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1. Motivation and significance

GOMC is a general-purpose Monte Carlo simulation engine
for the simulation of molecular systems with molecular me-

DOI of original article: https://doi.org/10.1016/j.s0ftx.2018.11.005.

* Corresponding author.
E-mail address: jpotoff@wayne.edu (Jeffrey Potoff).

https://doi.org/10.1016/j.s0ftx.2020.100627

chanics force fields based on the 12-6 Lennard-Jones, or Mie
potentials [1]. It has support for simulations in all common en-
sembles, including the Gibbs ensemble Monte Carlo algorithm.
GOMC was designed with a focus on high performance and has
support for simulations on multicore CPUs and graphics process-
ing units (GPUs). This paper describes a number of enhance-
ments to GOMC, including new types of Monte Carlo moves, as
well as support for alchemical free energy calculations, and new
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intermolecular potentials, which expand significantly the scope
of research problems that may be studied with GOMC.

2. Updates to Monte Carlo sampling algorithms

Three new Monte Carlo sampling algorithms have been added
to GOMC. These include a crankshaft move [2,3], an extension
to the coupled-decoupled configurational-bias (CD-CBMC) algo-
rithm [4] to support molecules that contain rings, and a general-
ized version of the swap+identity (swatch) algorithm [5], called
Molecular Exchange Monte Carlo (MEMC) [6,7], and a multi-
particle move [8].

The crankshaft move is designed to improve conformational
sampling of long chain molecules, such as polymers, by allowing
for internal rearrangements of atoms. In the crankshaft move,
a trial rotation is performed around the shaft formed between
two selected atoms. The probability of generating such a new
configuration is

Pgen (i) = exp (=B (Uvena (1) + Utors () + Uy (1)) /W (1)

where W = Y% exp (— (Uvend (i) + Utors (i) + Uy (i)))- The
naive implementation using the CBMC algorithm is computa-
tionally inefficient, since very few of the trial rotations result in
reasonable bond angles, requiring large numbers of rotational tri-
als to be generated. This also requires a large number of expensive
calculations for the non-bonded interaction energies. To improve
the efficiency of the crankshaft move, a coupled, biased selection
was used for the intermolecular energy, and a decoupled, biased
selection was used for bending and torsional energies. In this
approach, the probability of generating a trial configuration is

Pgen (i) = [exp (—BUy (i) W (i) /W]

x [exp (=B (Upend () + Utors ())) /W], (2)

where Wyg = Y™ exp (—BUy () W (i) and Ws () =

Z}fg Ml axp (—B (Upend () + Usors (j))). This implementation has
a higher acceptance probability and is computationally more ef-
ficient, since it requires significantly fewer intermolecular energy
calculations.

Monte Carlo simulations of molecules containing rings require
specialized configurational-bias algorithms to properly sample
phase space. Two examples are self-adapting fixed endpoint
CBMC (SAFE-CBMC) [9] and reservoir Monte Carlo [10]. These
methods have some limitations. For example, SAFE-CBMC re-
quires preexisting knowledge of the distance distribution be-
tween atoms in the ring. The reservoir method does not re-
quire preexisting knowledge of distance distribution, but can
require large amounts of memory to store the required library
of conformers.

The GOMC implementation of configurational-bias for rings
attempts to address these aforementioned weaknesses. It does
not require any knowledge of atom distance distributions, nor
does it require a reservoir of conformers. Atoms that belong to
the ring are inserted rigidly using CBMC, while the rest of the
atoms attached to the ring are grown using CD-CBMC. Angles and
dihedrals that belong to the ring are kept fixed, while the rest
of the angles and dihedrals are generated using CD-CBMC. Dur-
ing the simulation, crankshaft moves are used to sample angles
and dihedrals within the ring. This methodology allows for the
simulation of vapor-liquid equilibria for polycyclic compounds,
including rings connected by flexible linkers, as shown in Fig. 1.
While this method works for a large number of ring-containing
molecules, it does not work for molecules that contain three or
more flexible rings that share one or more atoms (e.g. acenaph-
thene). This is because the crankshaft move cannot be applied to
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Fig. 1. Vapor-liquid coexistence curves predicted by GOMC (red lines) for
methylcyclohexane, benzene, 1,2,4-triethylbenzene, and biphenyl compared to
the work of Wick et al. [11] (blue squares) and Yiannourakou et al. [12] (green
circles). Solid black lines correspond to experimental data [13].
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Fig. 2. NVT ensemble Monte Carlo simulations of SPC water at 982 kg/m? and
298 K using single molecule translations and displacements (black line) and the
multi-particle move (red line). Average energy determined from equilibrated
simulation (green dashed line).

alter the bond angle (with the shared atom at center), without
also changing bond lengths.

Molecular Exchange Monte Carlo is a generalized version of
the combined swap and identity exchange proposed by Mar-
tin and Siepmann [5] to enhance molecule insertion/deletion in
dense system, and has been implemented for both the grand
canonical (GCMC) [7] and Gibbs ensemble Monte Carlo (GEMC)
[6]. In MEMC, the molecules to be exchanged are not required
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Fig. 3. Snapshots from NVT ensemble Monte Carlo simulations of dodecyl-phosphocholine (DPC) modeled with the MARTINI force field [14] using the multi-particle
move after 50M steps (upper) and single molecule translations and rotations after 100M steps (lower).

to have common atom types or coordinates, and molecules to be
exchanged can be exchanged as rigid bodies or regrown atom by
atom using the CD-CBMC algorithm. The MEMC move enhances
sampling in multi-component mixtures or pure fluids using the
technique of impurity atoms proposed by Bai et al. [15]. For
example, in simulations to determine the vapor-liquid coexis-
tence curve of water with GCMC simulations, the MEMC move
was shown to have a computational efficiency over 38 times
that of standard CD-CBMC insertions [7]. These improvements in
sampling efficiency for molecule exchanges enable GCMC simu-
lations to be used to generate phase diagrams at temperatures as
low as 0.5T, while GCMC simulations using standard CD-CBMC
insertions are typically limited to 0.7T. [7]. In Gibbs ensemble
Monte Carlo simulations, the MEMC move enables the efficient
calculation of solvation free energies [6].

Simulations of heterogeneous systems, such as lipid bilayers
or micelles, require Monte Carlo moves that can update the
positions for collections of molecules simultaneously. Addition-
ally, simulations of polarizable force fields require a complete
recalculation of the electrostatic interactions whenever a sin-
gle molecule is moved, resulting in very poor computational
performance in Monte Carlo simulations. Molecular dynamics
simulations of polarizable force fields, such as Drude oscilla-
tors, typically use an extended Lagrangian approach to reduce
computational effort [16,17], which is efficient because all of
the molecules in the system are being moved in a single time
step. To address the limitations of standard Monte Carlo moves,
when applied to self-assembly and polarizable force fields, the
force/torque biased multi-particle move proposed by Moucka
et al. has been implemented in GOMC [18]. To improve the
efficiency of the multi-particle move on GPUs, the counter-based
random number generator Random123 library was used [19]. The
multi-particle implementation in GOMC supports independently
translating all molecules or rotating all molecules at once. Multi-
particle moves that combine displacement and rotation in the
same move were found to cause stalling of the simulation, leading
to errors in the calculation of ensemble averages, and therefore
are not recommended. The multi-particle move reduces substan-
tially the number of Monte Carlo steps required for equilibration

in self-assembling systems. In NVT simulations of SPC water [20]
at 298 K with the multi-particle move, shown in Fig. 2, equili-
bration was achieved in an order of magnitude fewer steps than
Monte Carlo simulation with single molecule displacements and
rotations. Additionally, NVT Monte Carlo simulations of dodecyl-
phosphocholine (DPC) at 300 K, modeled with the MARTINI force
field [14] (54 DPC molecules, 5900 waters and 500 anti-freeze
particles), presented in Fig. 3, show self-assembly when sim-
ulated with the multi-particle move for 50 million MC steps,
whereas single molecule translations and rotations fail to show
any self-assembly after 100 million MC steps.

3. Free energy calculations

Support for free energy calculations using either thermody-
namic integration or free energy perturbation has been added
to GOMC [21]. Soft-core scaling is used for the Lennard-Jones
interactions, while linear scaling is used for the Coulombic inter-
actions. Separate coupling parameters, Ay and Acou, are used to
independently control the scaling of Lennard-Jones and Coulom-
bic interactions, respectively. During the simulation, the change
in energy AUi_,; between the current intermediate state (A;)
and all other intermediate states (Aj;), and the derivative of
Lennard-Jones and Coulomb potential with respect to lambda
(dUcoul/dAcou, dUy/dAy), are evaluated and stored for
post-simulation analysis. The output from GOMC is formatted
so it can be analyzed with both alchemlyb [22] and alchemical-
analysis [23]. Since alchemical-analysis is no longer supported
by its authors, the GOMC parser for it was stored in a separate
GitHub repository [24].

4. Conclusion and future updates

This update highlights a number of new sampling algorithms
and code features that have been added in this release. Future
versions of GOMC will include support for replica exchange sim-
ulations, polarizable force fields using Drude oscillators, a Brown-
ian dynamics multi-particle move, and improved performance on
multicore and GPU architectures.
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