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Abstract—WebAssembly (Wasm) is a platform-independent
bytecode that offers both good performance and runtime isolation.
To implement isolation, the compiler inserts safety checks when
it compiles Wasm to native machine code. While this approach is
cheap, it also requires trust in the compiler’s correctness—trust
that the compiler has inserted each necessary check, correctly
formed, in each proper place. Unfortunately, subtle bugs in the
Wasm compiler can break—and have broken—isolation guaran-
tees. To address this problem, we propose verifying memory
isolation of Wasm binaries post-compilation. We implement this
approach in VeriWasm, a static offline verifier for native x86-64
binaries compiled from Wasm; we prove the verifier’s soundness,
and find that it can detect bugs with no false positives. Finally,
we describe our deployment of VeriWasm at Fastly.

I. INTRODUCTION

WebAssembly (Wasm) is a modern, platform-independent
bytecode that was originally designed to be embedded in the
browser, and was therefore designed with isolation in mind.
Ironically, the fact that Wasm’s design was tied to the browser
also unshackled it from the browser: different “embedding
environments” are using Wasm as a general-purpose software-
based fault isolation (SFI) mechanism.

For example, the Fastly and Cloudflare content-delivery
networks (CDNs) use Wasm to isolate different tenants on their
edge clouds [77], [55]. They run many clients’ Wasm code
within a single process, using Wasm-based SFI to protect clients
from each other—and to protect the embedding host process
from clients. Any break in Wasm’s isolation guarantees could
allow a malicious client to steal or corrupt data that belongs to
another client (or the host). Similarly, Mozilla uses Wasm to
sandbox third party C libraries in the Firefox renderer [49], [50].
The Wasm compiler—in this case, the Bytecode Alliance Lucet
compiler [55]—essentially serves to instrument the library with
inline SFI checks that restrict the library control and data flows
to its own sandbox. But if this Wasm-based SFI fails, everyday
web users are vulnerable to remote attackers, who could exploit
such “sandbox escape” bugs to do anything from steal data to
fully compromise machines.

In general, all systems that use Wasm for isolation im-
plicitly trust the Wasm compiler with their users’ safety—
the compiler is solely responsible for enforcing isolation by
inserting checks into the native code it generates. However,
compilers are complex software artifacts and code optimization
passes are especially notorious for introducing unintended
consequences [82], [57], [71], [83], [36], [69]. Wasm compilers
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perform optimizations after inserting memory safety checks,'
so any bugs in optimization could allow a carefully generated
Wasm program to bypass Wasm'’s safety checks. These bugs
actually happen: a bug in the Lucet loop invariant code motion
pass broke SFI-safety, allowing maliciously-crafted Wasm code
to escape the sandbox to, say, read arbitrary memory [26].
Though there’s an active research community focused on
building verified compilers (e.g., [40], [18])—even a verified
Wasm compiler [13]!—it seems likely that defects in industrial
compilers will persist for some time.

Given this practical reality, we propose an alternative
method for ensuring the safety of Wasm code: verifying the
isolation of native-compiled Wasm modules using a verifier
that operates directly on the generated machine code. This
approach has a number of benefits. First, by working with
native binaries, the verifier engages directly with the “final
form” of a module and does not need to consider any further
transformations to the instruction stream. Second, the verifier
is much simpler than a compiler or run-time system, which not
only shrinks the trusted computing base, but also makes the
verifier easier to prove correct using formal methods. Finally,
the memory-safety verifier runs once per Wasm module, and
thus imposes no run-time overhead.

Our work makes the following contributions:

» A framework that describes sufficient conditions
for reasoning about the memory-safety properties
of native-compiled Wasm modules at the x86-64
instruction level.

»  The design and implementation of VeriWasm, a static
offline verifier that uses this framework to check the
memory safety of x86-64 binaries produced by the
Lucet Wasm compiler.

» A formal proof that our verifier is sound, i.e., it
only labels programs safe if they are indeed safe. We
mechanically verify our proof using the Coq theorem
prover.

»  An empirical assessment of VeriWasm against both
benign and faulty native-compiled Wasm modules,
including two Wasm-sandboxed libraries used in
Firefox and 103 client binaries deployed on Fastly’s
production edge cloud.

Our code—both VeriWasm and our Coq model and proofs—
and data are available under an open source licence [29].
II. A BRIEF INTRO TO WASM AND ITS ANCESTORS

The promise of safe, portable binary code is one that has
driven well over 25 years of research. We briefly summarize

Note that this choice is on purpose, as subsequent optimization passes may
allow redundant or unnecessary checks to be removed.



this history to place Wasm in context, give an overview of
Wasm’s design, and finally explain how VeriWasm can help.

A. Ancestral systems

The idea of creating portable execution formats, independent
of high-level language or machine architecture, is at least sixty
years old—going back to Conway’s UNCOL effort in the late
1950s [19]. But, in spite of a range of interesting systems (e.g.,
notably UCSD’s p-System [16]), the idea did not take off until
the 1990s, which saw the introduction of the Open Software
Foundation’s Architecture Neutral Distribution Format [44],
Sun’s Java Virtual Machine [42], and Microsoft’s Common
Language Runtime [46].

Of these, Java was one of the first systems to address
the need for safety. Java included both a load-time verifier
and run-time checks designed to ensure that maliciously
constructed Java bytecode could not bypass the language’s
type-and memory-safety guarantees. This proved challenging
in practice, in part because Java’s complex type system in turn
demanded a complex verifier—and, unfortunately, verifier bugs
led to a broad range of “sandbox escapes” [6].

In 1994, Wahbe et al. introduced the notion of Software-
based Fault Isolation (SFI) [80], a family of binary instrumen-
tation techniques for ensuring coarse-grained memory safety.
While Wahbe and colleagues integrated their original SFI
concept into the Omniware mobile code format [4], most
subsequent efforts focused on developing SFI in the context of
existing instruction set architectures (e.g., x86, x86-64) [66],
[23], [45], [84], [62]. Several of these, including the original
SFI scheme, were designed with load-time verification in mind,
i.e., they properly instrumented binaries to not only satisfy
all memory-safety invariants, but make it easy to verify these
invariants. Google’s NativeClient (NaCl) is perhaps the most
popular of these systems—in part due to its integration in the
Chrome browser—and its PNaCl variant included a portable
intermediate binary format [22], like the original Omniware.

WebAssembly, first announced by the W3C in 2015, is an
effort to mainstream much of this past work and produce a
standard high-performance machine-independent bytecode that
is also safe [25].

B. Wasm: Fast, modern SFI

Wasm was explicitly designed to be easy to sandbox—after
all, browsers need to parse, validate, and compile Wasm within
a page load. Indeed, many of Wasm’s design choices—from
its static type system to its structured control flow and memory
hierarchy—are in service of sandboxing: they make it easy for
a compiler to generate native code that is SFI-safe, i.e., code
whose data- and control-flow are isolated to the sandbox. These
design choices are also the reason organizations like Fastly
and Mozilla are starting to use Wasm to sandbox potentially
untrusted code: by compiling to Wasm, they get SFI for free.

Control-flow safety. Wasm compilers must ensure that the
control flow of the generated native code is safely restricted
to the sandbox. Two Wasm design features simplify this task.
First, Wasm exposes structured control instructions (e.g., if
blocks and loops) that preserve Wasm’s type safety; Wasm
does not expose unstructured control flow instructions like

goto that would make this task harder. Second, the bytecode
only allows indirect control transfers via static look-up tables:
call_indirect, for example, is used to call functions regis-
tered in the module indirect-function table; br_table is used
to jump to local branch-table blocks. Both of these instructions
perform dynamic checks to ensure control is transferred to a
valid function or block of the correct type, respectively. They
also make it easy to ensure the module’s indirect control flow
is safe when compiled to native code. For example, when
compiling call_indirect idx to x86-64, the Lucet compiler
simply ensures that the index (idx) corresponds to a registered
function, checks the type of the function at this index, and then
calls the function.

Memory isolation. Wasm compilers must also ensure memory

isolation. Again, deliberate language design choices simplify

this task: Wasm exposes three distinct isolated memory regions—
the stack, global variables, and a linear memory region—which

must be accessed with different type-safe instructions. This

makes it easy for a compiler to ensure that memory accesses

are safe when compiling to native code. Instructions that

access stack variables (local.get/set idx) or global variables

(global.get/set idx) can simply be compiled to native code

that access memory at constant offsets (idx) from the stack
pointer and global variable memory base, respectively. Similarly,
linear memory accesses (Load/store offset) can be compiled

into native loads and stores that access memory at of fset off
the linear memory base, after appropriately ensuring the offset

is within the linear memory bound.

C. Trust but verify

While Wasm makes it easy for compilers to enforce SFI,
we still have to trust compilers to do so correctly. Correct
compilation is easier said than done. Modern optimizing
compilers are complex, and a single bug in an optimization
pass could result in a sandbox escape. On a Wasm edge-cloud,
this could, for example, allow an attacker to steal or corrupt
data sensitive to other clients or the cloud provider (e.g., SSL
keys). In the browser, where Wasm is used to sandbox libraries,
it could allow an attacker to compromise the renderer to, again,
steal or corrupt sensitive data.

We need a way to verify that Wasm compilers preserve SFI
even across optimization passes. One way to do this is to prove
that the compiler is correct (e.g., like the Certified CompCert
C compiler [40]). Alas, verifying an industrial optimizing
compilers is notoriously hard (e.g., it took CompCert 100,000
lines of Coq and 6 person-years for the proof alone [4!1]).
Luckily, we don’t need to prove a compiler correct to ensure
that the programs it produces are safe. Instead, like NaCl, we
can verify that the compiler inserts the necessary checks to
enforce SFI safety in each binary it produces. In this paper, we
describe such a verifier for the Lucet compiler.

III. VERIWASM OVERVIEW

VeriWasm is a static SFI verifier for native-compiled Wasm.
VeriWasm takes as input a possibly buggy or malicious native-
compiled Wasm module, and uses a sound static analysis to
determine if the module is safe. In this section, we give a
brief overview of VeriWasm’s design and the four local safety
properties it verifies. In Section IV we describe the static



analysis passes that verify these properties, and in Section V,
we formally verify the soundness of the verifier.

VeriWasm design. VeriWasm verifies binaries produced by
the Lucet WebAssembly compiler. Fig. 1 gives an overview
of VeriWasm’s different stages. The tool first recursively
disassembles the native-compiled Wasm binary and produces a
control-flow graph for every function exposed in the symbol
table. As a part of this process, VeriWasm also resolves all
indirect jumps in the control-flow graph (see Section IV-D1),
and ensures that all direct and indirect calls target functions
present in the symbol table. Then, VeriWasm checks the
disassembled code against a list of safe native instructions—
the instructions the Lucet compiler emits—and rejects binaries
with potentially unsafe instructions (like int and syscall).
Finally, VeriWasm analyzes each function to verify local safety
properties; if all functions are safe, VeriWasm then declares
the module safe.

VeriWasm’s local safety properties. To verify if a compiled
function is safe—that its control- and data- flow is isolated
to the Wasm module—VeriWasm verifies four local safety
propetrties:

»  Linear memory isolation: All linear memory accesses
must fall within the linear memory bounds (or
surrounding guard pages). This ensures that linear
memory operations cannot span beyond the sandbox
boundary.

»  Stack isolation and integrity: All stack accesses must
fall within the stack region (or surrounding guard
pages) and all stack writes must be restricted to local
variables in the current stack frame. This ensures
that stack accesses cannot extend past the sandbox
and prevents a function from writing past the local
variables stored on the stack (e.g., return addresses,
arguments, and other frames).

»  Global variable isolation: All global variable accesses
must fall within the global variable memory region.
This ensures global variable accesses cannot extend
past the sandbox.

»  Control flow safety: All indirect jumps must target
valid code blocks, all indirect calls must target the
start of valid functions, and all returns must return to
the calling function. This coarse-grained control flow
integrity (CFI) ensures that only VeriWasm-verified
code runs.

These safety properties are sufficient to prove that native-
compiled Wasm binaries are safe (§V). But these safety
properties are also less restrictive than Wasm itself. For example,
Wasm’s CFI restricts indirect calls to target functions of the
right type; our control flow safety property, on the other
hand, only requires indirect calls to target valid functions
(see §1V-D2 for further discussion). Wasm similarly restricts
functions from reading beyond their stack frame, while our
stack isolation property allows functions that read the whole
stack. This difference is important: it simplifies the analysis
(e.g., by not requiring it to perform type inference to enforce
Wasm’s finer-grain, type-based CFI). We describe our analysis—
which exploits Lucet’s implementation choices for additional
simplicity—next.

IV. VERIWASM’S ANALYSIS

VeriWasm uses abstract interpretation to verify the isolation
of Wasm modules compiled with Lucet. Abstract interpretation
is a static analysis technique that infers information about
a program by overapproximating its behavior. It executes
the code similar to a standard interpreter, but describes a
program’s variables as abstract values representing a set of
concrete values relevant to a safety property of the variable.
For example, VeriWasm’s linear memory safety analysis tracks
whether variables in registers and on the stack are less than
232 which represent valid offsets into the linear memory.

Each of VeriWasm’s safety analyses have different abstract
semantics; however, they all have some characteristics in
common. The first is that they only track variables in registers
and on the stack, but not in the linear memory. VeriWasm
can validate modules without tracking variables across the
linear memory because Lucet’s optimizations also do not track
variables across the linear memory. The second characteristic
is that all of VeriWasm’s analysis passes analyze each function
independently. When VeriWasm encounters a call instruction,
it skips over the call, but acts as if the callee modified every
register—they must be checked again before the code uses
them in an SFI-sensitive operation. This ensures that even if
the callee modifies callee-saved registers, the caller function
is still safe. The caller’s stack frame and stack pointer are
preserved as a consequence of stack frame integrity (§IV-B).
The third characteristic is that all of VeriWasm’s analyses are
sound: all functions VeriWasm labels as safe are indeed safe.

Unlike previous SFI systems (e.g. [80], [84], [45]), Wasm
was not designed with verification in mind—and this necessarily
makes our analysis more complex. The NaCl compiler, for
example, compiles code to bundles [84], [ 1, and ensures
that all safety checks are local to a bundle and cannot be to
moved (outside the bundle) or optimized away. This allows
the verifier to perform a single pass analysis, at the bundle-
level, to ensure both memory and control flow safety [84],
[47]. In contrast, Wasm compilers perform optimizations after
inserting SFI safety checks—and thus checks can be moved
(e.g., checks can be lifted outside of a loop as part of a loop
invariant code motion, as mentioned in Section I) or, when
redundant, removed. This is crucial for performance, but it
unfortunately means that the verifier must account for such
optimizations when checking SFI safety. In the rest of this
section, we describe VeriWasm’s analysis passes, ending with
a description of how VeriWasm validates safety in the presence
of compiler optimizations.

A. Linear memory isolation

VeriWasm verifies that the module’s linear memory is
isolated—that all linear memory accesses fall within the
module’s linear memory region. Lucet gives each module
a contiguous 8GB region above a linear memory base; the
region is composed of 4GB of usable memory followed by a
4GB guard page. Lucet compiles all linear memory accesses
to x86-64 instructions with an effective address of the form
LinearMemBase + Offsetl + Offset2, where Offset1
and Offset2 are 64-bit values that should be less than 232,
Addresses of this form should be at most LinearMemBase +

2A bundle is a 32-byte aligned group of instructions.



VeriWasm

. Yaxpeax
—_—
(dissassembly)

—_— Lucet

foo:
push rbp;
mov rbp, rsp;

safe?

O untrusted

Figure 1.

O trusted @ verified

VeriWasm takes as input a malicious or buggy natively-compiled Wasm module and uses a trusted disassembler (Yaxpeax [3]) to create a CFG for

each function in the module. VeriWasm then runs its verified analysis passes on each function’s CFG to determine if the binary preserves SFI-safety.

Feature ‘ Safety property Description

Linear memory | Linear memory isolation

All linear memory reads and writes fall within the 4GB linear memory space (or surrounding guard pages).

Stack isolation

k . .
Stac Stack-frame integrity

Stack reads fall within the stack region (or surrounding guard pages).
Stack writes are to local variables in the current stack frame.

Global variables | Global variable isolation

Global variable accesses fall within the global variable memory region.

Jump target validity
Call target validity
Return target validity

Control flow

All indirect jumps target valid code blocks.
All indirect calls target valid functions.
Functions return to their respective call sites.

Figure 2. The safety properties VeriWasm verifies to prove SFI-safety. For clarity the stack and control flow safety properties are broken down into sub-properties.

8GB, which will either be in the linear memory or the following
guard page. VeriWasm ensures that all linear memory accesses
are constrained to the linear memory region by verifying that:
(1) LinearMemBase points to the linear memory base and (2)
that Offset1 and Offset2 are less than 232,

Tracking linear memory safety. VeriWasm verifies linear
memory isolation by tracking which variables—registers or
stack slots—have a concrete value less than 232 (Bounded),
and which variables point to the start of the linear memory
(LinearMemBase). All variables start with an abstract value
of Unknown, except the linear memory base register (rdi),
which starts with the value LinearMemBase. Other variables
only become LinearMemBase when they’re assigned from a
variable with abstract value LinearMemBase. Variables become
Bounded when they are truncated or assigned a 32-bit value.
For example, after mov eax, eax, register rax is now Bounded,
and after mov rbx, 0x1337, rbx is now Bounded.

Verifying linear memory isolation. VeriWasm applies two
checks to the results of this analysis to prove that linear memory
is properly isolated. VeriWasm first checks that, for all linear
memory accesses, one argument is LinearMemBase, and the
other arguments are Bounded. VeriWasm also verifies that at
each function call, rdi is LinearMemBase. This is required by
Lucet’s calling convention, and violating that convention could
break linear memory isolation.

The following code shows how VeriWasm verifies a function,
foo, that reads an element in linear memory and then calls a
function bar:

1 foo:
2 ; ASSUME: rdi is LinearMemBase
3 ; TRACK: rax, rbx, are Unknown

5 mov eax, eax;
6 ; TRACK: rax Bounded
7 mov rsi, [rdi + rax + 0x48];

8 ; ASSERT: rdi is LinearMemBase

9 ; ASSERT: rax and 0x48 are Bounded
10 PN

1 call bar;

12 ; ASSERT: rdi is LinearMemBase

The read on line 7 is safe since rdi is LinearMemBase and
rax and 0x48 are Bounded (since rax has been truncated to
32 bits on line 5). This safety check would fail if rdi had been
altered to point to something other than LinearMemBase, or if
rax had any possibility of being greater than or equal to 232
It would also fail if rdi were not LinearMemBase in the call
to bar (line 11).

B. Stack isolation and stack-frame integrity

VeriWasm verifies that native-compiled code cannot break
isolation by misusing the stack. We do this by verifying:

»  Stack isolation: stack reads and writes fall within the
module’s stack region (or surrounding guard pages,
described below).

»  Stack-frame integrity: stack writes are additionally
bounded by the base of the current stack frame, i.e.,
stack writes cannot clobber return addresses, spilled
arguments, or other function stack frames.

Before we describe how VeriWasm verifies these properties,
we describe how Lucet compiles stack operations, and describe
the layout of the stack region.



Native-Wasm stack instructions. Lucet compiles Wasm stack
accesses into three kinds of native operations:

rsp =rsp £ ¢
x = mem[rsp £ c]
mem[rsp £ c] = x

stack adjustments
stack loads
stack stores

In this syntax, c is a constant: Lucet adjusts the stack by a
constant amount, stores variables at a constant offset from the
stack pointer, and loads variables from a constant offset from
the stack pointer. VeriWasm takes advantage of the constant
offsets to statically infer what part of the stack region any
particular read or write falls within.

Native-Wasm stack layout. Lucet allocates a contiguous
region—typically 128 K—for the module stack region. Both

ends of the stack region, as shown in Fig. 3, are guarded.

Lucet uses a 4K guard at the end the stack region, and an
8K guard below the start of the stack region. The 4K guard
region prevents most functions—all functions with fewer than
4K local variables—from growing the program stack past the
stack region: at worst, accessing a local variable will land in
the 4K region and trap. Some functions use more than 4K of
local variables, though. For these, Lucet adds a dynamic check
probestack(k) in the function prologue before growing the
stack by k. The probestack ensures that growing the stack is

safe, i.e., within the 128K stack region, and traps otherwise.

The 8K guard at the stack region base just fits the maximum
number of spilled arguments (8,000 bytes) and any control data;
we require this guard region to simplify our binary analysis.?

Our stack safety verification is based on the key observation
that a function will (1) read at most 8K above (towards bottom
of stack region) the stack frame pointer—the function’s spilled
arguments; and (2) read and write at most 4K (or k if the
function prologue has a probestack(k)) below (towards the
top of the stack region) the stack frame pointer—the function’s
local variables. Since stack operations are in terms of the
stack pointer, though, our analysis must accordingly track the
difference between the stack pointer and frame pointer to verify
if any particular read or write is safe.

Tracking the stack growth. VeriWasm tracks the stack growth
at each point in a function. The growth, StackGrowth, is the
difference between the stack frame pointer (the stack pointer
before the function start executing) and the stack pointer after
each instruction, i.e., StackGrowth = rspcyrrent = r'SPstart. At
the start of each function, StackGrowth is zero. Then, whenever
an instruction modifies the stack, VeriWasm accordingly adjusts
StackGrowth. For example, pushing a value to the stack
decreases StackGrowth by eight, popping does the converse. At
each merge point (e.g., the block after an if-else), VeriWasm
checks that StackGrowth is the same for all incoming paths;
if not, VeriWasm sets StackGrowth to Unknown.

Verifying stack isolation. To verify stack isolation, VeriWasm
checks all stack accesses of the form mem[rsp + c] access
memory within the stack region. Specifically, for functions
without a probestack, this amounts to checking:

—4K < StackGrowth + ¢ < 8K.

3We’re working with Bytecode Alliance to integrate this patch into Lucet.

8K guard region

Stack grows
down

foo retaddr

foo locals

8K read only ¢
4K read/write¢

- rsp at start of function
:|:StackGrowth

-€— rsp during function

4K guard region

Figure 3. Stack layout of function bar called by function foo. VeriWasm
ensures that bar can safely read and write to local variables (at most 4K) in
its own stack frame but not beyond the stack frame pointer—to clobber its
return address or foo’s stack frame. Moreover, VeriWasm ensures that bar can
also read its spilled arguments (at most 8K).

For functions with probestack, we instead check:
min(—4K, k) < StackGrowth + ¢ < 8K,

where k is the argument to the probestack(k) call.

Verifying stack frame integrity. To verify stack frame in-
tegrity, VeriWasm checks that for all stack writes of the form
mem[rsp + c] = x fall within the 4K read-write region, i.e.,

—4K < StackGrowth + ¢ < 0.

This ensures that the function cannot write past the stack frame
pointer to, for example, clobber return addresses.

The following code shows a function bar which writes the
value of rdi to a stack slot, then reads a spilled argument into
the rax register.

1 bar:

2 ; TRACK: StackGrowth @

3 push rbp;

4 ; TRACK: StackGrowth -8

5 mov rbp, rsp;

6 sub rsp, 0x10;

7 ; TRACK: StackGrowth -24

8 mov [rsp + 0x81, rdi;

9 ; ASSERT: -4K < StackGrowth + 0x8 < @
10 mov rax, [rsp + 0x20];

1 ; ASSERT: -4K < StackGrowth + 0x20 < 8K

Lines 3 and 6 decrease StackGrowth: the push on line 3
decreases StackGrowth by eight and the allocation of stack
space on line 6 decreases StackGrowth by sixteen. On line 8,
the stack write is checked to verify the frame’s integrity. This
check passes because StackGrowth must be -24 at this point,
so the address mov rsp + @x8 must be a local stack variable. On
line 10, the stack read is checked to ensures the read is within
the stack region. This check also passes because it reads from
the 8K before the stack frame, accessing a spilled argument.



C. Global variable isolation

VeriWasm validates that all global variable accesses are
contained within the global memory region; the region consists
of one or more 4K pages, and Lucet statically declares the
region’s size within the binary. Lucet compiles all global
variable accesses to constant offsets from the base of the global
memory region. This makes validation simple: VeriWasm tracks
the base of the global memory region, and validates that it is
only accessed with a constant offset that is within the declared
size of the region.

Tracking global variables. VeriWasm tracks which variables
point to the start of the global memory region (GlobalsBase).
Initially, Lucet stores GlobalsBase just below the base of the
linear memory, at LinearMemBase - @x1@. VeriWasm figures
out which variables point to GlobalBase similarly to how linear
memory safety analysis tracks LinearMemBase (§IV-A).

Verifying global variable safety. VeriWasm checks that all
global variables accesses are contained within the global
variable memory region. At each global variable access, it
checks that the offset is less than GlobalSize, the size of
the globals region. The following code shows how VeriWasm
validates a function that increments a global variable:

; ASSUME GlobalSize 4096
; TRACK: rax, rbx, . are Unknown

1

2

3

+ mov rax, [rdi - ox1e];

s ; ASSERT: rdi is LinearMemBase
s ; TRACK: rax GlobalsBase

7 mov rbx, [rax + 0x18];

g8 ; ASSERT: rax is GlobalsBase
9 ; ASSERT: 0x18 < GlobalSize
o add rbx, 1;

nw mov [rax + @x18], rbx;
ASSERT: rax is GlobalsBase
ASSERT: 0x18 < GlobalSize

12 5

3

First, line 4 loads GlobalsBase, and VeriWasm vali-
dates that it’s loaded from the correct location; this would
fail if GlobalsBase were loaded from anywhere besides
[LinearMemBase - @x10], since anything else below
LinearMemBase is illegal. Next, VeriWasm checks that the
offset of the global variable is less than GlobalSize: this
ensures that the access stays in the allocated region (line 7).
VeriWasm similarly checks the write offset on line 11. All
accesses are to offsets less than the GlobalSize of 4096, so
the checks pass.

D. Control flow safety

VeriWasm verifies the control flow safety of native-compiled
Wasm binaries. Specifically, we verify (1) jump target validity—
that indirect jumps target valid code blocks; (2) call target
validity—that indirect calls target the start of valid functions;
and (3) return target validity—that function returns actually
return to their call sites.

1) Jump target validity: To ensure that the control flow
graph for each function is complete, VeriWasm resolves
all indirect jumps within the CFG. While the problem of

statically deciding the targets of computed jumps is notoriously
difficult [81] (if possible at all), Wasm’s language level
restrictions on indirect jumps make it tractable for native-
compiled Wasm modules. In particular, Wasm does not support
arbitrary computed jumps. The only computed jump Wasm
supports is the branch or jump table instruction br_table.
Lucet compiles these jump table instructions as follows:

i ; TRACK: rax, rbx, . are Unknown

3 cmp rax, Ox7; compare jump index to table size
4+ Jjae default_case;

s ; TRACK: rax is Checked(0x7)

¢ mov rdx, 0x4000; load of a jump table

7 ; TRACK: rdx is JumpTableBase(0x4000)

g mov rbx, [rdx + rax * 4];

o ; TRACK: rbx is JumpOffset

0o add rdx, rbx; jump to the target

i ; TRACK: rdx is JumpTarget

2 jmp rdx;

Here, the native-compiled Wasm first checks that the jump index
(rax) is less than the total number of table entries (lines 3 and
4). If it is, the code performs a lookup into the jump table and
jumps to the appropriate case (lines 6-12).

VeriWasm exploits the structure of the jump table check
to determine all possible jump targets for each jump table.*
Then, VeriWasm verifies that every jump target is safe by
running the verifier on the CFG at the target site. (This is
an overapproximation of possible jump targets, since some
jump table targets may remain unused.) VeriWasm does this
using a fix-point algorithm: while a single pass of this analysis
may resolve all indirect jumps with respect to a particular
CFQG, resolving these jumps may also reveal additional indirect
jumps which require further disassembly. Because of this
interdependence between the CFG and the indirect jump
analysis, VeriWasm alternates between disassembling passes
and jump-resolution passes. It stops when it reaches a fixed
point in the CFG generation process, i.e., when the analysis
no longer resolves new jumps.

Tracking jump targets. To verify that indirect jump targets
are safe, VeriWasm must identify all potential jump targets. To
this end, VeriWasm tracks which variables within a function
represent intermediate steps of a valid indirect jump target
lookup. On line 6 in the above code snippet, for example, rdx
takes on the abstract value JumpTableBase (0x4000) since it
was assigned the constant @x4009. In this same block, rax has
the abstract value Checked(@x7); it was checked to be less
than @x7 on lines 3 and 4.

Verifying jump targets. VeriWasm uses the abstract values
from the analysis phase to identify all possible targets for the
indirect jump on line 12. In particular, VeriWasm uses the
jump table bounds check—the abstract Checked(-) value—to
identify the number of jump target entries from the jump table
base—the abstract JumpTableBase(-) value—it needs to verify.
For example, in the above code, VeriWasm identifies that the
possible targets are the first seven entries at @x4000, and then
disassembles and verifies the code at those locations.

4 If VeriWasm encounters a computed jump that does not follow this pattern,
the code is not a valid Lucet compilation output and the safety check fails.



2) Call target validity: To verify that a function is safe,
VeriWasm validates that every function that it calls is also safe.
Indirect calls make this hard: VeriWasm cannot necessarily
determine the target of the call. Instead, VeriWasm overap-
proximates the set of possible targets of the indirect call, and
validates that every possible target is safe. VeriWasm can do this
because Wasm treats indirect calls as a lookup into a statically
known function pointer table.

Lucet performs a dynamic safety check on all indirect calls
to ensure each call target is present in the indirect function
table. By verifying that all indirect calls enforce this check,
and that all function pointers in the module indirect-function
table point to the start of verified functions, we inductively
verify that indirect calls are safe.

While Wasm requires all indirect calls to be well-typed—
and Lucet enforces this with a runtime check—VeriWasm does
not attempt to verify this. Doing so would be hard. Computing
the number of arguments to each function alone is difficult—it
requires us to infer the number of arguments passed at each
call site. This is harder once we consider indirect calls to
the function—to infer the number of arguments passed to a
function we would have to analyze all indirect call sites that
could potentially call the function. Happily, calling a function
with an incorrect type for Lucet compiled Wasm does not affect
SFI-safety. First, Lucet validates arguments before they are used
in SFI-sensitive operations (e.g., loads and stores), regardless
of their type. Second, the 8K guard region below the stack
region (§IV-B) ensures that reading stack-spilled arguments
can never result in stack accesses outside the stack region.

Below we give an example of a function baz correctly
loading a function pointer from the indirect function table and
calling that function.

1 ; TRACK: rax, rbx, . are Unknown
2

3 push rbp;

4 mov rpb, rsp;

5 mov r9, 0x2000;

6 ; TRACK: r9 MetadataBase

7 mov r9, [r9 + 0x8];

8 ; ASSERT r9 is MetadataBase

9

; TRACK: r9 TableSize
10 cmp r9, rax;
1 jb case2;
12
13
14 Ud2;

17 mov r9, 0x3000; base of indirect func table

18 ; TRACK: rax Bounded

19 ; TRACK: r9 FuncTableBase
2 shl rax, 0x4;

21 ; TRACK: rax PtrOffset

2 mov rax, [r9 + rax + ox8];
23 ; ASSERT: r9 is FunctionTable
24 ; ASSERT: rax is PtrOffset
25 ; TRACK: rax FnPtr

2% call rax;

27 ; ASSERT rax is FnPtr

28 ret;

Lines 5-11 load the indirect function table size from the
module metadata and check that rax is less than the total
number of entries in the table, and thus that rax holds a valid
index. This check ensures that loading the entry corresponding
to the function index is in-bounds and cannot be used to read
memory beyond the module boundary. In particular, if the
index in rax is out-of-bounds (greater than the number of
entries in the indirect function table) the code proceeds to
casel which triggers an illegal instruction exception. If the
index is in-bounds, lines 17-26 use the checked rax to lookup
a function pointer in the indirect function table, and then call
it. VeriWasm’s abstract analysis tracks the steps of this process
to ensure that all steps have been performed correctly.

Tracking call targets. The call safety analysis tracks which
variables within a function are used as intermediate values in
the function pointer checking process. The intermediate values
of the call check are MetadataBase (r9 on line 5), TableSize
(r9 on line 7), Bounded (rax on line 17), PtrOffset (rax after
line 20) and FnPtr (rax after line 22). If VeriWasm cannot
verify that a variable is any of these intermediate values, then
the value is Unknown and should not be used to create a valid
function pointer. If any of the operands to the two memory
operations (table size lookup and function table lookup) are
Unknown, VeriWasm triggers a safety violation, since this access
could potentially break isolation. The analysis is designed in
such a way that the abstract value representing a step of the
lookup process can only be produced by the correct operation
applied to the results of two correctly computed previous steps.
For example, the abstract value FnPtr representing a valid
function pointer can only be produced by dereferencing the
base of the indirect table added to a valid entry offset in that
table, which in turn must have already been bounds checked
to be within the table.

Checking call check integrity. Checking call safety is as
simple as checking that the register acting as the target for
each indirect call has the abstract value FnPtr, representing a
properly computed call target. This check on line 26 succeeds
because rax has been computed through the correct sequence
of steps. VeriWasm would have triggered a safety violation if
the value of rax was not checked, or if the lookup was not
performed correctly (e.g., if the pointer was modified after the
code loaded it from the table).

Checking function table integrity. While validating our call
check integrity ensures that the target of each indirect call
check is properly loaded from the indirect call table, VeriWasm
also validates that every function pointer present in the indirect
call table points to the start of a valid function. VeriWasm
checks that the indirect function table is located in a read-only
section, and performs a one-time check when the module is
loaded that all pointers present in the table target the start of
validated functions.

3) Return target validity: VeriWasm validates that all
functions return to their call site. To do this, VeriWasm validates
that at each return site in the function the stack pointer points
to the return address pushed by the calling function. We do
this by verifying that the stack growth—the difference between
the rsp and rbp—of Section IV is zero at each return site.



E. Making VeriWasm robust to compiler optimizations

Lucet performs optimizations after it inserts safety checks,
which means that optimizations can modify these checks. Lucet
can, for example, split checks across basic blocks, modify
checks, or reorder checks. If VeriWasm is not precise enough, it
can falsely label these modifications unsafe; below, we describe
how VeriWasm handles optimizations without triggering false
positives.

VeriWasm allows safety check modifications as long as all
necessary checks have been performed by the time the checked
variable is used in an SFI-sensitive operation (e.g., a load or
a jump). One example of a safety check modification is how
Lucet reorders the steps of indirect call checks. Normally, it
generates indirect call checks that load the function pointer in
three steps:

1)  Check the function index lies within the call table.

2) Create the PtrOffset into the indirection function
table for this index. This PtrOffset points to a valid
entry in the call table, since the function index has
already been checked.

3)  Dereference the PtrOffset to retrieve the function
pointer.

Lucet’s optimizations often reorder steps one and two of the
check:

1) Create a PtrOffset from a potentially unsafe index.
This PtrOffset points to a valid entry in the indirect
function table only if the base index is shown to be
safe before PtrOffset is dereferenced.

2)  Check the function index lies within the call table.

3)  Dereference the PtrOffset to retrieve the function
pointer.

This reordered check is safe because the function index
has been checked (and therefore the PtrOffset must be valid)
before the PtrOffset generated from the index is dereferenced.
Crucially, it’s not possible to validate this check’s safety using
the strict formulation in Section IV-D2, since the strict safety
check requires pointer offsets to be generated from a known-
valid base index. Therefore, the naive version of VeriWasm
triggers false positives.

To make VeriWasm’s analyses robust to reordering, we use
dependent abstract variables (DAV). A DAV is a variable whose
safety depends on the safety of another variable. VeriWasm uses
DAVs in both call safety analysis and indirect jump analysis.
In the example above, VeriWasm uses a DependentPtrOffset
instead of a PtrOffset, since the base index has not yet
been checked. If the DependentPtrOffset is used before its
base index has been checked, validation will fail. Concretely,
consider the following (correct) function that performs an
indirect call with a reordered safety check:

1 ; TRACK: rax, rbx, . are Unknown
3 push rbp;

4 mov rpb, rsp;

5 mov r9, 0x2000;

6 ; TRACK: r9 MetadataBase

7 mov r9, [r9 + 0x8];

8

; ASSERT: r9 is MetadataBase

9 ; TRACK: r9 TableSize

10 shl rax, rdx, 0x4;

1 ; TRACK: rax DependentPtrOffset(rdx,6)
12 cmp r9, rdx;

13 jb case2;

14

15

16 ud?2;

19 mov r9, 0x3000;

TRACK: rdx Bounded

TRACK: rax PtrOffset

2 ; TRACK: r9 FuncTableBase

23 mov rax, [r9 + rax + 0x8];
ASSERT: r9 is FunctionTable
ASSERT: rax is PtrOffset

2% ; TRACK: rax FnPtr

27 call rax;
28 ; ASSERT:
29 ret;

20 ;

21 N

24 N

25 5

rax is FnPtr

On line 10 rax is a DependentPtrOffset that is dependent
upon the base index (rdx). If rax were immediately used
to lookup the indirect function pointer, validation would fail.
However, if rdx were checked first (as on lines 12 and 13),
validation would succeed, since rax must necessarily be valid
by the time it is used.

VeriWasm uses reaching definitions [5] to resolve DAV
constraints. Reaching definition analysis records the set of
locations that could have written to registers and stack locations
at every point in the program as well as the expression assigned
to these locations. If two registers or stack slots have identical
reaching definitions, they must necessarily have the same value
i.e. they are aliased. This means that if a register or stack slot is
declared safe, all other variables with the same set of reaching
definitions are safe as well. Whenever a variable is checked,
VeriWasm also resolves all dependent abstract values with the
same set of reaching definitions as the variable being checked
(and any variables derived from them).

V. VERIFYING THE ANALYSIS

We use the Coq proof assistant to formally verify our
analysis. In particular, we prove that VeriWasm is sound: the
verifier is sound when every program it labels as safe indeed
does not break SFI-safety when run. But intuitively, soundness
is only useful if the verifier is sufficiently precise: the verifier
is precise “enough” if it doesn’t falsely label many programs
as unsafe. In Section VI we empirically evaluate the precision
of VeriWasm; in this section we focus on soundness.

To verify soundness, we first use Coq to formalize:

» An intermediate language (IL) called w64, which
captures the subset of x86-64 generated by Lucet.

» The verifier itself (over w64).

Using these definitions, we then state our soundness theorem
and prove it in Coq. We only verify the analysis passes; we do
not verify the disassembly, control-flow graph creation, or the
translation from x86-64 to w64 (§VII). We do this because the



(reg) E rax | rbx | rex | ...

(op) = add | sub | mult | ...
(cond) E eq | neq | 1t | ...
(instr) = reg < LinearMem[reg + reg + reg] |

LinearMem[reg + reg + reg]l «+ reg |
LinearMemCheck reg | CallCheck reg |
StackExpandCheck nat |

reg < GetGlobalsBase reg |

reg < Globals[i] |

Globals[i] « reg |

reg < reg | reg + nat |
StackExpand nat | StackContract nat |
reg < Stack[nat] | Stack[nat] <« reg |
list reg < op list reg |

Branch cond nat nat | Jmp nat |

ICall reg | Call string | Ret

Figure 4. Syntax for w64 intermediate language. w64 is expressive enough
to reason about behavior of all natively-compiled Wasm code.

analysis pass, unlike, say, disassembly and CFG creation, is
complex and has not been formalized in prior work. Moreover,
exhaustively testing the analysis pass is hard—indeed, despite
our best effort testing the analysis, verification revealed edge-
cases we missed in early versions of the tool.

w64 intermediate language. Instead of formalizing hundreds
of low-level x86-64 instructions, we create an intermediate
language, w64, consisting of nineteen instructions (Figure 4).
Though we cannot model arbitrary x86-64 programs using w64,
wb64 is expressive enough to reason about all x86-64 programs
produced by Lucet.

w64 instructions capture and abstract all the relevant
semantics of Lucet-generated x86-64 needed to prove SFI-safety.
For example, w64 models Lucet’s indirect call checking using
a single CallCheck instruction; this abstracts over the actual
x86-64 code that Lucet generates, which consists of roughly
eight x86-64 instructions (§IV-D2). We similarly abstract x86-
64 memory accesses into instructions that explicitly manipulate
the stack, global variables, and linear memory. For example, we
model any loads that use rsp (e.g., mov rax, [rsp + 0x4])
as stack-slot reads (e.g., rax <— Stack[@x41]), since Lucet only
uses the rsp register as such.

w64 semantics. We formalize the w64 language using small-
step operational semantics. Small-step operational semantics
describe a language by specifying how expressions are evaluated
(e.g., how to handle pointer dereferences) and how the execution
of an instruction transforms the computational state (e.g.,
registers and memory).

Our semantics model the subset of x86-64 semantics
necessary to prove SFI safety for Lucet-generated programs.
To this end, we define a step relation — that operates on
program states, consisting of (1) an instruction stream is and
(2) a runtime environment o, which encapsulates the stack,

global variables, linear memory, indirect function table, and
various runtime metadata. The relation (is, o) — (is’, o’} states
that (is’,o’) is the result of executing the first instruction
of the stream is in the environment o (where ¢’ is the
resulting environment, and is’ is the resulting instruction stream).
Following [10], our semantics are defensive and explicitly leave
the behavior of all SFI-breaking states unspecified. In other
words, programs (starting from initial state o) that violate SFI
get “stuck”, i.e., they reach a state from where they can no
longer take a step. This means that to prove that our verifier is
sound, we just need to show that any programs it deems safe
can make progress, i.e., it does not get stuck. We do this next.

Formalizing the verifier. We formalize the verifier in Coq
as a total function verify from a disassembled program p
(represented as a list of control-flow graphs of w64 instructions)
to a binary value: safe or unsafe. The verifier implements the
abstract interpretation analysis of Section IV. We treat every
function in the program as a potentially valid entry point for
the execution—and, so, the verifier statically analyzes each
function from the initial state og.

Proving the verifier’s soundness. Using the Coq formalization
of the w64 language (the — step relation) and verifier (the
verify function), we want to show that if the verifier deems a
program safe, then executing the program indeed doesn’t break
SFI-safety. As stated previously, we set up our semantics so
that proving that a program does not break SFI-safety amounts
to showing that the program does not get stuck. Hence, we
simply need to prove that:

(verify(p) = safe) = never-gets-stuck(p)

Never getting stuck is equivalent to being able to take a single
step after taking an arbitrary number of steps from the start of
the execution. We formalize this using the multi-step relation
—*, the reflexive and transitive closure of the single-step
relation —, i.e., we say (is,o) reduces to (is’,o’) in zero
or more steps if {is,o) —* {is’, o’). Specifically, we define the
soundness property as:

(verify(p) = safe) =
fep=

< (start(f),o0) —* (is,o) = )

Jis’, o', (is, o) — (is’,0")

Here, all free variables are universally quantified on the outside,
f ranges over all control-flow graphs in p, and start(f) is the
entry point of a given control-flow graph.

From the property above, it is trivial to show a global-safety
property, i.e., if the verifier deems a program safe, the program
doesn’t break memory isolation during execution. Breaking
memory isolation is only a subset of the behavior prohibited
by the small-step semantics, so breaking memory isolation at
any point during execution results in the program getting stuck.
Therefore, the soundness property above is strong enough to
prove the desired global-safety property.

Mechanization effort. We mechanize the proof of the sound-
ness property in Coq. Our mechanized verification efforts
consists of 1800 lines of Coq, 500 of which are devoted to
proofs. The Coq source is open source and available online [29].



Verification results. Our verification effort helped us identify
serious flaws in the early VeriWasm implementation. Several
times, we had oversimplified the behavior of x86-64, and as
a result forgot to add checks for unsafe behavior. Specifically,
we forgot to:

»  Ensure that rdi is set to linear memory base before
direct and indirect function calls. This is important
because the verifier assumes that rdi holds the linear

memory base value at the beginning of functions.

Clear the abstract safety information of callee-saved
register after calls. Functions may not respect calling
conventions, so callee-saved registers aren’t guaranteed
to be restored appropriately after a call.

Limit lookups in the caller’s stack frame to 8KB of
stack memory. Since parameters are located in the
caller’s stack frame in native-compiled Wasm, callees
must have access to the caller’s stack frame—but only
up to 8KB.

Ensure a stack expansion of more than 4KB is
preceded by a probestack call. This ensures a module
cannot request a large amount of stack space and skip
past a guard page.

Missing any of these edge cases leads to an unsound verifier.

VI. EVALUATION

We evaluate VeriWasm by asking three questions:

» Does VeriWasm find SFI breaking bugs—can it
discover compilation bugs in Wasm binaries that allow

accesses outside sandbox memory?

Does VeriWasm have a low false positive rate—does
it avoid incorrectly flagging Wasm binaries that are
actually safe?

Is VeriWasm fast enough—can it validate Wasm mod-
ules as part of the compilation process for browsers
and edge cloud providers?

To check if VeriWasm is able to find SFI breaking bugs, we
evaluate it on a suite of known bugs from previous SFI systems
and Wasm compilers (§VI-A); it’s able to identify every bug in
this suite. We also set up a fuzz harness for Lucet; while this did
not reveal any bugs on the current version of Lucet, it helped
us eliminate false positives in the VeriWasm tool. To evaluate
VeriWasm’s false positive rate and performance, we validate
four sets of benchmarks—SPEC2006, the Lucet compiler’s
Shootout microbenchmark suite, two Wasm sandboxed libraries
shipped by the Firefox browser, and 103 Wasm modules from
the edge-cloud provider Fastly for a total of 119 Wasm modules.
VeriWasm reports no false positives and validates most of these
applications in less than twenty seconds; this latency, while
not sufficient for just-in-time applications, allows Firefox and
Fastly to run VeriWasm on nightly re-builds of Wasm binaries.

Experimental setup. We run all experiments (with the excep-
tion of verifying Fastly’s binaries) on a 2.1GHz Intel Xeon
Platinum 8160 machine with 96 cores and 1 TB of RAM
running Arch Linux 5.8.14. We evaluate the Fastly modules
on a 5.5GHz Intel quad core i7-8559U machine with 8GB of
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RAM. All experiments run on a single core, and no experiment
uses more than 6GB of RAM. We compile the SPEC2006
and Shootout benchmarks using the Clang compiler (version
10.0.0) to go from C/C++ to Wasm, then compile the results
to x86-64 using the Lucet compiler (version 0.7). The Firefox
Wasm sandboxed libraries come from the Firefox nightly build
(version 78.0al on May 4th, 2020). Fastly customers compiled
their applications from the source language to Wasm, and Fastly
compiles from Wasm to x86-64 on their own servers using the
Lucet compiler (version 0.7).

Implementation. We implement VeriWasm in ~3000 lines of
Rust. The formal verification (§V) consists of ~1800 lines of
Coq, ~500 lines of which are dedicated to proofs. VeriWasm
uses the Yaxpeax disassembler for disassembly [3].

A. Does VeriWasm find SFI breaking bugs

Testing. We test if VeriWasm finds SFI-breaking errors by
creating a suite of 11 bugs from other SFI toolchains like
NaCl [84], miSFIt [66], and PittSFleld [45], as well as old
bugs from the Lucet compiler. These bugs fall into different
categories: two violate call safety, three violate stack safety,
two violate linear memory safety, one violates jump safety,
and three use illegal instructions. The most interesting bugs
include:

A stack out-of-bounds write where the SFI scheme
does not prevent the stack pointer from being moved
outside the allocated stack range. This bug was found
in the MiSFIt [66] SFI system by McCamant et
al. [45]. Malicious code can exploit the bug by
repeatedly allocating stack space until the stack pointer
points to a different memory region (e.g., a different
module’s address space). VeriWasm catches this bug
by verifying stack isolation and stack frame integrity.

>

An unchecked memory access during indirect jump
target lookup. A Lucet optimization re-ordered instruc-
tions so that bounds checks for indirect jump indices
occurred after jump table lookups. VeriWasm catches
this bug as part of its control flow safety checking,
which ensures that jump table lookups only occur after
the indirect jump index has been bounds checked.

A bug where the memory safety checks and the control
flow safety checks are accidentally mixed up, allowing
for control flow through a register which has only
been checked to be safe for memory access. Unlike
the previous bugs in SFI compilers, this bug was
discovered in the verifier for the PittSFleld SFI scheme
by Kroll et. al [31]. Specifically, the verifier marked
certain binaries as safe, when they were actually
unsafe. VeriWasm successfully classifies binaries with
such unsafe pattern as unsafe.

We run VeriWasm on code that uncovers a given vulnera-
bility by by either (1) compiling proof-of-concept code from
an original bug report or (2) handwriting assembly with the
vulnerability (when the proof-of-concept is not available). In
some cases, we have to translate the bug to Wasm; for example,
one bug unsafely manipulates a function pointer that has already
been checked by NaCl. Since Lucet uses a different kind of
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Fuzzing. We also integrated VeriWasm into a fuzz testing
pipeline. Specifically, we (1) use Csmith [82] to randomly
generate valid C/C++ programs, then compile them to Wasm
with Clang and (2) directly generate random Wasm modules
using Binaryen [2]. We then compile these Wasm modules
with Lucet and run VeriWasm on the resulting binaries. We run
the fuzzing infrastructure on over 2 million Csmith-generated
programs and 20 million Binaryen-generated programs, but do
not find bugs in current version of Lucet.

The fuzzing infrastructure did, however, reveal early bugs
in VeriWasm—VeriWasm declared some safe programs unsafe
because Lucet optimizations reordered and manipulated some
dynamic safety checks in a safe but unexpected way. We used
these results to improve VeriWasm’s precision (see §IV-E).

B. Can VeriWasm validate correct programs?

We formally prove that VeriWasm cannot classify an unsafe
program as safe (§V); still, VeriWasm can flag safe code as
unsafe. This may happen, say, if Lucet runs an optimization that
VeriWasm cannot precisely reason about (e.g., the range-based
loop check hoisting optimization Zeng et al. describe [87]). To
check if VeriWasm’s analysis is precise enough to avoid false
positives on real code, we test it on binaries from four sources.

VeriWasm validates all four benchmark sets—a total of
119 Wasm binaries from SPEC2006 [27], Lucet’s Shootout
microbenchmarks, Wasm sandboxed libraries in Firefox [49],
and Wasm modules deployed in Fastly’s edge cloud—with
no false positives. SPEC2006 presents realistic workloads on
applications like video compression, speech recognition, and ray
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tracing. We run VeriWasm on thirteen of nineteen SPEC bench-
marks (all written in C and C++) and, like [28], we exclude
six because they contain constructs that aren’t representable
in Wasm (e.g., longjmp, exceptions, and unsupported system
calls). Shootout, which Lucet uses for performance testing,
consists of a single Wasm module containing benchmarks like
matrix multiplication and AES encryption; several benchmarks
are particularly interesting for VeriWasm, since they contain
some uncommon code patterns (e.g., very large switch tables).
We also evaluate VeriWasm on two Wasm sandboxed libraries
that ship with Firefox nightly [50], and 103 Wasm modules
currently deployed by Fastly [55]. Both of these benchmarks
are of deployed real-world applications of Wasm sandboxing.

C. Is VeriWasm fast enough?

To evaluate if VeriWasm is fast enough to run on Firefox
and Fastly’s nightly builds of Wasm modules we use the four
sources of benchmarks from the previous section. Verification
of real modules takes on average 8.6 seconds and a median time
of 1.7 seconds; while this is sufficiently fast for our intended
use case of validation before a nightly build, it is too slow for
low latency applications like just-in-time compilers.

SPEC2006 performance. VeriWasm takes between 6.7 and
19.4 seconds to validate each SPEC module (Figure 5). On
average, the top 1% of functions account for 87% of execution
time. We observe this for all benchmarks: a few large complex
functions use most of the total verification time.



Shootout performance. VeriWasm requires 78 seconds to
validate the Shootout module. A single function—a function that
contains a huge switch table with 4096 cases (see Figure 6)—
dominates the verification time: it take takes 71 seconds to
validate. When compiling this function, Lucet uses separate
local variables for each switch case. This results in code with
over 10,000 local variables that are maintained on the stack.
So, VeriWasm takes a long time to validate this code—it must
track information about all of these variables across a large,
complex function.

Firefox performance. VeriWasm requires between 0.12 and
7.9 seconds to validate the Firefox libraries (see Figure 7).
This overhead is reasonable for our use case—verifying nightly
builds—even with many libraries. Indeed, this is even cheap
enough to run in the Firefox continuous integration tool.

Fastly client performance. VeriWasm takes between 1 and
183.7 seconds to verify each Fastly Wasm application, The
median verification time is 1.85 seconds (see Figure 8). These
applications have between 501 and 3123 functions, with
a median of 621. Because the Fastly application code is
confidential, we unfortunately can’t diagnose and thus report
why one of the applications takes three minutes to verify.

Performance breakdown. For each of our 119 modules,
VeriWasm spends, on average, 75.2% of the verification time
performing (CFG generation and) indirect jump analysis; 21.9%
checking call safety; and, 2.9% verifying stack and heap safety.
Indirect jump analysis is more expensive than other analyses for
two reasons. First, this analysis records the reaching definitions
of each value in the program in case they are needed; the other
analyses only track values that have been computed by code
that resembles safety checks. Second, because the analysis is
inherently coupled with CFG generation (§IV-D1), VeriWasm
sometimes needs need to perform the jump analysis multiple
times to resolve all the jumps in a particular function CFG.

When verifying a module, we find that VeriWasm spends, on
average, 70.8% of its time verifying roughly 1% of the functions
in the module. These functions are large and complex—e.g.,
the median number of basic blocks in one of these functions
is 521, which is roughly 47x larger than the median number
of blocks of function across all the modules we verify (11).

VII. LIMITATIONS AND FUTURE WORK

Unverified disassembly. VeriWasm relies on an unverified
disassembler; bugs here can lead to bugs in VeriWasm’s
verification. However, this is not a fundamental limitation of
the technique since verified disassembly has been demonstrated
in prior work [47] and VeriWasm can be modified to adopt
such approaches.

VeriWasm’s speed. Although VeriWasm is sufficiently fast for
its intended use case of checking nightly builds of Wasm code in
browsers and CDN deployments, it is currently not fast enough
to perform online verification in low latency applications like
Wasm JIT compilers. This is because VeriWasm’s control flow
analyses seem to scale worse to large, complex functions than
its other analyses (as discussed in VeriWasm VI-C). To address
this issue and enable online verification in the future, we plan
to: (1) optimize the performance of these control flow analyses,
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and (2) work with the Lucet team to make Lucet generated code
more easily verifiable without compromising on performance.

Overfitting to Lucet. VeriWasm currently only checks x86-64
code generated by the Lucet Wasm compiler. While we have
not extended VeriWasm to other platforms or compilers, we de-
signed VeriWasm to be extensible and general: our verifier takes
advantage of Wasm properties instead of Lucet’s compilation
of Wasm whenever possible. For example, VeriWasm verifies
indirect calls by checking that the target of the call is loaded
from the indirect function table. The indirect function table is
a Wasm concept, not a Lucet detail. But, the exact layout of
the indirect call table (in native code) is compiler-specific and
we would have to extend VeriWasm to accommodate layouts
that differ from Lucet.

We would similarly have to extend VeriWasm to account for
potentially more complex optimization passes that affect SFI
checks. While Lucet’s optimizations of SFI safety checks are
the most advanced today, both Lucet and other Wasm compilers
may implement more complex SFI optimizations in the future
(e.g., following [87]) We are working to integrate VeriWasm
and verification into the Wasm ecosystem and hope to co-evolve
the verifier with the bytecode.

Unverified Wasm runtime. Wasm modules require a Wasm
runtime that creates and manages memory regions for the
module as well as provides secure access to syscalls. VeriWasm
does not verify any part of this runtime and bugs in the runtime
are out of scope of this work. However, bugs in SFI runtimes
have been found in the past [51] and their verification remains
an open problem.

VIII. RELATED WORK

In this section, we put VeriWasm in context of related work.

SFI system and verifier safety. Before Wasm, most SFI
systems [80], [45], [84], [62] were designed with binary
validation in mind and came packaged with the corresponding
verifier tools. These systems did not allow optimizations to
move or eliminate SFI checks, allowing for extremely compact
verifiers that can ensure binary safety by analyzing just a
few instructions at a time [45]. Rocksalt [47] implements a
fully verified version of such an SFI verifier, verifying both x86
disassembly and correctness of the analysis of Native Client [84]
binaries. Tools like ERIM [76] that enforce fault isolation via
hardware features can simplify validation more; for instance,
the ERIM’s verifier only has to check that the sandboxed
component never uses byte sequences that decode to privileged
hardware instructions that disable sandboxing. Unlike these
tools, VeriWasm validates natively-compiled Wasm modules
where optimizations may have eliminated and moved security
checks in order to improve performance, making validation
more challenging. Thus, the VeriWasm verifier checks for
security properties that are comparatively more complex (§1II)
at a per-function level, and relies on a verified correct analysis
(§V) to provide a safe verifier; unlike RockSalt, VeriWasm
does not verify correct x86 disassembly.

Other SFI systems also use schemes that require more com-
plex validation. For instance, Strato [86] allows optimizations
on SFI security checks, and provides a verifier that uses range
analysis to ensure that pointers are correctly bounds checked



(an approach other verifiers also use [87]). While VeriWasm
employs a similar analysis (§IV-A), it must also account for
Wasm’s trusted stack; for instance, the example in Section IV-E
shows how VeriWasm handles a case where security checks
are elided when loading multiple times from the same location
in the trusted stack.

Besson et al. focus on validating SFI binaries with a
trusted stack [10]. They model the semantics of and implement
an SFI verifier using an abstract interpretation to validate
stack and heap safety, an approach VeriWasm also follows.
In addition, VeriWasm identifies and addresses several more
requirements necessary for Wasm verification; in particular,
VeriWasm validates in the presence of indirect calls and jumps,
compiler optimizations, and dynamic values for heap-base
address etc. by leveraging knowledge about Wasm and Wasm
compilers.

Necula et al. present a more general approach for verifying
complex security properties called proof carrying code [52].
In this approach, compilers include a proof of safety along
with a binary. While this allows validation of complex security
properties, VeriWasm must work with the existing eco-system
of Wasm modules, which does not include safety proofs.

Tan [70] provides a more detailed history and analysis of
earlier SFI tools and their validation toolchains.

Compilation and translation safety. An alternate approach
to ensuring safety is to verify the compiler itself. For instance,
Kroll et al. [32] implement a verified SFI system on top of the
Compcert verified compiler [40], and there is ongoing work to
build a verified Wasm compiler [13]. More generally, CompCert
and its variations [39], [79], [68] and CakeML [33] are exam-
ples of foundationally verified compilers, and there are many
examples of verified optimizations for these compilers [48],

[7].

Translation validation [60], [56] is a different approach
to compiler correctness; it proves that some property—most
extremely, equivalence—holds before and after compiler opti-
mizations. There’s translation validation work for optimization
passes in industrial compilers like gcc [53] and LLVM [71],
[72], [67]; there’s also work on formally verified translation
validation for CompCert in Coq [59], [73], [74], [75].

Another approach is to provide a domain-specific language
for writing verified compiler optimizations [43], [37], [38],
[34], [14]; this doesn’t verify the whole compiler, but verifies
that a single optimization (or other) pass is correct.

The DSL approach can verify that optimization passes are
correct, while translation validation can verify that a single
compilation of a given program is correct; whole-compiler
verification offers the strongest guarentees of end-to-end
correctness. VeriWasm’s approach trades-off completeness for
easier proof burden and maintenance of the compiler toolchain.
Specifically, since VeriWasm only verifies the verifier—a much
simpler tool than a full compiler or optimization pass—it has a
comparatively smaller proof burden. Futhermore, VeriWasm’s
approach allows changes to the compiler and optimization
passes without changes (or with minor changes) to the verifier
or the verifier proofs.

Retrofitting security checks. VeriWasm’s analysis techniques
are similar to some tools that retrofit security checks in
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binaries. For instance, ARMor [89] analyzes and rewrites
ARM binaries to ensure SFI which is verified via abstract
interpretation; Zhang et al.[88] analyze and modify binary
executables to apply control flow integrity without source code;
StackArmor [17] rewrites the stack usage in binaries to prevent
stack based attacks by enforcing the safe stack policy [35].
Unlike these systems, which may conservatively add checks
when analyses proves too complicated or does not terminate,
VeriWasm operates without modifying the generated assembly.
Additionally, VeriWasm leverages properties of Wasm to further
simplify analysis—for instance, to ensure safety even in the
presence of indirect jumps.

Abstract interpretation. Abstract interpretation [20] has been
verifying program properties and finding bugs for over forty
years. The Astrée static analyzer [21] has verified absence of
certain errors in space vehicles [8], and many works [58], [78]
use abstract interpretation for everything from verification to
synthesis. There are even verified static analysis passes and
frameworks [11], [30], [12]. Like these works, VeriWasm uses
a verified abstract interpretation passes but specifically focuses
on showing that binaries are safely sandboxed.

Bug finding. Bug finding tools can also identify security
flaws. They use techniques like symbolic execution [15],
concolic execution [24], [85], [63], fuzzing [82], [1], and binary
instrumentation [54]. These tools find several classes of security
bugs like use-after-frees [64], race conditions [61], [65], stack
overflows [58], and more; some use fast but unsound analysis
to quickly find bugs with low false positives [9]. In contrast,
VeriWasm cannot check for general classes of security bugs
and instead only validates the Wasm security properties; it uses
a sound analysis and may produce false positives (§VI).

IX. CONCLUSION

Complex software systems have bugs, and compilers—
with their enormous attack surface—are no exception. Luckily,
real-world exploits organically resulting from flaws in code
generation are rare because they require byzantine inputs
atypical of real programs. However, once the compiler takes
on the role of protecting the execution environment from the
behavior of compiled software, this dynamic is reversed—any
compiler flaw is available for an attacker to exploit. This
problem, in the context of Wasm, motivates our work.

Wasm offers the promise of high-performance, portable,
safe code. But this promise of safety requires us to trust
that the compiler inserts SFI checks in all necessary places
and that these checks are correctly handled in all subsequent
optimization passes. When this trust fails, so do all safety
guarantees.

In this paper, we advocate an alternative approach—trust
the compiler to do its job but, just in case, verify the safety
properties of the native code it has compiled. We present
VeriWasm, a tool to validate that Wasm binaries produced by
the Lucet compiler do not have missing security checks that can
break isolation. VeriWasm uses simple abstract interpretation
passes to establish local per-function properties, which is
sufficient to prove SFI safety of an entire Wasm binary.
VeriWasm has validated over 22 million auto generated Wasm
binaries with no false positives (so far), and is also able to



validate real world Wasm binaries used in Fastly’s edge cloud
and in the Firefox browser.
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APPENDIX
A. Abstract Domains

We describe the abstract domains used in our abstract analysis
below:

»  Linear Memory Isolation:

o  LinearMemBase—this registers/stack slot contains
the start of linear memory

o  Bounded—a value less than 4GB

o Unknown—any value

»  Stack Safety: The only value we track for stack safety is the
size of the current stack frame.

> Global Variable Isolation:

o  GlobalsBase—the start of the global variable re-
gion

o LinearMemBase—the start of linear memory

o  Unknown—any value

»  Control Flow Safety: Checking control flow safety requires
two different abstract domains: the jump safety domain and
the call safety domain.

The jump safety domain contains 5 possible values:

o  JumpTableBase—the base address of the jump table

o  Checked—a value that has been checked to be a
valid index into the indirect jump table

o JumpOffset—the offset from the base of the switch
table to a valid jump target

o  JumpTarget—a valid jump target

o  Unknown—any value

And the call safety domain contains 8 possible values:

o MetadataBase—the base address of the metadata
where the size of the indirect function table can be
found

o  TableSize—the size of the function table

o Checked—a value that has been checked against the
size of the function table

o FuncTableBase—the base address of the function
table

o PtrOffset—a valid offset to the function table

o  FnPtr—a correctly checked function pointer

o  DependentPtrOffset—a partially checked offset
into the function table (see Section IV-E for more
details)

o Unknown—any value



