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Effects of alloying on in-plane thermal conductivity and thermal boundary conductance
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Two-dimensional 1H transition metal dichalcogenides (TMDs) provide a platform, analogous to group IV
cubic semiconductor alloys (Si1−xGe), that enables systematic investigations on the effects of alloying in
2D material systems. The existing literature on TMD alloys explores their electrical, magnetic, and optical
properties, but lacks a comprehensive analysis of thermal transport in supported and nanostructured systems.
Here we employ first-principles-driven phonon Boltzmann transport formalism and a 2D-3D thermal boundary
conductance model to systematically study in-plane and cross-plane phonon transport of suspended and SiO2

supported single-layer TMD alloys. We find that the thermal conductivity of alloyed TMDs is dependent on
system size up to tens of microns and that the combination of mass-difference and substrate scattering can
significantly reduce thermal transport even in large systems (>500 nm). Beyond in-plane transport, we find that
the thermal boundary conductance displays a qualitatively different trend and significantly weaker modulation
with alloy composition as compared to the thermal conductivity. Our results help shed light on the in-plane
and cross-plane thermal transport properties of 2D single-layer TMD alloys and further their applications in
nanoelectronics, sensing, and energy devices.
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I. INTRODUCTION

Inherently semiconducting two-dimensional (2D) mate-
rials are essential for all-2D electronic and optoelectronic
devices. Single-layer transition metal dichalcogenides (TMD)
are a family of semiconducting materials with a range of
band gaps and electron/hole mobilities, making them a model
semiconductor family for 2D transistors and photonics. Be-
yond homogeneous TMDs, great attention has been given
to the electronic, magnetic, and optical properties of TMD
alloys, which have been readily synthesized through chemical
vapor transport (CVT), chemical vapor deposition (CVD),
and physical vapor deposition (PVD) [1–3]. Furthermore,
the scalability, thickness-controlled exfoliation, and thermal
stability of a wide range of quasibinary TMD alloys was
recently demonstrated [3]. Thermal transport in few- and
single-layer homogeneous 2D materials has been investigated
at length [4–13]. However, despite their potential applications
in solid-state memory, optoelectronics, and thermoelectric
(TE) devices [14–16], there has been less attention given to
the thermal properties of TMD alloys.

Alloying is a method for tuning vibrational frequencies,
reducing the lattice thermal conductivity, and tuning the
bandgap while having only moderate impact on electrical
conductivity relative to the strong impact seen on phonon
transport. It is therefore a commonly employed method for
improving the conversion efficiency of TEs, which requires
high electrical and low thermal conductivity. Considering
that the modest thermal conductivity in sub-micron scale
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homogeneous TMDs has spurred interest in employing them
in TEs [17–22], TMD alloys could stand to drive inter-
est further. Composition- and temperature-dependent in-plane
thermal conductivity (κIP) was measured in bulk quasibinary
WSe2−2xTe2x alloys by time-domain thermoreflectance where
a three- to fourfold reduction in κIP was reported in the alloyed
samples as compared to the homogeneous counterparts [23].
Janus TMDs are compounds that have one of the chalcogen
layers replaced by a different chalcogen element (such as in
a S-Mo-Se trilayer) [24,25]. The effect of such replacement
on the thermal conductivity appears to be linear [26], which
contrasts with the highly nonlinear effects observed in alloys
with randomized constituent positions [15,27].

Due to the computational costs of density-functional per-
turbation theory and frozen-phonon methods, computing full
phonon dispersions of randomized alloys remains a challenge
due to the large supercells required, especially for dilute
alloy compositions. Consequently, much of the ab initio ap-
proaches on TMD alloys focus on simpler structures, such as
Janus compounds [25,26], or more computationally tractable
quantities, such as ground state energies and electronic band
structures [28–30]. Such impediments can be alleviated by
molecular dynamics [27] which can handle larger simulation
sizes and, perhaps more effectively, by employing the virtual
crystal approximation (VCA) within an ab initio frame-
work. The VCA typically takes advantage of first-principles
full-phonon dispersions of the homogeneous materials and
linearly interpolates the lattice constants, atomic masses, and
harmonic force constants of the constituents to replace the ho-
mogeneous unit cell observables with virtual approximations
[31]. Combined with an alloy-scattering rate that captures
the effects of mass disorder on phonon scattering, the VCA
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has been demonstrated to accurately capture the dispersion of
acoustic phonons [32] and be a powerful tool for examining
thermal conductivity in binary semiconductor alloys [33].

To this end, the VCA has previously been employed with
a Green’s function approach to alloy scattering where the
thermal conductivity was solved via a first-principles-driven
Boltzmann transport equation (DFT-BTE) [15]. There the au-
thors reported a sixfold reduction in the room-temperature
thermal conductivity of single-layer Mo1−xWxS2 alloys as
a function of W concentration. The effects of nanodomains
ranging from ∼2–11 unit cells in size were examined where
a moderate (40%) domain-size-independent reduction in the
thermal conductivity was observed. Despite the aforemen-
tioned studies, the literature is lacking comprehensive analysis
on length dependence and effects of nanostructuring on ther-
mal transport in TMD alloys. Moreover, there is no literature
on the effects of substrate scattering on the in-plane ther-
mal conductivity or on cross-plane thermal conductance from
TMD alloys into the substrate, which is the key heat-removal
pathway in 2D devices [34].

In this work, we study the effects of alloy composition
on both in-plane (thermal conductivity) and through-plane
(2D-3D thermal boundary conductance) thermal transport
in 1H MX2 TMD quasibinary alloys, i.e., M1−xM’xX2 and
MX2−2xX’2x where M,M’=Mo,W and X,X’=S,Se. We use
first-principles calculations of the phonon dispersions of 1H
homogeneous MoS2, MoSe2, WS2, and WSe2 and then com-
pute the alloyed parameters within the VCA. We employ
a phonon Boltzmann transport model for in-plane transport
[35] and a cross-dimensional (2D-3D) thermal boundary con-
ductance model [36] for through-plane transport. We report
a near order of magnitude (three- to fivefold) reduction in
the room temperature κIP as a function of alloy composition
for 5 × 5 μm2 systems. We further show that κIP is reduced
significantly in both homogeneous and alloyed TMDs through
nanostructuring, which introduces line-edge roughness scat-
tering, and substrate scattering when the TMDs are placed
atop SiO2. Beyond in-plane conductivity, we provide novel
insight into alloy effects on thermal transport from the 2D
layer into the underlying substrate and comment on the ther-
mal healing length as a function of alloy composition in TMD
alloys. We demonstrate a robust modulation in the thermal
conductivity of bulk and nanostructured TMD alloys which
could immediately benefit the design of TMD-based devices.

The remainder of this paper proceeds as follows: Section II
discusses the first-principle phonon dispersions and trans-
port models for in-plane thermal conductivity and thermal
boundary conductance. Note that we refer to the Appendix
for details on first-principles calculations, and anharmonic,
edge-roughness, and substrate scattering rates to supplement
the methodology. Section III discusses the results of alloying
mixing on thermal conductivity, thermal boundary conduc-
tance, and thermal healing length.

II. METHODOLOGY

A. Phonon dispersions from first principles and VCA

We calculate the full-phonon dispersion of four homo-
geneous transition metal dichalcogenide monolayers (MoS2,

MoSe2, WS2, and WSe2) using density-functional pertur-
bation theory (DFPT) as implemented within the PHonon
package as distributed with the open-source package QUAN-
TUM ESPRESSO [37,38]. The calculated full-phonon dispersion
relations of MoS2, WS2, MoSe2, and WSe2 are shown in
Figs. 1(a)–1(d). The mode-dependent phonon group velocities
vg and Grüneisen parameters γ are then calculated from the
dispersion data using a central difference method applied to

vg(Q) = ∂ω(Q)

∂q
(1)

γ (Q) = − a0
2ω(Q)

∂ω(Q)

∂a
, (2)

where Q represents the reduced phonon mode (q, j) for
wave-vector q and branch j. In the case of the Grüneisen
parameters, the monolayer is biaxially strained by a small
(±0.5) percentage and the chalcogen-chalcogen distance is
adjusted in a structural optimization step that maintains a
constant in-plane lattice constant.

After we obtain the phonon dispersion and related quanti-
ties of each TMD, we then approximate quasibinary alloys—
mixing either the transition metals or chalcogens—using the
virtual crystal approximation (VCA). In implementing the
VCA, we linearly mix the square of the phonon dispersions,
lattice constants, and atomic masses of the constituent materi-
als [39,40]. The phonon dispersion of an Mo0.5W0.5S2 alloy is
shown in Fig. 1(e). Once we have the VCA alloy dispersions,
we then input them into our phonon Boltzmann transport
(pBTE) model for in-plane transport or into our 2D-3D in-
terface model to study the thermal boundary conductance
between these materials and an amorphous SiO2 substrate.

We also consider the effect of substrate coupling on the
vibrational modes of the 2D layer. When a 2D layer is placed
on a substrate, flexural phonons that characteristically dis-
place atoms vertically, normal to the interface, experience a
restoring force in the long-wavelength regime caused by the
collective forces of the van der Waals (vdW) bonds governing
interface coupling [36]. As a result, 2D layers supported by
substrates see a resonant peak in the flexural (ZA) phonon
branch in the long-wavelength regime that is representative
of the restoring forces of substrate coupling. The resonant
frequency ω0 is determined from the vdW coupling spring
constant (Ka), the number of atoms per unit cell with a vdW
bond to the substrate N , and the unit cell mass m of the 2D
material—ω0 = √

NKa/m2D. The inset of Fig. 1(e) shows the

gapped ZA branch in red ω̃ZA(q) =
√

ω2
ZA(q) + ω2

0 and the
as-calculated ungapped branch ωZA(q) in dashed gray.

B. In-plane phonon BTE and mass-difference scattering

The phonon Boltzmann transport equation (pBTE) has
been widely used to study thermal transport in semiconductor
materials [41,42] as well as two-dimensional graphene [35].
Here we use an Allen-Callaway (AC) solution [43] to the
pBTE, which accounts for the additional thermal conductivity
from the flowing equilibrium governed by nonresistive normal
phonon scattering processes [44]. The steady-state pBTE is
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FIG. 1. The phonon dispersion of (a) MoS2, (b) WS2, (c) MoSe2, and (d) WSe2 obtained from first-principles DFPT simulations. In (e) we
show the first-principles calculated phonon dispersion of MoS2 (dashed red line) and WS2 (dashed blue line) as well as the resulting dispersion
from a VCA of a 50/50 alloy between the transition metals Mo and W (solid black line). The inset of (e) illustrates the gapping that the
out-of-plane, flexural phonon branch undergoes when the 2D layer is placed on a substrate.

written as

�vQ · ∇�rNQ = −NQ − N0
Q

τR
Q

− NQ − N∗
Q

τN
Q

, (3)

where on the left hand side �vQ is the phonon velocity and
∇�rNQ is the spatial gradient of the out-of-equilibrium dis-
tribution function NQ, while on the right hand side, 1/τR

Q
represents the resistive scattering rate which relaxes the
out-of-equilibrium distribution NQ back to a zero heat flux
equilibrium distribution N0

Q, represented by the Bose-Einstein
distribution function N0

Q(T ) = [exp(h̄ωQ/kBT ) − 1]−1. Fur-
ther, 1/τN

Q represents the nonresistive (normal) scattering
rate that pushes the out-of-equilibrium distribution toward a
nonzero heat flux flowing equilibrium distribution N∗

Q.
Within the AC solution the total thermal conductivity κ can

be written conveniently as a sum,

κ = κRTA + λ1λ2

λ3
, (4)

which consists of the widely used relaxation time approxima-
tion (RTA) term κRTA plus a correction term λ1λ2

λ3
. The RTA

term is written as

κRTA(T ) = kB
h2D

∑
j,q

h̄ωQ

∂N0
Q

∂T
τCQv2

Q , (5)

where kB is Boltzmann’s constant, h2D is the 2D layer thick-
ness (including interplanar vdW gap) [45], h̄ωQ represents

phonon energy,
∂N0

Q

∂T is the temperature derivative of the equi-
librium Bose-Einstein distribution function, τCQ is the total

relaxation time, and vQ represents the phonon group velocity.
In Allen’s solution λ1,2,3 are written in the following form

λ1 = 1

Aδ

∑
Q

vQ‖Q‖τCQ
∂N0

Q

∂T
, (6)

λ2 = 1

Aδ

∑
Q

vQ‖Q‖

[
τCQ

τN
Q

]
∂N0

Q

∂T
, (7)

λ3 = 1

Aδ

∑
Q

(
Q2

‖
h̄ωQ

)[
τCQ

τR
Q

]
∂N0

Q

∂T
, (8)

where Q‖ is the component of the phonon wave vector that is
perpendicular to the boundary normal and parallel to the tem-
perature gradient. Collectively, λ1,2,3 quantify the additional
thermal conductivity produced by the flowing equilibrium. In
Eqs. (5)–(8), τCQ combines all resistive τR

Q and nonresistive τN
Q

scattering mechanisms, that is 1/τCQ = 1/τR
Q + 1/τN

Q .
Resistive scattering mechanisms are comprised of any

collision that destroys crystal momentum, which includes an-
harmonic Umklapp scattering 1/τUQ , isotope scattering 1/τ iso

Q ,

impurity scattering 1/τ imp
Q , alloy mass-difference scattering

1/τmass
Q , line-edge roughness scattering 1/τLER

Q , and substrate
scattering 1/τ sub

Q . The scattering rate of resistive processes is
thus written as

1

τR
Q

= 1

τUQ
+ 1

τmass
Q

+ 1

τ
imp
Q

...

... + 1

τ iso
Q

+ 1

τLER
Q

+ 1

τ sub
Q

. (9)
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In this work we are interested in TMD alloys where mass-
difference scattering 1/τmass

Q caused by the random mixing of
atomic species dominates in contribution to 1/τR

Q . For sake
of brevity, we discuss the anharmonic three-phonon (normal
1/τN

Q and Umklapp 1/τUQ ), line-edge roughness 1/τLER
Q , and

substrate scattering rate 1/τ sub
Q in the Appendices 2 and 3,

respectively.
Phonon scattering from mass disorder is primarily due to

alloying but can similarly occur with mass variation from iso-
topes and vacancies/impurities. These mechanisms are elastic
and can be written in terms of the phonon density of states as
[42,46,47]

1

τmass(ω)
= πS0

12

0ω

2D2D(ω) , (10)

where S0 is the unit cell surface area and 
0 is the
mass-difference scattering constant, which is related to the
likelihood of encountering a mass-different body and the re-
sulting mass perturbation. When the material is alloyed 
0

takes the following form


0 = x(1 − x)(m1 − m2)2

m2
alloy

. (11)

In the above, malloy represents a linear mixing of the unit
cell masses of the homogeneous TMDs, as in malloy = (1 −
x)m1 + xm2. The phonon density of states D2D(ω) is calcu-
lated following the Brillouin zone integration method [48],
which for dense q-point grids can be numerically calcu-
lated as a sum over all phonon modes Q = (q, j), D2D(ω) =∑

Q δ[ω − ωQ]. Equation (10) is derived from perturbation
theory wherein a dot product between incident and final
phonon displacement vectors occurs [46]. In 2D materials,
this dot product restricts the scattering channels between
ZA and TA/LA phonons because their displacement vectors
are always perpendicular [49], which is an instance of a
more general selection rule that requires scattering processes
in inversion-symmetric 2D materials to always involve an
even number of ZA phonons [45]. Therefore, elastic mass-
difference scattering events involving ZA phonons must result
in a ZA phonon [D2D → DZA in Eq. (10)], whereas events
involving TA/LA phonons can result in any phonon except
ZA [D2D → DTA/LA in Eq. (10)].

Alloy scattering is typically stronger than isotope or im-
purity scattering due to the larger mass difference (m1 − m2)
between the constituent materials even at small mixing per-
centages [42,50]. For phonon collisions with isotopes, 
0

represents the natural abundance of isotopes and can be writ-
ten as 
0 = χ (1 − χ )/(M + χ )2 with χ = 3.4%. Scattering
with impurities occurs with lattice vacancies/defects and has
a 
0 = S0nimp where nimp is the concentration of impurities.
Under controlled conditions, impurity concentrations are typ-
ically fractions of a percent of the atomic density of the
host material (on the order of 3–4 × 1015 cm−2 in TMDs).
High-purity few-layered TMDs are reported [51,52] to have
impurity concentrations on the order of 1010–1011 cm−2. At
these amounts the impact on thermal conductivity is minimal
(∼5–15% on the large system κIP and ∼1–3% in alloys).
Hence we neglect impurity scattering in our calculations for
alloys by assuming their concentrations to be negligible.

C. 2D-3D thermal boundary conductance

In calculating the thermal boundary conductance (TBC)
between the 2D layer and its underlying substrate we
employ our previously developed cross-dimensional 2D-
3D thermal boundary conductance model [36,53]. This
model has been demonstrated to quantitatively reproduce the
temperature-dependent TBC of graphene-SiO2, MoS2-SiO2,
AlOx-MXene-SiO2, and FL-WSe2-SiO2 interfaces [36,53–
55]. Contrary to 3D-3D interfaces where phonons impinge
on the interface to undergo a transmission or reflection pro-
cess, phonons propagating in the 2D layer travel parallel to
the 2D-3D interface. Consequently, under traditional thermal
interface models, such as the diffuse and acoustic mismatch
models [56,57] (DMM and AMM) or the more recent vdW-
AMM [58], 2D-3D TBC would be zero [36]. In 2D-3D
interface systems, phonons propagating in the plane of the 2D
layer undergo an additional scattering process due to coupling
of out-of-plane displacements with vibrations in the substrate
through the vdW bonds. In those substrate scattering events,
a phonon may hop across the interface thereby contributing
the interface transport. Hence, in this context, scattering of
phonons in the monolayer facilitates interface transport as
opposed to hindering it for in-plane transport.

As a result of the above, 2D-3D thermal boundary con-
ductance is uniquely bottlenecked by two mechanisms: (i)
out-of-plane ZA phonons that displace atoms vertically are the
primary carriers of thermal energy across the interface [59];
therefore, the thermal channel from 2D to 3D systems must go
through ZA phonon interactions, and (ii) when ZA phonons
transfer across the interface the ZA phonon population in the
2D layer is diminished. This depletion of the ZA phonon
population is replenished by the collective internal scattering
of ZA phonons, which consists of three-phonon anharmonic
(normal and Umklapp) and line edge roughness scattering;
1/τint = 1/τN + 1/τU + 1/τLER. We denote any additional re-
sistance brought on by the slow repopulation of ZA phonons
in the 2D layer as the internal resistance (Rint). Further,
we point out that the internal conductance (Gint = R−1

int ) can
be qualitatively thought of as one part of a series conduc-
tor network with the external conductance—termed external
TBC—which is determined strictly by the substrate scattering
rate 1/τsub (i.e., in the limit of very large internal scattering).

The rate at which phonons transfer across the 2D-3D inter-
face is obtained from Fermi’s golden rule as [59]

1

τsub(ω)
= π

2

Dsub(ω)

msubmalloy

NK2
a

ω2
. (12)

Here, the malloy is the unit cell mass of the TMD alloy, Ka

is the vdW coupling spring constant, and N is the number of
atoms with vdW springs in the 2D unit cell. The vibrational
density of states (vDOS) of amorphous SiO2 is extracted
from previous molecular dynamics simulations [60]. Once we
calculate the substrate scattering rate, internal ZA scattering
rates, and the vDOS of the 2D layer, we calculate the TBC as
the product of the specific heat and vDOS of the 2D layer and
effective substrate scattering rate integrated over all phonon
energies

G(T ) =
∫

C2D(ω,T )D2D(ω)τ−1
eff (ω)dω , (13)
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FIG. 2. The width dependence of L = 1 mm and L = 5 μm long (a),(b) homogeneous and (c),(d) 50% alloyed nanoribbon TMD systems.
The cumulative thermal conductivity as a function of phonon mean-free-path � is shown in (e). We use an rms edge roughness  = 0.45 nm
for all calculations.

where

τeff = τsub + τint . (14)

Here we can anticipate that the modulation of unit cell mass,
phonon density of states of the 2D layer, and Grüneisen pa-
rameter γ (as τint ∝ γ 2) through alloy mixing will lead to
a nontrivial influence on the TBC as compared to the well-
known trends commonly obtained for thermal conductivity.

III. RESULTS AND DISCUSSION

A. Size dependence of in-plane thermal conductivity

Previous reports of κIP for homogeneous TMDs with
system dimensions in the 1–10 micron range give values
of 120–140, 80–100, 72, and 46.2 W m−1 K−1 for WS2,
MoS2, WSe2, and MoSe2, respectively [6,9,12,13]. Our cal-
culations of room temperature κIP in suspended single-layer
homogeneous and 50% alloyed TMDs over several orders-
of-magnitude of width (W) at two lengths (L = 1 mm and
L = 5 μm) are shown in Figs. 2(a)–2(d). For large homoge-
nous (L = 1 mm, W > 1 μm) systems, we obtain in-plane
conductivity values of 143.7, 190, 153, and 114.5 W m−1 K−1

for MoS2, WS2, WSe2, and MoSe2, respectively. The bulk
values in previous reports are of systems with size dimensions
in the 1–10 micron range and may still be partly limited by
boundary scattering if large mean-free-path (MFP) phonons
(� > L) are non-negligible. When we reduce L to the mi-
cron range (L = 5 μm), we find good agreement between
our large-widthW > 1 μm [Fig. 2(b)] homogeneous calcula-
tions and previous DFT-BTE predictions with values of 140.4,

111.3, 89, and 71 W m−1 K−1 for WS2, MoS2, WSe2, and
MoSe2, respectively.

Comparing the L = 1 mm large-width 50% alloyed TMD
alloys [Fig. 2(c)] with the homogeneous TMDs, we see a
factor of 2–3 reduction in κIP. Despite strong alloy scatter-
ing [Eq. (10)], the large alloy systems maintain moderate
thermal conductivity values around 46–65 W m−1 K−1. As
width dimensions are scaled down below the ∼1 μm range
in the homogeneous TMDs (100 nm in the alloys), we begin
to see a significant reduction in κIP due to phonon collisions
with rough edges. Interestingly, we find the width dependence
below 100 nm follows a κIP ∝ W1/2 trend, which has been
observed for in-plane and cross-plane thermal conductivity in
3D thin films and attributed to the quadratic dependence of
anharmonic scattering rates on frequency [61], particularly
for the long-wavelength phonons whose MFP exceeds sys-
tem size. However, the width dependence for TMD alloys
with L = 5 μm breaks from the W 1/2 trend and displays a
W 1/3 dependence instead, resembling the length dependence
in Si-Ge alloy nanowires [40], owing to the interplay be-
tween alloy and edge-roughness scattering. Together, these
trends stand in contrast to the logarithmic size scaling in
graphene [62], which is driven primarily by the ZA branch
[35], indicating that heat in TMD alloys is not carried pri-
marily by ZA phonons. For large-width systems, when L =
5 μm the κIP of MoS2−2xSe2x, WS2−2xSe2x, Mo1−xWxS2, and
Mo1−xWxSe2 is calculated to be 27.3, 27.2, 32.3, and 23.1
W m−1 K−1. We find our L = 5 μm predictions to be slightly
larger than similar DFT-BTE predictions [15] of κIP in L =
10 μm systems Mo1−xWxS2. Further, recent calculations [27]
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FIG. 3. Room-temperature in-plane thermal conductivity as a function of alloy mixing for suspended (a) and SiO2 supported (b) 5 × 5 μm2

TMD flakes. The branch-wise phonon percent contributions to thermal conductivity for the homogeneous and alloyed systems is shown in (c).
The alloyed compositions in (c) correspond to the mixing amount where the minima occur in (a).

using molecular dynamics (MD) and measurements [23] with
time-domain thermoreflectance (TDTR) demonstrate slightly
lower values for alloys at similar mixing concentrations for
2D MoS2−2xSe2x.

We then look at the cumulative κIP as a function of
the phonon MFP �Q = τCQvQ in Fig. 2(e). Alloy mass-
difference scattering contains both the vDOS and a term
quadratic in frequency, resulting in an ∝ ωα dependence.
The exponent α ranges from 2 for long-wavelength ZA
phonons whose vDOS is relatively flat to 4 for medium- and
short-wavelength LA/TA phonons; therefore, alloy scatter-
ing affects high-frequency, short-wavelength phonons much
more, while leaving long-wavelength phonons nearly intact
with their MFP still limited by anharmonic processes. The
resulting effect is that the size scaling of the alloys is overall
more gradual, reaching 50% of the maximum κIP at∼2–4 μm,
which is far in excess of their MFP whereas the homoge-
neous TMDs reach 50% their maximum around 1 μm and
100–200 nm for the selenide- and sulfide-based TMDs, re-
spectively. Furthermore, remarkably the 50% alloys exhibit
non-negligible contributions from long-wavelength phonons
where 20% of the total κIP still comes from phonons with
� > 20 μm. The redistribution of contributing MFPs to κIP
in TMD alloys ensures that lower κIP values can be achieved
in larger system sizes which can then be routinely lowered
through nanostructuring. We revisit the effects of nanostruc-
turing on supported alloys in a subsequent section.

B. Effects of alloy composition

Next, we calculated the dependence of κIP on alloy compo-
sition in suspended and SiO2-supported 5 × 5 μm TMDs in
Figs. 3(a) and 3(b). In both suspended and supported TMDs
we see a familiar steep decline in κIP at modest alloying

concentrations reaching broad plateaus with minima in the
range of 25% to 75% alloy mixing. From alloy mixing alone
in Fig. 3(a), we see a three- to fivefold reduction from the
bulk values [Fig. 2(b)] to the alloyed minimums at 27, 27.2,
32.3, and 22.88 W m−1 K−1 for MoS1.3Se0.7, WS0.92Se1.08,
Mo0.7W0.3S2, and Mo0.6W0.4Se2, respectively. When the 2D
layers are supported by a SiO2 substrate, phonons, primarily
on the ZA branch [59], are dampened by substrate interac-
tions. As a result, the overall scattering of acoustic modes
increases leading to a decrease in the in-plane thermal conduc-
tivity. For the homogeneous TMDs we see a two- to threefold
reduction in κIP across all TMDs.

These results for SiO2-supported single-layer TMDs agree
well with measured values of κIP TMDs supported on a
gold-coated SiO2 substrate handle [12]. When the supported
TMDs are alloyed [Fig. 3(b)] we see a similar dependence
as the suspended TMDs, where moderate alloying composi-
tions result in a significant (factor of ∼2) reduction in κIP
and minima occur between 19.5–25 W m−1 K−1. Predicted
values for large-system SiO2-supported TMD alloys display
very low κIP, achieving values comparable to suspended TMD
nanoribbons in the few-15 nm width range, even at micron
sized systems. These significantly low κIP values for sup-
ported TMD alloys are promising for improved thermoelectric
performance.

The phonon branch-wise percent contributions for sus-
pended homogeneous (left) and alloyed (right) TMDs are
shown in the top two panels of Fig. 3(c). Out-of-plane ZA
phonons carry 40% of the thermal conductivity in the sulfides
but only about 20% in the selenides where the LA and TA
branches contribute roughly 40% each. Upon alloying, which
strongly scatters acoustic phonons, the percent contributions
are 20% ZA and 80% TA/LA (split roughly evenly) much
like the partition seen in the homogeneous selenides. It is
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FIG. 4. Here we show the ZA branch total (black dots), mass-difference (red line), anharmonic (blue line), boundary (purple dots), and
substrate (green line) scattering rates in large-system (5 × 5 μm2) and nanoclustered (10 × 10 nm2) suspended and SiO2-supported TMD
alloys in (a)–(d). Note that we assume suspended systems have no substrate interactions. The room-temperature suspended (solid lines) and
supported (dashed lines) in-plane thermal conductivity as a function of alloy composition for MoS2−2xSe2x for decreasing system L × W
dimensions is shown in (e).

also worth mentioning here that the AC correction term λ1λ2
λ3

[see Eq. (5)] has a negligible contribution in the alloyed
systems, suggesting that an RTA model that accounts for
mass-difference scattering rate is sufficient for computing the
thermal conductivity in TMD alloys. Branch-wise contribu-
tions for SiO2 supported homogeneous and alloyed systems
are shown in the bottom two panels of Fig. 3(c). There we see
that the ZA branch contribution in either the homogeneous or
the alloyed systems is significantly reduced due to substrate
scattering to 10% in MoS2 and ∼5% or less in all other cases.
As a result, TA and LA phonons carry roughly 90–95% of the
thermal conductivity in substrate-supported systems.

The in-plane thermal conductivity of SiO2-supported TMD
alloys also exhibits a deviation from the commonly used
Matthiessen’s rule [63,64]. Matthiessen’s rule is an approxi-
mation that estimates the total conductivity of a system with
multiple scattering sources from the conductivities obtained
with the individual scattering sources alone. It is often used
when combining contributions from three-phonon scatter-
ing, which is dominant in bulk at high temperatures (above
200 K), with impurity or boundary scattering, which dominate
in nanostructures and at low temperatures. In our case, we
compare the conductivities of suspended alloys [the x = 0.5
mixing mark of Fig. 3(a)] and supported nonalloys [the end-
points x = 0,1 mark of Fig. 3(b)] with supported alloys [the
x = 0.5 mixing mark of Fig. 3(b)]. To that end we can write
Matthiessen’s rule as

κ−1
alloy,supp ≈ κ−1

alloy + κ−1
supp , (15)

where κalloy,supp, κalloy, and κsupp represent the thermal conduc-
tivity of the supported alloy, suspended alloy, and supported
nonalloy, respectively. For a concrete example, we take values
from Figs. 3(a) and 3(b); following the Mo1−xWxS2 curve, we
have 23 W m−1 K−1 for the suspended alloy at the minimum
(40% alloy mixing) and 52 W m−1 K−1 for the substrate sup-
ported nonalloy. Following Eq. (15) above, one obtains a value
of 16 W m−1 K−1 for the substrate supported alloy. However,
as we can see in Fig. 3 our model predicts the thermal conduc-
tivity is roughly 19 W m−1 K−1 at 40% alloy mixing. Similar
deviations are obtained for the other alloys. The breakdown is
more stark if we examine the ZA contribution alone: It is 4.3
and 4.4 W m−1 K−1 in supported MoS2 and 40%Mo1−xWxS2
alloy so Matthiessen’s rule predicts the ZA contribution in
supported alloy to be 2.2 W m−1 K−1 while our calculation
produces only 0.74 W m−1 K−1.

The reasons we see this breakdown of Matthiessen’s rule
are twofold: (i) the scattering rates caused by alloy mass-
difference and substrate interactions have contrary frequency
trends and hence are strongest at opposite ends of the phonon
spectrum, and (ii) substrate scattering strongly affects ZA
phonons but not in-plane modes while alloy scattering af-
fects all branches. In Figs. 4(a)–4(d) we plot the scattering
rates of alloy mass-difference, substrate, line-edge roughness
(LER), and anharmonic scattering events for suspended and
supported micron- and nanosized systems. Alloy scattering
(red line) has an ω2 dependence in ZA phonons; in con-
trast, scattering caused by substrate interactions (green line
in Figs. 4(c) and 4(d) goes as 1/ω2 [Eq. (A7)] and hence
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FIG. 5. Room-temperature thermal boundary conductance calculations of TMD alloys on amorphous SiO2 as a function of alloy composi-
tion is shown in (a),(b). The spring coupling constant is Ka = 4.27 N/m. The thermal healing length as a function of alloy composition is shown
in (c).

is strongest at low phonon energies. As a result, the two
mechanisms scatter ZA phonons at low and high energies, or
large and small wavelengths, leading to a compound effect
that is not effectively captured by applying Matthiessen’s rule
to the respective conductivities.

While alloy mass-difference and substrate scattering scat-
ter short-wavelength (ZA,TA,LA) and long-wavelength (ZA)
phonons, respectively, LER scattering is constant across
a significant portion of the energy spectrum as seen in
Figs. 4(a)–4(e). We explore theoretical minimum thermal con-
ductivities of MoS2−2xSe2x in Fig. 4(e) where we show κIP as
a function of alloy mixing at decreasing L × W dimensions.
We see a steady decrease in κIP as size dimensions are scaled
down reaching 4–6 W m−1 K−1 in 50 × 50 nm systems. At
500 × 500 nm systems κIP for supported MoS2−2xSe2x falls
below 15 W m−1 K−1 from ∼20–80% Se mixing. Further,
for small 10 × 10 nm clusters, we find that κIP nearly reaches
the amorphous limit which represents the thermal conduc-
tivity of a system with maximum scattering [42,65,66]. For
10 × 10 nm sized systems, we take the κIP to be representative
of a supported nanocluster with weak coupling to the substrate
such that substrate scattering is negligible.

C. Mass-disorder effects on TBC and healing length

We then calculated the room-temperature through-plane
TBC as a function of alloy mixing between TMD alloys
and an SiO2 substrate. For comparison, we assume the vdW

coupling constant between the 2D TMD and SiO2 substrate is
equivalent across all alloy compositions. Density-functional
theory calculations estimate the vdW coupling between MoS2
and quartz-SiO2 to be 4.27 N/m [67], which we use through-
out our calculations. In Fig. 5(a) we show the external
TBC which is obtained by assuming the internal scattering
(τ−1

int ) of ZA phonons is very large such that τsub � τint and
subsequently τeff → τsub in Eq. (13). We observe a linear
relationship between the external TBC and alloy composition
that is representative of the near linear modulation in the
atomic mass malloy and phonon frequencies, which impact the
resonant frequency gap ω0, substrate scattering rate, and 2D
vDOS. However, experimentally measured TBC values do not
capture the external TBC due to the presence of additional
mechanisms such as internal resistance. Hence, these values
overestimate measured TBC. We show the total TBC (solid
lines), that accounts for internal resistance, as a function of
alloy mixing in Fig. 5(b) where we see values in the range
3–26 MW m−2 K−1 which are in good agreement with re-
ported measurements of uncoated single-layer MoS2 on SiO2

[54,68,69]. Our results show a TBC of 6, 13.45, 14.9, and
26.1 MW m−2 K−1 for WS2, WSe2, MoSe2, and MoS2 on
amorphous SiO2, respectively.

Upon alloying, the total TBC shows a nonlinear relation-
ship with alloy composition, which is primarily driven by the
dependence of the internal resistance (Rint) of ZA phonons.
The general trend in the internal resistance is represented
in the internal TBC (Gint = R−1

int ) seen as the dotted lines in
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Fig. 5(b). We find that the internal TBC (which is governed by
τint) largely follows the alloy composition dependence of the
Grüneisen parameter γ [see Eqs. (A1) and (A2)]. As a result,
we see a qualitatively different trend and weaker modulation
in the TBC as compared to in-plane transport. It is important
here to note the significant role of internal resistance on the
TBC where we see an order-of-magnitude reduction from the
external TBC. The internal resistance may be a concerning
thermal bottleneck for cross-plane transport in single-layer
2D devices without encapsulation. However, it has been pre-
viously shown that encapsulation and adding multiple 2D
layers (which act as encapsulation) can significantly reduce
the impact of internal resistance on the TBC [53,55,70].
In either case, our results highlight that alloying can be
an effective way of significantly reducing in-plane transport
while having minimal impact on cross-plane transport into the
substrate.

Lastly, using our values of substrate-supported thermal
conductivity and TBC we compute the healing length,

LH =
(κt

G

)1/2

, (16)

as a function of alloying mixing. In a transistor, the heal-
ing length represents the distance from source/drain contacts
where significant thermal energy can be removed from the ac-
tive region via the metal source/drain contacts [71]. A longer
healing length means there is more lateral heat flow through
the source/drain contacts and longer devices can be employed
before thermal dissipation is largely cross plane. We plot the
healing length taking either the total TBC (solid lines) or
external TBC (dashed lines) into consideration as a function
of alloy mixing in Fig. 5(c). The healing length determined
by the external TBC alone follows well the dependence of
κIP reaching a minimum around 12–16 nm for most of the
alloy composition range. However, including the internal re-
sistance we see that the healing length increases noticeably
and exhibits a different trend for some alloys. We report heal-
ing lengths between 35–75 nm for the homogeneous TMDs
and minima of 27 nm and 39 nm for Mo0.54W0.46Se2 and
WS0.52Se1.48. As for MoS2−2xSe2x and Mo1−xWxS2, the heal-
ing length decreases steeply for small amounts of alloy mixing
but then begins increasing slowly around 12–14% reaching
maxima near 54% and 65%, respectively. This suggests that
for devices that employ alloyed TMDs, device lengths must
be roughly 90–240 nm (∼3LH ) or smaller in order to see sig-
nificant heat sinking through the source/drain contacts [71].

IV. CONCLUSION

We have calculated the in-plane thermal conductivity of
suspended and substrate supported transition metal dichalco-
genide alloys (MX2: M = Mo,S and X = S,Se). Our results
show that alloy scattering substantially reduces both sus-
pended and supported in-plane thermal conductivity of TMD
alloys, even at modest alloy compositions. The lowest values
are typically two to three times lower than the nonalloyed
constituents. Surprisingly, despite dominant alloy scattering,
the thermal conductivity of suspended alloys is dependent on
system size up to several microns, far exceeding the phonon
MFP, but the dependence is much more gradual than in

nonalloyed systems, owing to contributions from long-
wavelength phonons. ZA phonon contributions to thermal
conductivity are significantly reduced by substrate scattering.
As a result, TA/LA phonons carry 90–95% of the thermal
conductivity in supported TMDs. We see a breakdown
of Matthiessen’s rule for supported TMD alloys whose
thermal conductivities cannot be estimated by combining
the conductivities of supported homogeneous TMDs and
the suspended TMD alloys. We also calculate the thermal
boundary conductance between the alloyed 2D layer and a
SiO2 substrate. Our results show that the alloy dependence of
the thermal boundary conductance is qualitatively different
than for in-plane thermal conductivity. We conclude here that
alloying combined with nanostructuring is a powerful way to
tune the thermal properties of TMDs and a promising avenue
toward achieving low thermal conductivity. Conversely,
device applications requiring good heat removal will benefit
from improved TBC to the substrate.

On the outlook of TMD alloys as thermoelectric materials,
we note that the reduction of thermal conductivity in large
(100s nm to micron sized) systems may not be sufficient
to obtain a high ZT for monolayer TEs. However, we can
reduce thermal conductivity further, achieving a better ZT, by
employing superlattice and nanodomain structures with sub-
50-nm size features, which have been experimentally realized
[72,73]. Further, the effects of alloy scattering of electrons
may present an additional challenge for TMD alloy based
thermoelectrics. Alloy scattering of electrons is proportional
to the alloy scattering potential Ualloy, which is related to the
difference between electron affinities of the constituent ho-
mogeneous materials [74]. If Ualloy < 150 meV then alloy
scattering has negligible impact on the phonon-limited mobil-
ity of TMDs [74]. Although the electron affinity can be readily
obtained from first principles [75], effects of the fabrication
process and substrate features may impact the electron affinity
of fabricated devices [76]. Thus, we note that careful attention
to alloy scattering of electrons in TMD alloy systems may be
required to maximize the benefits of alloying in TEs. Lastly,
strong charge impurity scattering of electrons is a concern
for substrate supported monolayers [77] and could therefore
hinder their TE performance. Hence, few-layer structures are
preferred for improved electron mobility for substrate sup-
ported 2D systems [34].

We note that thickness-dependent thermal conductiv-
ity of homogeneous vdW materials has been studied [78]
where nonmonotonic [79,80] (decreasing then increasing) and
monotonically increasing [81,82] trends have been shown for
suspended and substrate-supported systems with increasing
thickness. The thickness dependence of alloyed vdWs systems
has not been studied. We expect that the reduction in in-plane
conductivity by alloy scattering could lead to a substantially
weaker thickness dependence of thermal conductivity for
TMD alloys. However, the full calculation thermal transport
in few-layered alloys is beyond the scope of the present work
and may be the subject of future investigation. Based on the
above, we suggest that mono- and few-layered TMD alloy su-
perlattices or TMDs with alloyed nanodomains that minimize
thermal conductivity while retaining phonon-limited electron
mobility may be a promising avenue for improved 2D TMD
thermoelectrics.
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APPENDIX

1. First-principles phonon dispersion calculations

We calculate the full phonon dispersion of four homo-
geneous transition metal dichalcogenide monolayers (MoS2,
MoSe2, WS2, and WSe2) using density-functional pertur-
bation theory (DFPT) as implemented within the PHonon
code as distributed with the open-source package QUANTUM

ESPRESSO [37,38]. The details for the phonon dispersion
calculation of MoS2 can be found in our previous work
[36]. Phonon calculations of single-layer, 1H-phase homoge-
neous MoSe2, WS2, and WSe2 are performed through DFPT
[38]. For MoSe2 we used a nonrelativistic Martins-Troullier
pseudopotential with a Perdew-Burke-Enzerhof/generalized
gradient approximation (PBE/GGA) [83] functional. We
relax the unit cell structure on an offset 6 × 6 × 4 Monkhorst-
Pack grid with a plane wave energy cutoff of 140 Ry and
a self-consistent field convergence threshold of 10−14 Ry. In
calculating the phonon dispersion of WS2 and WSe2 we used
a scalar relativistic Vanderbilt ultrasoft pseudopotential with a
PBE/GGA functional. The structures are relaxed on an offset
27 × 27 × 1 and 16 × 16 × 1MP grids for WS2 and WSe2,
respectively, with a plane wave energy cutoff of 100 Ry and
a self-consistent field convergence threshold of 10−14 Ry. All
structures are relaxed until the forces on atoms are all less than
5 × 10−4 eV/Å. After structural optimization, we calculate
the dynamical matrices using a 6 × 6 × 4 Monkhorst-Pack
grid for MoSe2 and a 8 × 8 × 1MP grid for both WS2 and
WSe2. We then inverse Fourier transform the dynamical ma-
trices into real space onto a dense grid of 126 040 q points,
which contains the set of 25 208 equidistant q points plus
grid points for a 2D central difference method around each
equidistant point (4 × 25 208 + 25 208 = 126 040).

2. Three-phonon scattering rates

In bulk homogeneous materials, phonon transport is gov-
erned by anharmonic normal and Umklapp scattering. The
three-phonon normal and Umklapp scattering rates used here
follow the work of Morelli et al. [84] and have been adapted to
2D materials [35] where good agreement with measured ther-
mal conductivity of graphene was found. In this formalism,
1/τN

Q = BNω
aN
Q T bN e−� j/3T and 1/τUQ = BUω

aU
Q T bU e−� j/3T ,

where the prefactor terms BN and BU are written as

BN (aN , bN ) =
(
kB
h̄

)bN h̄γ 2
j [S0h2D]

(an+bN−2)/3

Mv
aN+bN
j

, (A1)

and

BU (aU , bU ) = h̄γ 2
j

Mv
aU
j �

bU
j

, (A2)

respectively. In the above equations, � j is the branch-wise
Debye temperature, γ j is the branch-wise Grüneisen parame-

ter, S0 is the surface area of the 2D layer unit cell (S0 =
√
3
2 a0

for homogeneous TMDs or S0 =
√
3
2 aalloy for alloyed TMDs),

andM is the unit cell atomic mass. The empirical exponential
factors aN , bN , aU , and bU that determine the frequency and
temperature dependencies for normal and Umklapp scattering
are aN = [1 2 2] j , bN = 1, aU = 2, and bU = 1, respectively.

Normal and Umklapp scattering typically dominate in
bulk crystals where system dimensions are large and
impurities/defects are low in concentration, however here
we are interested in studying phonons in the presence of
boundaries of alloyed materials. Hence, strong boundary scat-
tering from nanostructuring and mass-difference scattering
from alloying will dominate over three-phonon (N and U) pro-
cesses and determine the effective relaxation time of phonons.
The remaining scattering mechanisms can be grouped as
mass-disorder scattering (τ−1

iso , τ−1
imp, and τ−1

mass) and extrinsic

boundary/interface scattering (τ−1
LER and τ−1

sub).
The mode-dependent Grüneisen parameters, which deter-

mine the anharmonicity of phonon-phonon interactions [7],
are obtained using

γ (Q) = − a0
2ω0

∂ωQ

∂a
, (A3)

where a0 and ω0 are the equilibrium lattice constant and
phonon frequencies, respectively. We then average the mode-
dependent Grüneisen parameters over the heat capacity to
obtain a temperature-dependent Grüneisen parameter per
branch [85],

γ j (T ) =
∑

q γ (Q)Cv (ωQ,T )∑
qCv (ωQ,T )

. (A4)

We use this branch-wise γ j (T ) when calculating the nor-
mal and Umklapp scattering rates [see Eqs. (A1) and (A2)].
When we alloy mix two TMDs, we apply the VCA on the
strained phonon dispersions and then use them to recalculate
the Grüneisen parameter for the alloyed material.

3. Extrinsic edge roughness and substrate scattering
mechanisms

Our model also includes phonon scattering due to rough
line-edge boundaries 1/τLER

Q at the 2D layer’s planar edge
and, when supported by a substrate, interactions between
flexural ZA phonons and the underlying substrate 1/τ sub

Q . In
considering scattering due to line-edge roughness, phonons
collide with the boundary provided they have not already
scattered internally where each collision with the boundary
is treated with a momentum-dependent specularity parameter
p(q) = exp(−4q2sin2θB). The specularity parameter deter-
mines how specular or diffuse the collision event is based on
the root-mean-square (rms) roughness , wave vector q2 =
||q||2, and angle of incidence θB. We use an rms edge rough-
ness  = 0.45 nm for all calculations. Line-edge roughness
(LER) scattering [35,86] can be written as

1

τLER
Q

= v⊥
Q

W

FQ[
1 − (

�int,⊥
Q /W

)
FQ

] , (A5)

where W is the width of the nanoribbon, v⊥
Q are the phonon

group velocities perpendicular to the flow of transport (i.e., to-
ward the boundary), and �int,⊥

Q = v⊥
Q/τ int

Q is the phonon MFP
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perpendicular to the direction of transport. Here, 1/τ int
Q repre-

sents the scattering rate of all internal mechanisms, including
three-phonon N +U processes, mass-disorder, isotope, impu-
rity, and substrate scattering when supported by a substrate.
The form factor FQ is written as

FQ = [1 − p(q)]1 − exp
[−W

/
�int,⊥

Q

]
1 − p(q)exp

[−W
/
�int,⊥

Q

] . (A6)

This model captures the interplay between internal scattering
mechanisms and boundary roughness scattering and has been
previously used to model line-edge roughness in graphene
nanoribbons [86]. Beyond phonon collisions with line-edge
boundaries, in-plane phonons traveling in a substrate sup-
ported 2D layer also interact with the surface roughness of
the substrate leading to an additional scattering mechanism

[59].We can write the substrate scattering rate in the following
manner,

1

τsub(ω)
= π

2

(
Dsub(ω)

msubmalloy
+ D2D(ω)

m2
alloy

)
K2
a

ω2
. (A7)

In the above, Dsub(ω) is the phonon density of states of the
supporting substrate (SiO2 here), msub is the mass of atoms on
the surface of the substrate, and Ka is the van der Waals (vdW)
spring coupling constant. This form of the substrate scattering
rate ensures that the net heat flux across the 2D-3D interface
is zero and hence, any phonon that hops from the 2D layer to
the substrate must hop back or be replaced by an equivalent
phonon from the substrate.
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