
Scooter & Sidecar: A Domain-Specific Approach to
Writing Secure Database Migrations

John Renner
UC San Diego, USA

Alex Sanchez-Stern
UC San Diego, USA

Fraser Brown
Stanford, USA

Sorin Lerner
UC San Diego, USA

Deian Stefan
UC San Diego, USA

Abstract

Web applications often handle large amounts of sensitive
user data. Modern secure web frameworks protect this data
by (1) using declarative languages to specify security policies
alongside database schemas and (2) automatically enforc-
ing these policies at runtime. Unfortunately, these frame-
works do not handle the very common situation in which
the schemas or the policies need to evolve over time—and
updates to schemas and policies need to be performed in a
carefully coordinated way. Mistakes during schema or policy
migrations can unintentionally leak sensitive data or intro-
duce privilege escalation bugs. In this work, we present a
domain-specific language (Scooter) for expressing schema
and policy migrations, and an associated SMT-based verifier
(Sidecar) which ensures that migrations are secure as the
application evolves. We describe the design of Scooter and
Sidecar and show that our framework can be used to express
realistic schemas, policies, and migrations, without giving
up on runtime or verification performance.

CCS Concepts: • Security and privacy → Information

accountability and usage control.

Keywords: database migration, verification, secure ORM,
domain-specific language

ACM Reference Format:

John Renner, Alex Sanchez-Stern, Fraser Brown, Sorin Lerner,

and Deian Stefan. 2021. Scooter & Sidecar: A Domain-Specific

Approach to Writing Secure Database Migrations. In Proceedings

of the 42nd ACM SIGPLAN International Conference on Program-

ming Language Design and Implementation (PLDI ’21), June 20–

25, 2021, Virtual, Canada. ACM, New York, NY, USA, 15 pages.

h�ps://doi.org/10.1145/3453483.3454072

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

PLDI ’21, June 20–25, 2021, Virtual, Canada

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8391-2/21/06.

h�ps://doi.org/10.1145/3453483.3454072

1 Introduction

Protecting user data in modern database-driven Web ap-
plications is hard: web developers must ensure that their
application code correctly safeguards user data with every
request. Unfortunately, popular Web frameworks don’t help
developers get this right because they don’t account for se-
curity policy. They rely on developers to implement ad-hoc
security mechanisms—to properly sprinkle just the right
if statements throughout their code. When developers in-
evitably fail, their applications expose sensitive user data—
from credentials [27] to COVID-19 test results [49] to user
data from previously hacked databases [25].
Model-policy-view-controller (MPVC) frameworks (e.g.,

Lifty [40], Jacqueline [65], LWeb [39], and Hails [20, 21])
promise to address this problem by making data-access poli-
cies first class. MPVC frameworks allow developers to spec-
ify access-control policies on data alongside their schemas—
the code describing the data model and interfaces used to
access data—often using a declarative domain-specific lan-
guage (DSL). For example, when defining the schema for user
profiles, developers might specify a policy like “only the user
can modify their profile and only they and their friends can
see their email address.”MPVC frameworks enforce such poli-
cies automatically, for example, when controllers—the code
handling user requests—access the data model. This reduces
the amount of code developers need to get right [20, 39]:
instead of correctly implementing thousands of checks, they
simply need to write correct, declarative policy code.

Reality, though, ismore complicated than traditionalMPVC
frameworks suggest. Both models and policies constantly
evolve through migrations. And unsafe schema or policy mi-
grations can have devastating consequences—from leaking
sensitive data to privilege escalation attacks.

Schema migrations modify and extend data models. When
performing schemamigrations, developers must (1) correctly
reconcile their changes to the schema with changes to the
application code (e.g., the controllers that interface with the
new data modes and the view code that renders the data
to, say, HTML or JSON) and (2) ensure that their changes
are secure and do not violate the policy used to safeguard
existing data. This is hard because migrations are typically
written in low-level, error-prone database interfaces—most

710

PLDI ’21, June 20–25, 2021, Virtual, Canada John Renner, Alex Sanchez-Stern, Fraser Brown, Sorin Lerner, and Deian Stefan

often, directly in SQL—rather than the high-level object re-
lational mappers (ORMs) used in application code [63, 64].
And even if developers manage to write correct migrations
(e.g., using synthesis to automatically update the application
code according to the new schema [64]), they still need to en-
sure that their migrations abide by the policy. In practice this
is manual and error prone [14, 28]: migration tools are not
aware of policies, so developers must manually ensure their
code abides by the policy, with no room for error—unsafe
migrations (e.g., copying sensitive data to public locations)
often do not break application functionality and thus go
unnoticed until it’s too late (e.g., the sensitive data is leaked).
Policy migrations can also introduce security vulnerabili-

ties when extending or modifying data-access policies. Ex-
isting frameworks make no guarantees about a new policy’s
relationship to the old policy, which can result in users gain-
ing access to sensitive or critical data that would otherwise
have stayed safe. Such leaks were common enough in Hails
(e.g., in the Task management app [50]) that the authors
modified their policy DSL with a new keyword that (tried to)
make it clear when a field policy was updated to be publicly
accessible [20]. This isn’t unique to Hails or MPVC frame-
works, though: it happens in traditional MVC frameworks,
too. For example, the authors of the Ghost blogging platform
unintentionally allowed contributors to edit blog posts [18],
and they introduced this bug in a patch itself designed to
fix a bug in their policy code [19]. Likewise, a refactor of
HotCRP’s policy code [30] inadvertently granted unauthen-
ticated users administrator rights [29].

We address unsafe migrations via three contributions.

1. The ScooterDomain-Specific Language. Our first con-
tribution is a new domain-specific language, Scooter, that
allows developers to (1) declaratively specify data models
and security policies on these models; and (2) write impera-
tive schema and policy migrations, which update the data
models and policies. Today, developers use wildly different
languages for these tasks (e.g., ORM for describing the data
model, custom DSL for policy specification, and SQL for
schema migrations) and, as discussed above, ensuring that
changes to models and policies are safe is a manual, error-
prone task. By unifying specification and migration, Scooter
makes it easier for developers to write safe migrations.

2. The Sidecar Verifier. Our second contribution is a
static tool, Sidecar, which verifies the safety of migrations
written in Scooter. At its core, Sidecar relies on an automated
procedure that determines whether one policy is as strict
or stricter than another. To verify a data migration, we use
a static abstract analysis to track the flow of information
across the migration and use this procedure to verify that
the policy used to safeguard migrated data is at least as re-
stricting as the policies on the sources of that data. Similarly,
to verify a policy migration, we use the automated proce-
dure to compare the new policy against the old. We designed

Scooter and Sidecar together to ensure that verification is
fully automatic and fast. Moreover, when verification fails,
we designed Sidecar to generate a counterexample to help
developers understand and debug policy violations.

3. Implementation and Evaluation. Our third contri-
bution is an implementation and evaluation of the Scooter
DSL and the Sidecar verifier. We implemented Scooter and
Sidecar in Rust. For migrations that pass the verifier, the
Scooter compiler generates (1) a migration interpreter that
performs the verified-safe migration, (2) an authoritative
specification containing the declarative model and policy,
and (3) a typed Rust ORM implementation for each model.
The generated ORM enforces policies automatically at run
time and forces developers to update their application code
to account for schema changes “for free”, i.e., by generating
the ORM we ensure that schema changes manifest as type
errors. We evaluate Scooter and Sidecar on seven case studies
from the MPVC literature, including a port of LWeb’s Build
it Break it Fix it, as well as a Ruby-on-Rails application used
at UC San Diego for PhD Visit Day. We find that: (1) Scooter
can express almost all policies and migrations from these
previous efforts; (2) Scooter’s ORM policy enforcement im-
poses under 11% overhead, which is comparable to previous
work [20, 39]; and (3) Sidecar verifies most safe migrations
in under a second, and for unsafe ones (e.g., the HotCRP
migration from [29]) it generates useful counterexamples.

Open Source. All source code is available under an open
source license at [44].

2 Motivation and Overview

In this section, we give a brief overview of how migrations—
both traditional database migrations and updates to policy
code—can introduce security vulnerabilities and how Scooter
eliminates these vulnerabilities.

The Chi�er MPVC Application. We use a simple social
media web application, Chitter, as an example. Chitter allows
users to post 42-character messages—peeps—on a public bul-
letin board. Though peeps are public, the app also handles
sensitive information about users, e.g., follower relationships,
private messages, pronouns, email addresses, and passwords.
The Chitter developers are serious about protecting this data
and use an MPVC framework to (1) separate the model and
policy code from the rest of the application (the views and
controllers) and (2) enforce the policy code automatically, at
runtime. Figure 1 gives part of Chitter’s data model for user
profiles and its policy. The policy states that a user’s email
address is only visible to that user and Chitter administrators
(who are, themselves, users); that the user’s pronouns are
visible to the user and the users they follow; and that the
user and any admin can modify all but the isAdmin field,
which can only be modified by admins.

711

Scooter & Sidecar: A Domain-Specific Approach to Writing Secure Database Migrations PLDI ’21, June 20–25, 2021, Virtual, Canada

User

name: String

read: public

write: u -> [u] + User::Find({isAdmin: true})

email: String

read: u -> [u] + User::Find({isAdmin: true})

write: u -> [u] + User::Find({isAdmin: true})

pronouns: String

read: u -> [u] + u.followers

write: u -> [u] + User::Find({isAdmin: true})

isAdmin: Bool

read: u -> [u] + User::Find({isAdmin: true})

write: u -> User::Find({isAdmin: true})

followers: Set(User)

read: u -> [u] + u.followers

write u -> [u] + User::Find({isAdmin: true})

...

Figure 1. Chitter users model and policy in (simplified)
Scooter.

2.1 Unsafe Migrations

Though using an MPVC framework helps the Chitter devel-
opers safeguard user data at runtime, modifying and extend-
ing the model or policy code could undermine this effort.

Unsafe Schema Migrations. Extending model schemas
can inadvertently leak data and allow users to bypass data
access policies. Consider, for example, changing the Chitter
application by extending the user model with a new public
bio field. To do so, Chitter developers modify their model:

User

...

+ bio: String

+ read: public

+ write: u -> [u] + User::Find({isAdmin: true})

...

They also write a migration—in SQL—that extends the un-
derlying database to populate the new bio field, in this case
with the user’s name and pronouns:

ALTER TABLE user ADD bio STRING;

UPDATE user

SET bio = CONCAT("Hi! I'm ", user.name,

"(", user.pronouns, ").")

Since this migration isn’t constrained by a policy, it acciden-
tally leaks sensitive data—the pronouns—to all users.
Direct leaks like this are not the only concern, though.

Migrations can modify data used by policy code—and unin-
tentionally introduce leaks or privilege escalation bugs, i.e.,
grant users access to data they otherwise would not be able
to access. For example, setting the isAdmin field of a user
allows that user to read and write other users’ profiles.

The problem is that schema migrations are decoupled from

policy code—so developers must implicitly and informally

enforce their data access policy on each migration. Doing
so for Chitter is easy, but real-world migrations and policies
are far more complicated.

Unsafe Policy Migrations. Changes to policy code can
also introduce leaks and privilege escalation bugs. Consider
further extending the Chitter application with a new hierar-
chy of administration: admins and moderators. Moderators,
unlike admins, should only be allowed to read (and edit)
free-form data like names and bios, which could contain
potentially inappropriate content. To add support for mod-
erators, the Chitter developers replace the boolean isAdmin

field with an integer, adminLevel—where 0 is used for nor-
mal (unprivileged) users, 1 for moderators, and 2 for admins.
They then update the model and policy in several steps.

They start by extending the user model with adminLevel:

User

...

+ adminLevel: Int

+ read: u -> [u] + User::Find({adminLevel: 2})

+ write: u -> User::Find({adminLevel: 2})

...

Then, they perform a schema migration to add the new field,
setting the admin level according to the old isAdmin field:

ALTER TABLE user ADD adminLevel INT;

UPDATE user

SET adminLevel = CASE WHEN isAdmin

THEN 2

ELSE 0

END;

Next, they update the policy code to use adminLevel instead
of isAdmin and only then remove isAdmin from the model
and underlying database (via another migration).
The new policy is introduced as an edit to the old:

User

...

email: String

- read: u -> [u] + User::Find({isAdmin: true})

+ read: u -> [u] + User::Find({adminLevel: 2})

- write: u -> [u] + User::Find({isAdmin: true})

+ write: u -> [u] + User::Find({adminLevel: 2})

...

bio: String

- write: u -> [u] + User::Find({isAdmin: true})

+ write: u -> [u] + User::Find({adminLevel >= 0})

...

Alas, this policy is overly permissive: instead of restricting
the bio field writers to the user, moderators, and admins, the
new policy accidentally allows any user to write.
The problem is that policy migrations are decoupled from

policy enforcement. Therefore, the burden is on developers to
ensure that migration code doesn’t sidestep the declared data

712

PLDI ’21, June 20–25, 2021, Virtual, Canada John Renner, Alex Sanchez-Stern, Fraser Brown, Sorin Lerner, and Deian Stefan

Figure 2. Given a migration and data model and policy spec-
ification, Sidecar verifies the safety of the migration. If the
migration is unsafe, Sidecar produces a counterexample. Oth-
erwise, the Scooter compiler (1) updates the specification,
(2) executes that migration against the database, and (3) gen-
erates a type-safe policy-enforced Rust ORM, which applia-
tions use to access persistent data.

access policies. Unsurprisingly, developers get this wrong—
and when they do, the error is silent. Changes that inadver-
tently weaken policies persist until someone is lucky enough
to notice them [29] or loud enough exploiting them [56].

2.2 Safe Migrations with Scooter and Sidecar

With Scooter, developers don’t directly modify models and
policies, nor do theywrite schemamigrations using low-level
interfaces like SQL. Instead, they use Scooter for both tasks
(Figure 2). To start, developers implement a migration that
generates the initial model and policy specification; Figure 1
gives an example of a (simplified) specification generated by
Scooter.1 Then, all policy and schema migrations are relative
to and update this specification (and its underlying database
representation). Let’s consider how the Chitter migrations
would be implemented using Scooter.

Preventing Unsafe Schema Migrations. With Scooter,
the Chitter developers extend the original user model with
bios by writing a migration script:

1 User::AddField(

2 bio : String {

3 read: public,

4 write: u -> [u] + User::Find({isAdmin:true})

5 }, u -> "I'm "+u.name+"("+u.pronouns+")");

This script extends the User model with a new string field
bio and populates the bio according to the anonymous func-
tion on line 5. Our Sidecar verifier, however, catches the
leak before it’s too late: Sidecar automatically infers that

1As we describe in Section 3, Scooter is slightly more verbose. For example,

developers need to specify who is allowed to create and delete objects, and

not just who is allowed to read and write fields.

u.pronouns data ends up in u.bio and that the bio policy
is less restrictive than the pronouns policy. Scooter will only
execute the migration after the developers modify the update
function to not use u.pronouns.

Preventing Unsafe Policy Migrations. To extend Chit-
ter with moderators, the Chitter developers, again, write a
single script (instead of multiple scripts and file edits):

1 User::AddField(

2 adminLevel : I64 {

3 read: u -> [u] + User::Find({adminLevel:2}),

4 write: u -> User::Find({adminLevel: 2})

5 }, u -> if u.isAdmin then 2 else 0);

6

7 User::UpdateFieldPolicy(email, {

8 read: u -> [u] + User::Find({adminLevel: 2}),

9 write: u -> [u] + User::Find({adminLevel: 2})

10 });

11 User::UpdateFieldWritePolicy(bio,

12 u -> [u] + User::Find({adminLevel >= 0}));

13

14 User::RemoveField(isAdmin);

This migration would add the new adminLevel field, update
the email and bio policies accordingly, and remove the old
isAdmin field. Sidecar, however, catches the unsafe policy
update on lines 11–12, stops Scooter from executing the
migration, and generates a counterexample showing the
policy violation:

Principal: User(0)

CAN NOW ACCESS:

User { id: User(1),

isAdmin: false,

adminLevel: 0,

bio: "",

... }

OTHER RECORDS:

User { id: User(0),

isAdmin: false,

adminLevel: 0,

... }

This, in effect, forces the Chitter developers to fix the unsafe
policy. They could do this by rewriting the policy to:

u -> [u] + User::Find({adminLevel: 2}),

This policy is safe—it is equivalent to the old one—but it’s not
the intended policy. The intended policy is more permissive:
it should allow the user, admins, and moderators to edit bios.

Scooter allows developers to weaken policies but requires
them to be explicit about the change being more permissive:

User::WeakenFieldWritePolicy(bio,

u -> [u] + User::Find({adminLevel > 0}),

"Reason: allow moderators to update bios.");

713

Scooter & Sidecar: A Domain-Specific Approach to Writing Secure Database Migrations PLDI ’21, June 20–25, 2021, Virtual, Canada

Being explicit does not prevent developers from getting such
migrations wrong (e.g., using >= instead of >). It does, how-
ever, make it easier to audit migrations and narrow the focus
of security reviews.

SafeMigrationsWorkflow. As Figure 2 shows, once Side-
car verifies the safety of a migration, Scooter performs the
actual database migration and updates the model specifi-
cation to reflect any model or policy changes. The model
(and policy) specification is then used to generate a Rust
ORM library, which allows application code to retrieve and
modify persisted objects using a standard high-level typed
interface (e.g., User::Find) that automatically enforces data-
access policies. Like previous work [39], generating ORM
code from the DSL specification also forces developers—via
normal compiler type errors—to update the view and con-
troller code to account for schema changes. We describe
Scooter in more detail next.

3 Design

We built the Scooter languages according to three main de-
sign goals:

1. Unification. Right now, developers typically use dif-
ferent languages to manage their databases (e.g., SQL)
define their policies (e.g., Hails), and query the data-
base (e.g., ORMs). Scooter aims to provide a unified
semantics for migrations and policy specification that
mirrors popular ORM patterns.

2. Expressiveness. A unified language is only effective
if it can express the union (or more!) of what separate
languages are able to. For example, the language must
be able to express both real-world policies and real
application data models.

3. Verifiability. The verifier must catch safety violations
statically, with informative and actionable error mes-
sages.

Scooter maintains a single policy file, written in Scooter? ,
that contains the current schema and all policies (unification).
Users do not manually update this file or write Scooter?
directly. Instead, Scooter automatically updates the file when
users write and run Scooter< migration scripts—the scripts
that make schema changes, manipulate data, and update new
policies. Before executing a migration, Scooter verifies that
the migration’s changes are safe with respect to the current
policy (verifiability). This process is illustrated in Figure 2.
In this section, we elaborate on how Scooter fulfills our

three design goals. First, we explain how schemas and poli-
cies are expressed in Scooter? (§3.1). Then, we explain how
users express changes to the schema and policy through mi-
grations in Scooter<—and how, as a result, Scooter is able to
statically prevent migration errors (§3.2). Finally, we describe
how users write applications using Scooter’s ORM (§3.3).

3.1 Declaring Policies

Scooter expresses both schemas and policies because they
are inherently coupled; policies guard access to the data
defined in the schema and are themselves defined in terms
of queries against that same schema.

Schemas. Scooter uses a standard ORM data model, defin-
ing schemas in terms of models composed of typed fields.
Figure 4 shows a policy file containing a simple User model
with a single name field of type String.

To express relational data, Scooter generates an implicit
id field that acts as a unique identifier for each instance—i.e.,
database row—in the model. This allows one model instance
to hold a reference to another (e.g., the bestFriend field
in Figure 4 refers to the user id). The id field is strongly
typed—User::id is of type Id(User), allowing type-safe
object lookups.

While ids are powerful enough to express any relational
construct—one-to-one, one-to-many, many-to-many—they
cannot express all policies on their own (§6.3). Scooter’s Set
type allows users to express otherwise inexpressible poli-
cies and, moreover, makes it easy to express simple one-
to-many relations. For example, a User may have many
emails (Set(String)).

Principals and Policies. In Scooter, applications operate
on data through basic create, read, update, and delete (CRUD)
operations, where each operation is performed on behalf of
a principal. Policies define, for each operation, the set of
principals allowed to perform that operation. For example,
Figure 4 states that all principals can read a User’s name.

What is a principal? In Scooter, many principals are simply
database object ids. To specify that a model’s id is a valid
principal, Scooter annotates that model with @principal.
For example, the User in Figure 4 is a principal and is an-
notated as such. We call this kind of principal a dynamic

principal because its existence is tied to the state of the data-
base.
Sometimes, though, it’s important to express policies in

terms of application infrastructure (as opposed to database
objects). Scooter uses static principals for this purpose. For
example, Figure 4 declares an Unauthenticated static prin-
cipal, which the application can use for operations not made
on behalf of a logged-in user. The policy also states that the
Unauthenticated principal is the only one allowed to create
Users; in other words, only users who are not logged in are
able to create new users. While the set of static principals
varies by application, we find two to be very common: an
Unauthenticated principal and a Login principal that has
read access to all password data but is used sparingly.

Policy Functions. Scooter expresses the relationship be-
tween operations and principals (e.g., Users and their ability
to change their usernames) as a policy function from the tar-
get instance of the operation (e.g., Users) to a set of principals

714

PLDI ’21, June 20–25, 2021, Virtual, Canada John Renner, Alex Sanchez-Stern, Fraser Brown, Sorin Lerner, and Deian Stefan

(variable) var ::= x0, x1, .., xn
(datetime) datetime ::= now | 3<month>-<day>-<year>-<hour>:<minute>:<second>
(constant) const ::= string, integer, float, datetime, true, false, public

(binary ops) binop ::= gencmp | op | numcmp

op ::= + | -

numcmp ::= < | <= | > | >=

gencmp ::= == | !=

(find operators) fop ::= : | ∋ | numcmp

(set literal) set ::= [e0, .., en]

(functions) func ::= var -> e

(expressions) e ::= 2>=BC | B4C | E0A | !4 | (e binop e)

| (if e then e else e) | (match e as var in e else e) | None | Some(e)

| e.map(func) | e.flat_map(func) | e.field
| Model::ById(e)
| Model::Find({field1 fop1 e1, . . . , fieldn fopn en})

Figure 3. The syntax of value expressions shared between policies and migrations in Scooter.

@static-principal

Unauthenticated

@principal

User {

create: _ -> [Unauthenticated],

delete: none,

name: String {

read: public,

write: u -> [u.id]},

bestFriend: Id(User) {

read: u -> [u.id, u.bestFriend],

write: u -> [u.id]},

adminLevel: I64 {

read: public,

write: u -> User::Find({adminLevel: 2})

.map(u -> u.id)}}

Figure 4. Simple user profile and principal declaration in
Scooter.

allowed to perform that operation (e.g., change usernames).
For example, Figure 4 states that the policy for writing to
User::name is u -> [u.id]. Scooter uses square brackets
to denote sets, so this function says: “for any user D, the
set of principals allowed to change its name contains only
D.83”. The language contains two convenience terms for com-
mon functions: public, which is a function that returns all
principals, and none, which is the same as _ -> [].

For any operation on a model<, the type of a policy func-
tion must be < → Set(Principal). Within the function,
the policy is free to traverse instances and query the models

to construct its output set: Scooter policies use condition-
als, mathematical operations, comparisons, and comparison-
based querying.
Policy functions are strongly typed expressions. This en-

sures that policies cannot crash at runtime—they will always
produce a set of principals—and simplifies the lowering of
policy expressions to SMT (for verification). We give the full
type system for policies in Appendix ??.

3.2 Migrations

Users update their policies and schema by writing migration
scripts in Scooter< . Migration scripts consist of a series of
commands that modify the schema (e.g., add a field) and the
policy. Crucially, Scooter? and Scooter< share an underly-
ing semantics, unlike traditional MPVC frameworks where
policies are expressed with models and migrations are ex-
pressed in raw SQL. Differing semantics make migration
safety verification hard, while unified semantics—as with
Scooter? and Scooter<—make verification easy.

Schema Changes. In Scooter, users can change schemas
by creating and deleting models or by creating or deleting
fields of those models. Whenever users create a model or
field, they must include all read, write, create, and delete
policies. Consider the following migration, which extends
the policy in Figure 4 with public posts called Peeps:

1 CreateModel(Peep {

2 create: public,

3 delete: p -> [p.author],

4

5 author: Id(User) {

6 read: public,

7 write: none,

8 },

9 });

715

Scooter & Sidecar: A Domain-Specific Approach to Writing Secure Database Migrations PLDI ’21, June 20–25, 2021, Virtual, Canada

10 Peep::AddField(body: String {

11 read: public,

12 write: p -> [p.author],},

13 p -> "Peep by " + User::ById(p.author).name);

This migration first creates a Peep model containing an au-
thor (lines 1–9), then adds a peep body (lines 11–14). Line 14
specifies that all peeps receive a default body that states the
author’s name. This is required in Scooter: when developers
add a field to a model, they must provide a function that
populates that field with an initial value.
Migrations can also remove fields and models as long as

other policy functions do not depend on them. For example,
the followingwould fail, because the body policy above refers
to author:

Peep::RemoveField(author);

On the other hand, the following would work, because no
policies (other than those within Peep) depend on Peep:

DeleteModel(Peep);

Policy Changes. In addition to schema updates, Scooter
migrations can express policy updates. For example, a devel-
oper may want to update the create policy on Peep:

Peep::UpdatePolicy(create, p -> [p.author]);

This migration replaces the previous policy (public) with
a new policy function that only allows users to create a
peep when they are the author; previously, anyone could
create a peep with any author. The UpdatePolicy command
indicates the developer’s intent is to provide a policy that is at
least as strict as the old policy; the verifier will prove that this
is true before Scooter executes the migration. If developers
need to weaken a policy, they can use WeakenPolicy, and
the verifier won’t check for strictness preservation. Finally,
developers can also strengthen and weaken field policies
with UpdateFieldPolicy and WeakenFieldPolicy.

Principal Changes. Scooter migrations can also change
the set of principals using AddPrincipal, RemovePrincipal,
AddStaticPrincipal, and RemoveStaticPrincipal, which
have no effect on the underlying schema. The verifier will
stop developers from removing any principal that is used in
policy functions.

Verifying Migrations. Scooter verifies the safety of an
entire migration before it executes any part of it, which ob-
viates rolling back migrations partway through because of
errors. The main challenge for verification is that the correct-
ness of one migration command depends on its predecessors.
For example, consider the following migration, which cre-
ates a User model and then adds a bestFriend field and a
secret field that is shared between a user and their best
friend.

1 CreateModel(User {

2 create: public,

3 delete: u -> [u.id],

4 });

5 User::AddField(bestFriend: Id(User) {

6 read: public,

7 write: u -> [u.id],

8 }, u -> u.id);

9 User::AddField(secret: String {

10 read: u -> [u.id, u.bestFriend],

11 write: u -> [u.id],

12 }, _ -> "my_secret");

The User::AddField commands are only valid after the
User model has been created (using CreateModel on line 1).
If lines 1–4 were omitted, Scooter would reject the migration
because of a missing User model. Likewise, the read policy
for secret does not typecheck unless the bestFriend field
has already been added to User.

To address the fact that each migration command’s safety
depends on prior commands, Scootermaintains an in-memory
representation ofmodelsmodels that it uses to typecheck and
verify each command. Once Scooter has verified a command,
it records the command’s effect on the set of models and con-
tinues on to verify the next command until the migration is
complete or it hits an error. Scooter does not actually manip-
ulate data during this process, so in case of an error, Scooter
doesn’t need to rollback database state. When Scooter has
verified the migration completely, it executes the migration
against the database and writes the in-memory policy to the
Scooter? file.

3.3 The Scooter ORM

Following a successful migration, the Scooter compiler gen-
erates an ORM implementation in Rust for each model. The
ORM enforces policies dynamically before performing data-
base queries. Like most ORMs, our ORM is agnostic to the
underlying database system and relies on a driver to commu-
nicate with an actual database; we implement and evaluate
a MongoDB driver. Since our ORM is largely standard, we
only describe the Scooter-specific details.

Acting onBehalf of Principals. Before querying anORM
model, developers must declare a principal with which to
perform the query. For example:

1 // set up the db connection

2 let db_conn = // ...

3 // declare the principal

4 let princ = db_conn.as_princ(Unauthenticated);

5 // query the database

6 let u = User::find_by_id(princ, some_user_id);

Web applications rarely require manual principal manage-
ment, though: typically, middleware automatically selects
a principal based on the signed-in user (e.g., instead of the
Unauthenticated principal on line 5).

Handling Overly Sensitive Fields. Queries to the data-
base return partial objects; the ORM removes fields that the

716

PLDI ’21, June 20–25, 2021, Virtual, Canada John Renner, Alex Sanchez-Stern, Fraser Brown, Sorin Lerner, and Deian Stefan

principal does not have read access to. In turn, developers
must handle fields whose values are missing due to policy
enforcement. For example, in this code snippet, they must
account for a missing email field:

match u.email {

// principal has read permissions:

Some(email) => println!("Success");

// principal does not have read permissions:

None => println!("Failure");

}

This forces developers to explicitly consider permissions.
In practice they need to do this already, for example, when
implementing views.

Handling Policy Failures. When writing to the data-
base, the ORM checks the relevant create or update policies
and returns an error if necessary. For example, in this snippet,
the ORM code accounts for an attempted edit that could fail
because princ does not have the proper edit permissions:

match edited_user.save(princ) {

Ok(_) => println!("Save successful")

Err(_) => println!("Save failed"),

}

These errors force developers to respond to both policy and
database failures. In development mode they can respond
with the exact access violation; in production mode, they
can simply return an HTTP 403 Forbidden response.

4 Verifying Policy Updates in SMT

The core of our Sidecar verifier is centered around proving
that one policy is at least as strict as another, a property we
call strictness. This strictness property not only allows Sidecar
to verify Update commands, but also allows it to prevent data
leaks. In this this section, we first formalize the strictness
safety property and describe how Sidecar translates this
property into SMT formulas, allowing it to verify Update

commands using an off-the-shelf SMT solver—specifically,
Z3 [13]. Finally, we show how Sidecar uses strictness to
detect leaks.

Strictness Property. Recall that a Scooter policy (for a
given operation) is a function ? that takes an instance, i.e.,
an object, and returns the set of principals who are allowed
to perform that operation. Because policies can query the
database, ? must also take the database as a parameter. For-
mally, it is safe to strengthen policy ?1 to policy ?2 iff the
following strictness property holds:

∀31,∀8 . ?1 (31, 8) ⊇ ?2 (31, 8) (1)

That is, for all databases and for all instances (objects) in
those databases, ?2 must produce a subset of the principals
returned by ?1.

For eachmigration of a policy from ?1 to ?2, Sidecar checks
the migration’s safety by translating this formula into an

SMT query. Unfortunately, a direct translation of this formula
to SMT leads to many different problems, some related to
performance and some related to counterexample generation
(which requires the solver to generate a full database). To
sidestep these issues, Sidecar translates policies into set-free
SMT queries. We describe our translation to SMT next.

Leakage Formula. SMT solvers verify a property by prov-
ing that its negation is unsatisfiable. When we negate the
strictness property we get the core of our SMT query:

∃31, 8, D. D ∈ ?2 (31, 8) ∧ ¬(D ∈ ?1 (31, 8)) (2)

That is, there exists some database 31, instance 8 , and prin-
cipal D, such that D is permitted by ?2 and not by ?1. While
we can express this in SMT directly (using the theory of ar-
rays [34]), our translation eliminates sets and set comparison.
First, it translates set fields to an equivalent join-table repre-
sentation. Next, Sidecar distributes the ∈ operator across all
expressions, to eliminate all remaining set-typed expressions
and variables. We describe these next.

Translating Set Fields. The Scooter language allows
users to define fields that contain sets. For example, a single
user on a social media site may have many followers, which
programmers express in Scooter as follows:

User { ... friends: Set(Id(User)) { ... } }

Standard ORM practice translates the above into a join table.
We adopt a similar approach—we encode the user-friend rela-
tion explicitly by adding the following model of the relation:

UserFriends { from: Id(User) {...},

to: Id(User) {...} }

Using this encoding, friends field access can be translated
into an appropriate query on the UserFriends table. The
Sidecar verifier performs this translation at the language
level, before translating to SMT. For example, it translates
the expression user.friends into:

UserFriends::Find({from: u}).map(uf -> uf.to)

Translating Set Expressions. Once set fields are re-
moved, Sidecar rewrites the leakage condition (2) into an
equivalent formula without sets. Sidecar does this by dis-
tributing the ∈ operator across Scooter expressions. In most
cases this is straightforward. For example, D ∈ (41 + 42) {

(D ∈ 41) ∨ (D ∈ 42). The two exceptions are map, flat_map,
and Find.
When Sidecar distributes ∈ across map it introduces an

existential:

D ∈ 41.map(G → 42) { ∃E . E ∈ 41 ∧ D = 42 [E/G]

Similarly for flat_map:

D ∈ 41.flat_map(G → 42) { ∃E . E ∈ 41 ∧ D ∈ 42 [E/G]

Because all instances used in policies are in the database,
when translating D ∈ "::Find({...}), we can simply check

717

Scooter & Sidecar: A Domain-Specific Approach to Writing Secure Database Migrations PLDI ’21, June 20–25, 2021, Virtual, Canada

if D meets the criteria of the Find query:

D ∈ "::Find({ . . . 58 >?848 . . . }) {
∧

8

(D.58 >?8 48)

This translation eliminates all remaining set expressions and
variables from the leakage formula. We give the complete
definition of {, as well as proofs of correctness and set
elimination, in Appendix ??.

Translating Instances and IDs. Sidecar translates in-
stances to SMT by encoding each field as a function, much
like Nijjar et. al [38]. For example, Sidecar translates the dec-
laration email: String inside User into a function email :
User → String. So, u.email in Scooter is translated to
(email u) in SMT. Instances like u in our SMT encoding
are uninterpreted values (which can only be used as parame-
ters to field functions like the email function above). This
encoding also allows us to easily encode id-uniqueness. In
particular, instead of asserting uniqueness as ∀>1, >2 . >1.83 =

>2.83 ⇒ >1 = >2, we define an id function (which repre-
sents the id field) to return the instance itself, i.e., we define
(id i) to return i. This avoids expensive quantifiers and
reduces >1.83 = >2 .83 to >1 = >2.

Translating Primitives. In addition to Bool which is
trivially represented in SMT, Scooter supports integers (I64),
doubles (F64), Option types, and DateTime. I64 and F64 are
naturally represented as bitvectors whose operations are en-
codable in first-order logic and are built-in to Z3. We encode
Options using SMT-LIB’s datatype declarations. DateTime
requires special handling. We encode DateTimes as UNIX
timestamps (bitvectors in SMT). This allows Scooter to use
integer bitvector comparison to implement DateTime com-
parison. Sidecar models the now() constructor as an uncon-
strained bitvector. When comparing two policies, Scooter
assumes they are invoked at the same time and thus uses the
same unconstrained value for all occurrences of now().

Detecting Data Leaks. Sidecar uses the policy strictness
check, combined with dataflow analysis, to detect data leaks.
We say data leaks when, during migration, data flows from a
more restrictive field to a more permissive field. For example,
this (leaky) migration moves data from the private email
field to a public bio:

CreateModel(User {

create: public,

delete: u -> [u.id],

email: String {

read: u -> [u.id],

write: u -> [u.id],

}

});

AddField(bio: String {

read: public,

write: u -> [u.id],

}, u -> u.email);

Before the migration, a user’s email was only visible to the
user; afterwards, everyone can read the email since it is used
to initialize the bio field.

We detect leaks in two steps. First, we use a simple static
dataflow analysis on the Scooter language to detect which
fields flow towhich other fields during themigration. Second,
for each field 51 that flows to a field 52 we check that the
policy for 52 is at least as strict as the policy for 51.

Using Prior Definitions. Sometimes the correctness of
a policy migration relies on the schema migrations that pre-
ceded it. To reiterate the example from Section 2.1:

User::AddField(

adminLevel : I64 {

read: _ -> User::Find({adminLevel: 2})

write: _ -> User::Find({adminLevel: 2})

}, u -> if u.isAdmin then 2 else 0);

User::UpdateFieldWritePolicy(bio,

u -> [u] + User::Find({adminLevel: 2}));

While Sidecar normally encodes fields as uninterpreted func-
tions in SMT, in this example Sidecar proves this migration
safe by using a prior definition. Specifically, the initialization
function used for adminLevel defines the relationship be-
tween adminLevel and isAdmin—so Sidecar knows that a
user has an adminLevel of 2 if and only if isAdmin is true.
Using prior definitions is necessary for verifying certain
migrations, but can also have surprising semantics (§6.4).

5 Evaluation

We evaluate our Scooter language, our Sidecar verifier, and
our policy-enforcing Rust ORM by answering the following
questions:

1. Can the Scooter language express common policies
and migrations (§5.1)?

2. Can Sidecar detect unsafe migrations? (§5.2)
3. Is the Sidecar verifier performant enough to use regu-

larly (§5.3)?
4. Is the overhead of the generated ORM in line with

existing policy enforcement techniques (§5.4)?

To answer these questions we port case studies from ex-
isting policy frameworks to Scooter: one from LWeb [39],
three from Hails [21], one from Lifty [40], and one from Ur-
Flow [8]. We use MPVC case studies because they contain
explicit policies. None of these case studies provide migra-
tions, however, so we reconstruct them, when possible, from
git histories. In addition, we port a production Ruby on Rails
application—and its migrations—to Scooter. Rails does not
provide a policy language, so we reverse engineer policies
from the behavior of the application.

718

PLDI ’21, June 20–25, 2021, Virtual, Canada John Renner, Alex Sanchez-Stern, Fraser Brown, Sorin Lerner, and Deian Stefan

Results Summary. We find that Scooter is capable of ex-
pressing the vast majority of policies and migrations show-
cased by existing frameworks—confirming that Scooter’s
verification-oriented design decisions don’t unduly limit the
expressiveness of the language. We find that Sidecar can de-
tect unsafe migrations (and generate counterexamples) from
real applications. Furthermore, we find that verification with
Sidecar takes less than a second to complete and that our
ORM imposes a runtime overhead (11%) comparable to the
LWeb [39] and Hails [20] MPVC frameworks.

Experimental Setup. We conduct all performance mea-
surements on an Arch Linux (kernel 5.11.9) desktop with an
Intel i7 6700K processor, 4 cores (8 hyperthreads) at 4GHz,
and 16 GB of RAM.

5.1 Scooter Language Expressiveness

To answer this question we port case studies from existing
policy frameworks to Scooter and discuss the capabilities
and limitations of the language. For each case study, we
report the number of migrations, lines of migration code, the
number of policies successfully ported, and the number of
migration actions used. Our results—reported in Figure 5—
show that Scooter is able to represent all policies and all but
one migration. In the remainder of this section, we discuss
each case study and the process of porting them to Scooter.

Build it Break it Fix it. We port the LWeb BIBIFI pro-
duction web application designed to manage and coordinate
security programming contests [57]. The application allows
administrators to create contests and posts related to those
contest and manage the teams and scores of contests, while
regular users can log in and see the current contests and their
team’s details. LWeb developers write policies on fields of a
record as disjunctions of static principals and (other) fields
of the record. BIBIFI uses automatic schema migrations to
(1) remove fields or (2) add fields with default values. Scooter
is able to express all the BIBIFI data models, policies, and
migrations.

Visit Day. We port a production Ruby on Rails app de-
signed to schedule meetings between visiting prospective
PhD students and faculty [43]. The application allows users
to create privileged accounts for scheduling meetings, as
well as unprivileged accounts so that students and faculty
can view their schedules; users can reset their passwords
and invite other users. We port both the application and its
ActiveRecord [17] migration scripts with no issues. There
are ten migrations, totaling 139 lines of code. The original
hand-written policy is 25 lines of code, but after all the migra-
tions, it becomes an automatically generated 103-line policy
file.

GitStar. We port the GitStar [58] benchmark—a light-
weight GitHub-like application—from the Hails project [21].
We make one modification. Hails repositories have a reader

field that can be a set of user ids or a special public value;
since Scooter does not include arbitrary sum types, we in-
stead encode this as two fields, a boolean is_public and a
set of user readers.

LambdaChair. LambdaChair [59], a lightweight confer-
ence review system, is another Hails benchmark. It features
Program Committee (PC) users, as well as non-PC users,
both of whom can be paper authors. It also has a root prin-
cipal that can edit any paper. The authors of LambdaChair
evolved the LambdaChair application over time: first, they
created authors and PC members, and then, through a mi-
gration, they added papers and permissions on those papers.
However, they did so in ad-hoc way, by changing the pol-
icy and the model by hand. Scooter is able to express the
LambdaChair migrations in thirty-eight lines of code, and
Sidecar can quickly verify those migrations for safety.

Learn-by-Hacking. We port another Hails benchmark,
Learn-by-Hacking [60], that lets users incorporate code into
tutorials, blog posts, and more. The original authors evolved
Learn-by-Hacking through five migrations (e.g., one adds
tags (short categories) to associate with posts). Using our
DSL alone, we are unable to express one migration using
Scooter—that adds a database of existing tags—since this
migration relies on querying and then dynamically creating
objects. As we further discuss in Section 6.2, this migration
can be implemented using the Scooter ORM.

UrFlow Calendar. We port UrFlow Calendar [7], an ap-
plication that allows users to manage a calendar, from the
UrFlow project [8] without any issues. Ur encodes policies
very differently from Scooter—as a SQL-based eDSL—but
Scooter is still able to express this benchmark’s policies de-
spite the difference.

Li�y Conference. We port Lifty Conference [61], another
conference review system, from the Lifty project [40]. This
benchmark is different from the others because Lifty is not
an ORM; the benchmark operates on in-language values
and types. The Lifty policies rely on a singleton which we
translated into a database object. Scooter is able to express
all policies from the Lifty benchmark.

5.2 Detecting Unsafe Migrations

Since none of the above case studies had unsafe schema or
policy changes, we ensure that Sidecar can detect unsafe
changes by implementing several unsafe schema and pol-
icy changes. First, our test suite contains multiple negative
tests, including the unsafe Chitter application migrations de-
scribed in Section 2. Second, wemodel two unsafe migrations
from two applications: (1) a refactor of HotCRP’s policy code
that inadvertently granted unauthenticated users administra-
tor rights [29, 30]; and (2) a policy change in the Hails Task
management app that inadvertenly made projects readable

719

Scooter & Sidecar: A Domain-Specific Approach to Writing Secure Database Migrations PLDI ’21, June 20–25, 2021, Virtual, Canada

Project Framework # Models # Fields # Migr Migr LOC Unique Policies Migration Actions

BIBIFI LWeb 46 215 11 183 4 37/37
Visit Days Ruby on Rails 4 19 10 139 7 21/21
GitStar Hails 3 8 1 11 7 6
LambdaChair Hails 4 8 1 38 5 2/2
Learn-by-Hacking Hails 3 13 5 63 7 22/23
Ur-Calendar UrFlow 2 8 1 52 6 1/1
Lifty Conference Lifty 6 26 1 175 10 1/1

Figure 5. A list of case studies, along with metrics. # Models is the number of models in the final policy; # Fields is the number
of fields on all models in the final policy; # Migr is the number of migrations considered; Migr LOC is the total lines of code of
migrations expressed in Scooter; Unique Policies indicates the count of unique policy functions that were ported to Scooter;
Migration Actions indicates the ratio of migration actions that were expressible in Scooter.

to all users [50]. In all cases, Scooter sucesfully detects the
unsafe migrations and generates counterexamples.

5.3 Sidecar Verification Speed

We evaluate the performance of Sidecar by timing the mi-
grations from all of the case studies from Figure 5. The most
expensive migration takes 88.8ms to verify; the fastest takes
10.3ms. Performing the safety checks on a given command,
say AddField, takes 7.1–12.7ms.

5.4 ORM Performance Overhead

We measure the performance overhead of our ORM on two
benchmarks—an end-to-end macro-benchmark and a micro-
benchmark.

Macro-Benchmark. To understand the overhead ourORM
imposes on real web applications, we port two BIBI controller
benchmarks from LWeb [39] and measure the policy enforce-
ment overhead on latency for each endpoint. Specifically, we
port the /announcements route, which fetches announce-
ments and schedules, and the /profile route, which fetches
the logged-in user’s profile. We use Scooter with the Rocket
web framework (version 0.4) and Handlebar template sys-
tem (version 1.1). To measure latency, we use the Apache
benchmarking tool ab; we configure ab to make 10,000 re-
quests with 16 concurrent connections. We find that the
overhead on mean and tail latency, which we measure to
be 4ms for both end points, is in the noise (< 0.1ms). This
is not surprising: BIBIFI policies only allow field accesses
and static principals—and thus checking whether a field can
be accessed is answered by an equality check on already
available data. Unlike Scooter, the overhead of enforcement
in LWeb for these endpoints is 2.41–19.01%; this is likely be-
cause LWeb uses IFC, whereas Scooter only performs access-
control checks at the database boundary.

Task Create Post View Friend Posts

Unchecked 0.313 ms 13.8 ms
Hand checked 0.334 ms 14.9 ms
Scooter checked 0.331 ms 15.2 ms

Figure 6. The time taken for two application level tasks,
in the three configurations: unchecked, when manually
checked, and when checked with our Rust ORM.

Micro-Benchmark. Because BIBIFI’s policies are not rep-
resentative of themore complex policies supported by Scooter—
policies that require database queries—we implement amicro-
benchmark around the Chitter policy from Section 2. Specif-
ically, we measure the ORM performance overhead by tim-
ing two different actions: (a) creating a Chitter post and (b)
viewing a list of friends’ posts. We do so in three configura-
tions: (1) Unchecked: native database bindings with no policy
checks; (2) Hand checked: manually written policy checks;
and (3) Scooter checked: Scooter’s ORM enforcement. We
measure each action 10,000 times in each configuration and
report the mean. As shown in Figure 6, our ORM is only
slightly slower than manually inserted checks. In real web
applications, these overheads are hidden by network latency
and other application components.

6 Discussion and Limitations

Like all languages and verifiers both Scooter and Sidecar
have limitations. We discuss some of these next.

6.1 Expressiveness

Scooter tries to balance the need to express complex behav-
ior with the need to be a reliable tool. Though we originally
designed Scooter strictness checking to be decidable, we
added language features—namely, set subtraction and cycli-
cal models—which can be used to write policies that the SMT
solver may not be able to solve. These features are useful
for expressing certain data models and policies. For example
set subtraction is necessary for expressing deny lists (in an

720

PLDI ’21, June 20–25, 2021, Virtual, Canada John Renner, Alex Sanchez-Stern, Fraser Brown, Sorin Lerner, and Deian Stefan

open-world system where we cannot enumerate all princi-
pals). Though these features could cause Sidecar to time out
(and thus require the developer to perform an unchecked
migration), our verifier did not time out on any of the case
studies or our tests.
There are many opportunities for additions to Scooter

that increase expressivity without affecting decidability. For
example, Scooter currently only support data types that can
be used in policies. We envision extending Scooter with
common datatypes (e.g., binary blobs, JSON objects, and ge-
olocations) that cannot be referenced in polices—and thus
Sidecar does not have to reason about—but are useful for
many applications. Similarly, we envision extending Scooter
with anonymous records that would, for example, allow de-
velopers to express projections of database objects.

6.2 Data Migrations

Scooter does not support manipulating data in the database
apart from the populating function in AddField. For ex-
ample, developers can’t create or edit objects in a migra-
tion script. Real-world migrations sometimes need to do
this, though—and indeed we encountered this when porting
Learn-by-Hacking to Scooter.

Verifying the safety of these operations is difficult because
they can cause indirect leakage. For example, in a social me-
dia site where only a user’s friends can see their email, a
migration that creates a new friendship between two users
also leaks their emails. In contrast to the kind of leakage
Sidecar prevents, this leakage does not require sensitive data
to flow to a permissive output. Instead, it modifies a policy-
relevant field such that the permissions represented by an
existing policy function are expanded.
Developers can work around this limitation by using the

ORM to perform migrations at the application level, as a
series of database queries. This ensures that all database
accesses are protected by policies. In the rare case where
developers need to elide policy enforcement, our ORM, in
debug mode, also allows developers to temporarily turn-off
enforcement.

6.3 Transactions

Scooter has no transactional semantics; any sequence of read,
write, create, and delete actions must be valid at each step.
This can create problems when multiple database mutations
must happen together.

For example, in the LambdaChair case study, papers have
multiple authors, and these authors (and only these au-
thors) have permissions to add other authors. Without set
fields, this would require three models: Paper, User, and
PaperAuthor which represents the join table between them.
When a user creates a paper, they need to create an instance
of both Paper and PaperAuthor. If they create the Paper

first, they would not be an author and thus could not add
other authors. Conversely, if they try to create the join table

entry first, there is no Paper to reference. In this specific
case, we sidestep the problem by making authors a set field.
Creating an instance with a set field is (to Scooter) a single
action even though it maps to multiple database actions. In
this way, set fields allow a specific type of transaction.
It is unclear how (or if) Scooter and Sidecar’s approach

to policy safety scales up to arbitrary database transactions,
where multiple operations can occur atomically. We consider
this future work.

6.4 Surprising Semantics

As described in Section 4, Sidecar tracks data equivalences
duringmigrations. This allows policy-relevant fields to change
representation—like isAdmin becoming adminLevel—and
still pass verification. While this is a useful feature, it has
subtle behavior that can produce surprising results.
The first surprise is that a sequence of migrations can

be valid when it is in one file and invalid when it is split
across two. Migration scripts are atomic, and thus Sidecar
tracks equivalences across migration commands within a
script file. But because writing to the database can invalidate
equivalences, we do not track equivalences between scripts.
Which policies Sidecar considers equal, due to equiva-

lences, may also be surprising. Consider the migration from
isAdmin to adminLevel from Section 2, where admins are
given adminLevel 2 and regular users are given adminLevel
0. Until isAdmin is removed from the model, Sidecar will
track the relationship between the two fields. In doing so,
Sidecar will deduce that:

u -> User::Find({isAdmin: true})

is equivalent to:

u -> User::Find({adminLevel: 2})

and, more surprisingly, also equivalent to:

u -> User::Find({adminLevel >= 1})

By tracking equivalence, Sidecar knows that—at the time of
the migration—there are no users with an adminLevel 1 and
that all users with adminLevel 2 were admins.
This could have unintended effects. Until isAdmin is re-

moved, for example, we can use {adminLevel >= 1} instead
of {adminLevel: 2} without Sidecar raising an alert—even
if the semantic meanings of the two policies differ: one in-
cludes moderators, the other does not. Since equivalences
let Sidecar succeed in many cases users expect it to and pre-
vent them from relying on unchecked policy relaxations, we
think this is a worthwhile trade-off. Of course, developers
can turn equivalence tracking off; without them, Sidecar can
still catch policy weakenings and leaks due to data flows but
cannot incorporate knowledge from earlier migration steps.

7 Related Work

There is a long and rich history of work on the topic of secu-
rity for database-backed application, and more broadly for

721

Scooter & Sidecar: A Domain-Specific Approach to Writing Secure Database Migrations PLDI ’21, June 20–25, 2021, Virtual, Canada

general purpose applications. Broadly speaking our paper
distinguishes itself from prior work in this space by offering
a specific kind of enforcement that had not been previously
explored: static verification of data migrations and policy

migrations in database-backed applications. We see our ef-
fort as complimentary to the existing literature on secure
database-backed applications. We now highlight the most
closely related work in this area.

Dynamic Enforcement. Dynamic enforcement of secu-
rity policies is a well-explored idea, including the semi-
nal work on Execution Monitoring [47], hardware-level
information-flow tracking [53], language-based information-
flow control [24, 52, 54], fine-grain discretionary access-
control for databases [10, 35, 55, 67] and new programming
models that incorporate dynamic enforcement [4, 66].

The dynamic approaches most closely related to our work
are those developed for database-backed web frameworks
(e.g., Jacqueline [65], Hails [20, 21], LWeb [39], and IFDB [48]).
These frameworks allow the programmer to state policies
separately from code, and the system automatically enforces
the policy dynamically. While some of these systems enforce
policies in a mandatory fashion (e.g., using IFC), Scooter
only enforces access control policies at the ORM level, and
thus our security guarantees do not extend to leaky applica-
tion code. Since the ORM code is generated, though, Scooter
could be extended to, say, generate ORM code that uses an
IFC system for enforcement. Since our core focus is on veri-
fying migrations, which none of these systems address, we
see our work as largely tackling a complementary problem.

Static Enforcement. Another approach is to enforce poli-
cies statically, before the program runs. For example, there
is a long line of work on static type systems that enforce
fine-grained policies (e.g., information flow control and fine-
grain access control) in various languages [1, 1, 3, 5, 6, 15,
23, 26, 32, 33, 33, 37, 40, 41, 45, 46, 51, 62]. The static ap-
proach most closely related to our work is UrFlow [8], a tool
for static analysis of database-backed applications. UrFlow
takes data policies specified as SQL queries, and statically
ensures that the application code adheres to those policies.
The Scooter ORM enforces policies dynamically and thus
introduces runtime overheads that can be partially avoided
with static checking. Conversely, neither UrFlow nor these
other systems account for ways in which the applications
(and, specifically, underlying database schema and policies)
might change. Extending Scooter to systems like UrFlow that
enforce policies statically is an interesting future direction.

Program Partitioning. Yet another approach to security
enforcement is to use some kind of program partitioning,
thus enforcing certain security properties by construction.
For example, the Diesel [16] web framework for writing
database-backed applications restricts each module of the
application to use a database connection that can only access

data in the corresponding database module. While this pre-
vents certain kinds of cross-module leaks, it does not directly
prevent secret leakage to an unprivileged user. Program par-
titioning can also be done automatically to enforce a stated
policy, as is done in the Swift [9] system and the Jit/split [68]
compiler. However, again, none of these approaches address
data or policy migrations.

Schema Migration. There is a long history of work on
schema migration. The most commonly explored topics in-
clude mechanisms for expressing schema mappings [31, 42],
techniques for automatically inferring schema mappings [1,
2, 22, 36, 64], and support for automatically evolving and
verifying queries and databases in the face of schema mi-
gration [11, 12, 63, 64]. None of this work addresses how
security policies interact with migrations, which is the aim
of our work. We, conversely, don’t automatically update or
verify the application code that uses the Scooter ORM.

Acknowledgments

We thank the reviewers, and our shepherd Adam Chlipala
for his in-depth and insightful feedback on all aspects of the
paper—and for finding a bug in one of our proofs. We thank
Ranjit Jhala for his always insightful guidance. This work
was supported in part by gifts from Cisco; by the NSF under
Grant Numbers CCF-1918573, CCF-1955457, CNS-1514435,
and CAREER CNS-2048262; and by the CONIX Research
Center, one of six centers in JUMP, a Semiconductor Research
Corporation (SRC) program sponsored by DARPA.

References
[1] Bogdan Alexe, Balder ten Cate, Phokion G. Kolaitis, and Wang-Chiew

Tan. 2011. Designing and Refining Schema Mappings via Data Exam-

ples (SIGMOD ’11). h�ps://doi.org/10.1145/1989323.1989338

[2] Yuan An, Alex Borgida, Renée Miller, and John Mylopoulos. 2007.

A Semantic Approach to Discovering Schema Mapping Expressions

(ICDE’07). h�ps://doi.org/10.1109/ICDE.2007.367866

[3] O. Arden and A. C. Myers. 2016. A Calculus for Flow-Limited Autho-

rization (CSF’16). h�ps://doi.org/10.1109/CSF.2016.17

[4] Thomas H. Austin, Jean Yang, Cormac Flanagan, and Armando Solar-

Lezama. 2013. Faceted Execution of Policy-Agnostic Programs (PLAS

’13). h�ps://doi.org/10.1145/2465106.2465121

[5] Niklas Broberg, Bart van Delft, and David Sands. 2017. Paragon–

Practical programming with information flow control. Journal of

Computer Security 25 (2017). h�ps://doi.org/10.3233/JCS-15791

[6] Pablo Buiras, Dimitrios Vytiniotis, and Alejandro Russo. 2015. HLIO:

Mixing static and dynamic typing for information-flow control in

Haskell (ICFP’15). h�ps://doi.org/10.1145/2784731.2784758

[7] Adam Chlipala. [n.d.]. Ur/Flow Calendar Source Code. h�p://www.

impredicative.com/ur/scdv/

[8] AdamChlipala. 2010. Static Checking of Dynamically-Varying Security

Policies in Database-Backed Applications (OSDI’10).

[9] Stephen Chong, Jed Liu, Andrew C. Myers, Xin Qi, K. Vikram, Lantian

Zheng, and Xin Zheng. 2007. Secure Web Applications via Automatic

Partitioning (SOSP ’07). h�ps://doi.org/10.1145/1323293.1294265

[10] Brian J Corcoran, Nikhil Swamy, and Michael Hicks. 2009. Cross-tier,

label-based security enforcement for web applications (SIGMOD ’09).

h�ps://doi.org/10.1145/1559845.1559875

722

PLDI ’21, June 20–25, 2021, Virtual, Canada John Renner, Alex Sanchez-Stern, Fraser Brown, Sorin Lerner, and Deian Stefan

[11] Carlo Curino, Hyun Jin Moon, Alin Deutsch, and Carlo Zaniolo. 2013.

Automating the database schema evolution process. The VLDB Journal

22 (2013). h�ps://doi.org/10.1007/s00778-012-0302-x

[12] Carlo A. Curino, Hyun J. Moon, and Carlo Zaniolo. 2008. Graceful

Database Schema Evolution: The PRISMWorkbench (VLDB’08). h�ps:

//doi.org/10.14778/1453856.1453939

[13] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT

Solver (TACAS’08/ETAPS’08). h�ps://doi.org/10.1007/978-3-540-78800-

3_24

[14] Randall Degges. 2020. User Migration: The Definitive Guide.

h�ps://developer.okta.com/blog/2019/02/15/user-migration-the-

definitive-guide.

[15] Dominique Devriese and Frank Piessens. 2011. Information flow

enforcement in monadic libraries. h�ps://doi.org/10.1145/1929553.

1929564

[16] Adrienne Felt, Matthew Finifter, Joel Weinberger, and David Wag-

ner. 2011. Diesel: Applying Privilege Separation to Database Access

(ASIACCS ’11). h�ps://doi.org/10.1145/1966913.1966971

[17] Martin Fowler. 2002. Patterns of Enterprise Application Architecture.

Addison-Wesley Professional.

[18] Ghost. 2018. Contributor should not be allowed to edit a post when not

being a primary author. h�ps://github.com/TryGhost/Ghost/issues/

10238.

[19] Ghost. 2018. Fix access to the common article for multiple editors.

h�ps://github.com/TryGhost/Ghost/issues/10214.

[20] Daniel B. Giffin, Amit Levy, Deian Stefan, David Terei, David Mazières,

John Mitchell, and Alejandro Russo. 2017. Hails: Protecting Data

Privacy in Untrusted Web Applications. Journal of Computer Security

25 (2017). h�ps://doi.org/10.3233/JCS-15801

[21] Daniel B. Giffin, Amit Levy, Deian Stefan, David Terei, David Mazières,

John C. Mitchell, and Alejandro Russo. 2012. Hails: Protecting Data

Privacy in Untrusted Web Applications (OSDI’12).

[22] Georg Gottlob and Pierre Senellart. 2010. Schema Mapping Discovery

from Data Instances. J. ACM 57, Article 6 (2010). h�ps://doi.org/10.

1145/1667053.1667055

[23] Marco Guarnieri, Musard Balliu, Daniel Schoepe, David Basin, and

Andrei Sabelfeld. 2019. Information-flow control for database-backed

applications (EuroS&P’19). h�ps://doi.org/10.1109/EuroSP.2019.00016

[24] Daniel Hedin, Arnar Birgisson, Luciano Bello, and Andrei Sabelfeld.

2014. JSFlow: Tracking information flow in JavaScript and its APIs

(SAC ’14). h�ps://doi.org/10.1145/2554850.2554909

[25] Alicia Hope. 2020. Data Breach Index Site Leaks Over 23,000

Hacked Databases Exposing Over 13 Billion User Records.

h�ps://www.cpomagazine.com/cyber-security/data-breach-index-

site-leaks-over-23000-hacked-databases-exposing-over-13-billion-

user-records/.

[26] J. Hughes. 2000. Generalising monads to arrows. Sci. Computer Pro-

gramming 37 (2000). h�ps://doi.org/10.1016/S0167-6423(99)00023-4

[27] Troy Hunt. 2020. Have I Been Pwned: Check if your email has been

compromised in a data breach. h�ps://haveibeenpwned.com/.

[28] Peter Jonsson. 2003. Automated Testing of Database Schema Migrations.

Master’s thesis. KTH Royal Institute of Technology, Sweden.

[29] Eddie Kohler. 2014. Fix critical permissions error. h�ps://github.com/

kohler/hotcrp/commit/1e10f49687a9c6293f6365ca6e441e346cc2ab3d

[30] Eddie Kohler. 2014. Minor refactor. h�ps://github.com/kohler/hotcrp/

commit/6559c0cfef66c6dbe4b888971d7798cb7cca000e

[31] Phokion G. Kolaitis. 2005. Schema Mappings, Data Exchange, and

Metadata Management (PODS ’05). h�ps://doi.org/10.1145/3196959.

3196991

[32] Peng Li and Steve Zdancewic. 2006. Encoding Information Flow in

Haskell (CSFW ’06). h�ps://doi.org/10.1109/CSFW.2006.13

[33] J. Liu, M. D. George, K. Vikram, X. Qi, L. Waye, and A. C. Myers. 2009.

Fabric: a platform for secure distributed computation and storage

(SOSP’09). h�ps://doi.org/10.1145/1629575.1629606

[34] J. Mccarthy. 1962. Towards a Mathematical Science of Computation

(IFIP Congress).

[35] Aastha Mehta, Eslam Elnikety, Katura Harvey, Deepak Garg, and Peter

Druschel. 2017. Qapla: Policy compliance for database-backed systems

(USENIX Security’17).

[36] Renée Miller, Laura Haas, and Mauricio Hernández. 2000. Schema

Mapping as Query Discovery (VLDB’00). h�ps://doi.org/10.5555/

645926.671677

[37] Andrew C. Myers. 1999. JFlow: Practical Mostly-Static Information

Flow Control (POPL’99). h�ps://doi.org/10.1145/292540.292561

[38] Jaideep Nijjar and Tevfik Bultan. 2012. Unbounded Data Model Verifi-

cation Using SMT Solvers (ASE’12). h�ps://doi.org/10.1145/2351676.

2351706

[39] James Parker, Niki Vazou, and Michael Hicks. 2019. LWeb: Information

flow security for multi-tier web applications (POPL’19).

[40] Nadia Polikarpova, Deian Stefan, Jean Yang, Shachar Itzhaky, Travis

Hance, and Armando Solar-Lezama. 2020. Liquid Information Flow

Control. In ICFP. h�ps://doi.org/10.1145/3408987

[41] François Pottier and Vincent Simonet. 2002. Information flow inference

for ML (POPL’02).

[42] Erhard Rahm and Philip A. Bernstein. 2001. A survey of approaches

to automatic schema matching. The VLDB Journal 10, 4 (2001). h�ps:

//doi.org/10.1007/s007780100057

[43] John Renner. [n.d.]. Visit Day Source Code.

h�ps://github.com/PLSysSec/visit-day-rails/tree/

530156cd95da1e791f49acbb99a01b23e714fd88

[44] John Renner and Alex Sanchez-Stern. 2021. Scooter and Sidecar. h�ps:

//scooter.programming.systems/

[45] Alejandro Russo. 2015. Functional Pearl: Two Can Keep a Secret, If

One of Them Uses Haskell (ICFP’15). h�ps://doi.org/10.1145/2784731.

2784756

[46] Alejandro Russo, Koen Claessen, and John Hughes. 2008. A Library

for Light-weight Information-flow Security in Haskell (Haskell’08).

h�ps://doi.org/10.1145/1411286.1411289

[47] Fred B. Schneider. 2000. Enforceable Security Policies. ACM Trans. Inf.

Syst. Secur. 3, 1 (Feb. 2000). h�ps://doi.org/10.1145/353323.353382

[48] David Schultz and Barbara Liskov. 2013. IFDB: decentralized informa-

tion flow control for databases (EuroSys’13). h�ps://doi.org/10.1145/

2465351.2465357

[49] Alex Scroxton. 2020. Human error blamed in Welsh Covid-19 pa-

tient data leak. h�ps://www.computerweekly.com/news/252492123/

Human-error-blamed-in-Welsh-Covid-19-patient-data-leak.

[50] Amy Shen. 2013. Moved addUsers to policy mod-

ule. h�ps://github.com/a-shen/task/commit/

9d9d806f7a2d6ece8f0191830cd6be67afdb1721

[51] E.G. Sirer, W. de Bruijn, P. Reynolds, A. Shieh, K. Walsh, D. Williams,

and F.B. Schneider. 2011. Logical attestation: an authorization archi-

tecture for trustworthy computing (SOSP’11). h�ps://doi.org/10.1145/

2043556.2043580

[52] Deian Stefan, Alejandro Russo, John C. Mitchell, and David Maz-

ières. 2011. Flexible Dynamic Information Flow Control in Haskell

(Haskell’11). h�ps://doi.org/10.1145/2096148.2034688

[53] G. Edward Suh, Jae W. Lee, David Zhang, and Srinivas Devadas. 2004.

Secure Program Execution via Dynamic Information Flow Tracking

(ASPLOS XI). h�ps://doi.org/10.1145/1024393.1024404

[54] Nikhil Swamy, Juan Chen, and Ravi Chugh. 2010. Enforcing Stateful

Authorization and Information Flow Policies in Fine (ESOP’10). h�ps:

//doi.org/10.1007/978-3-642-11957-6_28

[55] Nikhil Swamy, Brian J Corcoran, and Michael Hicks. 2008. Fable: A

language for enforcing user-defined security policies (SP’08). h�ps:

//doi.org/10.1109/SP.2008.29

[56] Ryan Tate. 2010. Apple’s Worst Security Breach: 114,000 iPad Owners

Exposed. h�ps://gawker.com/5559346/apples-worst-security-breach-

114000-ipad-owners-exposed.

723

Scooter & Sidecar: A Domain-Specific Approach to Writing Secure Database Migrations PLDI ’21, June 20–25, 2021, Virtual, Canada

[57] BIBIFI Team. [n.d.]. BIBIFI Source Code. h�ps://github.com/plum-

umd/bibifi-code

[58] Hails Team. [n.d.]. GitStar Source Code. h�ps://github.com/scslab/

gitstar/tree/589663b54d26468a9407be3d9d5ffa4dfa4962a8

[59] Hails Team. [n.d.]. LambdaChair Source

Code. h�ps://github.com/deian/lambdachair/tree/

660351f86d1dd603e551237d58d97d419e05bbec

[60] Hails Team. [n.d.]. LearnByHacking Source Code. h�ps://github.com/

deian/lbh/tree/84994a693ceec8d171adfe3d3f08528cd964c73a

[61] Lifty Team. [n.d.]. Lifty Conference Source Code.

h�ps://github.com/nadia-polikarpova/synquid/blob/

4cafb45df74f8c45739994466be874918de38915/test/conference/

Conference.sq

[62] Marco Vassena, Alejandro Russo, Pablo Buiras, and Lucas Waye. 2018.

MAC: a verified static information-flow control library. Journal of

logical and algebraic methods in programming 95 (2018). h�ps://doi.

org/10.1016/j.jlamp.2017.12.003

[63] Yuepeng Wang, Isil Dillig, Shuvendu K Lahiri, and William R Cook.

2017. Verifying equivalence of database-driven applications (POPL’17).

h�ps://doi.org/10.1145/3158144

[64] Yuepeng Wang, Rushi Shah, Abby Criswell, Rong Pan, and Isil Dillig.

2020. Data Migration Using Datalog Program Synthesis (VLDB’20).

h�ps://doi.org/10.14778/3384345.3384350

[65] Jean Yang, Travis Hance, Thomas H. Austin, Armando Solar-Lezama,

Cormac Flanagan, and Stephen Chong. 2016. Precise, Dynamic In-

formation Flow for Database-backed Applications (PLDI’16). h�ps:

//doi.org/10.1145/2908080.2908098

[66] Jean Yang, Kuat Yessenov, and Armando Solar-Lezama. 2012. A lan-

guage for automatically enforcing privacy policies (POPL’12). h�ps:

//doi.org/10.1145/2103656.2103669

[67] Alexander Yip, Xi Wang, Nickolai Zeldovich, and M. Frans Kaashoek.

2009. Improving application security with data flow assertions

(SOSP’09). h�ps://doi.org/10.1145/1629575.1629604

[68] Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom, and Andrew C.

Myers. 2002. Secure Program Partitioning. ACM Trans. Comput. Syst.

20, 3 (2002). h�ps://doi.org/10.1145/566340.566343

724

