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ABSTRACT. In this paper, we consider the star operations for (graded) affine
Hecke algebras which preserve certain natural filtrations. We show that, up
to inner conjugation, there are only two such star operations for the graded
Hecke algebra: the first, denoted *, corresponds to the usual star operation
from reductive p-adic groups, and the second, denoted e can be regarded as
the analogue of the compact star operation of a real group considered by
[ALTV]. We explain how the star operation e appears naturally in the Iwahori-
spherical setting of p-adic groups via the endomorphism algebras of Bernstein
projectives. We also prove certain results about the signature of e-invariant
forms and, in particular, about e-unitary simple modules.
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1. INTRODUCTION

This work is motivated by the results about the unitary dual obtained in the
case of real reductive groups by Adams, van Leeuwen, Trapa, and Vogan [ALTV]
on the one hand, and on the other hand, in work and conjectures of Schmid and
Vilonen [SV]. The ultimate goal is to obtain an algorithm for computing hermitian
forms of irreducible modules in the case of reductive p-adic groups.

In this paper, we initiate the study of invariant hermitian forms for the (graded)
affine Hecke algebras that appear in the theory of unipotent representations of
reductive p-adic groups (Lusztig [Lu3]). There are two main parts to our paper
which we explain next.
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1.1. We introduce star operations (conjugate-linear involutive anti-automorphims)
for the affine Hecke algebra H with unequal parameters which preserve natural
filtrations of H (section [3)) and classify them in the corresponding setting of the
graded affine Hecke algebras defined by Lusztig [Lu3]. The classification problem
can be viewed as an analogue of the problem of classifying the star operations for
the enveloping algebra U(g) of a complex semisimple Lie algebra which preserve g.
Proposition [3.4.3] says that essentially there are only two such star operations: *
and e, see Definitions and

The anti-automorphism * is known to correspond to the natural star operation of
the Hecke algebra of a reductive p-adic group, i.e., f*(g) = f(g~1), see [BM1, BM2].

On the other hand, the anti-automorphism e is the Hecke algebra analogue of
the “compact star operation” for (g, K)-module studied in [ALTV]. In section
we explain that e appears naturally in the study of Iwahori-Hecke algebras via the
projective (non-admissible) modules defined by Bernstein [Be]. The operation e for
affine Hecke algebras also arises naturally in work of Opdam [Op2].

1.2.  We study the basic properties of the signature of e-invariant hermitian forms
for finite dimensional H-modules. We explain that every irreducible spherical H-
module with real central character admits an (explicit) nondegenerate e-invariant
hermitian form, Proposition This result is generalized in [BC4], where we
prove that every simple H-module with real central character admits a nonde-
generate e-invariant hermitian form, and, moreover, this form can be normalized
canonically (at least when H is of geometric type in the sense of Lusztig) to be
positive definite on the lowest W-types. These results can be thought of Hecke
algebra analogue of the similar results about c-invariant forms of (g, K')-modules
[ALTV]. The formulations of some of our results were inspired by the ongoing work
of Schmid and Vilonen [SV] aimed at using geometric methods to study unitarity.
For example, the relation between the x- and e-signature characters of the tempered
modules with real central characters (realized in the cohomology of Springer fibers)
in section |4.2|is motivated by their work.

Using the Dirac operator defined in [BCT], we also prove that the only e-unitary
spherical H-modules, where H has equal parameters, are the ones whose parameters
lie in the closure of the p¥-cone, Theorem [6.3.3] Similar ideas lead to showing that
every simple H-module with central character p¥ has nontrivial Dirac cohomology,
and moreover their Dirac cohomology spaces are essentially the same, Corollary
0.4.4!

1.3. These results were presented in two talks given by Dan Barbasch in 2013. The
first was at the TSIMF conference at Sanya in January, as part of a special session
organized by W. Schmid and S. Miller, the second at the conference in honor of W.
Schmid’s 70" birthday in June of 2013. He would like to thank the organizers of
these conferences for providing the means for mathematical researchers to have a
very productive exhange of ideas.

The first author was partially supported by NSF grants DMS-0967386, DMS-
0901104 and an NSA-AMS grant. The second author was partially supported by
NSF DMS-1302122 and NSA-AMS 111016.
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2. STAR OPERATIONS: THE AFFINE HECKE ALGEBRA

2.1. The affine Hecke algebra. Let R = (X, R, X", RY,II) be a based root
datum [Sp]. In particular, X, XV are lattices in perfect duality (, ): X x XV — Z,
R c X\{0}and R C XV\{0} are the (finite) sets of roots and coroots respectively,
and II C R is a basis of simple roots. Let W be the finite Weyl group with set of
generators S = {s, : @ € II}. Set We¢ = W x X, the extended affine Weyl group,
and W =W x @, the affine Weyl group, where @ is the root lattice of R.

The set R* = RY xZ C XV x Z is the set of affine roots. A basis of simple affine
roots is given by I1* = (ITIV x {0}) U{(v¥,1) : vV € RY minimal}. For every affine
root a = (a¥,n), let s, : X — X denote the reflection s,(z) =z — ((z,a") + n)a.
The affine Weyl group W has a set of generators S* = {s, : a € II*}. Let
0 : W — Z be the length function with respect to S°.

Let q be an indeterminate and let

L:S5"— ZZO
be a W%invariant function.

Definition 2.1.1 (Iwahori presentation). The affine Hecke algebra H(q) = H(R,q, L)
associated to the root datum R and parameters L is the unique associative, unital
Clq, g~ ']-algebra with basis {T}, : w € W¢} and relations

(i) TwTw = Ty, for all w,w’ € We such that {(ww') = l(w) + £(w');

(ii) (Ts — @?XO) (T, +1) =0 for all s € S°.

2.2. The Bernstein presentation. The affine Hecke algebra admits a second
presentation due to Bernstein and Lusztig, see [Lul].
A parameter set for R is a pair of functions (A, A*),

ATl = Zso, N i{aell:a" €2X"} = Zso,
such that A(«) = A(a/) and A\*(«) = A*(o’) whenever «, o’ are W—conjugate. The
relation with the parameters in the Iwahori presentation is:
Ma) = L(sq), a €I, X(a)=L(3,), a €,a” € 2X", (2.2.1)
where " is the unique nontrivial automorphism of the Dynkin diagram of affine type
C,.

Definition 2.2.1 (Bernstein presentation). The affine Hecke algebra H(q) = HM (R, q)
associated to the root datum R with parameter set (A, A*), is the associative al-
gebra over C[q,q~!] with unit, defined by generators T,,, w € W, and 0,, v € X

with relations:

(Ts. +1)(Ts, — q*M¥) =0, for all & €11, (2.2.2)

TwTw = Ty, for all w,w’ € W such that £(ww') = £(w) + £(w'),

020y = Op i, for all 2,2’ € X, (2.2.3)

015, — T 05, () = (02 — s, (2))(G(a) = 1), where z € X,a €I, and
a1 if oV ¢ 2XV

G(a) =3 o BB e - (a ’ (2.2.4)
(eaq/\( )+A*( ),021()’(_9;!(:1)\( )—=A*( )+1)’ 1f av c QXV

We refer to [Lull section 3] for more details about the relations between the two
presentations.
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2.3. Star operations. There are two known star operations on H(q), i.e., conju-
gate linear involutive anti-automorphisms, x and e.

Definition 2.3.1. (1) In the Iwahori presentation, * is defined on generators
by
a'=q, Tp=T,, weWe (2.3.1)

In the Bernstein presentation, the equivalent definition is [BM2l section 5]:

a =q, Tp=T,1, weW, 05="Tu O _ym Tp, z€X, (2.3.2)
where wy is the long Weyl group element of W.
The e operation is defined in the Bernstein presentation
Q" =q, T5=Ty-1, weW, 0:=0, zcX. (2.3.3)

w

The fact that this definition extends to a star operation is equivalent with the fact
that the algebra H(q) is isomorphic to its opposite algebra.

2.4. The central characters of H are parametrized by W —orbits in the torus 7 :=
X ®z C*. In [BM2] (following [Lull), a filtration of #H is defined for any finite
W —invariant set @ C 7. Let O, be the W-orbit of an element a € 7. The 6,
are interpreted as regular functions R(7) on 7. The filtration associated to O, is
defined by the powers of the ideal Z, := R(O,)H generated by

R(Oy) :={f € R(T xC*) : f(0,1)=0 for any o € O,}. (2.4.1)

The graded algebra H, is then shown, [Lull Proposition 4.4] and [BM2, Proposition
3.2] to be a matrix algebra over an appropriate graded affine Hecke algebra as in
Definition B.1.11

Let  be an automorphism (or anti-automorphism) of 7. Then ~ induces an
automorphism of the center Z(H), and therefore an isomorphism

h:T xC* =T xC*.

We will only consider morphisms « that fix q, and thus & restricts to an isomorphism
of T as well.

Definition 2.4.1. An automorphism (or anti-automorphism) x of H is called ad-
missible, if k(q) = q, K(Tw) = T, for all w € W, and k(Z,) C Zy(q) for all a € T.
It is clear that the operations e and  from Definition 2:3.1] are admissible in this
sense.

In section we study the analogues of admissible automorphisms and anti-
automorphisms for graded affine Hecke algebras. Motivated by the main result of
that section, Proposition and the connection between the affine Hecke algebra
‘H and the graded Hecke algebras H,, we make the following conjecture.

Conjecture 2.4.2. Let k be an admissible involutive anti-automorphism.

(1) If k(a) = a, for alla € T, then k(0;) = 0%, for all x € X.
(2) If k(a) =a™ %, for alla € T, then k(0,) = 0%, for all x € X.
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2.5. The operation * appears naturally in relation with smooth representations
of reductive p-adic groups. Suppose F is a p-adic field of characteristic 0 with
residue field Fy. Let G be the group of F-rational points of a connected reductive
algebraic group defined over F. Let I be an Iwahori subgroup of G and let C;(G) be
the category of smooth admissible G-representations which are generated by their
I-fixed vectors.

On the other hand, let (G, I') be the Iwahori-Hecke algebra, i.e., the convolution
algebra (with respect to a Haar measure of G) of compactly-supported complex val-
ued functions on G that are I-biinvariant. By a classical result of Borel, the functor
V + VI induces an equivalence of categories between C;(G) and the category of
finite dimensional H (G, I')-modules.

The Iwahori-Hecke algebra H(G, ) is a specialization of H(q) with q = /g and
the appropriate specialization of parameters L , see [Ti]. Under this specialization,
the natural star operation

f*(g):f(gil)a feHng,I),
on H(G,I) corresponds to the operation x on H(q).

2.6. Bernstein’s projective modules. In the rest of this section, we explain
how the e-form for affine Hecke algebras appears naturally when the Iwahori-Hecke
algebras are viewed as endomorphism algebras of the Bernstein projective modules
[Be], see also [Hel.

Let V be a complex vector space,

vh.= {)\ :V—C : AMaqvy + agvy) = a1 A(vy) +a2/\(v2)}.

A sesquilinear form is a bilinear form (-,-) which is linear in the first variable,
conjugate linear in the second variable. This is the same as a complex linear map
X\ :V — V. The relation is

(v,w)x = A(v)(w).

Such a form is called nondegenerate if A is injective. To any sesquilinear form A

there is associated A" : V. . (VM)h — VR N(v)(w) := A(w)(v). The form is
called symmetric, if A = A", A symmetric form is an inner product if A(v)(v) > 0,
with equality if and only if v = 0.

Let G be a reductive p-adic group. If (m,V) is a representation of G, then
(z", V") is the representation defined as

(7" (9)A) (v) := Al (g~ o).

2.7. The projective P. Let M be a Levi subgroup of G. Denote by M, the
intersection of the kernels of all the unramified characters of M. Let o be a relative
supercuspidal representation of M, g a supercuspidal constituent of & |z, .
Define
(U, V, = Ind%O ao)c induction with compact support,

(H, P = Ind}Gp Va) normalized induction.
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A typical element of o is dpas,,0 With m € M /My and v € V. This is the delta-
function supported on the coset mMj, taking constant value v.

A typical element of P is given by du4p.s,,1, ., Where U € G /P is a neighborhood
of the identity, the function satisfies the appropriate transformation law under P
on the right, and the value at x is §,az,,0-

If ¢y € Homg[P,P], then ¢"* € Homg[P", P"]. But P admits a G—invariant
positive definite hermitian form, so while P # P nevertheless there is an inclusion
t: P — PP More precisely, if P = Indg o, then the hermitian dual P* is naturally
isomorphic to Ind$ . If A : G — V is such that A(zp) = o(p~)A(g), and
f: G — V is such that f(gp) = o(p~!)f(z), then the pairing is

N f) = /G RICTEIE

When ¢ is unitary (or just has a nondegenerate form so that o C o”), we get
P C Ph via

geEP =N, €PN\ J(f) = / (f(x),g(x))dx for f € P.
G/P

2.8. Inner Product. We recall two classical results.

Theorem 2.8.1 (Frobenius reciprocity, [Casll Theorem 3.2.4]).
Homg[V, P] = Hom s [Viy, 005"

Theorem 2.8.2 (Second adjointness, [Be, Theorem 20]).

Homg[P, V] = Homy [65" 0, V] = Homy, 00, 65 Vigl.

Let P be the module induced from o from the opposite parabolic P := MN.
The (second) adjointness theorem gives
Homg [P, P] = Homy [6p' o, Pw] = Homy, [00, 65" P,
Homg [P, P] = HomM[(%la, Pn] = Homyy, [00, 6pPN].
Assume P and P are conjugate, and let wg € W be the shortest Weyl group element
taking P to P, stabilizing M and taking N to N. Assume also that there is an
isomorphism 7y : (09, Vs,) — (wo 0 00, Vs,). Extend it to 7 : V, — V, by
T(0mdo,w) = Owe(m)Mo,r(v)- Write T for the isomorphism
TP — P,
7(f) (@) = 7(f (zwo)).
Thus given ®, ¥ € Homg [P, P], then & := ® o 7 € Homg|[P, P], and they give rise
to
(b S HOIIl]\/[(J [0'0, fpﬁ]
P € HOHI]V[O [0—0, fPN]

According to Casselmann [Casll Proposition 4.2.3], there is a nondegenerate pairing
(, )y between Py and Px. Given vy, vy € V), we can form

(v1, 'U2><I>,\I/ = (¢(v1), ¢(U2)>N,N~
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This pairing is invariant and sesquilinear, so there is a constant me v such that

<1}1,’U2>q>7\p = m¢)7\11<vl7v2>0'0- (2.8.1)
We define a sesquilinear pairing

(@, V) :=ma,u. (2.8.2)

2.9.  We make the form precise. Let Ky be an open compact subgroup with
an Iwasawa decomposmon compatlble with P, i.e. Ky = K, - K| 0. K Z , invariant
by wg.
0 —
Let 20,0 € Vi, and & i= Oag 005 = Ondg,go- Then Syesp, € Pand 8y, €

P. The isomorphism 7 takes 5K+ to 6K+ . So

wo P,7(x)
(T0,yo)o, v = <6ﬁ(§K;wOP’T(w))7 Uy (6K;P’y)>ﬁ7]\/ = ma v (%0, Y0)o,

Here Eﬁ and Wy are the projection maps onto Px and Py respectively.

Let A € A := Z(M) be such that it is regular on N and contracts it. Let a(A)
and a(—A) be the K, double cosets of A and its inverse.

By Casselman [Casll, section 4] and Bernstein [Be, chapter I11.3],

a(—A), K¢ ~ K7
P ¢ =P,
Ppa(A),Ke o fpgé)’

because a(A) contracts K,”. We conclude that

—A), K,
b

0
Ok, pa € PU 0 B0, pg) € PUMKe :P%e,

~ K7
0K ywoP,roy € {PG(A),Ke7 50 V(0r,woP,roy) € Ppa(A),Ke o Py’

Proposition 2.9.1. With the notation as in , Ma w = My ,a. In other words,
the sesquilinear form s hermitian.

Proof. Assume 19 # —Id, or else use —7y. Thus there is z¢ such that rgzg = zo.
Let fu, := 0x,wok,- Then f{;o = fu,, and
H(fwo)aKleP,z = 5K5P,za

H(fwo)(SKzP,w = 6K4w0P7z~

Then

mae,w < 2o, To > =< P(0r,ps), V(0K wopPw) >=
=< O(I(fuo )0, woP)s V(0K pwopa) >=
=< ®(0K woP,z), YII(f 0)5pr0Pa:) >=
=< ®(6KwoPa), Y(OK,Pa) >

= < ¥(dk,Pa) (0K, wopa) > =
=my,e < To,To > -
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2.10. For a € A, let ©, € Homg[P, P] be given by
Ou(0K,9P2) = OK,gP,0,(x)5 0o () := 0,(0mMy,z0) = OmaMy,zo- (2.10.1)
Proposition 2.10.1.
<O, Vo0, >=< PoO,, ¥ >.

Proof. Thereis f,, € H(K,\G/Ky) (namely 05, qx,) such that ©,(0x,ps) = I(fa)(0k,Pa)-
Then use the fact that fF = f,~1 for a € AT dominant. O

2.11. Digression about the intertwining operator. Let J : P — P be given
by the formula

Jf(z) = /NTof(acnwo) dn = LTof(xwoﬁ) dm. (2.11.1)

N
This should be considered as a formal expression. When you specialize to a value
v € A, the split part of the center of M, J will have poles.
Recall the inner product on P,

o fo) = /K (k). fal)) di

Proposition 2.11.1.
<Jfi,fa>=<f1,Jf2>.

Proof.

< fo s 5= /K < fulk), /NTon(kwoﬁ) i > di, (2.11.2)
We can move wg and 19 to tlgle other side:

< f1,Jfo >= /K < 10.f1(kwy), /ﬁfg(/ﬁﬁ) dn > dk. (2.11.3)
Write 7 = k(7) - n(7) - m(ﬁ).OSo

< i, Jfy >= / <Tofl(kwo),/ﬁa(m(ﬁ)*l)fg(m(ﬁ))dﬁ> dk =

(2.11.4)
/K / 7))o 1 (ks ()" wo) d, fo(k) > dk.
Since k(7)) =71 - m(n) "t - n(n) "L, we conclude k(7)) "' = n(@)-m(@) -7t So
< f1,Jfa>=
/KO / )i (kn(mym o) fok) > k=

:/ <L70f1(kn(ﬁ)) dm, fo(k) > dk
Ky N

because o(m(m)) is conjugated by wg but then flipped back by 79, and then cancels
o(m(m)). Finally

If = /ﬁ 7o f1(kn(m)wo) d

follows from the fact that 7 + won()wy ' is an isomorphism with trivial Jacobian.
O
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2.12. Assume from now on that G is a split p-adic group. Let P = B = AN
be a Borel subgroup. Let K be the hyperspecial maximal compact subgroup,
and Ky C 41 C Ky be an Iwahori subgroup. It has an Iwasawa decomposition
Al = HAI~ - Ay --I". Furthermore, G = KB = U-IwB disjoint union where w € W.

We consider the case of the trivial representation of Ay := Ky N A, og = triv, i.e,
this is the case of representations with 4I—fixed vectors. Let H = H(Z\G/T) be
the Iwahori-Hecke algebra of compactly supported smooth Z-biinvariant functions
with convolution with respect to a Haar measure.

Proposition 2.12.1. In the Iwahori-spherical case, the algebra Hom[P, P] is nat-
urally isomorphic to the opposite algebra to 4H(Z\G/I).

Proof. Recall
Homg [P, P] =2 Homy, oo, Px] = T%) =~ pil

The element ¢ = 641_3,5%,1 is in P71, and it generates P. So any ® € Homg[P, P
is determined by its value on ¢;. Furthermore, ®(¢;) € PL.

Conversely, ¢ € Hom 4, [0g, P57 = iP%) =~ P gives rise to ® € Homg[P, P] by
the relation

P(0u4r-Boaya) = ¢-
The map
h € HH s TI(h) (541—3,6/10,1)

is an isomorphism between 4H and P!, Let hy € - be the element in +H corre-
sponding to . Then if @(6_117375%’]1) =9,

Y] = @[II(hy)(041-B.64y 4 )] = H(hg)R[041-B 64, 4] = IL(hy) .
Now let ¢1, ¢y € PLO. Then
(@10 @2)(051-B,64y 1) = P1II(hes ) (64r-B.54, 1 )] = (e ) R1[041-B 64, 4] =

= H(h¢2)H(h¢1)(6—11*B,5A0,]1) = H(h¢1) ) H(h¢2)(6—1]*3,5140,]1)'
(]

Remark 2.12.2. The opposite algebra to the Iwahori-Hecke algebra is isomorphic
to itself, e.g.,

4 6—60-1
T oppp =16 ooppT+(q71)1_9
is equivalent to
. 6 —06-1
0-T=T-60 +(qfl)1 7

2.13. The operators J, are defined analogously to J for each simple root, integra-
tion is along the root subgroup N,. The operators satisfy the formula analogous
to [2.11.1] By specializing to v € A unramified, we can prove the following result.

Define
1

F(©)=(q- 1)m7

(2.13.1)

and write Fy, for F(O,).
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Theorem 2.13.1.

T, := Jo — Fy € Homg[P, P). (2.13.2)
T, and O, form a set of generators of Hom[P, P| and satisfy the defining relations
in the Bernstein-Lusztig presentation ([Lul]) for the Iwahori-Hecke algebra.

Sketch of proof. Because the group is split, this reduces to a calculation in SL(2).
The operator J has a term which is a rational function in ©, with 1 — ©_, in the
denominator, and subtracting F,, removes the singularity.

O

Remark 2.13.2. For a classical p-adic group GG and any Bernstein projective mod-
ule P, it is shown in [He] that a generalization of Theorem holds, namely,
End¢[P] is naturally isomorphic to an extended affine Hecke algebra with unequal
parameters.

Proposition 2.13.3. There is fo, € H(K\G/Ky) and 7, : 0 — o such that

< O(0ryuwopa), Y(Tal(0x,py)) >=< P(0k,wopa), Y (I(fa) Ok pra(y)) > -
(2.13.3)

Proof. This follows from the formula of J, as an integral. We want T,,(0x,p,y) =
I(fa) (0K, Py)-

w 0

For SL(2), let K, be the usual congruence subgroup. Let a := [O o1

] . Then
+IB =4I~ B, and a *K;Ba' = 41~ B. Thus

M(a ) (0k,B,0) = 0ura—tB.ata = (041a-—t41)041B,a-
T, commutes with I1(047,-¢4;) and II(a~*), and is computable on d475 4. it can
be written as convolution with a 47—biinvariant function. The conclusion of the
calculation is that T, (dk,B,«) can be expressed as convolution with an element

T, € AH(4I\G/-I) and composition with a II(a™*). We can then argue as in
Proposition [2.10.1] to conclude that

(P, ¥ oT,)=(PoT,, ). (2.13.4)
O
We summarize the results.

Theorem 2.13.4. In the case of Iwahori fixed vectors, unramified principal series,
4H := Hom[P, P] inherits a natural star operation e from the unitary structure of
P satisfying
(P, P oR)y=(PoR*,¥), &,V REe-H.
In particular,
T =T, ©°=86.

[e3%

3. STAR OPERATIONS: THE GRADED AFFINE HECKE ALGEBRA

3.1. Graded affine Hecke algebra. We fix an R-root system ® = (V, R, V'V, RY).
This means that V, V'V are finite dimensional R-vector spaces, with a perfect bilinear
pairing (, ): V x VY = R, where R C V \ {0}, RY C V¥ \ {0} are finite subsets
in bijection

R<+— RY, a+— aY, satisfying (o,a") = 2. (3.1.1)
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Moreover, the reflections

501V =V, 55(0) =v—(v,a ), 84:VY = VY, 5,(0) =0—(a,v')aY, «a€R,

(3.1.2)
leave R and R invariant, respectively. Let W be the subgroup of GL(V) (respec-
tively GL(VY)) generated by {s, : « € R}. We assume that the root system ®
is reduced, meaning that o € R implies 2ac ¢ R. We fix a choice of simple roots
IT C R, and consequently, positive roots R* and positive coroots RY'*. Often, we
will write a > 0 or a < 0 in place of &« € R* or a € (—R™), respectively. The com-
plexifications of V and V' are denoted by V¢ and Vi, respectively, and we denote
by ~ the complex conjugations of V¢ and V¥ induced by V and V'V, respectively.
Extend (, ) linearly to V¢ x V¢, Then

(v,u) = (v,u), for all v € Vg, ue V. (3.1.3)
Let k£ : II — R be a function such that k, = k. whenever o,a’ € II are W-
conjugate. Let C[W] denote the group algebra of W and S(V¢) the symmetric
algebra over V. The group W acts on S(V¢) by extending the action on V. For
every « € II, denote the difference operator by

A:S(Ve) = S(Ve), Aula) = %&(“) for all a € S(V). (3.1.4)

Definition 3.1.1. The graded affine Hecke algebra H = H(®, k) is the unique
associative unital algebra generated by A = S(V¢) and {t,, : w € W} such that
(i) the assignment ¢,a — w ® a gives an isomorphism H = C[W] ® S(V¢) of

(C[W1, S(Vc))-bimodules;
(i) ats, =ts,5qa(a) + kaAq(a), for all a €11, a € S(Ve).

The center of H is S(Vc)" ([Lul]). By Schur’s Lemma, the center of H acts by
scalars on each irreducible H-module. The central characters are parameterized by
W-orbits in V. If X is an irreducible H-module, denote by cc(X) € W\VY its cen-
tral character. By abuse of notation, we may also denote by cc(X) a representative
in V¢ of the central character of X.

If (7, X) is a finite dimensional H-module and X € VY, denote

Xy={z e X: forevery a € S(V¢), (m(a) — (a,\))"z =0, for some n € N}.
(3.1.5)
If Xy # 0, call X an A-weight of X. Let Q(X) C V¥ denote the set of A-weights of
X. If X has a central character, it is easy to see that Q(X) C W - cc(X).

Definition 3.1.2 (Casselman’s criterion). Set
Vi={weV:(w,a)>0, for all a € II}.
An irreducible H-module X is called tempered if
(w,R\) <0, forall A\ € Q(X) and all w € V.
A tempered module is called a discrete series module if all the inequalities are strict.

When the root system ® is semisimple, H has a particular discrete series module,
the Steinberg module St. This is a one-dimensional module, on which W acts via
the sgn representation, and the only A-weight is — 3 i kawy, Where wy is the
fundamental coweight corresponding to a.
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3.2. An automorphism of H. Let wg denote the long Weyl group element. Define
an assignment

I(tw) = twowwes W EW, 0(w) = —wp(w), w € V. (3.2.1)

Lemma 3.2.1. Suppose ks(o) = ka, for all a € II. The assignment & from
extends to an involutive automorphism of H. When wq is central in W, § = Id.

Proof. It is clear that J is an automorphism of C[W] and it also extends to an auto-
morphism on S(V¢), so it remains to check the commutation relation in Definition

wts, —ts. 80 (W) = ka(w,a”), a €1, we V. (3.2.2)
Then
()0 (ts,) =0(w)tsyiay = tssiay56(a) O(W)) + Ksa)(8(w), d(@)”) =
:tsa(a>55(a)(5(w)) + ka(w, av).
Notice that we have used the fact that é(a) € II if o € II. It is easy to see that

8(sa(w)) = s5(a) (6(w)).
Since wg =1, 62 =1d. O

Thus, one may define an extended graded Hecke algebra H' = H x (4).
3.3. Star operations.

Definition 3.3.1. Let x : H — H be a conjugate linear involutive algebra anti-
automorphism. An H-module (7, X) is said to be k-hermitian if X has a hermitian
form (, ) which is s-invariant, i.e.,

(r(h)z,y) = (x,m(s(h))y), =zyeX, heH.
A hermitian module X is k-unitary if the x-hermitian form is positive definite.
Definition 3.3.2. Define
5 =ty1, WEW, W=ty 0(W) - tw, = (Adty, 08)(@), we Ve, (3.3.1)
and
te =ty—1, weW, w®=w, wel. (3.3.2)

Lemma 3.3.3. The operations x and e defined in (3.3.1) and (3.3.2), respectively,
extend to conjugate linear algebra anti-involutions of H.

Proof. Straightforward by Lemma [3.2.1 O

Remark 3.3.4. The two star operations just defined are related as follows

* = (Adty, 0d)(h)oe. (3.3.3)
In particular, when wy is central in W, they are inner conjugate to each other.

Lemma 3.3.5. For everyw € W, w € V¢,

tw oty =w@)+ Y kw8 ), (3.3.4)
B>0,w(B)<0
In particular,
W=+ > k@, BY)ts,. (3.3.5)
B8>0

Proof. This is [BM2], Theorem 5.6]. O
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3.4. Classification of involutions. We define a filtration of H given by the degree
in S(V¢). Set degty,a = degg(y,)a for every w € W, and homogeneous element
a € S(V¢) and F;H = span{h € H : degh < i}. In particular, FylH = C[W]. Set
F_H = 0. It is immediate from Definition that the associated graded algebra
H = @5l , where H = F;H/F;_,H, is naturally isomorphic to the graded Hecke
algebra for the parameter function k, = 0.

Definition 3.4.1. An automorphism (respectively, anti-automorphim) x of H is
called filtered if x(F;H) C F;H, for all ¢ > 0. Notice that by Definition this
is equivalent with the requirement that x(F;H) C F;H for i = 0,1. If, in addition,
K(tw) =ty (resp., k(ty) = t,-1), we say that x is admissible.

If x is a filtered automorphism, then x induces an automorphism of the associated
graded algebra H which preserves that grading, i.e., s(H') c H .

Lemma 3.4.2. Assume the root system ® is simple. Let r be an admissible in-
volutive automorphism (or anti-automorphism) of H which preserves the grading

k(H') CH'. Then r(w) = cow, for all w € Vi, where ¢y is a constant equal to 1 or
—1.

Proof. We prove the statement in the case when x is an automorphism. Since H
is isomorphic to the opposite algebra H°PP via the map 7 : ¢, — t,,-1, w — w, the
classification of anti-automorphisms follows by composition with 7.

By the assumptions on &,

k(w) = Z fylw)ty, we g, (3.4.1)
yew

where f, : Vo — V¢ is a linear function, for every y € W. Let a be a simple root.
The commutation relation in H is ts w = s, (w)ts,. Applying s to this relation, it
follows, by a simple calculation, that

Sa(fsaa;(w)) = fusa ($a(w)), for all z € W.

In particular, setting x = s, we see that

Sa(f1(w)) = f1(sa(w)). (3.4.2)
Since the root system was assumed simple, this means that f; is a scalar function
f1(w) = cow, for some ¢y € C.
Now, we use that s is an involution, £?(w) = w, which implies yeW(fm o
fy)(W)tyy = w. Thus

Z feofe—1=1d, and fpo fy, =0, if x # y L. (3.4.3)
xeW
Specializing y = 1 in the second relation, we see that f, = 0 if x # 1. Then the
first relation implies ¢3 = 1, and this is the claim of the lemma. (Il

Proposition 3.4.3. Assume the root system ® is simple. If k is an admissible
involutive automorphism or anti-automorphism (in the sense of Definition ,
then

k(w) =w, forallw eV,
or
K(w) =ty - 0(w) - tyy, for allw e V.



14 DAN BARBASCH AND DAN CIUBOTARU

In particular, the only admissible conjugate linear involutive anti-automorphisms
of H are x and e from Lemma|3.5.5

Proof. As before, it is sufficient to only treat the case when k is an automorphism.
The hypotheses imply that 2 = Id, and in addition, by Lemma % must be
of the form:

K(tw) =tw, weW; K(w) = cow + Z gy(w)ty, welg,
yew

where g, : Vo — C, y € W, are linear, and cp = 1. Since & has to preserve the
commutation relation

te,w — Sa(W)ts, = ko(w,a’), a € w e V¢,
we find that

Cots,w — Cosa(w)ts, + Z gy(W)ts,y — Z 9z ($a(W)tzs, = ka(w,a”),
yeWw zeW

or equivalently,

Z Gy(W)ts,y — Z Gz (80 (W))tes, = ka(l —co)(w,aY). (3.4.4)

yew zeW
This implies that
Gsayse (W) = gy(sa(w)), for all a € I,y € W,y # sq, and w € Vg, (3.4.5)

and
Ysa (w) — Gsa (Sa (UJ)) = ka(l - cO)(w7 av)a
from which one easily concludes that

gso (@) = ko (1 —cp), v €11 (3.4.6)
There are two cases:
(1) Co — 1,
(2) Co = —1.

In case (1), g, = 0 for all y, so k(w) =w, w € V.

When wy = —1Id, we note that since k(ty,) = tw,, &' := k0 Adty, = Adty, ok
is as in case (1).

When wq # —Id, recall 6 the automorphism defined in (3.2.1)). If we knew that
Kk od = ok, the same proof would apply, since § o Adt,, o« is of the same type
as K, but ¢y changes to —cy. Since this is not clear to us, we prove directly that in
case (2), k(w) =ty - 0(w) « ty,-

We first show that g, = 0 unless y = s for some positive root 8. If y = 1,
relation (3.4.5) shows that g, = 0, so assume y # 1. The automorphism s must
also satisfy k(wq)k(wz) = K(we)k(wr) for all wy,ws € V. This implies that

gy(w2) (w1 =y~ Hw1)) = gy(wr) (w2 =y~ (wo)), for all y € W, wi,ws € V. (3.4.7)
If A1, Ay are eigenvalues of y~!, then for w; € Vi, w2 € Vi,
gy(wl)(l — )\2)&)2 = gy(WQ)(l - )\1)&)1. (348)
Set Ay = 1. Then

gy(w1)(1 — Ag)wa = 0 for any ws € Vj,.
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Because y~! # 1, it has an eigenvalue A # 1, so g, is 0 on the 1—eigenspace of y~!.
Similarly, relation implies that if A # 1, any w1, ws € V), must be multiples
of each other. So dim V), <1 for any A # 1.

Because y is an automorphism of the real space V, if A is an eigenvalue, so is
. From relation , we see that unless A = X, g, = 0 on these eigenspaces.
The only remaining case, when g, # 0, is when y~! has eigenvalues +1, and the
—1—eigenspace has dimension 1. It follows that g, = 0 unless y = sg for a root 3.

We specialize y = sg, for § € RT. Then
gSB(WQ)(thv)ﬁ = gsﬁ(wl)(w27/8v)ﬁ7 w1, w2 € V(Ca

and therefore g, (w) = cg(w,BY), for some cg € C. When g = a € II, (3.4.6
with ¢g = —1, implies that ¢, = k.. If B is not a simple root, we can use (3.4.5
inductively to check that cg = kg.

O

Remark 3.4.4. There may be many more (up to inner conjugation) filtered auto-
morphisms k that preserve, but are not the identity on W. Every filtered automor-
phism « induces an automorphism of C[W], so a first question would be to classify
the group of outer automorphisms of C[W], a subgroup of which is Out(W), and
this can be nontrivial (e.g., when W = Sg, Out(Ss) = Z/2Z). But if we require
that k preserves the root reflections, then k is obtained from one of the two auto-
morphisms in Proposition by composition with an automorphism of H coming
from the root system.

4. RELATION BETWEEN SIGNATURES

In this section, we discuss the relation between the signature characters for x
and e of simple hermitian H-modules.

4.1. Let H' = H x () be the extended graded Hecke algebra and (7, X) a module
for H'. Then, X has a e-invariant form if and only if it has a x-invariant form, see
[BC4l Lemma 3.1.1] and the relation between the forms is

<1’,y>* = <$77T(tw06)y>o~ (411)

For example, this applies to the case when X is a simple H-module with real central
character. In that case, let (1, U,) be a lowest W-type of X, and extend X to a
H’-module, as we may, by normalizing the action of ¢ so that m(¢,,0) acts on p by
the identity. (Since t,,,0 is central in W' = W x (§), a priori, it acts on u by +1d
depending how p is extended to a W’-type.)

Define the elements

_ 1 . 1
w:i(w—w):w—ig)Ag(w)tsﬁ, weV. (4.1.2)

These elements satisfy:

(1) T = -, &° = &;

(2) tyBty, 1 = w(w);
(3) [@1,w2] = —[Tw,, Tu,] € CIW], where T, = %Zﬁ>0 Ag(w)t

sp-
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Define the following increasing filtration on X:
FEX = span{r(@; - ---- Wjuruel,, w, €V, j<k}, k>0. (4.1.3)

This filtration is W/-invariant by (2) above, and obviously finite if X is finite dimen-
sional. It depends on the chosen lowest W-type p. One can define this filtration by
starting with any W-invariant subspace of X in degree 0, for example, by replacing
V,, with the sum of lowest W-types.

Let @ka be the associated graded object, each ka is a W-module. Since

T (b 0) (W « -« - - Tj)u = (—DFr(@y - D)) T (tweO)u = (—1)*7 (@ - - - - w;)u,
tw,d acts by (—1)F on F*X. This means that <7kX,?€X>. =0if k # ¢ (mod 2)
and moreover, we have the following relation.

Lemma 4.1.1. Ifz € X, let k(x) be the integer such that 0 #T € F DX, Then

(@, y)y = (z,y)e =0, if k(z) # k(y) (mod 2),
VY x (=D)*@) (), if k(z) = k(y) (mod 2).

4.2. Denote
Xo= Y FXxadX, = Y FX (4.2.1)
k even k odd
Notice that X and X; are the +1 and —1 eigenspaces of t,,d in X, so they do
not depend on the chosen filtration. The previous lemma implies that a necessary
condition for the module X to be x-unitary is that the e-form be positive definite
on X and negative definite on X;.

Let He, be the subalgebra of H generated by W and {@@s : wi,we € V} and
H.,, = He, x (). Then X and X; are both H. -modules, and with the inherited
e-form, they are e-unitarizable H. -modules. Notice also that if X is a simple
H’-module, then X and X; are simple H/ -modules.

In conclusion:

Lemma 4.2.1. A necessary condition for the simple H'-module X to be x-unitary
is that Xy and X1 be e-unitarizable simple HL,-modules (or zero).

Example 4.2.2. Let H be the graded algebra of type A; with generators ¢ and w:
tw+wt = 2. Then @ = w—t and He, is generated by ¢ and w?. Since tw? = w?t, the
simple He,-modules are one-dimensional of the form X (triv, \) or X (sgn, A), where
the restriction to W is triv or sgn, respectively, and w? acts by A. Suppose A is
real and let z) be a generator of such a module X. Then we can define a positive
definite e-invariant form on X by setting (zy,x))e = 1.

Example 4.2.3. Suppose (7, X) is a simple tempered H-module with real central
character. Let g be the complex Lie algebra attached to the root system and
G = Adg. By [KL| Lu2], there exists a nilpotent element e € g and ¥ € Ag(e) of
Springer type such that

de

Xlw =H*(B.)Y =Y H*(B.)".

i=0
To emphasize the connection write X (e, ¢) for X. Then X (e, 1) has a unique lowest
W-type, namely (e, 1)) = H?%(B.)%, and we define the filtration accordingly. One
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can define an action of § on H*(B.)¥ (see [CHL section 4] or [BeMi|), which makes
H*(B.)¥ into a W’-module and

tr(wwod, H*(B.)¥) = (—1)%sgn(wo) tr(w, H*(B.)?). (4.2.2)

Moreover, this action is compatible with the H-action on X (e, ) [CH] section 6.4],
making X (e, ) into an H'-module. Thus, once we normalized the action so that §
acts by Id on p(e, ), we have

Xo= > H?*(B.)¥ and X, = > H*(B.)Y.
0<i<de, i=de (mod 2) 0<i<de., i#d. (mod 2)
(4.2.3)

Example 4.2.4. If X = X then X must be a one-W-type in the sense of [BM4].
The one-W-type modules are the only simple H-modules with real central character
which are unitary with respect to both e and * operations. This follows from an
argument which is essentially in [BM4], Proposition 2.3], see [CM]|, Proposition 3.1.1].

5. INVARIANT FORMS ON SPHERICAL PRINCIPAL SERIES

5.1. Spherical principal series. In this section, we define x- and e-invariant
hermitian forms on spherical principal series H-modules (when such forms exist).

Every element h € H can be written uniquely as h = > 1y twaw, aw € S(Ve).
Define the C-linear map

EAZH%S(Vc), eA(h):al.

If v € V¥, let C, denote the character of S(V¢) given by evaluation at v. For
a € H, denote by a(v) the evaluation of a at v. The spherical principal series with
parameter v is
X(v) = H®s(v) Co.
If k is any conjugate linear anti-involution of H, and L, R are arbitrary elements
of H, and " € V¥, the assignment

<h1, h2>L,R = GA(LKJ(hQ)th)(VI), hi,ho € H, (511)

defines a k-invariant (not necessarily hermitian) pairing on H viewed as an H-
module under left multiplication. We will omit the subscript L, R from the notation.
For such a form to descend to a x-invariant hermitian form on X (v), it must satisfy:
(Hl) <h1a, h2> = CL(Z/)<hl7 h2>, for all a € S(Vc),
(H2) (h1,hea) = a(v){hy, hs), for all a € S(V¢);

(H3) (h1,h2) = (ha, h1).
Of course, (H1) and (H3) imply (H2), but in practice it will be convenient for us
to check (1) and (2) first, which will then reduce the verification of (3) on the basis
{tw € W} of X(v).

For every s, € W, a € II, define

R, = (ts, o0 — ko) (o — ko)7L (5.1.2)

As it is well known, the elements R, satisfy the braid relations, therefore one
can define R,, x € W, as a product, using a reduced expression of x. The main
property of R, is that

a R, =R, -z Y(a), forall z € W, a € S(V¢). (5.1.3)
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We show (H1)-(H3) for k = e and the pairing
(h1,h2)e == €a(tw, h3h1 Ry, ) (wor). (5.1.4)
Let
Ra = (taa — ko) (ko +a) 7,
and for x = s, ... Sa,, define R; = [[ Ra,. The R, have the same commutation
properties as the R, and

RS = (1) R, ]]zz%z (5.1.5)
z~la<0
Let
Vg :={reVd : (a,v) #0 for any o € R"}.
For v € V&, a basis of X (v) is given by
{Re @ 1, }aew (5.1.6)

Notice that R, is not in H, but in H. However it makes sense to express R, =
Y. tyay with af € O(Vc), and then evaluate at v. The fact that v € V,Z, allows one
to solve for the ¢, ® 1, in terms of the R, ® 1,,; so indeed is a basis. (Note
that we have assumed that k, > 0.)

Lemma 5.1.1. The vector R, ® 1, is an A-weight vector of X (v) with weight zv.

Proof. Since a-R, = R,z (a), a € S(V¢), it follows that in X (v), a-(R,®1,) =
a(zv)(R, ® 1,). O

We show that (H1)-(H3) hold for (5.1.6) and v € VZ,. Since the relations (and
the change of basis matrices to the t,) are rational in v, and Vng contains an open
set in V¢, they will hold in general.

The first identity holds by :
(h1a,ho)e = (h1, ho)ea(V).
For the second identity,
(Ra, Rya)e = (R, Ry)e(woz™"y)(a®) (wor) = (Ru, Ry)e(z™y)(a®)(v).

Suppose = y. Then this formula implies (H2) (with hy = hy = R,) if and only if
a®(v) = a(v) which is equivalent to v =7, i.e., v € VV.

Suppose = # y. We show that each of the two sides of (H2) are zero because
€A(twoRzRu,) = 0 unless z = 1:

° k'a + «
€4 (fwy (Rya)*RaRu,) = €a twoa(*l)e(y)ny*1 H ko — aRwao =
y~la<0
= € (twyRy—10Ruy) - (—=1)@ (wozy)(a) ko tworTlor g
A wo Y xT wo 0 y ka _ U}O.’L'_la b
y~la<0
. . ko +wozta
€A (twoRszRwo) a = €p (twoRyflszo) ' (71)8( ) H 70& =0.

y~1la<0 ko = ’LUQLU_IOé

So (H2) is verified.
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We also record the formula

<Ra: @1, R, ® ]1V>- = (_1)“1) (H k a_ o . H w> (wou)
(03 0 (0%

a>0 zla<

— (_1)\12\ <Oz,1/> (oz,y>
};[0 (o, V) + ko mgo (o, V)

ka

+ ko
(5.1.7)

The equivalence of the two formulas can be easily seen by the substitution z~ta — «

in the second product. Notice that the factor (—1)!#! [Taso % is independent

of x, so we may divide the form uniformly by it. The resulting normalized hermitian
form has the property that

Ri®1,,Ri1®1,)e =1.

When v is dominant, ks + (o, v) > 0, so the denominator does not vanish, and
it is always positive (we have assumed k, > 0).

The arguments also imply that (ha, h1)e = (h1, ha)e for hi,he € {R: @1, }rew,
so also in general. In conclusion, we have proved the following result.

Proposition 5.1.2. The form
(h1,ho)e := €a(twohSh1 Ry, ) (wov)
defines a e-invariant hermitian form on X(v) if and only if v = v, i.e., v € VV.
The case of x follows by formal manipulations. Set
(h1, ha)s = € (h3hi Ruy,) (wov). (5.1.8)

The relation between the forms is
<h1, h2>* = €4 (h;thwO) (wou) — €A (twoé(hg).tthlRwO) (wou)

— (tushr, 5(h2)e. (5.1.9)
We also note the following formulas for the signatures.
Proposition 5.1.3. Write Ry, = >, cp twlw-
(1) The signature of {, e is given by the signature of the matriz {az—lywo }x,yeW‘

(2) The signature of (, )4 is given by the signature of the matriz {aw_1y}x,yew,

Proof. Straightforward. O
Corollary 5.1.4. For every w € W,
e (twRug) = €4 (8(tu) Ruy) -
Proof. The left hand side is
€A (two twotwRuwg) 5
while the right hand side is
€A (tuwg tw—1twe R )

Evaluating at wov, the left hand side is (fy,, tw)s,, While the right hand side is
(tw,two)e,v- The fact that the two are equal follows from the fact that ( , )e is
symmetric for v real. (I
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As a consequence of the relation (5.1.9) between e and * forms and Proposition
5.1.2} we have the following corollary.

Corollary 5.1.5. The pairing
<h1, h2>* — €A (h;thwo) (U)()V)

defines a x-invariant hermitian form on X (v) if and only if wov = —7.

6. POSITIVE DEFINITE FORMS: SPHERICAL MODULES

The spherical x-unitary dual of graded Hecke algebras with equal parameters is
known by [Ba], [BM3], [BC3]. For Hecke algebras with unequal parameters, the
irreducible x-unitary modules that are both spherical and generic were determined
in [BC2|. The Dirac inequality [BCT] is far from sufficient to determine the answer.
In this section, we show that the Dirac inequality is sufficient to compute the
spherical e-unitary dual, at least in the case of the graded Hecke algebra with equal
parameters. As a result, the answer, Theorem [6.3.3]is much simpler than the answer
for the spherical x-unitary dual in loc. cit. Theorem [6.3.3| complements the results
in [Op2} sections 4 and 5].

6.1. The Dirac operator. We assume that the Hecke algebra H has equal pa-
rameters k, = 1.

We fix a W-invariant inner product (, ) on V. Let O(V') denote the orthogonal
group of V' with respect to (, ). Then W C O(V). Denote also by (, ) the dual
inner product on V. If v is a vector in V or V'V, we denote |v| := (v, v)/2.

Denote by C(V) the Clifford algebra defined by (V, (, )). Precisely, C(V) is the
associative algebra with unit generated by V with relations:

W= —(w,w), wu +wew=—-2(wuw). (6.1.1)
Let Pin(V') be the Pin group, a double cover of O(V') with projection map
p: Pin — O(V), and let W = p~ (W) C Pin(V) be the pin double cover of W.
See [BCT] for more details.

If dim V' is even, the Clifford algebra C'(V') has a unique complex simple module
(v, S) of dimension 29 V/2 When dim V is odd, there are two simple inequivalent
complex modules (v4,ST), (y_,57) of dimension 2[4™V/2 Fix S to be one of
these simple modules. The choice will not play a role in the present considerations.
Endow S with a positive definite invariant Hermitian form ( , )g.

We call a representation o of W genuine if it does not factor through W. For
example, S is a genuine W-representation.

Let {w; : i = 1,n} be an orthonormal basis of V with respect to ( , ). Define
(IBCT]) the Casimir element of H:

Q= iwf € H.
i=1

It is easy to see that the element 2 is independent of the choice of bases and central
in H. Moreover, if (7, X) is an irreducible H-module, then 7 (€2) acts by the scalar
(ce(X),cc(X)). Note that ( , ) is extended linearly to V¢ and Vi, and cc(X) stands
for any representative of the set of weights.
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For every w € V, recall that we have defined

-~ 1 N 1
G=gw-w)=w-5) (Fuw)t, € K (6.1.2)
B>0
It is immediate that
w* = —w and w°* = . (6.1.3)

The Dirac element ([BCT]) is defined as
D=> @ow cHaC(V).

For a finite dimensional module X of H, define the Dirac operator D : X®S — X®JS5
for X (and S) as given by the action of D.

6.2. Dirac inequality. Let x be one of the star operations % or e.
Lemma 6.2.1. The relations
=0 and Q*=Q (6.2.1)
hold. Therefore, if X is k-hermitian,
{cc(X), cc(X)) = (cc(X), cc(X)), or, equivalently,

6.2.2
(cc(X), ce(X)) = [Rec(X) P — |Sec(X)]. (022

Proof. For x: Q% =ty - (—wo(2)) « twy = tw, - Q- tw, = £, where the last equality
follows from the fact that Q € Z(H).
For e: Q* =Q = Q. (I

Suppose X is a k-hermitian H-module with invariant form (, )x. Then X ® S
gets the Hermitian form (z ® 5,2’ ® §')xgs = (z,2')x(s,8’)s. The operator D is
self adjoint with respect to (, )xws if £ = * and it is skew-adjoint if xk = e:

D* =D and D* = —D. (6.2.3)
Thus a k-hermitian H-module is k-unitary only if for all z € X ® 5,
(D*z,2)xgs > 0, if K =%, or

6.2.4
(D?z,2)xgs <0, ifk=e. ( )

We write Ag; for the diagonal embedding of C[W] into H ® C(V) defined by ex-
tending Ag(w) = tp(g) @ w linearly.

Theorem 6.2.2 ([BCT|, Theorem 3.5]). The square of the Dirac element equals

D? = -0 1+ Aj (), (6.2.5)
in H® C(V), where
1 = g

Qi = ~1 Z |a¥]18Y| 5035 € CIW]™. (6.2.6)

a>0,5>0

sa(B)<0

Denote B -
¥(X) ={c €lrr W: Homg[o, X ® S] # 0}. (6.2.7)

Corollary 6.2.3 (Dirac Inequality). Let X be a k-unitary H-module.
(1) If & = *, then [Rec(X)]? — |See(X) > < min{a (D) : 0 € (X))}
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(2) If & = e, then [Rec(X)]? — [Scc(X)[? > max{F(Q) : & € B(X)}.

Proof. This is an immediate corollary of Theorem and (6.2.4)).
O

6.3. Spherical modules. Let X (v) = H®, C, be the spherical principal series,
v € V¥ and let X (v) be the unique spherical subquotient, i.e. Homyy [triv, X (v)] #
0.

Lemma 6.3.1. Suppose X (v) is e-unitary. Then |Rv|* > |Sv|? + |pV|2.

Proof. Since Homyy [triv, X (v)] # 0, we have S € $(X (v)). It is known and casy to
see that S(€4) = [p¥[%. The claim then follows from Corollary O

The parameters v € V' for which the spherical principal series X (v) becomes
reducible are known, see |[Ch| for the general case. This also follows from the
Kazhdan-Lusztig classification, proved in the graded affine Hecke algebra case in
[Lu2]. When the parameter v is regular, the reducibility is a consequence of inter-
twining operator calculations and it goes back in the setting of p-adic groups to
Casselman [Cas2|. In the equal parameters case, the result is that X (v) is reducible
if and only if:

(a,v) = %1, for some a € R*. (6.3.1)

Suppose that v € VV is dominant, i.e., (o, v) > 0, for all « € II. The reducibility
hyperplanes a = 1, o € R, define an arrangement of hyperplanes in the dominant
Weyl chamber in VV. One open region in the complement of this arrangement of
hyperplanes is

Coo={v eV :(aqv)>1, acll}. (6.3.2)

Lemma 6.3.2 (see also [Op2, Theorem 4.1]). If v € Co, then X (v) is e-unitary.
Proof. Tt is sufficient to prove that X (v) is e-unitary when v € Coo. If v € V'V is

such that (o, v) # £1, then X (v) is A-semisimple with a basis of weight vectors

given by R, ®1,, see Lemma By (5.1.7)), the e-form in this basis is diagonal,
and if we normalize the form so that (R; ® 1,,R; ® 1) = 1, then

(a,v) —1
<Rz ® ]luva & ﬂu)o = H TN - (633)
20 (a,v)+1
Clearly, if v € Cop, then (R, ® 1,, R, @ 1) > 0 for all z € W. ]

Theorem 6.3.3. Suppose v is dominant.
(1) If Sv =0, then X (v) is e-unitary if and only if v € Cuo.
(2) If Sv # 0, then X (v) is not e-unitary.

Proof. (1) Suppose first that Sv = 0. By Lemma [6.3.2) X (v) is e-unitary also for
v € Coo.

For the converse, notice that by Lemmal[6.3.1] |v| > |p"| is a necessary condition
for X(v) to be e-umitary. Let B(0,|pY|) € VY be the open ball of radius |p"|
centered at the origin. Let C be an arbitrary cell in the arrangement of hyperplanes
a =1 in the dominant Weyl chamber of VV. Since the signature of the hermitian
form of X (v) is the same for all v € C (see [BC2, Theorem 2.4]), a necessary
condition for e-unitarity in C is that

CNB(0,|pY]) = 0. (6.3.4)
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We claim that this condition only holds when C C Cq.
The cell C is characterized by the sets:

Jo(C)={a € R" : (a,v) =1,Yv € C},
Ji(C)={aeR":(a,v)>1,YveC}, J(C)={acR":(a,v) <1,Vv€C}.

Suppose C ¢ Coo. Then J_(C)NII # (. List the simple roots as {a1, ..., Qm,...,an},
m < n, such that {a1,...,amn} C Jo(C)U J4(C) and {am+1,...,an} C J_(C). Let
{wY,...,wy} C VV be the fundamental coweights, and write v = > | c;w)’. Then

>l 1=1m, c¢; <1, j=m+1n.

Deform ¢; — 1, i = 1,m to get the point v/ = Y7 | c’iw}C where ¢, =1ifi=1,m
and ¢, = ¢; if i = m + 1,n. Notice that if (5,v) < 1, then (8,v) < 1 also, and if

(v,v) > 1 then (y,v') > 1 again. This means that v/ € C. But now:
W) = 3 el wf) < S swl) = (Y, o), (6.3.5)
53 2]

and this means that v/ € B(0, |p"]), contradiction. We have used here implicitly
that (w),w;) > 0. Thus claim (1) is proven.

For claim (2), fix b € v/—1VV \ {0}, and set II, = {a € IT : (a,b) = 0} C IL
Let Ry be the root subsystem defined by II, with positive roots R;‘. Let v € VV
dominant and we look at the principal series X (v + b).

This is reducible if and only if there exists 8 € R, such that (3,v) = 1. Repeating
the argument above with R; in place of R*, we find that every cell C contains in

its closure a point v such that |v| < |py|. But now, the Dirac inequality in Lemma
gives the necessary condition

W2 > [0 + [pY 2 > 1o % (6.3.6)
and this is not satisfied. O

6.4. Dirac cohomology. Let X be a finite dimensional module of H. The Dirac
cohomology of X (with respect to the fixed spin module S) is

HP(X) =ker D/ker DNIm D. (6.4.1)

We say that X has nonzero Dirac cohomology if Hp(X) # 0 for a choice of spin
module S.

Recall that when X is k-unitary, then the operator D is self-adjoint when k = x
and skew-adjoint when k = e. This implies that if X is k-unitary, then

HP(X) = ker D. (6.4.2)

Theorem says, in particular, that every irreducible subquotient of X (pV) is
e-unitary, so for all these subquotients, equation applies.

The classification of irreducible subquotients of X (p") is well known. In the
setting of p-adic groups, it is due to Casselman [Cas3]. Each standard module with
central character pV is of the form

Xy =H®y,, (St®C,,,), where vy = p¥ — pj;, (6.4.3)

for M C TI. Let X 5; be the Langlands quotient of X ;. Here Hj; denotes the graded
Hecke algebra defined by the root system (V, Rar, V'V, RY,), where Ry is the subset
of roots spanned by M. (We embed H), as a subalgebra of H in the natural way.)
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Thus we have a one-to-one correspondence between irreducible modules with central
character p¥ and subsets of simple roots II. In particular, there are 2", n = |II|,
distinct simple modules with central character p¥. Moreover, the following known
character formula holds:

Xu= Y (-p-Mix, (6.4.4)
MCJCII

For example, this formula follows via the Kazhdan-Lusztig classification (and con-
jecture) [Lu2] since all the G(p")-orbits on g1(p¥) have smooth closure.

Proposition 6.4.1. Suppose VCW = 0, i.e, the root system is semisimple. For
every M C II, we have dim Homy [X p, A" Ve] = 1.

Proof. The character formula (6.4.4) implies
Homy [Xar, A V1= 3 (=DM Homy (X5, A Ve

JDOM

= 3 (=)W M Homyy, [sgn, A" (Ve)lw, ,

JDOM

(6.4.5)

by Frobenius reciprocity. Let V¢ be the C-span of the roots in J, and Vf«: the
orthogonal complement, so that V. = V¢ ® Vfc- Notice that W; acts by the
reflection representation on V¢ and trivially on Vj;. Since

/\ (Vo)lw, = @/\VJC‘X)/\ VJC7

we see that
dim A*~ Vie, k>1J|,

6.4.6
0, k< |J|. ( )

dim Homy, [sgn, A" (Ve)w, ] = {

This means that dim Homyy, [sgn, A" (Ve)|w,] = dim A"Vj¢ = 2IM=171 " and there-
fore

Homw[YM,/\*Vc]z > (MMl = g (6.4.7)
MCJCII

O

Remark 6.4.2.
(1) An alternative proof of Proposition is as follows. Use

ST+ ST)@ (ST +57), if dimV is odd,
and rewrite in equation (6.4.5]),
Homy [X, /\ V] = aHomp[X; © S, 8],

S ® 5, if dimV is even,
N Ve =

where S = S, a =1, if dimV is even, and S = ST+ 57, a = 1, if dimV
is odd. Then we can apply [BC5Hl Lemma 2.6.2] which, in parucular, gives
the dimension of this space, and we arrive at formula (6.4.7)).
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(2) Notice that Proposition says that every simple H-module X »; at p¥
contains one and only one W-type that appears in A* V¢. It is worth recall-
ing that when the root system is simple, every /\k Ve is in fact irreducible
as a W-representation and that any two distinct exterior powers are non-
isomorphic, see [GP, Theorem 5.1.4].

(3) Since dim Homy [X (p¥), A" V] = dim Homy, [C[W], A* V| = dim A* Ve =
21 and this is also the number of distinct simple H-modules with central
character pV, Proposition implies that each irreducible constituent o
of \" V¢ occurs in exactly dim o different such simple H-modules.

Example 6.4.3. In the case of the Hecke algebra of type A, _1, one can deter-
mine exactly which constituent of A* V¢, where Ve =2 C"~!, appears in each simple
H-module with central character p¥. Consider a composition of n, i.e., a k-tuple
(n1,n2,...,n;) where n; > 0, Y. n; = n and let X (n1,na,...,n%) be the simple
module at pV corresponding to the subset of the simple roots S(ni,na,...,ng) :=
IT\ {@n, s ¥ny4nys - - - }- Notice that the standard module X (ny,na,...,nx) contains
the hook S,-representation (k,1,1,...,1) = /\nfk Ve with multiplicity 1. More-
over, if S(ni,n2,...,n,) C S(nf,nh,...,n},), then &’ <k, and (k,1,1,...,1) does
not appear in the standard module X (n},n5,...,n,,). Therefore, by (6.4.4), we
see that /\"_k Ve appears with multiplicity 1 in X (ny,na,...,ng).

Corollary 6.4.4. Suppose the root system is semisimple. For every simple H-
module X with central character pV,

HP(X) =S8,
for an appropriate choice of spin module S.

Proof. Let X s be a simple H-module at p¥, M C II. As remarked above, X is e-
unitary and therefore H? (X) = ker D. Since S(Q) = (p¥,p") = (cc(Xar), cc(X n1)),
a known argument, e.g. [BCT), Proposition 5.7], says that ker D is nonzero if (in fact,

if and only if) S occurs in X ® S. But Homg;[X p ® S, S] = Homyy [X ar, S © 5*],
and

S®S* = /\ Ve, when dim V¢ is even,

. (6.4.8)
(StT+57)@ (ST +57) =2\ Ve, when dim V¢ is odd.

Then Proposition implies that dim Homg;[X ® S, S] = 1 for some choice of
S.

d
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