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Understanding multiphase flows is vital to addressing some of our most pressing hu-
man needs: clean air, clean water, and the sustainable production of food and energy.
This article focuses on a subset of multiphase flows called particle-laden suspensions
involving nondeforming particles in a carrier fluid. The hydrodynamic interactions in
these flows result in rich multiscale physics, such as clustering and pseudo-turbulence,
with important practical implications. Theoretical formulations to represent, explain, and
predict these phenomena encounter peculiar challenges that multiphase flows pose for
classical statistical mechanics. A critical analysis of existing approaches leads to the
identification of key desirable characteristics that a formulation must possess in order to be
successful at representing these physical phenomena. The need to build accurate closure
models for unclosed terms that arise in statistical theories has motivated the development
of particle-resolved direct numerical simulations (PR-DNS) for model-free simulation at
the microscale. A critical perspective on outstanding questions and potential limitations
of PR-DNS for model development is provided. Selected highlights of recent progress
using PR-DNS to discover new multiphase flow physics and develop models are reviewed.
Alternative theoretical formulations and extensions to current formulations are outlined as
promising future research directions. The article concludes with a summary perspective
on the importance of integrating theoretical, modeling, computational, and experimental
efforts at different scales.
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I. RELEVANCE AND MOTIVATION

Multiphase flows involve the flow of matter in two or more thermodynamic phases, and include
gas-solid flows, sprays and bubbly flows. They permeate practically every aspect of human life, and
an improved understanding of multiphase flows can play an important role in ensuring three vital
needs of humans—clean air, clean water, and sustainable food production—that are foundational
to quality of life. Improved understanding of multiphase flows leads to better prediction of key
phenomena in the natural environment and in man-made systems. Accurate prediction, in turn,
opens the door to control of multiphase flows in order to achieve desired outcomes. Traditionally,
multiphase flow control has been explored in the context of industrial devices [1-3], but there is also
recent interest in climate engineering [4—6]. Of particular topical interest in the midst of the COVID-
19 pandemic is the accurate prediction and control of droplet dispersion caused by exhalation of
human breath and its implications for transmission of respiratory diseases in various settings.

Broadly speaking, multiphase flows have applications in energy, environmentally sustainable
technologies, chemical processing, critical infrastructure, health care, and biological applications
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including pharmaceuticals, the design of materials, and advanced manufacturing processes [7].
In the following we consider representative examples of multiphase flow applications involving
solid particles, droplets, and bubbles to understand those questions that design and production
engineers encounter, which require improved understanding of multiphase flows. These examples
will illustrate how multiphase flow science can help with the design and scale-up of processes and
devices in multiphase flow applications.

Fluidized beds in which solid particles are suspended by a fluid are commonly used as multiphase
reactors. Here we describe two applications of fluidized beds that pertain to sustainable energy
generation: (1) fast pyrolysis of biomass for bio-oil production and (2) CO, capture using dry
sorbents.

Thermochemical processing of biomass to produce bio-oil involves heating biomass in an inert
environment to extract the volatile components which are subsequently filtered and condensed into
bio-oil. Biomass is injected into a bed of sand particles which is heated by the reactor walls and
fluidized by the up-flow of hot nitrogen gas. Process heat not only adds to the cost of producing bio-
oil, but heating of the reactor surface area is a bottleneck to scaling up the reactor, and limits biomass
throughput. Autothermal pyrolyis is a promising modification of traditional biomass pyrolysis that
promises, on the basis of laboratory scale studies, to reduce the cost of bio-oil from US$3.27 per
gallon to US$2.58 per gallon by quintupling the reactor feed rate and halving the reactor cost per
tonne of biomass processed [8§—10]. In autothermal pyrolysis, the heat needed to devolatilize biomass
is provided volumetrically by exothermic gas-phase reactions that are initiated by introducing
small amounts of oxygen into the inert atmosphere, without drastically affecting product yield.
The challenge is how to successfully scale this reacting multiphase flow process from laboratory
scale, with biomass throughput of milligrams per hour, to pilot scale (kg/hour) and eventually to
commercial plant scale (tons/hour), while recognizing that the hydrodynamics of a fluidized bed
change with scale [11]. There is also a complex interaction between the chemical reaction kinetics
(as yet poorly characterized in the low-temperature range of interest) and the hydrodynamics, which
can also vary with scale, and which can affect the trade-off between efficiency of volumetric heat
generation while not compromising the yield of bio-oil. For example, an important design question
that engineers face is where to place the biomass injection inlet in order to maximize bio-oil yield
and biomass throughput.

The second example is the capture of carbon dioxide from flue gas by flowing it past dry
sorbent particles in a circulating fluidized bed. In such gas-solid reactors it is important to be
able to accurately predict the conversion rate given the high cost of the sorbent particles and
the need to reduce the level of effluent contaminants [12]. Existing models for interphase mass
transfer are often specific experimentally based, empirical correlations for the reactor system under
consideration, because correlations for the mass transfer coefficient between the solid and gas
phases in the literature differ by up to 7 orders of magnitude. The same is true for gas-solid
heat transfer coefficients as well [13]. The wide variation in mass transfer coefficients reported
in the existing literature is attributed to flow regime differences [12]. Clustering of particles inhibits
gas-solid contacting and diffusion of CO; from the gas stream to the particle surface, which reduces
the overall efficiency of the device. An important question confronting process designers is the
prediction of clusters, and heat and mass transfer so as to maximize conversion and throughput.

A. Multiscale nature of multiphase flow

High-speed videography experiments of gas-solid flows [14] [see Fig. 1(a)] reveal a complex
multiscale structure, and it is useful to classify these scales into three ranges: (1) the microscale
representing structures with a characteristic length scale in the range O(1-10d,,), where d,, is the
particle diameter, (2) the mesoscale representing structures with a characteristic length scale in the
range O(10-100d,,), and (3) the macroscale representing structures on the scale of the device. This
image is at the wall boundary of the flow obtained through a transparent riser but owing to the high
solid loading in these flows it is difficult to obtain such nonintrusive measurements in the interior of
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FIG. 1. (a) An image from high-speed video of a riser flow showing the complex hydrodynamics and
multiscale features of the particle-laden suspension. The superficial gas velocity is 6.6 m/s and the solids
flux is 20 kg/(m? s). Reprinted from Powder Technology, Vol. 242, F. Shaffer, B. Gopalan, R. W. Breault, R.
Cocco, S. R. Karri, R. Hays, and T. Knowlton, “High speed imaging of particle flow fields in CFB risers,” 86,
Copyright (2013), with permission from Elsevier. (b), (a) The National Energy Technology Lab’s Chemical
Looping Reactor; (b), (c), (e) high-speed images of a section of the reactor at different magnifications [16]
APS Gallery of Fluid Motion), (d) VFEL simulation; (f) PR-DNS. Image courtesy of J. Capecelatro.

such flows. The macroscale behavior can change quite dramatically when the problem parameters
such as the inlet gas velocity and solids flux are varied [15], and it is yet unknown to what extent the
structures at different scales influence each other. The level of simulation fidelity at each scale that
is needed to predict macroscale behavior is also not known. There are indications that mesoscale
structures affect macroscale behavior, and that microscale interactions can in turn affect mesoscale
structures, but a definitive quantification of these influences is still an outstanding problem.

Sprays and droplet-laden flows are another example of multiphase flows that exhibit a similar
range of multiscale phenomena as particle-laden suspensions, arising from the hydrodynamic inter-
action between the liquid and gas phases. This is a harder problem than particle-laden suspensions
because the deformation of droplets and their coalescence and breakup are additional physical
phenomena that have to be considered. Sprays have been studied extensively in the context of
internal combustion and gas turbine engines. They also find wide applications in agriculture for
spraying pesticides on crops, in advanced manufacturing, coating applications, pharmaceutical and
health care applications, and other processing operations such as drying. Of late, droplet-laden
flows have come into prominence because of the COVID-19 pandemic and questions concerning the
transport of the SARS-CoV-2 virus, and other similar pathogens. Prediction of droplet dispersion
from human breath and its interaction with masks and face shields as well as airflow in groups of
people in different settings, such as a restaurant, airplane, or schoolroom, can lead to more effective
control and mitigation strategies.

When the density of the dispersed phase is lower than that of the carrier fluid, such as for bubbles
and buoyant particles, the buoyant and added mass forces play an important role in multiphase
hydrodynamics. Multiphase gas-liquid flows are frequently encountered in the chemical and nuclear
industry [17-19]. Multiple chemical processes are performed in bubble column reactors, which
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FIG. 2. Representation of a particle-laden mixing layer in a computational domain. (a) Initial configuration.
(b) Initial particle number density profile.

are vessels filled with liquid reactants, where the gas phase is fed by means of a distribution
system, specifically to create a bubble size distribution that maximizes the bubble surface area.
Heat and mass transfer phenomena are key elements of the processes in these reactors due to
the high exchange efficiency that characterizes these systems [17,20]. Important examples are
the Fischer-Tropsch process [21], polymerization reactions, oxidation and hydrogenation [22-24]
processes, and biochemical processes (fermentation [20,24], wastewater treatment, production of
antibiotics, proteins and enzymes [20,25], and algae growth [26-28]). Bubbly flows are also
particularly relevant to the nuclear industry [18,29], where safety of design and operation motivated
some of the early developments in multiphase flow modeling. Typical operating conditions of these
devices involve gas-phase volume fractions between 5% and 40%. Engineers rely on models to
predict the behavior of these flows in large-scale systems. Bubbly flows also exhibit a multiscale
structure and diverse phenomena over the range of operating parameters [30].

Multiphase hydrodynamics can significantly influence heat and mass transfer in flows with
bubbles or buoyant particles. Recent experiments by Gvozdi¢ et al. [31] show that the introduction
of small air bubbles (average bubble diameter ~2.5 mm) at fairly low concentrations (gas volume
fraction 0.9%) into a flow in a vertical channel with one heated vertical wall enhances the heat
transfer relative to its baseline natural convection value by a factor of 20. Wang et al. [32] have
extended this approach by adding a minute concentration (~1%) of a heavy liquid (hydrofluoroether)
to a water-based turbulent convection system resulting in heat transfer that supersedes turbulent
heat transport by up to 500%. In both studies the enhancement in heat transfer is attributed to the
generation of pseudo-turbulent temperature fluctuations in the liquid by the motion of bubbles.

B. Importance of fluctuations in multiphase flow

It is worthwhile to also highlight the importance of fluctuations in particle-laden suspensions
and recognize that their representation is fundamentally different from the representation of fluc-
tuations in single-phase turbulent flows. Whereas in single-phase turbulent flows we can represent
fluctuations in flow velocity through single-point statistics such as the second central moment, the
mathematical representation of fluctuations in the number of particles (and associated fluctuations
in particle volume) requires the consideration of two-point statistics. It is also useful to consider
specific examples where these fluctuations in particle number and volume are important, and where
their neglect can obscure important flow physics pertaining to the generation of instabilities. One
class of problems where fluctuations are important constitute particle-laden flows with material
fronts. A canonical particle-laden flow problem involving a material front where one encounters the
importance of number fluctuations is the development and growth of a particle-laden mixing layer,
as shown in Fig. 2.
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FIG. 3. Representation of flow past a particle curtain. (a) Initial configuration. (b) Initial average solid
volume fraction profile.

This is a statistically inhomogeneous flow in the cross-stream direction with an initial step
change in the number density as one goes from the particle-laden portion of the flow domain to the
region devoid of particles. Modeling the growth and evolution of this particle-laden mixing layer
is currently a challenge for single-point statistical models. The second canonical problem involving
material fronts is very similar, and is encountered when an incompressible or compressible flow
strikes a particle curtain. This is a particle-laden flow with statistical inhomogeneity in the flow
direction. In Fig. 3 the initial configuration of the curtain is shown, prior to its evolution under the
influence of an incompressible flow driven by a mean pressure gradient.

Compressible flows involving shocks that interact with particle curtains have been studied in the
literature [33-35], and careful studies of predictions using single-point statistical models reveal a
complex picture that requires careful consideration of modeling and numerical issues. In this work
the emphasis is on considering adequate mathematical representation of fluctuations that are clearly
of importance in these flows. Finally, there is a canonical statistically homogeneous flow where
fluctuations in particle number and volume are important, and that is the case of cluster-induced
turbulence (CIT) simulated in periodic domains.

Material fronts also develop at the edge of particle-laden jets injected into an ambient gas. Similar
considerations prevail at the edge of a developing spray of liquid droplets in an ambient gas, where
the entrainment of ambient gas is governed by the level of fluctuations in number and volume of the
dispersing droplets. Flows involving bubbles and buoyant particles are also good examples of flows
where number fluctuations are important, especially because in many applications the bubbles are
typically larger and fewer in number than solid particles. However, the physics of bubbly flows is
considerably more complex that gas-particle flows. Nevertheless, the generation of average stresses
caused by bubble fluctuating motion also involves fluctuations in the number of bubbles, and the
volume occupied by them. Therefore, the theoretical ideas developed in this work have broad
implications for all multiphase flows involving fluctuations in number and associated volume of
dispersed-phase entities.

C. Context and road map

Even this brief introduction should convince the reader that multiphase flow is such a broad topic
that a comprehensive review is not feasible within the constraints of a journal article. Therefore,
although the multiphase flows in the aforementioned applications are often nonisothermal, turbulent
reacting flows involving bubbles, drops, or solid particles, the remainder of this article will focus on
the hydrodynamics of isothermal, nonreacting particle-laden flows. Brevity demands that even this
overview be selective. Consequently, this article represents my own, admittedly limited, perspective
on the hydrodynamics of particle-laden flows. The emphasis here is on the importance of rigorously
representing fluctuations in theoretical formulations of particle-laden suspensions, in a manner that
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is consistent across the range of scales, which has been so far lacking in multiphase flow theories.
This article is based on an invited talk given at the 2019 Annual Meeting of the American Physical
Society’s Division of Fluid Dynamics in Seattle, Washington, USA [36].

II. PARTICLE-LADEN SUSPENSIONS

Dilute particle suspensions in canonical turbulent flows involving particles of diameter d,, smaller
than the Kolmogorov scale 1 have been studied extensively over the past several decades (see
Balachandar and Eaton [37] for an edifying review). In these multiphase flows the particles are
usually modeled as point particles, representing point sources of mass, momentum and heat transfer.
Here we focus on particle-laden suspensions with inertial solid particles with sizes in the range of
100 to 500 um that can be larger than the smallest scales of fluid motion, which in the case of
turbulent flow is the Kolmogorov scale. In this regime the point particle approximation is no longer
valid, and a particle-resolved description of the flow field is needed. The interaction of finite size
particles with flows where the mean motion of the fluid with respect to the particles is nonzero leads
to interesting and important new physics arising from interacting wakes, the details of which are
neglected in earlier studies of point particles in homogeneous, isotropic turbulence. The multiphase
flow applications described earlier involve solid volume fractions that range from very dilute to
close-packed, and so the range of solid volume fraction considered here must far exceed that in
earlier studies of dilute particle suspensions. Higher solid volume fractions bring into play additional
particle-fluid interactions which are detailed in Sec. II2. These make the problem considerably more
challenging than dilute suspensions. In order to establish a precise definition of the problem, we first
examine a mathematical description of a particle-laden suspension.

1. Complete description of a particle-laden suspension

A complete description of particle-laden suspension specifies information about the state of
every particle and fluid point at every time instant, and it completely determines the future time
evolution of the gas-solid flow. The state of a particle-laden suspension S(#) at any instant ¢ can
be represented in terms of the state of the particles Sy(¢) and that of the fluid S¢(¢). As a specific
example we consider a simple gas-solid flow with smooth, monodisperse spheres, but complete
descriptions of more complex gas-solid flows are also possible. The set of positions and velocities
(XD VO i=1,...,N()} of N(r) monodisperse spherical particles characterizes the state of the
particles S,(t). The state of the fluid is characterized by the knowledge of the fluid velocity field
u(x, t) and the pressure field p(x, t). This complete description of the gas-solid flow at the scale of
the particles is denoted a microscale description.

The evolution of S(¢) is given by

ds
i LIS®)], )

where £ represents a nonlinear operator operating on the state S(#) of the gas-solid flow. For
incompressible flows, this operator becomes the mass and momentum conservation equations for
the fluid phase:

V.-u=0, 2

ou
pf¥+pr -(uu)=b+V.1 3)
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subject to appropriate boundary conditions, and the position and velocity evolution equations for
the solid phase:

dXO ()

= V@), 4)
) dv(i)(t) ) ,‘ N(t) L
m0=— = =BO+F () + Y F o). 5)
j=1
j#i

where particle rotation has been omitted for simplicity.! In Eq. (3), py is the thermodynamic density
of the fluid phase, b represents body forces (e.g., hydrostatic pressure gradient, acceleration due
to gravity, etc.) acting throughout the volume of an infinitesimal fluid element, and t represents
the surface stresses (both pressure and viscous stresses) acting on the surface of an infinitesimal
fluid element. Equations (2) and (3) are subject to no-slip and no-penetration velocity boundary
conditions on the surfaces of the particles and appropriate initial conditions for the fluid fields and
particle configuration. In the velocity evolution equation for the particles [Eq. (5)], m” is the mass
of the ith particle, B”) is any external body force acting on the particle, F;li) is the hydrodynamic
force (due to the pressure p and viscous stresses at the particle surface) given by

F = —f , pndA+Mfy§ Vu - ndA, (6)
BV EAVY

and Fi(;’t’ )is any interaction force (e.g., contact force due to collisions, cohesion, electrostatics, etc.)
between particles i and j. This coupled set of equations together with the boundary conditions gov-
erns the state of the gas-solid flow at the microscale. Particle-resolved direct numerical simulation
(PR-DNS) is a computational approach to solve these governing equations with adequate resolution
to represent the flow field over each individual particle, and to directly compute the hydrodynamic
force on each particle surface from the solution without resorting to a drag model.

2. Key particle-fluid interactions

A logical starting point to understand flow past several particles is flow past a single isolated
particle. Classical results for uniform steady incompressible flow past an isolated solid particle
begin with the Stokes solution at zero Reynolds number (extended to fluid particles by Hadamard
and Rybczynski) and extended to account for finite Reynolds number effects by Oseen and many
other researchers (see Clift et al. [41] for details). These studies provide expressions for the velocity
and pressure fields from which the steady drag experienced by a spherical particle in flow is easily
calculated, this being the principal hydrodynamic interaction between particle and fluid. The effects
of flow nonuniformity are provided by Faxén, and the effects of flow unsteadiness on drag are
described by early works of Basset and Boussinesq. The Maxey-Riley-Gatignol (MRG) equation
summarizes all these effects [42]. These isolated particle studies established the foundations for the
study of an ensemble of solid particles in fluid flow.

It is customary to distinguish particle-laden flows based on the nature of the key interactions
between particles and fluid. Isolated single-particle studies highlight the principal hydrodynamic
effect that the fluid has on a particle, namely, to exert a drag force on it. Newton’s third law requires
that the particle also exerts an equal and opposite force on the fluid. When a fluid interacts with
an ensemble of particles, this force exerted by particles on the fluid can be neglected if the mass

'Particle rotation is straightforward to include in the description of a particle-laden suspension, and in PR-
DNS [38,39] that is described in Sec. IV. In real flows, the effect of nonspherical particle shape and collision
between frictional particles do induce particle rotation. However, for smooth, spherical particles the effect of
hydrodynamic forces on particle rotation is usually orders of magnitude less than on translation [40].
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loading (or phase mass ratio [43]) of the particles is much less than unity. In these so-called dilute
systems, the assumption of a one-way coupling is sufficient. In one-way coupling, the dynamical
equation for the particle motion accounts for the force exerted by the fluid, but the force exerted
by particles on the fluid is neglected. It should be noted that particles also displace fluid volume
and it is expected that this volume-displacement effect can be neglected if the solid phase volume
fraction is small [44]. However, the averaged fluid-phase mass conservation equation reveals that an
additional restriction arises from the gradient of particle volume fraction as well [45].

For mass loading (phase mass ratio) equal to, or greater than unity, two-way coupling of
the momentum equation in both phases must be accounted for, and the fluid phase momentum
equation must now contain a term corresponding to the force (per unit volume) exerted by the
particles on the fluid. Turning now to interactions between particles themselves, we can distinguish
two types of interactions: (1) particle-particle interactions mediated by the presence of fluid, and
(2) direct particle-particle interactions due to collisions on contact, cohesive forces, or electrostatics.
Traditionally, the inclusion of particle-particle interactions due to collisions on contact has been
termed four-way coupling [46]. In the examples of fluidized bed applications described in Sec. I
all these fluid-particle interactions are present and the flow is four-way coupled, which makes its
modeling and prediction considerably more challenging. With these key interactions in mind, we
can now turn to the question of understanding the behavior of several particles in a flow.

III. THEORETICAL APPROACHES

The fundamental question concerning particle-laden suspensions is whether we can understand
and predict macroscale phenomena arising from a collection of particles in fluid flow from the
microscale description detailed in Sec. II 1, and if we can do this for the case of finite size particles
interacting with a laminar or turbulent flow over a wide range of solid volume fraction? This is
properly the domain of statistical mechanics. Theoretical descriptions of particle-laden suspensions
draw from two principal branches of physics: (1) statistical physics of many-particle systems [47],
in particular the kinetic theory of gases [48], and (2) statistical fluid mechanics of single-phase
turbulent flow [49,50]. It is worthwhile to reflect at this point that insofar as particle-laden
suspensions is concerned, the success of early theoretical descriptions [51-53] in answering the
fundamental statistical mechanics question as it pertains to dilute suspensions in Stokes flow has
been slow to be generalized. In other words, unlike the remarkable success of the kinetic theory
of gases in predicting the transport properties of simple gases (see, e.g., the diffusivity of CO,
in Liboff [48]), there are fewer definitive analytical results of broad applicability in particle-laden
suspensions. In part, this is because multiphase flows involve many parameters, such as the volume
fraction and density ratio to name a few, and the principal physical interactions change significantly
across the parameter space, thereby making it difficult to develop a general theory with broad
applicability. Another reason is that much of the information needed to complete these theories,
which involves developing closure models for unclosed terms, is intractable analytically and must
therefore be obtained from computational studies [54]. In this regard, careful use of machine
learning tools [55,56] can help map out the form of these unclosed terms over the entire parameter
space and help complete these theories. It seems appropriate at this point to recall an appropriately
reworded statement [57] by the eminent fluid mechanician, the late John Lumley (1930-2015), that
underpins my expectation of theoretical approaches to multiphase flows: “I believe in the ultimate
possibility of developing general computational statistical mechanical procedures based on first
principles; and under certain circumstances I believe that it is possible to do this rationally.”?

2Lumley’s original quote referred to computational procedures applied to single-phase turbulent flows.
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A. Statistical mechanics of particle-laden suspensions

Statistical approaches to particle-laden suspensions are usually classified on the basis of the
frame of reference (Eulerian or Lagrangian) in which the final equations corresponding to each
phase are presented, but this classification actually obscures the mathematical basis of each approach
and impedes a systematic analysis of their inter-relationships. It is much more instructive to trace the
mathematical basis of these statistical approaches from their origins in particle physics and turbulent
flow, which, as we shall see here, results in valuable insights.

The classical approach to the statistical description of many-particle systems in
physics is founded on the mathematical theory of stochastic point processes (SPPs).
The state of particles in a particle-laden suspension as given in Sec. II1 by S,(;w) =
(XD(t;0), VO(t;w),i =1,...,N(t;w)} on a given realization w in the event space Q is also
a stochastic point process. Statistical representations of gas-solid flows based on the SPP theory
have been described by several researchers and they are reviewed in Ref. [45]. The computational
implementation of the SPP approach leads naturally to the simulation of particles in a Lagrangian
reference frame as they interact with an Eulerian representation of the carrier fluid flow, giving
rise to the Lagrangian-Eulerian (also called Euler-Lagrange) simulation methods for particle-laden
suspensions [45].

In statistical fluid mechanics of single-phase turbulent flow the starting point is the representation
of the flow velocity and pressure fields as random fields [49,50,58,59]. Theoretical approaches
to particle-laden suspensions have also been considered by representing both the dispersed and
carrier phases as random fields (RFs) in the Eulerian frame of Refs. [60,61]. Prior to the rigorous
analysis of Drew [60] based on ensemble-averaging, conservation equations in the Eulerian frame
of reference were also derived on the basis of volume-averaging by Anderson and Jackson [62]
and time-averaging by Ishii [63]. Historically there has been some controversy about the valid-
ity of, and inter-relationship between, these approaches [64]. Since the equations obtained from
ensemble-averaging and volume-averaging look superficially similar they are used interchangeably
in the literature, but they are fundamentally different. Later in this section we will see that the RF
basis yields a formal relationship between the deterministic ensemble-averaged equations and their
stochastic volume-averaged counterparts, which opens the door for modeling based on stochastic
partial differential equations.

The volume-averaging approach of Anderson and Jackson [62] also involved filtering the fluid
and particle fields. This seemingly minor variation to straightforward volume averaging is in
fact deserving of a separate classification as a third approach to modeling and simulation of
particle-laden suspensions, whose origins also lie in single-phase fluid turbulence. Spatial filtering
of turbulence fields leads to large-eddy simulation (LES) [50,65,66] methods, which have proved
to be very successful in computation of turbulent single-phase flow [67,68]. Capecelatro and
Desjardins [69] extended the spatial filtering in Anderson and Jackson’s [62] volume-averaging
approach to particle-laden suspensions and formulated the volume-filtered Euler-Lagrange (VFEL)
method. Although VFEL and LES share a common basis in spatial filtering of the governing
equations, the differences in multiscale nature of fluid turbulence and particle-laden suspensions
inform the nature of the approximations and models that are needed. A brief summary of these
approaches is provided below with a view to assessing their adequacy in capturing the rich physics
described in the preceding section.

B. Stochastic point process approach

Whereas a complete characterization of all multiparticle events requires consideration of the
Liouville PDF [70], there is a hierarchy of equations analogous to the BBGKY hierarchy found
in the classical kinetic theory of molecular gases [48] that leads to the multiphase version of the
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one-particle (Boltzmann-Enskog) density equation [71],

) .
a_{ + Vi (V) + Vs (A%, V0 6) = feots )

where Vy and V, denote the gradient operators in the position and velocity space, respectively,
angle brackets ( ) denote ensemble-averaging, and f.o is the collisional term that depends on
higher-order statistics. Equally instructive is the derivation of the one-particle density equation using
the Klimontovich approach, which defines the one-particle density as the ensemble average of fy.,
the sum of fine-grained densities fl/(i) =8(x — XD)s(v—VD()),i=1,...,N corresponding
to each of the N particles:

N(t) N()
fxv) = (fr) = <Z f{“)> = <Z 5(x — XV(1))5(v — V<">(r>)>. ®)
i=1 i=1

This reveals important differences between this one-particle density and the PDF associated with a
single particle: namely, that the one-particle density is an unnormalized, weighted sum of the PDFs
associated with each particle, which are, in general, not independently or identically distributed [70].
In addition to the model for the collisional term, the one-particle density equation for gas-solid flow
requires a closure model for the conditional particle acceleration term (A | x, v; ), which represents
the average hydrodynamic force experienced by a particle in the suspension at location x with
velocity v due to fluid pressure and velocity gradient fields at the particle surface. Note that in
particle-laden suspensions the conditional particle acceleration depends on particle velocity through
slip with respect to the fluid, and therefore appears inside the velocity derivative in the velocity
transport term. This equation is also known as the number density function (NDF) equation, or
Williams’ equation for the droplet distribution function in the context of spray droplets, and has
been used extensively as the starting point for many analyses of particle-laden suspensions [53,71].

As noted in Subramaniam [70], the key differences between the SPP approach in the classical
kinetic theory molecular gases and particle-laden suspensions are the following: (a) the lack of
scale separation, (b) the importance of fluctuations in number (and hence, volume fraction or bulk
density),? and (c) the challenges in representing the effect of the fluid phase. We now examine these
key differences to gain an appreciation of the challenges in using the SPP approach to represent the
physics of particle-laden suspensions.

The Boltzmann-Enskog closure of the collision integral on the right-hand side of Eq. (7), which
writes the two-particle PDF as a product of one-particle PDFs is based on the assumption of binary,
instantaneous collisions which relies on a separation of scales [48]: that the time between collisions
should be much larger than the duration of a collision. In this sense, the NDF equation with a BE
closure for the collision term is already time-averaged over a timescale larger than the duration of
a collision but smaller than the time between collisions [72], and this point will become relevant
when we consider numerical simulations of Egs. (2)—(5). Simple scaling estimates of the terms
representing interparticle collisions and fluid-particle drag in the NDF lead to the identification
of the principal nondimensional groups [43]—the particle Knudsen number (Kn, = 7.U,/L), the
particle Mach number (Ma = U,/,/®,), and the Stokes number (St = t,/7;)—that characterize
gas-solid flow. The particle Knudsen number characterizes the ratio of the time between collisions
to the characteristic time that a particle takes to traverse a characteristic hydrodynamic length
scale L (over which mean and second moments vary spatially) with a characteristic velocity based
on the particle granular temperature ®,. The particle Mach number characterizes the ratio of a
characteristic mean particle velocity scale U, to a characteristic velocity based on the particle
granular temperature ® ,, while the Stokes number characterizes the ratio of a characteristic particle

3The bulk density is simply the product of the material density of the solid particles p, and the average
volume fraction ¢.
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momentum response time 7, to a characteristic fluid momentum response time 7. This allows the
delineation of important regimes of gas-solid flow in terms of these nondimensional groups [43],
resulting in (a) flows dominated by collisions (Kn, < 0.1) or convective transport, (b) low Mach
number collisional flows and high Mach number flows characterized by shocks in the particle phase,
and (c) low Stokes number and high Stokes number flows with the associated characteristic spatial
distribution of particles in the flow field [73].

Particle-laden suspensions that are dominated by collisions (Kn, < 0.1) are amenable to further
simplification using kinetic theory extensions of Chapman-Enskog-like approximations to gas-solid
flow that expand the NDF about a homogeneous cooling base state [74]. This permits the derivation
of Navier-Stokes-Fourier equations for the particle phase that account for the effects of inelastic
collisions and the influence of the fluid on particle acceleration in the transport coefficients that
appear in constitutive relations with analytical expressions [74]. However, since a particle-laden
suspension may violate the particle Knudsen number restriction in some parts of the flow, these
models are not uniformly valid. Quadrature-based moment methods have emerged as a powerful
alternative to tackle regions dominated by convective transport by directly computing the collision
integral through quadrature summation, thus eliminating the need to assume Kn, < 0.1 [75,76].
However, there is another ratio of length scales £,/£, that is important in particle-laden suspensions.
The length scale £, (defined later in this section) characterizes the pair separation over which particle
positions decorrelate and defines the size of mesoscale particle structures, whereas ¢, (also defined
later in this section) characterizes the length scale of variation of the average number density. The
former is related to the fluctuations in number (volume fraction or bulk density) and has received
less attention in the literature.

It is well known from observations of particle-laden suspensions [see Fig. 1(a)] that particles can
organize in spatial patterns that are called clusters. We also know from the statistical mechanics
of dense gases and liquids that a statistically homogeneous fluid can manifest structure which
is characterized by the relative probability of neighbors at different separation distances by the
pair correlation function (PCF), which for isotropic systems is also denoted the radial distribution
function (RDF). This information is not available from the one-particle PDF which characterizes
only the variation of the average number of particles (N) = [ f(x, v,7)dx dv in space through the
average number density

n(x,t):/f(x, v,t)dv, )]

with associated length scale ¢,, = n/|Vn|. On the other hand, the RDF is related to the second-order
density characterizing the variance of the number of particles and contains information regarding
particle number fluctuations.

An important insight from the theory of stochastic point processes is that the counting measure
N(&7) on a region 2/ in physical space is a random measure (see Appendix A). Unlike constant
density single-phase turbulent flows where fluid particles are space-filling with fluid (material)
volume always equaling the geometric volume, multiphase flows must deal with the additional
challenge that particle number and volume fraction (or bulk density) are random measures. Although
the average of the counting measure N (<) yields a first-order theory based on the average number
(N(47)), and its density the NDF or one-particle density f(x, v, ¢) (and from it the average number
density n(x, t)), a major limitation of the NDF equation is that it cannot account for fluctuations in
number.

One challenge in modeling particle-laden suspensions is that we do not know a priori whether
the spatial patterns in particles arise from an inhomogeneous mean number density field or from
second-order structure. A systematic statistical analysis of experimental data is needed to determine
the length scales corresponding to the mean number density £, and £,, the characteristic length scale
associated with the PCF/RDEF, before this question can be definitively answered. However, VFEL
simulations of particles settling under Stokes drag in a statistically homogeneous problem called
cluster-induced turbulence (CIT) indicate that the length scale of clusters corresponding to second-
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order structure is O(10-100)d,, [77]. Therefore, it is clear that a representation of fluctuations in
number is needed to characterize the rich physics of clustering observed in statistically homogeneous
particle-laden suspensions.

Fluctuations in number can be represented by extending the one-particle fine-grained density in
the Klimontovich approach to its two-particle counterpart as follows [78]:

N N N N
A6=3FO3" 19 =36 = XP1)s(vi — VO0) D 8% — XV (1)8(v2 — V1)),
i=1 j=1 i=1 j=1
j#i j#i
(10)
where [X¢, V¢, k = 1, 2] are the Eulerian coordinates of the position-velocity phase space for the
particle pair.* The ensemble average of the two-particle fine-grained density function f]f; is the
two-particle density p® (x1, Xz, V1, V2, ¢), which is defined as

PP (X1, X2, Vi, V2, 1) = (f1 f2). (11)

Integrating the two-particle density over the velocity spaces results in the unnormalized pair-
correlation function

/0(2)(X1,X2,l‘)=//0(2)(X1,X2,V1,V2,1)d"1de, (12)

which in turn can be integrated over a region 7 in physical space to obtain the second factorial
moment of the counting measure N (.<):

(N()[N() = 1]) = f o P (x1, Xa, 1)dx; dx,. (13)

Although the two-particle density enables the representation of fluctuations in number, its
evolution equation is not closed [45,81,82], and presents unique modeling challenges for unclosed
terms which are a function of particle pair separation [83]. Furthermore, the full solution of the
two-particle density in a statistically inhomogeneous flow requires it to be represented in a higher
dimensional space. The twin challenges of additional closure modeling and higher dimensionality
have together contributed to slow development and limited adoption of this approach in particle-
laden suspensions. However, there have been a few measurements of two-particle statistics [84] to
quantify the microstructure in homogeneous bubbly flow.

Accurate coupling of the fluid phase with the SPP description of the particles is critical for
prediction and modeling of the variety of phenomena described earlier. For ease of modeling and
computational representation of boundary conditions, a solution approach based on Lagrangian
particle methods is commonly used to indirectly solve the evolution of the NDF [cf. Eq. (7)] in a
computationally efficient manner [45,85-87]. The Lagrangian-Eulerian (LE) method corresponds
to a closure of the SPP representation at the level of the droplet distribution function or num-
ber density function (NDF), with the carrier phase represented in an Eulerian frame through a
Reynolds-averaged Navier-Stokes (RANS) closure, LES, or DNS. The influence of the dispersed
phase on the carrier phase is represented by the addition of interphase coupling source terms to
the usual fluid-phase RANS, LES, or DNS equations. The overarching challenge common to all
SPP modeling approaches, be it the one-particle/NDF equation or the transport equation for the
two-particle density, is that there is no joint statistical representation of fluid and particles in the
SPP description. This constitutes a fundamental limitation of the SPP approach. Given that the

4The summation over distinct pairs j # i is necessary for the definition of the two-particle density, whose
integral is the second factorial measure. If all pairs are included, an atomic contribution arises in the second
moment measure that does not have a density [79,80].
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interaction between fluid and finite-size particles is fundamentally a two-point phenomenon [70,88],
representing and modeling this coupling at the single-point level are challenging. We will now
examine the relative merits of the RF approach in capturing the rich physics of particle-laden
suspensions.

C. Random field approach

In a particle-laden suspension there are two distinct thermodynamic phases: a carrier fluid phase
and a dispersed particle phase. In a single realization w, which is an element of the sample space 2
of all possible realizations, the phases can be distinguished using an indicator function Ig(x, t; @)
for the Sth phase, defined as

1 ifxisin phase § at time ¢

I(x, t;0) = {() if X is not in phase 8 at time ¢. (14)

The phase indicator fields /g (X, t; w) are random fields that satisfy, at each space-time location (X, 1),
the relation

Y xn=1, (15)
B={f s}

where f represents the fluid phase and s represents the solid phase. Statistical information at only
a single space-time location (x, #) of the RF representation results in single-point Eulerian-Eulerian
(EE) theories. Just as the quest for tractable engineering models of single-phase turbulent flows
based on a random-field statistical description at the single-point level led to the familiar Reynolds-
averaged equations of turbulent flow, so too the RF approach to particle-laden suspensions at the
closure level of first moments leads to the Eulerian-Eulerian (EE) two-fluid (TF) theory [60,89]. In
the EE TF theory, the phases are distinguished by the phase indicator function and phasic averages
are defined as averages conditional on the presence of the fluid or solid phase. Corresponding to
the complete description in Sec. II 1, the TF representation of the same system at the level of
first moments would be (S);r = {(¢), (WD), @W®), (p), (P}, where ((x,1)) = (I(x,1)) is
the average solid volume fraction and (u'”)((p"")) and (u®)((p)) are the average velocities
(pressures) of the fluid and solid phases, respectively. One of the advantages of the RF approach, as
compared to the SPP approach, is that it contains a simultaneous statistical representation of both
the fluid phase and the particle phase. Therefore, the sources of randomness arising from different
configurations of particles, and from different realizations of the velocity field, are considered
simultaneously. However, as already noted previously, because the interaction between fluid and
finite-size particles is fundamentally a two-point phenomenon [70,88], representing and modeling
this coupling at the single-point level is difficult. Before discussing two-point RF representations,
we first resolve a longstanding debate in the RF approach which is later shown to lead to insights
for improved modeling in the VFEL approach.

1. Ensemble-averaging and volume-averaging

There has been a longstanding debate between three approaches to deriving the equations in
the two-fluid theory, namely, (1) a time-averaging approach [63,90], (2) a volume-averaging ap-
proach [62,91], and (3) the ensemble-averaging approach [60,89], leading to a controversy about the
validity of, and inter-relationship between, these approaches [64]. Here we resolve the differences
between the volume average and ensemble average by means of a simple example based on the mass
conservation equation.

a. Ensemble-averaging approach. The ensemble-averaged equations have been derived by sev-
eral researchers [60,61]. Starting from the mass conservation equation

ap

” + V- (pu) =0, (16)
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which is trivially satisfied inside constant density, rigid particles, and multiplying it by the indicator
function and taking the ensemble average yields

0

% + V- ((p)(u?)) =0, (17)
where (i1'”) is the phasic average velocity of the particles (see Appendix B for details).

b. Volume-averaging approach. Let us consider an arbitrary measurement region (or observation

window) ¥;, with volume V,, in a gas-solid flow and consider the total volume occupied by the
particles in ¥;, at time ¢ corresponding to realization w:

D, (Vs t, @) =/ I,(x, t; ) dXx. (18)
Vi

Note that ®, does not have a smooth density in x because /,(x, t; ) is a generalized Heaviside
function. In mathematical terminology, ®,(%,;¢, w) is a set function on the set #;,. Since this set
function always yields a non-negative real value, ®, is a measure. Its dependence on the realization
w reminds us that it is a random measure.

A key relationship we establish here is obtained by expressing this volumetric quantity ®, in
terms of the ensemble-averaged solid volume fraction field (¢)(x, ¢) as

(Vs t, ) =/ (D) (%, 1) dx + B, (T 1, ), (19)

m

where ® »(Zmit, w) is a fluctuation that represents the departure of @, from its ensemble average
(first term on the right-hand side) on realization w. Note that ®,(%},;¢, w) also does not have a
smooth density in x because by definition it involves a generalized Heaviside function:

(Yt ) = / I,(x, t; w) dx, (20)

m

where
(X, 1;0) = L,(X, 1;0) — (§)(X, 1). 2n

For the statistically homogeneous case, we can think of ®,(%,,;¢, ») as the statistical variability
in the estimate of

(@p(Fs 1)) = f (P)(x, 1) dx, (22)
’%]1
arising from a finite number of samples in the measurement region ¥,. For the statistically
homogeneous case, ®,(#,;t,w) — 0 as 1/4/N(¥},). But for all finite V,, it is nonzero and it is
a random quantity since it depends on w.
We can write a conservation equation for ®,(¥,;1, ®) by considering its temporal evolution

0D ,(Vust, al,(x,1;
30 Umit, @) _ / W 150) (23)
ot P ot
to obtain (see Appendix C for details)
M @)
——
a ad, ,
— [ (@)X D)dx+ —— (Vi1 0) = — (¢)(up) -ndA — J -ndA. (24
at J, ot a7, 97,

(3) )

Note that the above equation is a stochastic equation with explicit dependence on the realization w.
Clearly, terms (1) and (3) in the above equation represent the ensemble-averaged mass conservation
[cf. Eq. (17)] for particles with constant material density, which is a deterministic equation. Terms
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(2) and (4) on the other hand, represent the departure of the stochastic volume-averaged mass
conservation equation from its deterministic ensemble-averaged counterpart.

To summarize, we have formally established an important relationship between the volume
average and the ensemble average for multiphase flows. It is shown that the volume average is
a random quantity that differs from the nonrandom ensemble average by a stochastic fluctuation.
For statistically homogeneous flows it is shown that volume-averaged particle properties such as
the particle geometric volume converge to their ensemble-averaged counterparts as 1//N(7;,). In
the case of statistically inhomogeneous flows, a separation of scales is needed to ensure a similar
relationship between the volume average and the local ensemble average, and this criterion is
explicitly established.

The volume average of particle geometric volume is used to derive the weak form of mass
conservation for the particle phase. This equation can be interpreted as the ensemble-averaged mass
conservation equation representing a balance between the temporal derivative of ensemble-averaged
particle volume and average flux of the same quantity at the system boundary, augmented by the
temporal derivative of the stochastic fluctuation which is balanced by a flux fluctuation which varies
with each realization of the multiphase flow. The stochastic fluctuation term contains important
information about second-order fluctuations in particle number and volume, which is absent in
first-order ensemble-averaged quantities such as the ensemble-averaged particle number density
and volume fraction.

2. Second-moment and PDF closures

Similar to the unclosed Reynolds stress term in the Reynolds-averaged equations for single-phase
turbulent flow, the ensemble-averaged TF momentum equations for the fluid and solid phases
also contain unclosed terms corresponding to stresses arising from fluid velocity fluctuations
and particle velocity fluctuations, respectively. Attempts to improve the single-point statistical
description of single-phase turbulent flow by resorting to higher levels of closure have led from
the Reynolds-averaged equations to Reynolds-stress transport equations involving second moments,
and culminated in the transport equation for the single-point probability density function [50]. In
the case of riser flows involving particle-laden suspensions [see Fig. 1(a)], Hrenya and Sinclair [92]
showed that an additional transport equation for the particle velocity variance is necessary to predict
phenomena such as the core-annular structure. Similar efforts to extend the EE TF theory beyond
average quantities have led to second-moment closures [93-95] as well as the single-point PDF
approach [61]. It is worth noting that these single-point second-moment and PDF closures are still at
the level of first-order ensemble-averaged quantities such as the ensemble-averaged particle number
density and volume fraction, and do not contain information concerning fluctuations in particle
number (or volume).Pai and Subramaniam [61] showed that the ensemble-averaged EE TF equations
of Drew [60] can be derived from the single-point PDF approach and the consistency conditions for
the correspondence of mean and second-moment equations between the RF and SPP approaches
were established. Fox [96] derived a multiphase turbulence theory based on a sequential phase
and Reynolds averaging procedure starting from a mesoscale description based on a continuous
volume fraction field. Although this approach is useful at the macroscale in incorporating mesoscale
fluctuations, it does not reconcile with the microscale picture derived here.

The advantages of the single-point PDF approach, as explained in Pai and Subramaniam [61],
include allowing for a distribution of solid and fluid velocities at the same location, and a clear
identification of events and their probabilities in the single-point EE TF formulation. The latter
are useful in distinguishing a key difference between the RF approach in multiphase flow and
constant-density single-phase turbulent flow which is overlooked in some theoretical treatments. In
constant-density single-phase flow, two-point statistics such as the Eulerian velocity autocovariance
reduce to the single-point Reynolds stress tensor in the limit of zero pair separation distance because
the underlying measure is not random, so lim,_,q R;;(X, X + r) = R;;(x). The same is not true for
multiphase flows where certain two-point statistics such as fluid-particle velocity covariance vanish
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at zero separation, e.g., limy_.q Rfjf (x,x 4+ r) = 0, because particle and fluid cannot coexist at the
same physical location and the two-point statistic is based on a different measure [81]. The analysis
of events and probabilities in the single-point RF approach reveals that correlation between gas-
and solid-phase motions does not manifest at the single-point level of closure, because for particles
of finite size, every space-time location can be occupied only by either solid or gas [95]. However,
these correlations do appear in the two-point representation.

The unclosed terms that need to be modeled in all the single-point RF approaches discussed thus
far (including the average interphase momentum transfer, the particle velocity covariance, the fluid
velocity covariance, and the conditional expectation of acceleration in each phase that arise in the
PDF approach) represent motions at all scales (micro, meso and macro). However, the mechanisms
that produce fluid velocity fluctuations, for instance, at the microscale are different from the
interaction of particle clusters with fluid flow at the mesoscale, or the interphase interaction at the
macroscale. Since the single-point RF approaches do not contain scale information they cannot
distinguish between these different scale-dependent mechanisms that contribute to the transport
of fluid velocity fluctuations. Just as two-point statistics and spectral closures were introduced in
single-phase turbulent flow to account for the multiscale nature of turbulence, similar attempts [81]
have been made to account for the multiscale nature of particle-fluid interactions in particle-laden
suspensions.

3. Two-point closure

Higher order representations such as a two-point statistical description of gas-solid flow based
on the RF representation can be found in Sundaram and Collins [81]. These are based on the sec-
ond moment of the phase indicator random field, Cg, (X, x + 1) = (Izg(X),, (x + 1)), B, v € {f, p},
which appears as a natural two-point extension of (Iz(x)). Just as fluctuations in a random variable
are described by the variance, fluctuations in a random field are described by the covariance field.
The covariance of the random field /,(x, ; w) (see p. 203 of Stoyan et al. [80]) in the statistically
homogeneous, isotropic case is simply the second moment of 7, and is given by

Cpp(r) = (I,(x, )I,(X+1,1)), (25)

which is similar to the two-point single-time Eulerian autocovariance in constant density single-
phase turbulence. The covariance of the particle indicator function field represents the expected
value of the event where two spatial locations separated by r are simultaneously occupied by the
particle phase. In the limit of very large separation r — oo and Cp,(00) = (¢)? corresponding to
zero correlation between the occurrence of particles at points separated far apart. In the limit of zero
separation r — 0, C,,(0) = (¢), which confirms that fluctuations in volume fraction do not show
up in the EE TF single-point theory, just as the single-point NDF in the SPP approach contains no
information concerning number fluctuations.

Note that the covariance C,,(r) is not centered. If we consider the second central moment, it is
called the covariance function k(r) and is defined in terms of fp =1,—(¢) by

k(r) = ((L,(x, DL, (x +1,1)) = Cpp(r) — (). (26)

The single-point limit of the covariance function at r — 0 is k(0) = (¢)(1 — {(¢)), while for r —
00, k(00) = 0 corresponding to zero correlation between the occurrence of particles at points at far
separations. These results have also been reported by Sundaram and Collins [97].

There is a close connection between the random field /,(x, #; @) and the distribution of the centers
of the particles which can be described by a stochastic point process. So there is intrinsically
a connection between the statistics of the random field /,(x, f; w) and those of the underlying
stochastic point process. In the case of monodisperse spheres, this connection is easy to write down
analytically for model systems. One such system is overlapping spheres with centers distributed
according to a Poisson point process, although this is not a good model for many multiphase
systems. Systems of nonoverlapping spheres are a better model for particle-laden flows, and it is
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easy to see in this case that the covariance C,,(r) contains information about clustering of particles,
which is not contained in the mean solid volume fraction.

This connection between the statistics of the random field and the underlying point process yields
a very useful relation in the case of spherical particles, which can be used to relate the SPP and RF
approaches at the level of two-point statistics. The covariance function k(r) is related to the pair
correlation function which is a number-based statistic associated with the underlying point process.
This relationship has been derived previously by other researchers for both monodisperse [98]
[see also Eq. (10) of Ref. [97]] and polydisperse spheres [99]. For a system of monodisperse
nonoverlapping spheres that are distributed corresponding to a homogeneous number density » and
a pair correlation function g(r), it can be shown that

k(r) = nl(r) + n? / h(z)I(r — z)dz. 27)

In this expression h(z) = g(z) — 1 is the total correlation function and I(r) is the volume of
intersection of two spheres whose centers are separated by a vector r:

3r 1/r\° r
T taG) 5!
I(r=V, "p " ’rf’ (28)
0 —>1
Tp

These relations show that just as Pai and Subramaniam [61] established consistency conditions for
the correspondence of mean and second-moment equations between the RF and SPP approaches at
the single-point level, the same is possible at the two-point level also.

There is an important connection between how estimates of particle volume fraction fluctuations
are computed from point fields such as PR-DNS or LE/VFEL particle data, and the representa-
tion of these fluctuations in the volume-averaging approach that merits discussion here. Lu and
Torquato [100] showed that the estimates of particle volume fraction fluctuations in a statistically
homogeneous distribution of spheres obtained by volume-averaging over a region ¥, actually
depend on the volume of that region and the two-point density k(r) (details are given in Appendix E).
This is a very important result which shows that volume fraction fluctuations cannot be written as
a single-point density! In Appendix E we also make the connection between the representation of
volume fraction fluctuations in the volume-averaging approach and this result, thereby providing a
route to rigorously incorporating volume fraction fluctuations into extensions of current single-point
theories.

The two-point theory needs to be extended to statistically inhomogeneous flows before it can be
applied to realistic problems, and even in the homogeneous case the resulting two-point equations
lead to additional unclosed terms that require closure models. Just as in in two-particle SPP
approach, here also the challenges of closure modeling and higher dimensionality have hampered
the development and adoption of this approach.

But perhaps the most important drawback of both the SPP and RF statistical approaches is
that the averaging process obscures the emergence of scale-dependent structure from instabilities
that develop as a consequence of nonlinear interactions between particle configuration and flow
conditions specific to each realization, which are not represented in the ensemble average. For
instance, the stability theory developed by Koch [53] analyzes the stability of a suspension in terms
of the average solid volume fraction (¢), and stability limits are derived on the basis of perturbations
to (¢) about a base state. However, it is clear from both simulations and experiment that there
is a natural statistical variability to the particle volume @, from one realization to another, and
it is probable that the origin of instabilities in particle-laden suspensions lies in the microscale
interactions related to volume fraction fluctuations, rather than mean perturbations. Therefore, a
more realistic stability theory must arrive at stability limits that account for the variance of volume
fraction fluctuations which are related to the second-order structure. Whether this can be captured
by a two-point theory or if ensemble-averaging obscures the interaction between the two phases
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on each realization has not been definitively established. However, current analysis of the two-point
theory [101] and VFEL simulations [77] indicate that a two-point theory may not be adequate, or too
complicated, to provide such stability limits. Just as the importance of capturing coherent structures
led to the development of large-eddy simulation approaches in single-phase turbulent flow, the
importance of capturing scale-dependent structure in particle-laden suspensions has prompted the
development of spatial filtering approaches leading to the VFEL method.

D. Spatial filtering approach

The volume-averaging approach described earlier is useful to gain a formal understanding of
conventional approaches to multiphase flows and to highlight its differences from the ensemble-
averaging approach. However, a limitation of Eq. (24) is that & » does not have a smooth density
(nor does J') and so a differential form cannot be derived. It could be interesting to explore whether
in a finite volume context, the stochastic form of Eq. (24) could be directly modeled and solved.
An alternative is to consider spatial filtering of the indicator function /, and derive conservation
equations based on filtered quantities. This was the approach pursued by Anderson and Jackson [62]
(AJ67) and Jackson [91] (J97).

Here we derive the mass conservation equation in the spatial filtering approach and compare it
with the results of AJ67 and J97. Spatial filtering of the indicator function I, by a smooth, infinitely
differentiable, homogeneous kernel® function ¥(r = x — y; A) leads to a filtered instantaneous
particle volume fraction field ¢:

Fx, 1r0) = [y Ly, D% (x — y: A)dy, 29)

which is also a smooth, infinitely differentiable random field. In the filtering operation the kernel
is integrated over the entire domain ¥%,. Taking the time derivative of ¢ defined by Eq. (29) and
substituting the topological equation governing the evolution of the indicator function [60]

alp(y, 1)
% =—Vy - (ul,)
results in the spatially filtered mass conservation equation (see Appendix D)
a¢ -
a—f + Vi (¢V) = —/ n-[ul,%(x —y; A)ldA. (30)
Ve

For kernels with compact support, the right-hand-side term vanishes at interior points sufficiently
far from the boundary, resulting in a familiar equation
2 v Gn=0, (31)
which also holds everywhere for periodic boundary conditions. Although this equation looks exactly
like the ensemble-averaged mass conservation equation Eq. (17), they are significantly different.
For one, Eq. (31) applies to smooth random fields whereas Eq. (17) applies to the deterministic
average volume fraction field. Many computational implementations of the EE TF model such as
the widely used MFIX code [102] ascribe their origins to AJ67 and J97, but in fact they are based
on ensemble-averaging because they rely on deterministic closure models.
The spatial filtering approach forms the basis for the volume-filtered Euler-Lagrange (VFEL)
simulation approach of Capecelatro and Desjardins [69]. It is noteworthy that VFEL simulations
represent a realization of a particle-laden suspension, and the solution will in general depend

SA homogeneous kernel function [50] is a special case of the general form ¥(r, x) when the kernel is
independent of x and depends only on the separationr = x —y.
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on initial conditions, filter width and choice of kernel function. The biggest advantage of VFEL
simulations is that it opens the door to performing simulations of significantly larger domains
and discovering mesoscale physics hitherto inaccessible to PR-DNS of the equations governing
the complete description given in Sec. II 1. VFEL simulations of cluster-induced turbulence [77]
were performed on a 2048 x 512 x 512 mesh with 55 x 10° particles. Equally noteworthy is that
models for the unclosed terms in VFEL will be different from their ensemble-averaged counterparts.
Broadly speaking, spatial filtering confers the potential advantage of capturing scale-dependent
fluctuations, but this promise is realized only insofar as the accuracy of models for the unclosed
terms.

E. Summary perspective of theoretical approaches

In this section we have seen that the rich physics observed in particle-laden suspensions poses
significant challenges to classical statistical mechanics approaches. The interaction of fluid with
particles generates stress at the particle surface which manifests as a hydrodynamic force that
accelerates the particle center of mass. Furthermore, particles can organize in structures spanning
10 to 100 particle diameters due to interaction with the flow and form clusters. Joint two-point
statistical representation of particles and fluid is needed to capture these interactions, but the
multiscale nature of these interactions poses unique challenges. Considerable progress has been
made in single-point statistical theory, and consistent theories have been developed using SPP
and RF approaches, but single-point theories in both approaches are incapable of representing
fluctuations in particle number or volume. In this work it is also shown how volume-averaging
in the RF approach differs from ensemble-averaging by a stochastic fluctuation term that contains
important information about second-order fluctuations in particle number and volume, which is
absent in first-order ensemble-averaged quantities such as the ensemble-averaged particle number
density and volume fraction. This leads naturally to the consideration of spatial filtering, which
results in smooth fields describing a realization of a particle-laden suspension with the potential
to more faithfully capture the emergence of scale-dependent structure from instabilities [103]
that develop as a consequence of nonlinear interactions between particle configuration and flow
conditions specific to each realization, which are not represented in the ensemble average. There
have been attempts to produce single-point theories [96] that represent fluctuations in particle
volume fraction starting from a mesoscale description involving smooth fields, but as noted earlier,
these do not reconcile with the microscale picture derived here. It is desirable that both theoretical
approaches and simulation methods—PR-DNS at the microscale, VFEL at the mesoscale, and EE
TF or LE/QBMM at the macroscale—reconcile across scales and are validated by experimental
data wherever possible.

In Sec. V we propose a new class of formulations, including one involving spatial filtering of
the Klimontovich density, as a path forward to rigorously incorporating second-order statistical
information characterizing particle number (and volume) fluctuations by explicitly modeling it in
a one-particle/single-point theory. These formulations would be reconcilable across micro-, meso-,
and macroscales, and consistent counterparts could be identified in the SPP and RF approaches.
We now discuss the model-free PR-DNS method to solve the governing equations of the complete
description in Sec. II 1 that can be used to quantify and model the unclosed terms appearing in the
governing equations of the theoretical approaches discussed in this section.

IV. PARTICLE-RESOLVED DIRECT NUMERICAL SIMULATION

Particle-resolved direct numerical simulation of the complete description of a particle-laden
suspension given in Sec. II 1 is a useful approach to discover and explain the rich physics in
these flows and to develop closure models in the various modeling approaches by quantifying
unclosed terms that appear in them [54]. PR-DNS involves solving the governing equations [cf.
Egs. (2)—(5)] described in Sec. II 1 with sufficient resolution to resolve the flow around each particle
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in the suspension. PR-DNS has been successfully used to discover and quantify flow phenomena
such as pseudo-turbulence [104] and pseudo-turbulent heat flux [105] as well as particle force
fluctuations [106]. There are many computational methods to perform PR-DNS [107-134] (see Garg
et al. [135] and Tenneti et al. [136] for brief summaries, and Prosperetti and Tryggvason [137] for
an authoritative compendium of PR-DNS approaches for a wide class of multiphase flows), but an
exhaustive discussion of the numerical details and the tradeoff between accuracy and computational
efficiency is neither feasible nor relevant to this discussion. Instead, here we will examine some
common outstanding questions concerning PR-DNS and identify key assumptions pertinent to
developing closure models for the statistical mechanical theories described earlier.

PR-DNS is computationally expensive, and Xu and Subramaniam [138] estimated that the
computational cost in terms of the number of grid points for a uniform grid scales as Ri/ 2 Re,,
where R, is the Taylor-scale Reynolds number of turbulence and Re,, is the Reynolds number based
on the mean particle slip velocity and diameter. Therefore, problem size is limited by available com-
putational resources. It is not feasible with current computational resources to simulate macroscale
particle-laden suspensions in industrial devices using PR-DNS. Even when these limitations are
lifted, such simulations may not necessarily be useful, for the simple reason that more detailed
information does not automatically translate into more insight that is useful in informing decision
making. A more useful approach, already effectively deployed in single-phase turbulent flow, is
to use PR-DNS on problem sizes that are currently accessible through available computational
resources, and use those simulation data at the microscale to inform statistical theories that are
intended to predict phenomena at the meso- and macroscales. There are also similarities to the use
of molecular dynamics to inform statistical mechanical theories of atomic and molecular systems.

The particle-laden suspension flows described in the applications are statistically inhomogeneous
flows which means that the statistics vary with spatial location, and we can use £, as a characteristic
length scale for these variations. We can use PR-DNS of microscale dynamics in statistically
homogeneous problems on domains of characteristic size L to develop models for unclosed terms
in these statistical theories provided local statistical homogeneity can be assumed. This assumes a
separation of scales £, > L. Periodic boundary conditions are usually imposed on such PR-DNS,
which corresponds to the approximation of an infinite statistically homogeneous suspension by
repeating periodic images. The PR-DNS domain has to be large enough to ensure that all Eulerian
two-point correlations in both phases have decayed to zero, which implies that L > £,. An interest-
ing observation by Sun [139] is that the length scale of variation of average fluid phase quantities can
be significantly affected by interphase transfer terms. For instance, in a particle-laden suspension
with heat transfer, fluid heating/cooling by heat exchange with particles in the entrance region can
significantly change the length scale of variation of the mean fluid temperature, and this length scale
depends on the solid volume fraction and Reynolds number based on the mean slip velocity between
particles and fluid. For slow flow through dense particle suspensions, the length scale of variation
of mean fluid temperature can be just a few particle diameters in the entrance region. This implies
that scale separation can be violated by the gradients introduced by average interphase terms in
multiphase flow problems.

Another issue that has not been considered carefully is the choice of ensemble in the PR-DNS. In
classical statistical mechanics, the canonical and microcanonical ensembles are fixed N ensembles,
whereas the grand canonical ensemble is a variable N ensemble [140]. Of course, these classical
ensembles refer to equilibrium thermodynamic states, whereas PR-DNS of canonical homogeneous
problems such as steady flow through a fixed bed of particles established by a constant mean
fluid pressure gradient pertain to a nonequilibrium steady state. There are also differences in how
different PR-DNS studies initialize a statistically homogeneous particle configuration corresponding
to a specified average solid volume fraction. Some researchers have used configurations with a
PCF/RDF obtained from the steady solution to a granular gas undergoing elastic collisions at that
volume fraction [136]. The suitability of a specific computational approach to PR-DNS also depends
on other issues such as accuracy and numerical convergence characteristics. A recent rigorous study
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of the numerical characteristics of the widely used immersed boundary method (IBM) by Zhou and
Balachandar [141] provides precisely this kind of insight, and similar studies on other methods are
needed to assess the suitability of each computational approach and provide guidance to the research
community on their effective usage.

V. FUTURE DIRECTIONS

In Sec. IIIE we established the need for the inclusion of fluctuations in particle number (or
volume fraction) to capture multiscale interactions that underlie the emergence of scale-dependent
structure from instabilities that develop between a particle configuration and flow conditions specific
to each realization. We also noted that it is desirable that the formulation be reconcilable across
micro-, meso-, and macroscales so that PR-DNS can be used for modeling the unclosed terms at
the microscale. For a statistically homogeneous suspension, ergodicity requires that the residual
terms in VFEL in the limit of sufficiently large filter width should equal the ensemble average from
PR-DNS. VFEL simulations that satisfy this requirement can be used to model unclosed terms at
the mesoscale. The formulations proposed in the following also provide a theoretical basis to relate
VFEL simulation data at the mesoscale to EE TF or LE/QBMM simulation data at the macroscale.
Given the equivalence between statistical quantities in the SPP and RF approaches, a formulation
in one approach should imply a consistent counterpart in the other. In this work, only the directions
for formulating new models have been indicated based on the conservation of mass equation [e.g.,
Eq. (24)]. A complete model requires consideration of momentum and energy balances that must
be derived, and the resulting unclosed terms modeled, before these models can be evaluated.

There are several promising approaches that could meet this need. The first one involves a
Lagrangian particle representation of the fluctuation [second term on the right-hand side of Eq. (19)]
as either physical particles

N
S, (Vit, ) %/ ZV,fi)ts(X—X(”)dx

moj=1

or computational particles

N,
(Y t, w) ~ f wDvVOs(x — XD)dx,
p i Z P

moj=1

where V{7 is the geometric volume associated with the ith particle, and w is its statistical
weight in the ensemble of N, computational particles. Substituting this representation into the
volume-averaged mass conservation equation [Eq. (24)] naturally extends the ensemble-averaged
EE TF theory to account for fluctuations. A new set of additional unclosed terms [e.g., term
(4) in Eq. (24), and corresponding terms in the momentum conservation equation] representing
fluctuations are introduced, that require modeling. This EE Lagrangian fluctuation (EE-LF) ap-
proach has the advantage of building on existing finite-volume-based code structures in EE TF
implementations of multiphase computational fluid dynamics (mCFD) such as the widely used open
source OpenFOAM [142] and MFIX [102] codes as well as commercial software such as ANSYS
Fluent, CFX and Star-CCM+. This formulation appears closely related to traditional LE method
but its computational cost should scale far more favorably since only the fluctuation in number
is represented by Lagrangian particles. Several closure modeling questions need to be addressed
pertaining to the interaction of fluctuations with the ensemble-averaged mean in both the mass and
momentum conservation equations.

The second approach involves an Eulerian representation of fluctuations. Since the fluctuation
term & (73 t, w) in the volume-averaged approach does not have a smooth density, we must resort
to spatial filtering. Here there are two choices concerning how we represent fluctuations. Filtering
the expression for the fluctuation in the indicator function field ip(x, t; w) from its ensemble-average
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[cf. Eq. (21)] according to Eq. (29) yields the fluctuation in the spatially filtered volume fraction field
from the spatially filtered ensemble average volume fraction field:

P(x, t;0) = G(x, t;0) — (P (X, 1). (32)

This is a true fluctuation in the sense that its ensemble average is zero. Although ¢ contains locally
filtered information and so reflects the level of clustering over a length scale A, the second moment
of this field needs to be related to the two-point density (PCF/RDF) in order to quantify it.

The advantage of this spatially filtered EE with Eulerian fluctuation (SFEE-EF) approach is
that the deterministic part ties directly to the filtered two-fluid model of Sundaresan and co-
workers [143]. The filtered two-fluid formulation has been adopted by mCFD users in industry
as well as commercial mCFD developers for facilitating simulations of industrial devices on large
domains using relatively coarse grids that would otherwise result in under-resolved simulations
using traditional EE TF codes [144]. Enhancing that formulation by adding information concerning
fluctuations and placing it on a rigorous footing are desirable outcomes. The filter width in this
approach can be chosen to be much larger than typical values used in VFEL (where it is usually
~10d,,) because it needs to resolve only macroscale or mesoscale variations.

Another Eulerian fluctuation field can be generated by simply taking the difference between the
filtered field ¢ (x, t; @) and its ensemble-averaged counterpart {¢)(x, ¢):

d(x, 1;0) = (X, 1;0) — (P)(X,1). (33)

The ensemble average of this field is not zero and in that sense it is not a true fluctuation. However,
it is worth exploring its relationship to the mesoscale volume fraction fluctuations in the multiphase
turbulence theory of Fox [96]. Here also the key question is how to relate the second moment of this
field to the two-point density (PCF/RDF).

The relations between these fluctuations and the two-point density will be useful for both
quantifying the fluctuations and as well as initializing them from specified two-point statistics. Using
an approach similar to generalized polynomial chaos expansions (GPCE) [145,146] to represent
a realization of a random field, we can generate synthetic fields with specified single-point and
two-point statistics. For instance, Oztireli and Gross [147] report an algorithm to generate a synthetic
point field that corresponds to a given PCF.

The third approach involves directly filtering the fine-grained (and hence, nonsmooth) Klimon-
tovich density fy to obtain a filtered Klimontovich density function (FKDF) ﬁ as follows:

ﬁ(x,v,t)=//f;é(y,w,t)g(lx—yl,IV—WI;Ax,Au)dydw, (34)
yJw

where the filter is defined in the product space to generate a smooth density. The filter could be
written as a separable product of filters in both physical space and velocity space. This filtered
Klimontovich density function (FKDF) approach generates a filtered density function similar to the
FDF approach in turbulent reacting flows [148,149], but it is different because the underlying PDF
in turbulent reacting flows is smooth and differentiable, whereas fj is not.

This observation opens up the possibility of developing a fluctuation hydrodynamics ap-
proach [150] analogous to one which has been pursued in the context of granular gases [151]. Our
starting point is to decompose the fine-grained Klimontovich density fi in the same way as Eq. (19)
to express it as the sum of the NDF and a volume-dependent stochastic fluctuation in number N:

N(“I/m;t,a)):/ flé(x,v,t)dxdv:f f(x,v,t)dxdv+ﬁ(”7m;t,a)), (35)
Y Vi

where now ¥, denotes a region in the {x, v} space. Taking the time derivative of N(¥,,;t, w)
reveals that the evolution equation of the fine-grained Klimontovich density is a stochastic partial
differential equation with a stochastic forcing of the standard NDF equation [150] [cf. Eq. (7)]. In
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fluctuating hydrodynamics this stochastic term is directly modeled. An alternative approach that is
amenable to simulation by modifying existing NDF solution approaches is proposed here.

Again a Lagrangian particle representation of the fluctuation N is possible in terms of physical
particles

N
Nit, 0) ~ / D s(x = XD)s(v — V) dx, dv
Y,

m =1

or computational particles

N(
N(pit, w) ~ / Z w9s(x — XM)s(v — VD dx, dv,
v,

moj=1

where w® is its statistical weight in the ensemble of N, computational particles. This representation
can be combined with Eulerian approaches to solving moments of the NDF equation (including
QBMM), while noting that N(%;,;¢, ) does not have a smooth density. Smooth and differentiable
Eulerian fields representing number fluctuations about the NDF can be defined by spatial filtering,
analogous to d;(x, t;w) and (ﬁ(x, t,w).

All these approaches are promising extensions to current statistical mechanical approaches
to particle-laden suspensions, and because they are reconcilable at all scales (micro, meso, and
macro), it is possible to use PR-DNS to quantify the unclosed terms in each set of equations at the
microscale. It will be interesting to revisit stability analyses of suspensions using these formulations
to ascertain the effect of volume fraction fluctuations and see how they affect stability limits based
on the average volume fraction [53]. Nevertheless, it is worth noting that none of these formulations
truly represents joint statistics of particles and fluid, since that information is available only in
two-point theories.

VI. SUMMARY

Multiphase flows are relevant to many important problems concerning human life. Predictive
models of multiphase flow can help in informed technical decision-making in both man-made
and natural settings. Hydrodynamic interactions in particle-laden suspensions constitute a complex
phenomenon with rich physics. Theoretical approaches are challenged to explain intriguing phe-
nomena that manifest at different scales. Current advances in adapting classical statistical mechanics
approaches have opened up a wide playground for theoreticians, modelers and computational
researchers to pursue various new approaches that promise to address critical needs identified in
this work. A key feature of the theoretical approaches proposed in this work is that they reconcile
with the mathematical description at the microscale and are easily related to observables at the
meso- and macroscales. PR-DNS, which has proved to be a useful model-free simulation method for
understanding flow physics at the microscale and model development, can be used to further develop
these new formulations by quantifying unclosed terms that arise in them and by clarifying the role of
fluctuations. This work envisions that a computational statistical mechanics approach to multiphase
flow will explore new frontiers by establishing these theoretical foundations for predictive model
development, which requires integration of simulations, validated by experiment, at different scales.
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APPENDIX A: STATISTICAL CHARACTERIZATION OF STOCHASTIC POINT PROCESSES

In the Klimontovich approach [88,152,153], the ensemble of particles is characterized by a fine-
grained density function f| that is defined in a six-dimensional position-velocity space [x, v] as

N
Aev.n=Y" f7 Za(x—x<’><t>)8(v Vo)), (AD)
i=1

i=1

where the shortened notation
D = 5(x = XD(1)8(v — V(1))

is used to represent the § function associated with the ith particle. The number of particles in any
region Z in [x, v] space can be obtained by integrating the fine-grained density f as follows:

N(%’):/ fidxdv. (A2)
®

The ensemble average of the Klimontovich fine-grained density function f] is the one-particle
density function f, which is written as

Fov, 1) = (f) <Zf’<’>> <Za(x XO())8(v — V@(,))> (A3)

i=1

Integrating the one-particle density over velocity space results in the number density n(x, ¢) that
forms the basis for the continuum hydrodynamic description

n(x,t):/f(x, v,t)dv, (A4)

which in turn can be integrated over physical space to obtain the expected number of particles:

(N) = /n(x,t)dx. (AS5)

In order to characterize structural properties such as the pair correlation function, we need to
consider the two-particle density. The one-point fine-grained density in the Klimontovich approach
can be extended to its two-particle counterpart as follows [78]:

f{fz Zfl/(l) Zf/(J) ZS(XI X(')(t))(S(Vl V(’)(l‘))

i=1
J;ét

N
x Y802 = XV (0)8(va — V1)), (A6)

J=1

JF
where [X, vk, k = 1, 2] are the Eulerian coordinates of the position-velocity phase space for the
particle pair. (The summation over distinct pairs j # i is necessary for the definition of the
two-particle density, whose integral is the second factorial measure. If all pairs are included, an
atomic contribution arises in the second moment measure that does not have a density [79,80].) The
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ensemble average of the two-particle fine-grained density function f; f; is the two-particle density
pP (X1, X, V1, V2, 1), which is defined as

p P (x1, X2, Vi, V2, 1) = (f| f5). (A7)

Integrating the two-particle density over the velocity spaces results in the unnormalized pair-
correlation function

p(Z)(XhXZ?t):-/p(Z)(Xl’ X2, V1»V2,f)dvl dV27 (AS)

which in turn can be integrated over a region % in physical space to obtain the second factorial
moment measure:

(N(B) IN(B) — 1) = f PO (x1, X2, 1)1 d%s. (A9)

Here we derive the expression for the pair-correlation function g(r) in a system that contains
particles whose centers are distributed as statistically homogeneous and isotropic point fields. The
second factorial moment measure of a point field (see Ref. [79]) is

w1 x #5) = (N(W) IN(#) — 11), (A10)

where 7] and ¥ are sets in physical space, N(7]) is the number of particles in region ¥7, and N(%3)
is the number of particles in region #5. The second factorial moment measure 11®)(#] x #5) has a
density p®(x;, X,) such that it can be written as an integral

WO x V) = / / PO (x1, x0) dxy dxa. (ALD)
NIV

This second-order product density p'® (x;, x) is the unnormalized pair correlation function.

For a statistically homogeneous point field the second-order product density p®(x;, x,) depends
only on the pair separation r = X, — x;. It is then convenient to transform 7] x ¥ to ¥ x ¥,
in (R, r) space with R = (x; +x;)/2 and pg;(R, r) = p;?(xl, X;), where the Jacobian of the
transformation J = |9(xq, X2)/d(R, r)]| is unity, leading to

1O x $5) = uP e x V) = / / PP (R, r)dRdr. (A12)
Y Vs
For homogeneous and isotropic point fields, the second-order product density p® depends only
on the scalar separation distance » = |r|, and can be written as
PP (r) = n’g(r), (A13)

where n is the average number density of the particles. Substituting this expression into Eq. (A12),
we obtain

wP i x V) = n*g(ryanr’dRdr, (Al4)
Y Jr

where the integral over 7, has been simplified using a spherical volume element 477 % dr. Noting
that

(NHR) = f ndR, (AL5)
Vi

and considering the case where 7, is a spherical shell with volume V (r, Ar) = 4n r2Ar, we obtain
1w (Vg x #1) = (N(Yr))ng(r)dmr® Ar, (A16)

provided Ar is smaller than the scale of variation of g(r).
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APPENDIX B: DETAILS OF ENSEMBLE-AVERAGED MASS CONSERVATION
EQUATION DERIVATION

The ensemble-averaged equations have been derived by several researchers [60,61]. Defining the
average solid volume fraction as

(9) = (Ip(x, 1)), (BI)
and starting from the mass conservation equation
ap
T + V. (pu) =0, B2)

which is trivially satisfied inside constant density, rigid particles, and multiplying it by the indicator
function and taking the ensemble average yields

0 "
2 pp) + V- (Lp) (@) = 0. (B3)
For constant density particles (I,0) = p,{l,) = p,{(¢), and

@) = (Lpw)/{Iyp),
which for constant p,, simplifies to
@") = @) = {w/ i),

which is the phasic average velocity. Therefore, the average mass conservation equation in the
ensemble-averaged approach is

0
% + V- ((p) () =0. (B4)

APPENDIX C: VOLUME-AVERAGED MASS CONSERVATION EQUATION

We can write a conservation equation for ®,(,,; ¢, w) by considering its temporal evolution

0D, (Vi t, al,(x,t;
p( ) :/ p(X ) dx
/V"X

9 Cl
ot ot €D

where we have used the fact that #;, does not depend on ¢. Using Drew’s topological equation and
simplifying we obtain

00,

——3/<¢>dx+ai”—— J-ndA——/ ($)(u,) -ndA — J -ndA. (C2)
ar  at Jy ar i 4 :

3 m 0V
Or rewriting, we obtain the volume-averaged mass conservation equation to be

1) ()
——

a

TN
" %<¢>(x,r>dx+7("fm,r,w>——f

0V

<¢><u,,>-ndA—/ JondA.  (C3)
AV,

(3) )

Note that the above equation is a stochastic equation with explicit dependence on the realization w.
Clearly, terms (1) and (3) in the above equation represent the ensemble-averaged mass conservation
[cf. Eq. (17)] for particles with constant material density, which is a deterministic equation. Terms
(2) and (4) on the other hand, represent the departure of the stochastic volume-averaged mass
conservation equation from its deterministic ensemble-averaged counterpart.
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APPENDIX D: MASS CONSERVATION IN THE SPATIALLY FILTERED APPROACH
Taking the time derivative of ¢ defined by Eq. (29) results in

06 _ [ a0,

—y)dv,. D1
ot v, Ot x=y)dby ®L
Substituting
oly(y. 1)
pT = -V, (ul,)

in the above equation results in
I

oy = —/ Vy - [ul,9(x —y)ldV, —i—/ ul,V,9(x —y)dV,.
Voo

00

Using Gauss’ divergence theorem, we can rewrite the above equation as

95
—¢ = —/ n-ul,(y, t;0)9(x —y)dA — / ul,V,9(x —y)dV,,
ot Wi Vio ’
because
Vyd(x—y)=-V9x—y).
Now defining
1
V= 5/ L(y, Hu(y, )9 (x — y) dVj, (D2)
VOO
noting that

Vi - (¢V) = / ul,Vi9(x —y)dV,,
Voo

we can rewrite the last term in the preceding form of the mass conservation equation as

¢ -
B + V- (V) = —/ Vy - [ul,9x—y)ldV, = —/ n - [ul,¥(x — y)ldA.
oo a oo
APPENDIX E: REPRESENTATION OF FLUCTUATIONS IN THE
VOLUME-AVERAGING APPROACH

The fluctuation ® ,(¥,; 1, ) which arises in the volume-averaging approach can be related to the
two-point density that is used to characterize fluctuations in the ensemble-averaging approach. This
important relationship is established in the following. In order to consider fluctuations we consider
the quantity CDf,(Jz{ X HB;t, w), which we expand using Eq. (19) to obtain

(A x Bit, 0) = [/ﬂ(q&) dx; + ®,(;1, a))j| |:/@(¢) dx, + ®,(%;t, a)):|. (ED)

The expected value of de,(,szf X AB;t, w) is the second moment of particle volume, which simplifies
to

(02( x B;1)) = [ /dw))dxl /ﬁ () dx; + <&>p<d;t>d‘>p<%;r>>} (E2)

The statistics of this quantity have a density only in the product space. This connects it to the
two-point density, which is in turn related to g(r) [see Eq. (A13)].
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m Region occupied
by a solid particle
% Region of intersection of particle
and measurement volume

FIG. 4. Schematic showing the intersection of solid particles with the measurement region. The region of
space occupied by the solids is hatched with vertical lines. The region of intersection of the solid particles with
the measurement region is hatched with horizontal lines.

We consider volume fluctuations in statistically homogeneous gas-solid flows. Gas-solid flows
are characterized by an intrinsic statistical variability in quantities such as the number of particles,
or the volume occupied by the particles in any given region. Moreover, formation of clusters can
lead to a lack of separation of length scales. Therefore, the inherent statistical variability present in
the volume occupied the particles in any region or “measurement region” needs to be characterized
in a statistically homogeneous suspension.

In this context we introduce the concept of measurement or observation region. A measurement
region is a region of arbitrary shape and fixed size in the gas-solid flow domain. It can be thought of
as an observation window or frame in an experiment. We define statistical measures to characterize
the level of local volume fluctuations in a measurement region. A schematic with the measurement
region in the flow domain is shown in Fig. 4. The solid phase is represented by the indicator function
I,(x) which is unity if the point x lies in the solid phase and zero otherwise. The solid phase volume
fraction fluctuations in any measurement volume ¥;, depend on the microstructure or the particle
configuration. It is useful to define the one-point and two-point probability functions S;(x;) and
C(xq, X») as follows:

Si(x1) = (Ip(x1)), (E3)

C(x1,X2) = (,(x1)I,(X2)). (E4)

Here S, is the probability of finding a point in the solid phase. For statistically homogeneous
gas-solid suspensions this quantity is equal to the volume fraction of the solid phase. The quantity
C(xy, xp) is the probability of finding two points Xx; and X, simultaneously in the solid phase
[97,98]. For statistically homogeneous and isotropic gas-solid suspensions, C is only a function
of the magnitude of the separation between the points, i.e., C(Xj, Xp) = C(|X; — X3|). Two limits
of this function are of interest. When the separation between the points is very small, C — (¢)
and when the separation becomes very large C — (¢)2. The inherent statistical variability in the
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volume fraction of the solid phase can be characterized in terms of the variance of the local volume
fraction in a given measurement volume. In order to perform this calculation, the local volume
fraction [100,154] in a measurement volume centered at location x is defined as

m

e(x) = VLA/ I(z,t;w)dz. (ES)

When the measurement volume is large, i.e., V,, — oo the local volume fraction tends to the volume
fraction of the solid phase. At the other extreme when the measurement volume becomes very small,
the local volume fraction becomes the indicator function of the solid phase at the point x.

It is useful to express the local particle volume in terms of volume integrals over the entire
domain. The physical domain is deterministic and so the expectation operator and the integral
operator commute. In order to define the local volume fraction as an integral over the whole domain,
we define an indicator function for the measurement region as follows:

1 if ye?)

Ly (y) = {O otherwise. (E6)

From the definition it is clear that Iyx(y) = Iyo(y — X). Therefore, the indicator function of a
measurement region centered at any point X is written in terms of the indicator function of
the measurement region centered at origin. With this definition, the local particle volume in a
measurement region centered at a point X can be written as

1
e(x) = v

m

L/ Ip(y, t; @) Iyo(y — x)dy. (E7)

X
n

Note that in the above equation the integral is over all possible values of y and not over 7,,.

It is clear that the expected value of the local particle volume is nothing but the average
particle volume of the solid phase. A measure of the fluctuations in particle volume fluctuations
can be obtained by examining the ratio of the standard deviation of the local particle volume to
the average solid phase volume. This ratio k; = 0,/(¢) gives a measure of the nonuniformity
of the local particle volume. Here, the standard deviation of the local particle volume is defined
as ‘752 = (%) — (¢)%. It is instructive to examine the limits of the intensity of particle volume
fluctuations ky. For large measurement volumes, ks — 0. For very small measurement volumes

02 — (¢) — (¢)? and hence ks — /1%”.

We now establish the relationship between the standard deviation of the particle volume fraction
and the two-point correlation function C. The expected value of the square of the local volume
fraction fluctuations (for a homogeneous random field) is given by

(82> — _</ I,(y, t;co)ln,/"?(y — x)dy/lp(z, t;a))I«,/H(I)(z —X) dz>
1
= / / (Up(y. 1:0) (2, 1)) Iy (y — X)40(z — X) dy dz

1
= ‘ﬁ // C@y,2) I”I/,,?(y - X)I"I/"?(Z —x)dydz. (E8)

Since the gas-solid flow is homogeneous, C(y, z) = C(y — z). Now invoking a transformation
r =y — z, we see that

1
€)= [ co / Iya(y = X)lyo(y — (X + 1)) dy dr

1 .
= V2 C(r)V,"(r)dr, (E9)
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where all integrals are over the entire domain and the dependence on x is dropped on account of
statistical homogeneity.

In the above expression, Vzi“‘(r) is the volume of intersection of two measurement regions
separated by r. This is because I40(y — x), is the indicator function of a measurement volume
centered at x. Similarly, I0(y — (X + 1)) is the indicator function of a measurement region centered
at the point x 4 r. Hence the volume integral

Vir(r) = f Lyp(y = X)Iy0(y — (x +1))Cdy (E10)

gives the volume of intersection of these two measurement regions, which depends on the shape
and size of the measurement regions but is independent of x. From the definition of the intersection
volume, it is clear that fn,, V,"(r)dr = an. Therefore, the variance of the fluctuations can now be
written as

Q
|

1 R
= vz f C(r)V,"(r)dr — (¢)*

1 . 1 .
v / C(r)V,"(r)dr — <¢)2@ / Vit (r)dr

1 . 1 .
v / [C(r) — ($)2IVi"(r) dr = v / k(e)Vi™ (r) dr. (E11)

Therefore, the final expression for the intensity of volume fraction fluctuations becomes

1 . 1/2
ky = A [ / k(r)Vi (r)dr} : (E12)

In the volume-averaged approach, although the fluctuation d p(Pnst, o) also does not have a
smooth density in X, it could be modeled in a manner similar to GPCE [145] exploiting Karhunen-
Loeve expansions [146]. A model for this particle volume fluctuation must imply a model for the
evolution of the two-point density. This can give insight into how its spatially filtered counterpart
can be modeled, which in turn implies a model for the spatially filtered two-point density.
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