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Abstract— Optical coherence tomography (OCT) has stim-
ulated a wide range of medical image-based diagnosis and
treatment. In cardiac imaging, OCT has been used in assessing
plaques before and after stenting. While needed in many
scenarios, high resolution comes at the costs of demanding
optical design and data storage/transmission. In OCT, there
are two types of resolutions to characterize image quality:
optical and digital resolutions. Although multiple existing works
have heavily emphasized on improving the digital resolution,
the studies on improving optical resolution or both resolutions
remain scarce. In this paper, we focus on improving both reso-
lutions. In particular, we investigate a deep learning method to
address the problem of generating a high-resolution (HR) OCT
image from a low optical and low digital resolution (L2R) image.
To this end, we have modified the existing super-resolution
generative adversarial network (SR-GAN) for OCT image
reconstruction. Experimental results from the human coronary
OCT images have demonstrated that the reconstructed images
from highly compressed data could achieve high structural simi-
larity and accuracy in comparison with the HR images. Besides,
our method has obtained better denoising performance than
the block-matching and 3D filtering (BM3D) and Denoising
Convolutional Neural Networks (DnCNN) denoising method.

I. INTRODUCTION

Optical coherence tomography (OCT) [1] is a non-invasive

imaging modality that provides depth-resolved tissue mi-

crostructural images in real-time. Over the past decades,

OCT has spawned a wide range of applications in medical

image diagnosis and treatment. In cardiology, for example,

OCT is considered as a suitable coronary imaging modal-

ity to assess plaques prior to stenting to ensure success-

ful stent deployment and to assess vascular response after

the intervention [2]. It is now possible to evaluate sub-

cellular features and make a crucial clinical assessment

of whether drug-eluting stents are covered with fibrin or

endothelial cells using ultra-high-resolution spectral domain

OCT (SD-OCT) [3]. However, such a high resolution comes

at multiple costs: more demanding optical design and data

storage/transmission. Conventional SD-OCT employs a line
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Fig. 1. Illustration of low optical resolution and low digital resolution.

detector such as charge-coupled device (CCD) or com-

plementary metal–oxide–semiconductor (CMOS) sensors to

measure the interference signals in spectrum domain and uses

Fast Fourier Transform to reconstruct the image in spatial

domain. The camera must have sufficient pixels to guarantee

the reconstruction quality. It thus imposes a limit on data

transmission and storage capacity. It remains a challenge to

increase speed without compromising image resolution.

Two distinct types of resolutions are used to characterize

OCT systems: optical and digital resolutions. Fig. 1 rep-

resents an A-line along the axial direction, the direction

where light propagates. Optical resolution [4] defines the

system’s capability to resolve two point sources with equal

intensity. In OCT, the value of axial resolution is inversely

proportional to the bandwidth of the light source [1]. A

truncated measurement in spectral domain results in a lower

axial resolution, as shown in the first row of Fig. 1. Lower

optical resolution may allow for a higher scanning rate as

only half of the spectrum is recorded. In contrast, digital res-

olution, defined by the distance per pixel [5], is determined

by the number of pixels and imaging range. As shown in

the second row of Fig. 1, low digital resolution refers to the

case where the reconstructed image is numerically down-

sampled. Low optical resolution is caused by bandwidth-

limited measurements in spectral domain while a low digital

resolution is caused by reduced data in spatial domain.

Super-resolution refers to the procedure of generating

high-resolution (HR) images from low-resolution images

[6]. Specifically for OCT, many techniques have been pro-

posed to push the limit of resolution. Sparse representation

methods, such as dictionary learning, have been used to

reconstruct HR images from down-sampled OCT images

in [7][8]. An optimization problem is posed and solved

via sparse representation to alleviate the low sampling rate

caused by jitter and motion artifacts [9]. However, such

a sampling scheme in spectral domain does not increase

the bandwidth of measured signals. Therefore, the optical



Fig. 2. a) Image pipeline for training with high resolution images (IHR) and low optical, low digital image (IL2R). b) Network structure of Generator; c)
Network structure of Discriminator.

resolution is not improved. Deep learning, a dominating

technology in image processing and computer vision, has re-

cently been investigated to facilitate image quality. However,

the existing super-resolution-based deep learning framework

in OCT [10][11][12] only improves digital resolution without

considerations of the optical resolution. To the best of

our knowledge, there is no existing technique to improve

the optical resolution or simultaneously improves both the

optical and digital resolutions via deep learning. Moreover,

noise reduction is also in need as the down-sampled image

is prone to noise corruption. Recently, sparse representation

[13] and deep learning [11] have been proposed to address

this need, but neither has been applied to optical resolution.

In this paper, we propose a deep learning framework to

simultaneously improve the optical and digital resolutions

from OCT images with reduced data size. We employ a

generative adversarial network (GAN) to learn the rela-

tionship between the low-optical-resolution and low-digital-

resolution (L2R) OCT images and corresponding their HR

images off-line. We demonstrate that the GAN network is

able to generate HR images from the reduced OCT data that

only contains 25% of the original spectrum information and

6.25% of the reconstructed spatial information.

II. METHOD

A. Data collection

Autopsy specimens were collected from the School of

Medicine at the University of Alabama at Birmingham and

delivered to the University of Alabama for imaging. The

specimens were de-identified and not considered human

subjects, according to UAB’s Institutional Review Board

(IRB). Specimens were imaged via a high-resolution OCT

system (Thorlabs Ganymede, Newton, NJ) with an axial

resolution of 3 µm and a lateral resolution of 4 µm, both

in air. We imaged two segments per specimen, one at the

left anterior descending (LAD) and the other at the right

coronary artery (RCA). We obtained 23 volumes from three

specimens, each with a volume of 1024 × 1500 × 750

voxels, corresponding to a space of 1.98 × 3 × 1.5 mm3.

B. Problem formulation

As shown in Fig. 2 (a), we reduced the OCT data in both

spectral and spatial domain. In spectral domain, we used

the middle 25% of spectrum data. Zero-padding was used

to maintain the same imaging depth. After reconstructing

image via Inverse Discrete Fourier Transform (IDFT), we

used a ×4 scaling factor to obtain a low resolution optical

and low digital resolution image, IL2R. In parallel, we used

the full spectrum to reconstruct a high-resolution image, IHR.

Then, we built a generator, G, to map IL2R to IHR:

G : IL2R −→ IHR (1)

C. Network architecture

We designed our network via a modification of the super-

resolution (SR)-GAN[14] which was originally for natural

images. The basic idea was to use ResNet [15] as a generator

G and use a discriminator D to provide feedback on the

performance of G. The detailed structure is shown in Fig. 2

(b) and (c). The discriminator and generator worked together

to solve the following adversarial min-max problem: [14]:

min
G

max
D

L(G,D) = Ey∼pIHR
[log(D(IHR))]+

Ex∼pI
L2R

[log(1−D(G(IL2R)))]
(2)

where pIHR
and pI

L2R
denote the distribution of IHR and IL2R.

During the optimization, network parameters were tuned

by minimizing a loss function that consists of adversarial

loss and content loss components. Adversarial loss was

defined based on the probabilities of the discriminator over

all training samples. The content loss was designed as:

lL2R
content = w1lL2R

MSE +w2lL2R
MSSIM +w3lL2R

V GG +w4lL2R
TV (3)

where weights, from w1 to w4, are assigned to mean square

error (MSE), multiscale structural similarity index (MSSIM),

VGG feature [16], and total variation (TV), respectively.

In comparison with the SR-GAN [14], we simplified the

generator structure and built a new loss function. As OCT

image only has one gray-scale channel, we reduced the

number of layers in the generator from 16 residual blocks to

12. MSSIM and TV were newly introduced in loss function.

MSSIM was used to achieve better structural information.

TV factor was used to increase the homogeneity within

a tissue type. Noticeably, in addition to super-resolution,

MSSIM and TV-based optimization can be also considered

as a process of suppressing speckle noise, leading to an effect

of desnoising.



Fig. 3. Visual comparison of super-resolution performance. a) Original HR image; b) Reconstructed image from proposed method; c) Reconstructed
image from bicubic interpolation; d) Original low resolution L2R image. The second row corresponds to the insets (red and blue boxes) in the first row.

III. EXPERIMENTS RESULTS

A. Implementation

We optimized both the generator and discriminator using

the Adam algorithm [17]. In our experiment, we empirically

set the values of the hyperparameters as follows: β1 = 0.9,

lrdecay = 0.1. The weights in Eq. 3 were: w1 = 1, w2 = 0.1,

w3 = 2×10−6, w4 = 3×10−6. The batch size is 4. We ran our

scripts under Tensorflow and Tensorlayer on an Alienware

Area-51 R5 computer with 48 GB of RAM and two NVIDIA

GPU, 2080Ti and Titan V. Training was monitored and

terminated when no further improvement was observed. We

acquired a cohort of 266 images, with each one divided

into patches of 384 × 384 pixels. Overall, we had 1596

patches. The training versus testing division is 3:1. Training

data and testing data were shuffled based on volumes such

that training and testing patches were not from the same

volume.

B. Experiment setup

In our experiment, we generate HR image Igen from IL2R,

and compare with its IHR over similarity and accuracy.

We evaluate the similarity using structural similarity index

(SSIM)[18] and Pearson correlation coefficient (Corr)[19]:

SSIM =
(2µIgen µIHR

+C1)+(2σIgenIHR
+C2)

(µ2
Igen

+µ2
IHR

+C1)(σ2
Igen

+σ2
IHR

+C2)
(4)

ρ =
Cov(Igen, IHR)

σIgen σIHR

=
E[(Igen −µIgen)(IHR −µIHR)]

σIgen σIHR

(5)

where µ , σ are the local means, standard deviations. C1 and

C2 are regularizers determined by the dynamic range. We

evaluate the accuracy based on MSE and PSNR [20]:

MSE =
∑M,N [Igen(m,n)− IHR(m,n)]2

M×N
(6)

PSNR = 10log10(
R2

MSE
) (7)

where m = 1, 2, .., M and n = 1, 2, ..., N are indexes of row

and column in image; R is the max fluctuation of images.

Based on the four metrics, we compare the super-

resolution performance of our method with bicubic and

orginal SR-GAN [14]. Moreover, we compare the denoising

performance with Block-matching and 3D filtering (BM3D)

method [21] and Denoising Convolutional Neural Networks

(DnCNN) [22]. We add Gaussian noise to L2R images

with different σ2 value, then feed the noisy L2R images

to our network to get the generated images. As BM3D and

DnCNN work on fully-sampled images, we first add noise

to interpolated L2R images and then feed those images to

each denoising frameworks to obtain reconstructed images.

C. Results

We evaluate the performance of super-resolution. Table

I lists the mean values of PSNR, MSE, SSIM, and Corr

obtained from proposed method, SR-GAN, and bicubic

method. Our method outperforms other two methods with

a lower MSE and higher values of SSIM, Corr, and PSNR.

It indicates superiority in reconstructing fine morphological

details for low optical and digital resolution images. Fig.

3 shows the visual comparison of a representative image

processed by our proposed method and bicubic interpolation,

the method with higher PSNR/Corr and lower MSE than SR-

GAN, using the central 25% spectrum in spectrum domain

and 6.25% reconstructed data in spatial domain. First, regard-

ing optical resolution, our method preserves and enhances the

blurry boundary region over the axial direction (highlighted

as arrow region). It resolves a clear boundary in the generated

image. Second, regarding digital resolution, L2R is not able

to resolve the two peaks column around the star marks in

the red box of Fig. 3. Bicubic interpolation resulted in an

over-smooth transition between the two peaks. In contrast,

our method is able to highlight the value change on the left

and right columns close to the star mark.

To evaluate the denoising performance, we plot the PSNR

over three levels of Gaussian noise in Fig. 4, using proposed

method, BM3D, and DnCNN. We observe higher PSNR

values from our methods than values from the other two.

The BM3D method has a higher PSNR than DnCNN method

in two corrupted scenarios (σ2 = 0.04 and 0.06) while

DnCNN only has better performance when the noise is mild
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Fig. 4. Denoising performance.

(σ2 = 0.02). Our method is computationally efficient. The

runtime of our method (∼2.48 sec/image) is less than that of

BM3D(∼5.97 sec/image) and DnCNN(∼20.16 sec/image).

TABLE I

QUANTITATIVE COMPARISON AMONG THREE METHODS IN

SUPER-RESOLUTION.

PSNR MSE SSIM Corr

Proposed method 24.7905 241.9376 0.8056 0.9315
Bicubic 24.6012 255.8057 0.7789 0.9293
Original SR-GAN 24.4781 259.28897 0.7966 0.9258

IV. DISCUSSION AND CONCLUSION

We presented a deep learning framework to reconstruct

high resolution images from low optical and low digital res-

olution images. The proposed method has shown superiority

in comparison with the conventional interpolation methods

and the denoising methods.

The proposed framework has three major contributions.

First, our method considers an OCT system with both the low

optical and low digital resolutions. It is one step further than

current deep learning-based OCT super-resolution methods

[10][11][12] that solely consider digital resolution. Second,

we demonstrate the feasibility of using highly compressed

OCT data in spectral measurement to achieve the same

optical resolution, making it possible to maintain a high

resolution while reducing the bandwidth (less spectrum in-

formation to be saved). Third, our method can also be used

as a denoising method to enhance the image quality.

We did not compare our method with sparse representation

in this study because sparse representation has a strict

requirement on the sparsity of compressed signals. Due to the

fact that the image data has been reduced twice, in spectral

and spatial domain sequentially, the sparsity property of the

signal is not well investigated. In the future, we will perform

a theoretical study on its property and conduct the compari-

son accordingly. With a goal of verifying the enhancement in

clinical decision-making, we will also correspond our OCT

images with histology images to identify tissue types such

as cholesterol crystals, activated macrophages, etc.
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