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Major updates in version 2.70 of GOMC include new Monte Carlo moves to enhance the sampling of

phase space, such as Molecular Exchange Monte Carlo (MEMC), configurational-bias for molecules that

contain rings, the crankshaft move, and a force/torque-biased multi-particle move. Support for force

fields governed by exp-6 potentials, and free energy calculations using thermodynamic integration or

free energy perturbation has been added. The GPU performance of the multi-particle move has been

improved significantly from version 2.50, and memory usage has been reduced significantly.
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1. Motivation and significance

GOMC is a general-purpose Monte Carlo simulation engine

for the simulation of molecular systems with molecular me-
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chanics force fields based on the 12-6 Lennard-Jones, or Mie

potentials [1]. It has support for simulations in all common en-

sembles, including the Gibbs ensemble Monte Carlo algorithm.

GOMC was designed with a focus on high performance and has

support for simulations on multicore CPUs and graphics process-

ing units (GPUs). This paper describes a number of enhance-

ments to GOMC, including new types of Monte Carlo moves, as

well as support for alchemical free energy calculations, and new
https://doi.org/10.1016/j.softx.2020.100627
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ntermolecular potentials, which expand significantly the scope
f research problems that may be studied with GOMC.

. Updates to Monte Carlo sampling algorithms

Three new Monte Carlo sampling algorithms have been added
o GOMC. These include a crankshaft move [2,3], an extension
o the coupled–decoupled configurational-bias (CD-CBMC) algo-
ithm [4] to support molecules that contain rings, and a general-
zed version of the swap+identity (swatch) algorithm [5], called
olecular Exchange Monte Carlo (MEMC) [6,7], and a multi-
article move [8].
The crankshaft move is designed to improve conformational

ampling of long chain molecules, such as polymers, by allowing
or internal rearrangements of atoms. In the crankshaft move,
trial rotation is performed around the shaft formed between

wo selected atoms. The probability of generating such a new
onfiguration is

gen (i) = exp
(
−β

(
Ubend (i) + Utors (i) + ULJ (i)

))
/W (1)

where W =
∑rot−trial

i=0 exp
(
−β

(
Ubend (i) + Utors (i) + ULJ (i)

))
. The

naïve implementation using the CBMC algorithm is computa-
tionally inefficient, since very few of the trial rotations result in
reasonable bond angles, requiring large numbers of rotational tri-
als to be generated. This also requires a large number of expensive
calculations for the non-bonded interaction energies. To improve
the efficiency of the crankshaft move, a coupled, biased selection
was used for the intermolecular energy, and a decoupled, biased
selection was used for bending and torsional energies. In this
approach, the probability of generating a trial configuration is

Pgen (i) =
[
exp

(
−βULJ (i)

)
WB (i) /WNB

]
× [exp (−β (Ubend (j) + Utors (j))) /WB] , (2)

where WNB =
∑LJ−trial

i=0 exp
(
−βULJ (i)

)
WB (i) and WB (i) =∑rot−trial

j=0 exp (−β (Ubend (j) + Utors (j))). This implementation has
a higher acceptance probability and is computationally more ef-
ficient, since it requires significantly fewer intermolecular energy
calculations.

Monte Carlo simulations of molecules containing rings require
specialized configurational-bias algorithms to properly sample
phase space. Two examples are self-adapting fixed endpoint
CBMC (SAFE-CBMC) [9] and reservoir Monte Carlo [10]. These
methods have some limitations. For example, SAFE-CBMC re-
quires preexisting knowledge of the distance distribution be-
tween atoms in the ring. The reservoir method does not re-
quire preexisting knowledge of distance distribution, but can
require large amounts of memory to store the required library
of conformers.

The GOMC implementation of configurational-bias for rings
attempts to address these aforementioned weaknesses. It does
not require any knowledge of atom distance distributions, nor
does it require a reservoir of conformers. Atoms that belong to
the ring are inserted rigidly using CBMC, while the rest of the
atoms attached to the ring are grown using CD-CBMC. Angles and
dihedrals that belong to the ring are kept fixed, while the rest
of the angles and dihedrals are generated using CD-CBMC. Dur-
ing the simulation, crankshaft moves are used to sample angles
and dihedrals within the ring. This methodology allows for the
simulation of vapor–liquid equilibria for polycyclic compounds,
including rings connected by flexible linkers, as shown in Fig. 1.
While this method works for a large number of ring-containing
molecules, it does not work for molecules that contain three or
more flexible rings that share one or more atoms (e.g. acenaph-

Fig. 1. Vapor–liquid coexistence curves predicted by GOMC (red lines) for
methylcyclohexane, benzene, 1,2,4-triethylbenzene, and biphenyl compared to
the work of Wick et al. [11] (blue squares) and Yiannourakou et al. [12] (green
circles). Solid black lines correspond to experimental data [13].

Fig. 2. NVT ensemble Monte Carlo simulations of SPC water at 982 kg/m3 and
298 K using single molecule translations and displacements (black line) and the
multi-particle move (red line). Average energy determined from equilibrated
simulation (green dashed line).

alter the bond angle (with the shared atom at center), without
also changing bond lengths.

Molecular Exchange Monte Carlo is a generalized version of
the combined swap and identity exchange proposed by Mar-
tin and Siepmann [5] to enhance molecule insertion/deletion in
dense system, and has been implemented for both the grand
canonical (GCMC) [7] and Gibbs ensemble Monte Carlo (GEMC)
[6]. In MEMC, the molecules to be exchanged are not required
thene). This is because the crankshaft move cannot be applied to
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Fig. 3. Snapshots from NVT ensemble Monte Carlo simulations of dodecyl-phosphocholine (DPC) modeled with the MARTINI force field [14] using the multi-particle
move after 50M steps (upper) and single molecule translations and rotations after 100M steps (lower).

to have common atom types or coordinates, and molecules to be
exchanged can be exchanged as rigid bodies or regrown atom by
atom using the CD-CBMC algorithm. The MEMC move enhances
sampling in multi-component mixtures or pure fluids using the
technique of impurity atoms proposed by Bai et al. [15]. For
example, in simulations to determine the vapor–liquid coexis-
tence curve of water with GCMC simulations, the MEMC move
was shown to have a computational efficiency over 38 times
that of standard CD-CBMC insertions [7]. These improvements in
sampling efficiency for molecule exchanges enable GCMC simu-
lations to be used to generate phase diagrams at temperatures as
low as 0.5Tc , while GCMC simulations using standard CD-CBMC
nsertions are typically limited to 0.7Tc [7]. In Gibbs ensemble
onte Carlo simulations, the MEMC move enables the efficient
alculation of solvation free energies [6].
Simulations of heterogeneous systems, such as lipid bilayers

r micelles, require Monte Carlo moves that can update the
ositions for collections of molecules simultaneously. Addition-
lly, simulations of polarizable force fields require a complete
ecalculation of the electrostatic interactions whenever a sin-
le molecule is moved, resulting in very poor computational
erformance in Monte Carlo simulations. Molecular dynamics
imulations of polarizable force fields, such as Drude oscilla-
ors, typically use an extended Lagrangian approach to reduce
omputational effort [16,17], which is efficient because all of
he molecules in the system are being moved in a single time
tep. To address the limitations of standard Monte Carlo moves,
hen applied to self-assembly and polarizable force fields, the

orce/torque biased multi-particle move proposed by Moucka
t al. has been implemented in GOMC [18]. To improve the
fficiency of the multi-particle move on GPUs, the counter-based
andom number generator Random123 library was used [19]. The
ulti-particle implementation in GOMC supports independently

ranslating all molecules or rotating all molecules at once. Multi-
article moves that combine displacement and rotation in the
ame move were found to cause stalling of the simulation, leading
o errors in the calculation of ensemble averages, and therefore
re not recommended. The multi-particle move reduces substan-

in self-assembling systems. In NVT simulations of SPC water [20]
at 298 K with the multi-particle move, shown in Fig. 2, equili-
bration was achieved in an order of magnitude fewer steps than
Monte Carlo simulation with single molecule displacements and
rotations. Additionally, NVT Monte Carlo simulations of dodecyl-
phosphocholine (DPC) at 300 K, modeled with the MARTINI force
field [14] (54 DPC molecules, 5900 waters and 500 anti-freeze
particles), presented in Fig. 3, show self-assembly when sim-
ulated with the multi-particle move for 50 million MC steps,
whereas single molecule translations and rotations fail to show
any self-assembly after 100 million MC steps.

3. Free energy calculations

Support for free energy calculations using either thermody-
namic integration or free energy perturbation has been added
to GOMC [21]. Soft-core scaling is used for the Lennard-Jones
interactions, while linear scaling is used for the Coulombic inter-
actions. Separate coupling parameters, λLJ and λCoul, are used to
independently control the scaling of Lennard-Jones and Coulom-
bic interactions, respectively. During the simulation, the change
in energy ∆Ui→j between the current intermediate state (λi)
and all other intermediate states (λj̸=i), and the derivative of
Lennard-Jones and Coulomb potential with respect to lambda
(dUCoul/dλCoul, dULJ/dλLJ), are evaluated and stored for
post-simulation analysis. The output from GOMC is formatted
so it can be analyzed with both alchemlyb [22] and alchemical-
analysis [23]. Since alchemical-analysis is no longer supported
by its authors, the GOMC parser for it was stored in a separate
GitHub repository [24].

4. Conclusion and future updates

This update highlights a number of new sampling algorithms
and code features that have been added in this release. Future
versions of GOMC will include support for replica exchange sim-
ulations, polarizable force fields using Drude oscillators, a Brown-
ian dynamics multi-particle move, and improved performance on
multicore and GPU architectures.
ially the number of Monte Carlo steps required for equilibration
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