six
are pollen-specific.

Heat stress-driven differential expression
in developing pollen

The induction of HSPs and HSFs in cauline leaves was
severalfold higher than in the three pollen datasets, and
the abundance (RPM) of the transcripts was 1-2 orders of
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Fig.4 Phylostratigraphy of the 312 PEXs. Each XLOC was assigned
to a phylostratum corresponding to the oldest phylogenetic node to
which the gene could be traced. In red, pollen-specific XLOCs. In

magnitude higher, in most cases (Figure S3), in line with
previous reports indicating that the heat stress response
(HSR) in the male gametophyte is not robust as in vegeta-
tive tissues (Mascarenhas and Crone 1996; Muller and Rieu
2016). Yet, there were significant differences in the level
of induction or lack of induction for some HSPs in pollen
(Figure S3), which likely resulted from differences in the
experimental setups (see Materials and methods section).
In each of the three independent pollen datasets, the
majority of XLOCs were present in both control and heat
stress conditions, having RPM values > 1 (Fig. 5a-c). Only
10, 34 and 19 XLOCs in the MP_HS, MP_Hot/Cold, and
GP_HS, respectively, were specifically expressed in either
one of the conditions with MP_HS. We then explored dif-
ferential expression among the XLOCs in each of the
three pollen datasets, comparing between control and
HS conditions, using the criteria of a log fold change
threshold of > 1 or < — 1 and significance of adjusted p
value < 0.05. In the experiments in which the HS occurred
during the pollen development, 37 and 97 of the XLLOCs
were deemed differentially expressed (DEXs) in the

blue, XLOCs also expressed in sporophytic tissue in Deforges et al.
(2019) or cauline leaf from MP_HS. In bold italics, novel unanno-
tated genes

MP_HS and MP_Hot/Cold datasets, respectively (Fig. 5d,
e). Nevertheless, a potentially higher percentage of the
PEXs may be heat stress-responsive as an additional 12
and 11 genes passed the significance threshold for being
differentially expressed in the MP_HS and MP_Hot/Cold
datasets, respectively (Fig. 5d, e; Table S5). Additionally,
of the 55 and 98 PEXs in the MP_HS and MP_Hot/Cold
datasets, respectively, showing an average fold change > 2
but with significance above the adjusted p value thresh-
old (Fig. 5d, e), 24 were common to both (Figure S4).
In germinated pollen, 12 PEXs showed clear differential
expression under the in vitro heat stress treatment, and
an additional five passed only the fold change or signifi-
cant threshold suggesting potential stress responsiveness
(Fig. 5f). HS cycle of 22-37 °C/16° day/night (MP_HS)
resulted in similar numbers of up- and down-regulated
genes (Fig. 5g), whereas pollen developed under a hot
day (peaking at 40 °C at noon) and cold nights (1 °C)
had far more upregulated genes than down-regulated
genes (Fig. 5h). The differences in the pattern of DEXs
(Figs. 5g—i, 6a) potentially reflect the difference between
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Fig.5 Differential expression of the PEXs in pollen RNA-seq librar-
ies. a—¢ Comparison between control and HS conditions of the PEXs
(RPM > 1) in each of the pollen experiments. d—f Pie charts showing

the heat stress regimes and the physiological phase of the
pollen during the experiment. Consequently, there was
a relatively small overlap among the DEGs between the
three HS experiments (Fig. 6a, b, Figures S4-S6), sug-
gesting that the experimental setups impacted the level
and the direction of expression in most of the HS-respon-
sive XLOCs. Yet, 42% of the PEXs showed significantly
responded to HS across all three experiments (130 DEXSs).
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the distribution of HS-responsive and non-responsive PEXs in each
of the experiments. g-i Volcano plots showing the dynamic range of
the differential expression of the PEXs

Only one DEX, XLLOC_006026, was common to all three
HS experiments and changed in the same direction in all
the three experiments, suggesting that it might be a part
of the core heat stress response in pollen. An additional
10 DEGs were common to both mature pollen datasets
(Fig. 6b, ¢). Nine of these 10 DEGs were showing similar
expression trend following heat stress in the mature pollen
datasets (Fig. 6b). Of the four DEX from GP_HS that were
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Fig.6 Comparison of differen-
tial expressed XLOCs (DEXs)
in the three pollen experiments.
a Heatmap of log, changes for
all 312 XLOCs in MP_HS,
MP_Hot/Cold, and GP_HS
libraries. b Venn diagram show-
ing overlap of DEXs among the
three pollen RNAseq datasets.

¢ Heatmap of the DEXs present
in two or more of the RNAseq
datasets (sections i—iv in b. d
Real-time PCR validation of
differential expression of seven
PEXSs using cDNA from control
and heat stress inflorescences
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also differentially expressed in one of the other datasets,
three showed a similar response trend to heat stress.

We further conducted quantitative real-time PCRs to
validate differential expression during HS for six PSXs and
one PEX that is not pollen-specific, XLOC_005620. To this
end, we used cDNA from inflorescence (flower buds and
open flowers) of wild-type Col-0 plants grown under control
conditions or exposed to 3-day HS regime as in the MP_HS
experiment (Figure S1). We show that five of six PSXs were
upregulated in response to heat stress (Fig. 6d). Among the six
PSXs, the induction of XLOC_006026, which increased in all
three experiments (Table S8), was the most prominent, with
a 23-fold increase (Fig. 6d). In comparison, XLOC_019124,
XLOC_ 018488, XLOC_008198, and XLOC_020126, which
were induced in the MP_Hot/Cold experiment (Table S8), only
increased threefold to fourfold during HS in the inflorescences
(Fig. 6d). In contrast, XLOC_005620, which significantly
decreased in both mature pollen HS datasets (Fig. 6¢), did not
change in the qRT-PCR experiment (Fig. 6d), which might
be due to non-gametophyte-specific expression. The real-time
PCR results validate the DEXSs identified in the datasets from
three pollen experiments and support the notion that some of
the PEXs induced during HS may play a role in the stress
acclimation of the male gametophyte.

XLOCs potentially regulated by miRNAs

A major mechanism of gene expression regulation is mediated
through small RNAsS, including microRNAs (miRNAs), which
can impact mRNA degradation and translational repression.
Similar to mRNA, IncRNAs can be targets of miRNAs and
act as miRNA decoys, sequestering specific miRNAs (Franco-
Zorrilla et al. 2007). To predict which PEXs are potentially
targeted by miRNA binding, we used the psRNATarget tool
employing the confidence cutoff threshold of 3.0 (Dai et al.
2018). We identified 50 PEXs as putative targets of one or
more Arabidopsis miRNAs, the majority of which were pre-
dicted to be processed by cleavage rather than translational
inhibition (Table S9; Figure S8A). Several miRNAs have
been characterized as pollen-expressed under control condi-
tions (Borges et al. 2011). While our RNA-seq libraries are
unlikely to contain mature miRNAs, we looked for reads map-
ping to the pollen-expressed primary (pri)-miRNAs in the
MP_HS dataset. We found several reads mapping to miR447a
(Table S9, Figure S8B), an A. thaliana-specific microRNA
(Rathore et al. 2016), in the control treatment but not follow-
ing HS. Correspondingly, while the expression of pri-miR-
NA447a decreased in HS, expression of its putative target
XLOC_032495 (TCONS_00050386) increased in both MP_
HS and MP_Hot/Cold (Figure S8C). miRNA447a is down-
regulated in cold-imbibed seeds vs. dry seeds (Sarkar Das
et al. 2018) and hypoxia-treated roots vs. control (Moldovan
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et al. 2010), pointing to it being a stress-regulated, and possibly
stress regulating, miRNA.

Periodic movement in ribosome-protected mRNA
fragments (RPFs) indicates translation potential
for some XLOCs

Ribosome profiling, also known as ribosome sequencing
(Riboseq), is a powerful method for identifying transcripts
engaged with ribosomes and allows for the likelihood pre-
diction of transcripts undergoing in vivo translation. In par-
allel with the RNAseq of the GP_HS experiment, sequenc-
ing of ribosome-protected fragments (RPF) was performed
from the same in vitro HS experiment of in vitro germi-
nated pollen (Poidevin et al. 2020). As the germinated pollen
sequencing libraries are strand-oriented, we determined the
coding strand for each of these XLOC genes (Table S6). We
found consistent alignments for a total of 75 RPFs (RPF-
GP_HS dataset) to 73 XLOCs within the RNA (GP_HS
dataset), where XLOC_020146 and XLOC_005993 had RPF
transcripts from both strands (Table S6). We focused on the
45 XLOCS with RPF reads values > 1 RPM in either control
and HS (35 °C) or both, including XLOC_020146 plus and
minus transcripts (Table S10).

To gain further insight into the translational profiles
revealed by the RPF values, we used the RiboWave v1.0
tool (Xu et al. 2018), a pipeline able to denoise the origi-
nal RPF signal by extracting the periodic footprint of the
P-sites (PF P-sites) of actively elongating ribosomes. The
PF P-site values were decomposed into the three different
frames, to determine which frame is likely translated by
the ribosome. One limitation of the XLOCs annotations is
that no clear definition of exons has been established that
allows the discrimination between coding and untranslated
regions (UTRs). Therefore, we could not exploit the statisti-
cal significance of translational prediction of the RiboWave
algorithm. However, visual inspection of the denoised PF
P-site tracking allowed us to define a minimum number of
five PF P-sites in the same frame as a proxy of an increased
likelihood for translation. From the initial 45 XLOCs, 23
XLOCs passed this filter and could be considered as very
likely translated (Fig. 7a, Table S10).

Additionally, a blastx (nr) for all 312 XLOCs (limited
to Arabidopsis thaliana) identified partial hits (50-96%
identity) or full match hits (>97% identity) with sequences
of predicted proteins (E value < le—7) for 116 (37%) of
the genes, of which 92 (30%) are IncRNAs (Table S11).
The proportion of blastx hits positives within the 75 RPFs
XLOCs was 51%, and 60% (14 of 23) of the RPFs with
the minimum number of five PF P-sites (Fig. 7a, Table S10,
S11) corresponded with the increased likelihood of these
XLOCs being translated. Interestingly, 6 of these 14 XLOCs
encode for predicted UniProt proteins, the putative products
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and TCONS_00009618 (XLOC_006026), both pollen-spe-

cific and HS-induced expressed loci (Table S5).
XLOC_030751, annotated in Araportl1 as unknown gene

AT5G36985, is intronless with an ORF (DOC S3) coding for
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self-incompatibility protein homolog 25 (SPH25) (Fig. 7c).
The periodicity plot for XLOC_030571 clearly shows that
only one reading frame (F1) is being translated, with the PF
P-sites concentrated within the CDS along the transcript.

In contrast, the periodicity plot of XLOC_006026 (Figs. 3,
4, 6) revealed PF P-sites in two frames, FO and F1 (Fig. 7d),
suggesting that the TU contains an unprocessed intron.
The blastx search identified a near-perfect identity with a
phosphoenolpyruvate carboxykinase (PEPCK) protein. The
pairwise alignment of the translated XLOC_006026 mRNA
with the protein sequence resulted in two ways split, with
the first part showing 100% identity with the first 10 amino
acids. The second part is identical with the other 145 amino
acids, except for seven extra amino acids and a stop codon
in the C-terminus (Fig. 7e), corresponding to the two frames
being read (Fig. 7d). Inspection of the XLOC _006026 CDS
revealed two premature stop codons at+ 37 and + 347; the
first originated by what seems like an inaccurate exonl-
intronl site splicing event leading to frameshift, and the
second by the inclusion of intron 2 (Doc S4, Fig. 7f). Yet,
although the vast majority of XLOC _006026 transcripts
seem to be incorrectly processed, IGV output shows that few
transcripts may still be fully and correctly spliced to produce
the full-length protein-coding sequence CDS (Fig. 7f).

Discussion
Discovery of novel transcripts in Arabidopsis pollen

Novel genes that might only be expressed in a restricted
context, such as a single cell type alone or in combination
with stress, are only slowly being incorporated into reference
genome annotations. The reason for overlooking these genes
is partly because RNAseq studies tend to focus on known
genes and exclude sequence reads that do not match an exist-
ing reference genome. Therefore, it is not surprising that
even 20 years after the first draft of the Arabidopsis genome
was published (Arabidopsis Genome 2000), additional new
genes are still being discovered. The recent Araportl1 anno-
tation update released in 2016 added more than 600 and
5000 novel protein-coding and noncoding RNAs, respec-
tively, relying predominantly on RNAseqs from sporophytic
tissues (Cheng et al. 2017). Comparison between microarray
datasets of flower, roots, and leaves identified 32% of ~3700
lincRNAs in Arabidopsis as showing preferential expres-
sion in one of these organs (Liu et al. 2012). Epigenetic
reprogramming taking place during plant sexual reproduc-
tion involves the overall reduction in DNA methylation in
the germline during gametogenesis, allowing the potential
expression of otherwise silent genetic elements, including
TEs, endogenous protein-coding genes, and introduced
transgenes (Kawashima and Berger 2014). It is therefore
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likely that the 312 PEX genes (pollen-expressed intergenic
expressed loci) reported herein have gone unnoticed for such
a long time is due, in part, for their expression being mostly
restricted to pollen (Figs. 1, 2, 3), rather than the depth of
the RNA sequencing (Table S4).

Compared with sporophytic tissues, such as root or leaf,
which are composed of multiple cell types with different
specialized functions, the male gametophyte is simple, con-
taining a haploid vegetative nucleus and two sperm cells in
tricellular pollen. This feature is advantageous for obtain-
ing a large quantity of uniform cell-type-specific for any
omics profiling. In comparison, obtaining a uniform sporo-
phytic single-cell population from homogenized tissue for
transcriptomics requires the isolation of tag-labeled cells by
fluorescent-activated cell sorter (FACS). Moreover, RNA
extracted from the enriched isolated cells needs to be ampli-
fied to construct a library, which is biased toward transcripts
with relatively high abundance, and transcripts with low
copy number are often omitted (Efroni and Birnbaum 2016).

In recent years, RNAseq studies have added many new
genes to the genome annotations of Arabidopsis and human,
organisms completely sequenced two decades ago. Genomic
studies based on various transcriptomic platforms identified
thousands of IncRNAs in diverse animal and plant genomes,
including over 58,000 in the human genome (Ulitsky 2016).
As IncRNAs are more tissue-specific and expressed at lower
levels than protein-coding mRNAs (Ulitsky 2016), it is plau-
sible that future studies will identify many more yet uni-
dentified cell-type-specific IncRNA loci in the Arabidopsis
genome.

The majority of the IncRNAs PEX genes reflect
the age of the Arabidopsis pollen transcriptome

Our finding that the vast majority of the 312 PEX genes
belong to the Brassicaceae family (Fig. 4), 180 of which
are A. thaliana specific, suggests these genes evolved rela-
tively recently. These findings are in agreement with the
feature of IncRNAs evolving more rapidly compared with
protein-coding genes (Ulitsky 2016; Yu et al. 2019; Ruiz-
Orera et al. 2020). The transcriptome of the male gameto-
phyte appears to be enriched for recently evolved genes (i.e.,
lineage-specific genes and orphan genes lacking homologs
in other lineages). These young genes include short peptides,
intergenic transcripts, long noncoding RNAs (IncRNAs),
and de novo genes at their transitory stages, also known as
proto-genes (Cui et al. 2015). Similarly, 180 and 39 of the
PEXs are species-specific and taxon-specific orphan genes,
respectively (Fig. 4), indicating that they are young genes
that recently evolved in the Brassicaceae lineage. The emer-
gence of de novo genes from non-genic regions is relatively
frequent in eukaryotes and may be part of a progressive evo-
lutionary process that starts with the expression of intergenic
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regions to proto-genes and, finally, functional genes (Cui
et al. 2015).

A survey of RNAseq datasets from 15 diverse flower-
ing plant species indicated that transcription from unan-
notated intergenic regions is quite frequent in plants, but a
large part of it is due to random non-functional transcrip-
tional noise (Lloyd et al. 2018). Yet, predictions based on
a computational analysis in Arabidopsis indicated that 38%
of intergenic transcribed regions and 40% of the annotated
ncRNAs have similar features to protein-coding or RNA
genes and are likely functional (Lloyd et al. 2018). Since
the majority of the 312 XLOC genes are relatively abundant
(RPM > 10), expressed exclusively in developing/maturing
pollen, and HS-responsive, we postulate that most, if not
all, are functional genes. The function of these young genes
may be diverse, including direct or indirect gene expres-
sion control. For example, the 50 PEXs we identified having
miRNA targets may function as target mimics and molecular
sponges that inhibit the action from a subset of miRNAs.
Furthermore, 30% of the IncRNA PEXs contain smORFs
that matches protein sequences. Indication of interaction
with ribosomes, for those present in the riboseq dataset, and
the demonstration of movement along the ribosome (active
PF-P footprint) indicated that some of the IncRNAs produce
micro-proteins and proteins that may be functional (DOC
S2, Fig. 7a, Table S11). Functional studies in a broad range
of species from yeast to humans demonstrate that micropro-
teins can functionally impact development and physiology
(Plaza et al. 2017). In the context of pollen, there are several
examples of microproteins having a profound impact on pol-
len growth and fertilization, including self-incompatibility,
tube growth, and sperm release inside the ovule (Cui et al.
1999; Dong et al. 2013; Uebler et al. 2015; Ge et al. 2017).

The occurrence of XLOC_030751 and XLOC_032470
encoding for self-incompatibility-related protein homologs
among the 23 PEXs PF P-sites-positive very likely to be
translated (Fig. 7a, Table S10) lend support for the plausibil-
ity that some of the ORF-containing PEXs are functional.
Interestingly, the expression of both self-incompatibility
related genes is relatively abundant in mature pollen, and
they responded to the stress regime in the MP_Hot/Cold
experiment (Table S5). Direct experimental evidence at the
protein level is needed to determine their actual presence and
whether they function in pollen—pistil interactions. Yet, they
might be involved in switching from selfing to outcrossing
mode of mating, which is employed in about half of the spe-
cies in the Brassicaceae family (Nasrallah 2019).

Potential involvement of PEX in pollen HSR
The limited HSR of pollen compared to cauline leaves indi-

cated by the activation of HSPs (Figure S3) may account,
at least in part, for its increased thermosensitivity, but also

suggests that pollen has distinct requirements for coping with
high temperatures. A major conceptual difference between
pollen and sporophytic cells is that the latter can respond to
HS by reducing metabolism into ‘survival mode,” waiting for
better growth conditions to resume growth or other physi-
ological activities, whereas developing pollen and pollen
tubes have a limiting window of time to properly mature
and fertilize an ovule (Rahmati Ishka et al. 2018). We found
that the expression of a large proportion (~42%) of the 312
PEXs significantly changed > twofold at least in one of the
pollen HS experiments datasets (Fig. 6b) and many of the
other 58% are potentially HS-responsive (Fig. Se—f). A more
comprehensive survey of the expression pattern of all these
potential DEXs at different stages of pollen development
along with different time points during an HS is required to
determine their relevance to pollen HSR. However, given
that the majority of the PEX specifically express in pollen
(i.e., PSXs), it is likely that some of them either function
in the pollen HSR, or are at least responsive to regulatory
pathways that are controlling the HSR.

Several of the PSXs that might function at the core pol-
len HSR include XLOC_006026, which was induced in all
three pollen experiments, and others that were increased
in two of the pollen datasets, for example XLOC_027632,
XLOC_002603 (Fig. 6¢), XLOC_009073, XLOC_009261
(Figure S5), XLOC_008196, XLOC_008185 (Figure S6),
and XLOC_008726 (Figure S6). XLOC_006026 is intrigu-
ing as it is one of the most conserved PEXs that might code
for a functional PEPCK, an enzyme involved in malate
metabolism and gluconeogenesis. The closest PEPCK
homolog of XLOC_006026 is AtPKC1 (AT4G37870),
with 55.6% identity, which was shown to function in malate
metabolism in stomatal closure and drought tolerance in
young Arabidopsis plants (Penfield et al. 2012). PEPCK
catalyzes the reversible decarboxylation of oxaloacetate to
yield phosphoenolpyruvate (PEP) and CO, at the expense
of ATP. Since PEP is a precursor for either the glucose and
shikimate biosynthesis pathways or to pyruvate, it is situ-
ated at an important crossroad in plant metabolism, lying
between organic and amino acids, lipids and sugars (Lea
et al. 2001). Increased demand for carbohydrates during HS
was suggested to contribute to the enhanced thermosensi-
tivity of pollen (Rieu et al. 2017). HS was shown to deplete
the level of accumulated starch and soluble sugars in devel-
oping pollen, whereas HS-tolerant tomato genotypes were
better able to maintain pollen starch and sugar levels than
sensitive genotypes (Pressman et al. 2002; Firon et al. 2006;
Sato et al. 2006). Therefore, the induction of PEPCK activity
might help pollen accumulate specific sugars and better tol-
erate HS. It would therefore be highly interesting to test the
potential impact of XLOC_006026 on pollen development
and activity both during favorable conditions and elevated
temperatures.
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Concluding remarks

It was recently suggested that IncRNAs make suitable
environmental sensors or effectors to help plants adapt to
changing environments, as their expression is extremely
responsive to stresses and they evolve rapidly compared
with protein-coding genes (Yu et al. 2019). However, func-
tional studies of the involvement of IncRNAs in pollen
development and physiology, let alone pollen acclimation
to stress, are still at their earliest stages. The large propor-
tion of genes encoding IncRNAs added to the Arabidop-
sis genome annotation in the previous Araportl1 update,
together with the thousands that have been identified in
many other plant species in RNAseq experiments, raise
the question about whether they have a function. Finding
whether these IncRNAs play a significant role and how
do they perform their function is currently a major chal-
lenge in plant biology. Our identification in pollen and
characterization of the novel and ‘Araport recent’” PEXs
genes significantly provide a foundation for understanding
potential functions for some of these IncRNAs in pollen
development and HSR.
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