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Abstract— Optical coherence tomography (OCT) has stim-
ulated a wide range of medical image-based diagnosis and
treatment. In cardiac imaging, OCT has been used in assessing
plaques before and after stenting. While needed in many
scenarios, high resolution comes at the costs of demanding
optical design and data storage/transmission. In OCT, there
are two types of resolutions to characterize image quality:
optical and digital resolutions. Although multiple existing works
have heavily emphasized on improving the digital resolution,
the studies on improving optical resolution or both resolutions
remain scarce. In this paper, we focus on improving both reso-
lutions. In particular, we investigate a deep learning method to
address the problem of generating a high-resolution (HR) OCT
image from a low optical and low digital resolution (L>R) image.
To this end, we have modified the existing super-resolution
generative adversarial network (SR-GAN) for OCT image
reconstruction. Experimental results from the human coronary
OCT images have demonstrated that the reconstructed images
from highly compressed data could achieve high structural simi-
larity and accuracy in comparison with the HR images. Besides,
our method has obtained better denoising performance than
the block-matching and 3D filtering (BM3D) and Denoising
Convolutional Neural Networks (DnCNN) denoising method.

I. INTRODUCTION

Optical coherence tomography (OCT) [1] is a non-invasive
imaging modality that provides depth-resolved tissue mi-
crostructural images in real-time. Over the past decades,
OCT has spawned a wide range of applications in medical
image diagnosis and treatment. In cardiology, for example,
OCT is considered as a suitable coronary imaging modal-
ity to assess plaques prior to stenting to ensure success-
ful stent deployment and to assess vascular response after
the intervention [2]. It is now possible to evaluate sub-
cellular features and make a crucial clinical assessment
of whether drug-eluting stents are covered with fibrin or
endothelial cells using ultra-high-resolution spectral domain
OCT (SD-OCT) [3]. However, such a high resolution comes
at multiple costs: more demanding optical design and data
storage/transmission. Conventional SD-OCT employs a line
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Fig. 1. Tllustration of low optical resolution and low digital resolution.

detector such as charge-coupled device (CCD) or com-
plementary metal-oxide—semiconductor (CMOS) sensors to
measure the interference signals in spectrum domain and uses
Fast Fourier Transform to reconstruct the image in spatial
domain. The camera must have sufficient pixels to guarantee
the reconstruction quality. It thus imposes a limit on data
transmission and storage capacity. It remains a challenge to
increase speed without compromising image resolution.

Two distinct types of resolutions are used to characterize
OCT systems: optical and digital resolutions. Fig. 1 rep-
resents an A-line along the axial direction, the direction
where light propagates. Optical resolution [4] defines the
system’s capability to resolve two point sources with equal
intensity. In OCT, the value of axial resolution is inversely
proportional to the bandwidth of the light source [1]. A
truncated measurement in spectral domain results in a lower
axial resolution, as shown in the first row of Fig. 1. Lower
optical resolution may allow for a higher scanning rate as
only half of the spectrum is recorded. In contrast, digital res-
olution, defined by the distance per pixel [5], is determined
by the number of pixels and imaging range. As shown in
the second row of Fig. 1, low digital resolution refers to the
case where the reconstructed image is numerically down-
sampled. Low optical resolution is caused by bandwidth-
limited measurements in spectral domain while a low digital
resolution is caused by reduced data in spatial domain.

Super-resolution refers to the procedure of generating
high-resolution (HR) images from low-resolution images
[6]. Specifically for OCT, many techniques have been pro-
posed to push the limit of resolution. Sparse representation
methods, such as dictionary learning, have been used to
reconstruct HR images from down-sampled OCT images
n [7][8]. An optimization problem is posed and solved
via sparse representation to alleviate the low sampling rate
caused by jitter and motion artifacts [9]. However, such
a sampling scheme in spectral domain does not increase
the bandwidth of measured signals. Therefore, the optical
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resolution is not improved. Deep learning, a dominating
technology in image processing and computer vision, has re-
cently been investigated to facilitate image quality. However,
the existing super-resolution-based deep learning framework
in OCT [10][11][12] only improves digital resolution without
considerations of the optical resolution. To the best of
our knowledge, there is no existing technique to improve
the optical resolution or simultaneously improves both the
optical and digital resolutions via deep learning. Moreover,
noise reduction is also in need as the down-sampled image
is prone to noise corruption. Recently, sparse representation
[13] and deep learning [11] have been proposed to address
this need, but neither has been applied to optical resolution.

In this paper, we propose a deep learning framework to
simultaneously improve the optical and digital resolutions
from OCT images with reduced data size. We employ a
generative adversarial network (GAN) to learn the rela-
tionship between the low-optical-resolution and low-digital-
resolution (L?R) OCT images and corresponding their HR
images off-line. We demonstrate that the GAN network is
able to generate HR images from the reduced OCT data that
only contains 25% of the original spectrum information and
6.25% of the reconstructed spatial information.

II. METHOD
A. Data collection

Autopsy specimens were collected from the School of
Medicine at the University of Alabama at Birmingham and
delivered to the University of Alabama for imaging. The
specimens were de-identified and not considered human
subjects, according to UAB’s Institutional Review Board
(IRB). Specimens were imaged via a high-resolution OCT
system (Thorlabs Ganymede, Newton, NJ) with an axial
resolution of 3 um and a lateral resolution of 4 pm, both
in air. We imaged two segments per specimen, one at the
left anterior descending (LAD) and the other at the right
coronary artery (RCA). We obtained 23 volumes from three
specimens, each with a volume of 1024 x 1500 x 750
voxels, corresponding to a space of 1.98 x 3 x 1.5 mm?.

B. Problem formulation

As shown in Fig. 2 (a), we reduced the OCT data in both
spectral and spatial domain. In spectral domain, we used
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the middle 25% of spectrum data. Zero-padding was used
to maintain the same imaging depth. After reconstructing
image via Inverse Discrete Fourier Transform (IDFT), we
used a x4 scaling factor to obtain a low resolution optical
and low digital resolution image, ;2. In parallel, we used
the full spectrum to reconstruct a high-resolution image, Iyg.
Then, we built a generator, G, to map I;25 to Igg:

GZILzR —>IHR

(1
C. Network architecture

We designed our network via a modification of the super-
resolution (SR)-GAN[14] which was originally for natural
images. The basic idea was to use ResNet [15] as a generator
G and use a discriminator D to provide feedback on the
performance of G. The detailed structure is shown in Fig. 2
(b) and (c). The discriminator and generator worked together
to solve the following adversarial min-max problem: [14]:

me mng(G, D) = Ey~p,,, . [log(D(Iur))]+
Evepy, llo8(1—D(G(1z))]

where py,, and p;, denote the distribution of Iy and I2p.

During the optimization, network parameters were tuned
by minimizing a loss function that consists of adversarial
loss and content loss components. Adversarial loss was
defined based on the probabilities of the discriminator over
all training samples. The content loss was designed as:

2

lLZR
content

3)

where weights, from w; to w4, are assigned to mean square
error (MSE), multiscale structural similarity index (MSSIM),
VGG feature [16], and total variation (TV), respectively.

In comparison with the SR-GAN [14], we simplified the
generator structure and built a new loss function. As OCT
image only has one gray-scale channel, we reduced the
number of layers in the generator from 16 residual blocks to
12. MSSIM and TV were newly introduced in loss function.
MSSIM was used to achieve better structural information.
TV factor was used to increase the homogeneity within
a tissue type. Noticeably, in addition to super-resolution,
MSSIM and TV-based optimization can be also considered
as a process of suppressing speckle noise, leading to an effect
of desnoising.

L2R I2R L*R L*R
= WllMSE + WleSSIM + W3IVGG + W4ITV



Fig. 3.

Visual comparison of super-resolution performance. a) Original HR image; b) Reconstructed image from proposed method; c¢) Reconstructed

image from bicubic interpolation; d) Original low resolution L?R image. The second row corresponds to the insets (red and blue boxes) in the first row.

III. EXPERIMENTS RESULTS
A. Implementation

We optimized both the generator and discriminator using
the Adam algorithm [17]. In our experiment, we empirically
set the values of the hyperparameters as follows: f; = 0.9,
ITgecay = 0.1. The weights in Eq. 3 were: w; =1, wp = 0.1,
w3 =2x107%, wy =3 x 1070, The batch size is 4. We ran our
scripts under Tensorflow and Tensorlayer on an Alienware
Area-51 RS computer with 48 GB of RAM and two NVIDIA
GPU, 2080Ti and Titan V. Training was monitored and
terminated when no further improvement was observed. We
acquired a cohort of 266 images, with each one divided
into patches of 384 x 384 pixels. Overall, we had 1596
patches. The training versus testing division is 3:1. Training
data and testing data were shuffled based on volumes such
that training and testing patches were not from the same
volume.

B. Experiment setup

In our experiment, we generate HR image /g, from I;2p,
and compare with its Iyg over similarity and accuracy.
We evaluate the similarity using structural similarity index
(SSIM)[18] and Pearson correlation coefficient (Corr)[19]:
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where U, o are the local means, standard deviations. C; and
C, are regularizers determined by the dynamic range. We
evaluate the accuracy based on MSE and PSNR [20]:
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where m=1,2,.,Mandn=1, 2, ..., N are indexes of row
and column in image; R is the max fluctuation of images.

Based on the four metrics, we compare the super-
resolution performance of our method with bicubic and
orginal SR-GAN [14]. Moreover, we compare the denoising
performance with Block-matching and 3D filtering (BM3D)
method [21] and Denoising Convolutional Neural Networks
(DnCNN) [22]. We add Gaussian noise to L?R images
with different 6> value, then feed the noisy L’R images
to our network to get the generated images. As BM3D and
DnCNN work on fully-sampled images, we first add noise
to interpolated L”R images and then feed those images to
each denoising frameworks to obtain reconstructed images.

C. Results

We evaluate the performance of super-resolution. Table
I lists the mean values of PSNR, MSE, SSIM, and Corr
obtained from proposed method, SR-GAN, and bicubic
method. Our method outperforms other two methods with
a lower MSE and higher values of SSIM, Corr, and PSNR.
It indicates superiority in reconstructing fine morphological
details for low optical and digital resolution images. Fig.
3 shows the visual comparison of a representative image
processed by our proposed method and bicubic interpolation,
the method with higher PSNR/Corr and lower MSE than SR-
GAN, using the central 25% spectrum in spectrum domain
and 6.25% reconstructed data in spatial domain. First, regard-
ing optical resolution, our method preserves and enhances the
blurry boundary region over the axial direction (highlighted
as arrow region). It resolves a clear boundary in the generated
image. Second, regarding digital resolution, L?R is not able
to resolve the two peaks column around the star marks in
the red box of Fig. 3. Bicubic interpolation resulted in an
over-smooth transition between the two peaks. In contrast,
our method is able to highlight the value change on the left
and right columns close to the star mark.

To evaluate the denoising performance, we plot the PSNR
over three levels of Gaussian noise in Fig. 4, using proposed
method, BM3D, and DnCNN. We observe higher PSNR
values from our methods than values from the other two.
The BM3D method has a higher PSNR than DnCNN method
in two corrupted scenarios (62 = 0.04 and 0.06) while
DnCNN only has better performance when the noise is mild
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(62 = 0.02). Our method is computationally efficient. The
runtime of our method (~2.48 sec/image) is less than that of
BM3D(~5.97 sec/image) and DnCNN(~20.16 sec/image).

TABLE I
QUANTITATIVE COMPARISON AMONG THREE METHODS IN
SUPER-RESOLUTION.

PSNR MSE SSIM Corr
Proposed method 24.7905  241.9376 0.8056  0.9315
Bicubic 24.6012  255.8057 0.7789  0.9293
Original SR-GAN  24.4781  259.28897  0.7966  0.9258

IV. DISCUSSION AND CONCLUSION

We presented a deep learning framework to reconstruct
high resolution images from low optical and low digital res-
olution images. The proposed method has shown superiority
in comparison with the conventional interpolation methods
and the denoising methods.

The proposed framework has three major contributions.
First, our method considers an OCT system with both the low
optical and low digital resolutions. It is one step further than
current deep learning-based OCT super-resolution methods
[10][11][12] that solely consider digital resolution. Second,
we demonstrate the feasibility of using highly compressed
OCT data in spectral measurement to achieve the same
optical resolution, making it possible to maintain a high
resolution while reducing the bandwidth (less spectrum in-
formation to be saved). Third, our method can also be used
as a denoising method to enhance the image quality.

We did not compare our method with sparse representation
in this study because sparse representation has a strict
requirement on the sparsity of compressed signals. Due to the
fact that the image data has been reduced twice, in spectral
and spatial domain sequentially, the sparsity property of the
signal is not well investigated. In the future, we will perform
a theoretical study on its property and conduct the compari-
son accordingly. With a goal of verifying the enhancement in
clinical decision-making, we will also correspond our OCT
images with histology images to identify tissue types such
as cholesterol crystals, activated macrophages, etc.
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