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Abstract- Long noncoding RNA plays important role in changing
the expression profiles of various target genes that leads to cancer
development. So, identifying key IncRNAs related to the origin
of different types of cancers might help in developing cancer
therapy. To discover the critical IncRNAs that can identify the
origin of different cancers, we proposed to use the state-of-the-art
deep learning algorithm Concreate Autoencoder (CAE). The
motivation behind using the CAE was that it takes advantage of
both AE (which can achieve the highest classification accuracy)
and concrete relaxation-based feature selection (which is capable
of selecting actual features instead of latent features). To compare
the performance of CAE, three frequently used embedded feature
selection techniques including Least Absolute Shrinkage and
Selection Operator (LASSO), Random Forest (RF), and Support
Vector Machine with Recursive Feature Elimination (SVM-RFE)
were used. To obtain a stable set of IncRNAs capable of
identifying the origin of 33 different cancers, a IncRNA that was
isolated by at least two of the four techniques (CAE, LASSO, RF,
and SVM-RFE) was added to the final list of key IncRNAs.

The genome-wide IncRNA expression profiles of 33
different types of cancers, a total of 9566 samples, available in
The Cancer Genome Atlas (TCGA) were analyzed to discover the
key IncRNAs. Our results showed that CAE performs better in
feature selection, specially, in selecting small number of features,
compared to LASSO, RF, and SVM-RFE. With the increasing
number of selected features ranging from 10 to 500 IncRNAs, the
accuracy of different feature selection approaches increases as -
CAE: 70% to 96%; LASSO: 55% to 94%; RF: 38% to 95%;
SVM-RFE: 50% to 94%. This study discovered a set of 69
IncRNAs that can identify the origin of 33 different cancers with
an accuracy of 93%. Note that the accuracy could be higher using
AE, which uses latent features for classification thus failing to
correlate the origin of cancers with the actual features (IncRNAs).

The proposed computational framework can be used as a
diagnostic tool by the physicians to discover the origin of cancers
using the expression profiles of IncRNAs. The discovered
IncRNAs can be studied further by biologists or drug designer to
identify possible targets for cancer therapy.

Keywords — Autoencoder, Concrete Autoencoder, Deep learning,
Feature Selection, IncRNA.
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L. INTRODUCTION

Recent studies indicate that several cancer risk loci are
transcribed into long non-coding RNAs (IncRNAs) and these
transcripts play key roles in tumorigenesis [1], [2]. The IncRNAs
also have key functions in transcriptional, post-transcriptional,
and epigenetic gene regulation [3]. Schmitt e al. discussed the
impact of IncRNA in cancer pathways [4]. They described the
involvement of IncRNAs in six hallmarks of cancer such as
proliferation, growth suppression, motility, immortality,
angiogenesis, and viability [5].

Hoadley et al. showed that cell of origin patterns dominate
the molecular classification of tumors available in The Cancer
Genome Atlas (TCGA) [6]. For their analysis, they used copy
number, mutation, DNA methylation, RPPA protein, mRNA, and
miRNA expression. But they did not consider another important
molecular signature of cancer, which is IncRNA expression. This
work motivated us to investigate the importance of IncRNAs in
identifying cancer origins.

Though RNAseq data from TCGA contains a reasonable
number of samples, even it poses challenges for classification
tasks due to a large number of features (IncRNAs) with respect to
the number of samples. Many computational methods fail to
identify a small number of relevant features, rather increase
learning costs and deteriorate performance [7]. It may be argued
that the larger the feature set, the better the classification.
However, in a general setting, not all of these features will be
necessary for optimal classification. Only a selected number of
significant or relevant features can lead to optimal classification.
A large part of the remaining features are not significant and
could be either noise, irrelevant to the study, or even redundant
[8]. The use of such insignificant features can lead to unwanted
computational complexities and deteriorate the performance of
the model. This is more pronounced when working with high-
dimensional data. Thus, it is essential to identify the set of
significant features that can provide us with the optimal
classification and clustering. To accomplish this objective, we
need a robust method that can eliminate the redundant features
and noise that do not carry any information about the labels of
data, thus providing us with only relevant features [9].

Any dataset with N-number of features has 2N-possible
subset of features [8]. In the presence of such a large number of
possible combinations, finding the best subset of N features is
computationally challenging and expensive [10]. An optimally
selected set of features not only optimizes the performance of



classification models but also helps in alleviating the effect of
overfitting and high-dimensionality. Along with these benefits,
selecting the appropriate features helps in the easier interpretation
of the model as well as its predictions. On the other hand, the use
of gratuitous features can significantly impact the training speeds
and the accuracy of the learning models.

Filter, wrapper, embedded methods are the three general
classes or types of feature selection techniques. The filtering
method works by ranking the features using a statistical score that
is assigned to each of them depending on their relevance to the
class type. In both univariate and multivariate filter methods, the
interactions among features are disregarded in the selection
process. Studies like the ones in Pearson correlation
coefficient(PCC), t-statistics(TS) [11], F-Test [12], and ANOVA
[13] are examples where the filtering method is used. It is
observed that these methods are effective for selecting features in
high-dimensional data because of the reduced computation
expenses. However, they fail to provide good accuracy as
discussed in [14].

As an enhancement, the researcher developed the wrapper-
based feature selection method with a learning algorithm and a
classifier to find a suitable subset of features. Initially, a random
solution is generated, following which, an objective function is
maximized using black-box type optimization methods [15] like
simulated annealing [16], particle swarm optimization [17],
genetic algorithm [18], and ant colony optimization [19]. The
iterative evaluation of every candidate subset of the features by a
wrapper method leads to the identification of a strong relationship
between features, however with an increase in the computational
expense.

Embedded feature selection methods on the other hand
reduces computational costs because these are used as a part of
the learning phase. Well-known embedded methods, which are
considered as the state-of-the-art, are least absolute shrinkage and
selection operator (LASSO) [20], recursive feature elimination
with support vector machine estimator (SVM-RFE) [21]-[23],
random forest [24], [25], Adaboost [26] , KNN [27] , and
autoencoder [28].

In general, the use of feature selection is worthwhile when
the whole set of features is difficult to collect or expensive to
generate [34].. For example, in TCGA, the IncRNA expression
profile dataset contains more than 12 thousand features
(IncRNAs) for each of 33 different cancers and it is expensive to
generate this data. Consequently, it is important to answer the
question: Is there a set of salient features (IncRNAs) capable of
identifying the origin of 33 cancers?

The distribution of number of samples for 33 cancers in
TCGA is highly imbalanced, ranging from 36 for CHOL cancer
to 1089 for BRCA. Any supervised feature selection approach
will be biased to heavy groups. To solve this problem, we need a
robust unsupervised feature selection approach capable of finding
appropriate features related to 33 different cancers.

Feature selection works differently compared to the standard
dimension reduction techniques such as principal component
analysis (PCA) [29], and autoencoders [30]. The standard
dimension reduction methods can preserve maximum variance
with a highly reduced number of latent features. This means that
PCA and standard autoencoder do not provide the original
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features in the reduced dimension or these work as a black-box.
For real application of diagnosing the origin of cancer, a tool
should be able to tell what actual or measurable features are
relevant. Recently, few deep learning-based feature selection
methods showed little improvement in selecting original features
in both settings supervised and unsupervised [31]-[33].

In this paper, we proposed to use concrete autoencoder
(CAE) [34], a deep learning-based unsupervised feature selection
algorithm, to discover the relevant IncRNAs that are capable of
identifying the origin of different cancers. The CAE takes
advantage of both (a) AE, which can achieve the highest
classification accuracy and (b) concrete relaxation-based feature
selection [35], [36], which is capable of selecting actual features
instead of latent features. Proposed model filtered the key
IncRNAs from 12,309 IncRNAs, that are related to 33 different
cancers. The key IncRNAs discovered using the proposed CAE
method produced higher classification accuracy and better
diagnosis of cancer origin compared to the state-of-the-art
embedded feature selection approaches — LASSO, RF, and SVM-
RFE - while using small number of IncRNAs.

II. MATERIALS AND METHODS
The overall process flow diagram is illustrated in Figure 1.
The following subsections describe the different aspects of
process flow diagram: (a) Data Preparation, (b) Feature Selection,
(c) Reconstruction and Classification, and (d) Evaluation and
Validation.
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Fig. 1: Process flow diagram. Data Preparation, Feature Selection, Classification
and Validation.

A. Data Preparation

To characterize the cancer-associated IncRNA, expression
profiles and clinical data for 33 different cancers were
downloaded from UCSC Xena database [37] . This dataset
contains expression profiles of about 60 thousand RNAs
including coding genes (mRNAs) and non-coding genes
(IncRNAs and miRNAs). In this study, only the expression



profiles of IncRNA (n =12,309) were considered for analysis and
model evaluation. It should be noted that this study was based on
cancer patients only. So, normal samples available in the same
cancer were removed. The final dataset contains 9,566 cancer
patients. The cancer-specific distributions based on 75/25
(training/testing) split are shown in Fig. 2. Each IncRNA
expression was processed using a min-max normalization method
to achieve good training performance.
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Fig. 2: Sample distribution for 33 cancers along with 75-25 split for training and
testing.

B. Features Selection

For selecting important features (IncRNAs), a state-of-the-
art deep learning-based unsupervised algorithm, Concreate
Autoencoder (CAE), was used. To compare the results of CAE,
3 frequently used embedded feature selection models, including
LASSO, Random Forest (RF), and Support Vector Machine with
Recursive Feature FElimination (SVM-RFE), were used.
Following subsections briefly describe the implementation of
feature selection algorithms.
1) Concrete Autoencoder (CAE)

Concrete autoencoder (CAE) proposed by Abid et al. [34] is
a variation of the original autoencoder (AE) [30], which is used
for dimension reduction. The motivation behind selecting CAE
in the present study is that it takes advantage of both AE (which
can achieve the highest classification accuracy) and concrete
relaxation-based feature selection (which is capable of selecting
actual features instead of latent features). An AE is a neural
network that consists of two parts: (a) an encoder that selects
latent features and (b) a decoder that uses selected latent features
to reconstruct an output that matches the input with minimum
error. In CAE, instead of using a sequence of fully connected
layers in the encoder, a concrete relaxation-based feature
selection layer is used where the user can define the number of
nodes (features to be selected), k as shown in Fig. 3. This layer
selects a probabilistic linear arrangement of input features while
training, which converges to a discrete set of k features by the end
of training phase, which are subsequently used in the testing
phase.
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Let's p(x) is a probability distribution over a d-dimensional
vector. The objective is to identify a subset of features, S={1...k}
of size |S|=k. Also, learning a reconstruction function

A
£-():RK = RY, such that the loss between original sample x and
reconstructed sample f,(xg) is minimized as stated in Eq. 1,

argming, Epoo[llfy (xs) —xll2]...cooooonnnnt. @)

where x; € R¥ consists of only selected features x; s.t. i € S.
Note that samples are represented in a 2D matrix, XER™*¢, and
aim is to pick k columns of X such that sub-matrix X, € R™*¥,

Fig. 3: Architecture of Concrete Autoencoder. CAE architecture consists of an
encoder and a decoder. The layer after input layer of encoder is called concrete
feature selection layer shown in yellow. This layer has k number of node where
each node is for each feature to be selected. During the training stage, the i node
v® takes the value X7 f{i), where f{i) is the corresponding weight vector of node
i. During testing stage, these weights are fixed and the element with the highest
value is selected by the corresponding i** hidden node. The architecture of the
decoder remains the same during training and testing.

Then, selected feature set x; can be used to reconstruct the
original matrix X and classify the cancer types.

In feature selection layer of CAE, (Fig.3), the original
features are selected based on the temperature of this layer which
is tuned using an annealing schedule. More specifically, the
concrete selector layer identifies k important features as the
temperature decreases to zero. For reconstructing the input, a
simple decoder similar to the ones associated with a standard AE
is used. The temperature 7 of the random variable in the selector
layer has a significant impact in forming the output of each node.
Initially, when t is high, search space is large, since it considers
a linear combination of all features as shown in Fig. 4(a). In
contrast, the selector layer will not be able to search all possible
combinations of features at low t and thus, the model converges
to a poor local minimum. This means that as temperature goes
down, small number of features are necessary for stable
convergence. Annealing or gradual decrease in temperature
avoids the model convergence to a poor local minimum. The
effect of annealing in feature selection is shown in Fig. 4(a). For
example, at starting temperature, 7, the number of input features
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Fig. 4: Effect of annealing in reducing search space. (a) An example: at starting temperature 7, the number of input features is 10 and the number of features to be
selected is k = 3; at the next epoch when the temperature is 7,,,, the number of possible features reduces to 6; after some epochs, when the temperature reaches to its
lower bound gy, the number of features further reduces to 3, which is equal to k. (b) Effect of temperature change in reducing the loss while training the concrete
autoencoder on IncRNA expression data with k = 100 features to be selected from original feature space of 12,309 IncRNAs.

is 10 and the number of features to be selected, k is 3. At the next
epoch when the temperature is 75,4, the number of possible
features reduces to 6. After some epochs, when the temperature
reaches its lower bound 7g,,, the number of features further
reduces to 3, which is equal to k, user-specified number of
features to be selected. Instead of using a fixed temperature, a
simple annealing scheduling scheme is used for every concrete
variable. It starts with a user-defined high temperature () and
steadily lowers the temperature, until it touches the end bound
(te), by every epoch as follows:

Tey = Ts (TN /T)E ™ i, 2)

where 7, is the temperature at epoch e, N refers to total number
of epochs. Adam optimizer with a learning rate of 0.001 is used
for all the experiments for CAE. Figure 4(b) shows an example
of the effect of temperature in reducing the loss while training the
CAE to select a reduced set of 100 features from the original
feature space of 12,309 IncRNAs. The starting temperature of
CAE was setto 10 and it ends at 0.01. To control the performance,
the model was trained for the same number of epoch (n = 100).
2) Implementation of LASSO

To select the important features, LASSO applies a
regularization (shrinking) process where it penalizes the
coefficients of the regression variables and shrinks these to zero.
The variables that still have a non-zero coefficient are selected as
the top features. The tuning parameter A controls the strength of
the penalty. The larger is the parameter A, the larger number of
coefficients are shrunk to zero and smaller number of features are
selected. In this experiment, the optimized 1 was set in a range of
0.005 to 0.01 to select a different number of features ranging from
10 to 500.
3) Implementation of RF

Random Forest works based on tree structure that employs
ensemble. RF consists of a number of decision trees. Every node
in the decision trees is a condition on a single feature, designed
to split the dataset into two branches so that similar response
values end up in the same set. The optimal condition is chosen
based on impurity. For classification, it is either Gini impurity or
information gain/entropy. Thus, when the tree is fully developed,
it can compute how much each feature decreases the weighted
impurity on the tree. For forest, the impurity decrease from each
feature can be measured as a feature rank. The feature importance
is calculated as the sum over the number of splits (across all trees)
that include the feature, proportionally to the number of samples
it splits [39]. RF needs three parameters to be tuned: (i)
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n_estimator: number of estimators, also known as number of
trees in the forest, (i) min_sample_split: minimum number of
nodes required to split, and (iii) criterion: impurity to measure
the quality of a split. In GridSearch, the ranges of values assigned
to tune n_estimator and min_sample_split were from 2 to 300 and
1 to 150, respectively. Two options, Gini and entropy, were used
to optimize the impurity parameter criterion. The optimum values
or options for n_estimator, min_sample_split, and criterion
found by the GridSearch method are 100, 120, and Gini,
respectively.

4) Implementation of SVM-RFE

Recursive feature elimination is a recursive method in which
less important features are eliminated in every iteration. In RFE
technique, SVM was used as the estimator in the present study. A
linear kernel with a regularization parameter C = 0.05 was used.
C controls the tradeoff between the error and norm of the learning
weights. The GridSearch algorithm was used to estimate the best
set of parameters for SVM. In every iteration of RFE, the number
of dropped features was set to 100.

LASSO, RF, and SVM-RFE were implemented using the
scikit-learn framework [40] whereas CAE was implemented
using TensorFlow [41] based deep learning framework, Keras
[42]. Experiments are parallelized on NVIDIA Quadro K620
GPU with 384 cores and 2GB memory devices. To avoid
overfitting, the dataset was split into the train and test set
according to 75/25 ratio, as shown in Fig. 2. The training set was
used to estimate the learning parameters and the test set was used
for performance evaluation.

C. Reconstruction and Classification

The feature selection capability of CAE is compared with
standard autoencoder (AE), LASSO, RF, and SVM-RFE in two
different ways: (a) reconstruction of all input features using the
selected features and (b) classification performance in classifying
33 different cancer types using the selected features. A subset of
features by varying k from 10 to 500 were extracted using CAE.
For the comparison to be fair and along the same grounds with
CAE, the same number of IncRNAs were selected using all other
models. The SVM was used for classifying 33 cancer types using
the selected features. To reconstruct all the input features from
the selected features, we trained a linear regressor with no
regularization.

D. Evaluation and Validation

Five different evaluation metrics have been used to record

the classification and reconstruction performance such as



accuracy, precision, recall, fl score, and mean squared error
(MSE). Accuracy is the number of correct predictions made by
the model over all kinds of predictions made. Precision is the
number of correct positive results divided by the number of
positive results predicted by the model. It indicates the predicted
positive portion of the samples. Recall is the number of correct
positive results divided by the number of all relevant samples. F1
score is the harmonic mean of precision and recall.
Reconstruction performance measure, MSE, was calculated using
linear regression on the test set.

All classification performance metrices were measured by
comparing the predicted labels with the true labels of independent
test samples. The optimal set of features was selected based on
two criteria: (a) the number of features should be as few as
possible, and (b) classification accuracy using the selected
features should be > 90%. The final list of key IncRNAs is
selected from the union of features derived from the binary
intersection of four approaches,

(CAE N LASSO) U (CAE N RF) U (CAE N SVMRFE) U
(LASSO N RF) U (LASSO n SVMRFE) U (RF n
SVUMRFE) ...ttt 3)
Then each IncRNA discovered in this study was cross-checked
with existing literature whether it is already a known biomarker
or not. The capability of selected IncRNAs in pan-cancer
classification was visually validated wusing unsupervised
visualization technique t-SNE [43]. To validate the prognostic
performance of discovered IncRNAs, survival analysis of cancer
patients using Kaplan-Meier [44] method was performed [45].
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I11. RESULTS
A series of experiments were conducted to compare the
performance of CAE with other state-of-the-art feature selection
methods such as standard autoencoder, LASSO, RF, and SVM-
RFE. Each of these methods was used to select features in the
range of 10 to 500. These features were then used to train a linear
classifier SVM to classify 33 cancer types using expression

profiles of IncRNAs.
A. Classification Performance Using Selected Sets of
Features

Fig. 5 shows classification performance using different sets
of selected features. The initial stages of the experiments were
performed with a smaller subset of the selected features as we
wanted to understand the performance of the models being
compared. The optimal classification performance with CAE
(accuracy > 90% with the smallest number of features) was
observed with about 100 features. Beyond this point, the increase
in performance was not significant.

It is clear from Fig. 5 that, for all sets of selected features,
CAE performed better than LASSO, RF, and SVM-RFE in terms
of four evaluation matrices, including accuracy, precision, recall,
and fl score. Of course, it could not beat the standard AE, as
expected. It is noticeable that even with a smaller number of
features (say 10), the accuracy of CAE was close to 70%, whereas
LASSO (55% accuracy), RF (38% accuracy), and SVM-RFE
(50% accuracy) showed poor results for the same number of
features. The trend remains the same with the increase of number
of features.
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Fig. 1: Classification performances of proposed method using selected features. Comparison of CAE with other feature selection methods. Throughout the all values
of k tested on both (a) Accuracy, (b) Precision, c) Recall, and d) f1 score; CAE have highest classification performance after AE.
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B. Reconstruction Performance of Feature Selection
Algorithms

Figure 6 shows the comparison of reconstruction
performance among five feature selection algorithms. Note that
AE select latent features, whereas, other four algorithms select
actual features. The CAE starts with an MSE of 60 and quickly
reduces to a value of less than 10 within the use of the top 100
features as shown in Fig. 6. It is also clear from this figure that
CAE has lower reconstruction error compared to LASSO, RF,
and SVM-RFE for any set of selected features. Again, CAE

cannot
100

—e— LASSO
801 —e— SVM-RFE

—e— CAE
60 1

40

Mean squared error

204

0 100 200 300 400 500
# Features selected

Fig. 2: Reconstruction mean squared error for different feature sizes selected by
different models

C. Combined Features

Based on the performance of CAE, a set of 100 IncRNAs
(features) produced an optimal classification. So, to produce a
stable set of features for this problem, each of the four feature
selection algorithms were run to extract 100 features. The final
list of 69 key IncRNAs was the result of the union of features
derived from the binary intersection of four approaches as
mentioned in eq. 3. Figure 7 shows the Venn diagram of the
common features extracted by four algorithms. It is clear from the
Venn diagram that 67 (100 — 23) out of 69 IncRNAs came from
CAE, which dictates the superiority of CAE.

CAE (“Al!) V 77LA(S,,S=?0(;)B)))
y SVM-RFE
///' (“Dll)
(n=100)

Fig. 7: Common features selected by different methods

Table I shows the comparison of classification (Accuracy,
Precision, Recall, and f1) and reconstruction (MSE) performance
among the four approaches. Selected 100 features from each
method was passed to a linear regressor for reconstructing the
input features. Performance using the combined feature set of 69
IncRNAs is also shown in the table. It is clear from this table and
Fig. 6 that CAE is more resilient to reconstruction error, whereas,
the error is more pronounced in the other competing methods. It
is also clear from this table and Fig. 6 that CAE outperforms other
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state-of-the-art feature selection approaches. But it is noticeable
that combined 69 features has better performance compared to
the results produced by 100 features selected by three shallow
feature selection approaches (LASSO, RF, and SVM-RFE). Not
only that the combined 69 IncRNAs performs at the same level of
CAE with 100 IncRNAs (93% accuracy). Of 69 combined
features, 67 are coming from the 100 IncRNAs selected by CAE
(Fig. 7). This means that a considerable number of IncRNAs (~30
IncRNAs) are not contributing in classification, which demand
further investigation.

TABLE I: Classification and reconstruction performances using combined 69
IncRNAs and selected 100 IncRNAs using different models.

Model Accuracy Precision Recall F1 MSE
Combined 0.93+0.02 0.91+0.01 0.91£0.02 0.9£0.03 13.46+0.10

LASSO  0.9240.01 0.87+0.02 0.88+0.02 0.87+0.01 13.841+0.08
SVM-RFE 0.85+0.03 0.85+0.02 0.82+0.03 0.8310.02 25.98+0.08
RF 0.89£0.02 0.86%0.03 0.81£0.03 0.81%0.03 22.91+0.12
CAE 0.93£0.01 0.89+£0.01 0.9+0.02 0.9+0.02 12.23%0.09

D. Visual Validation of Selected Features

Fig. 8 shows the unsupervised clustering capability of
expression profiles of discovered 69 IncRNAs using the t-SNE
plot [43]. It is clear from the t-SNE plot that the discovered
IncRNAs are capable of discovering the heterogeneity among 33
cancers. So, the newly identified IncRNAs can be considered as
essential features for diagnosis, prognosis, and therapeutic target
for different cancers. Then each IncRNA was cross-checked with
the existing literature whether it is already a known biomarker.
Of the 69 IncRNAs, 38 were found in existing literature as known
biomarkers for different cancers as shown in Table 2. The
remaining 31 IncRNAs were novel discovery based on the
IncRNA disease database v2.0.

Cancer-Type
Acc
BLCA
BRCA

30

20

tSNE2
o

-20

-30

-30 -20 -10 0 10 20 30
tSNE1

Fig. 8: t-SNE using top 69 IncRNAs where each dot represents a cancer sample
and each color represents a cancer type.

V. DISCUSSION
It is clear from the literature that IncRNAs play a key role in
cancer development. More research is needed to identify cancer-
specific IncRNAs. Existing methods used co-expression
networks such as IncRNA-mRNA or IncRNA-miRNA-mRNA.
As per our knowledge, no study used IncRNA expression only to



classify cancer types except our previous work [46] where feature
extraction was not considered.

In this study, we identified 69 key IncRNAs that can identify
the origins of 33 different cancers. When compared against the
existing literature, 38 (55%) IncRNAs have been reported as

important prognostic biomarkers for various cancers, Table II.
Since the proposed method can identify already known IncRNA
biomarkers, it can be concluded that the newly discovered 31

TABLE II: 69 key IncRNAs identified in this study

Known IncRNAs (n=38)

AC005083.1, AC008268.1, AC093850.2, AC133528.2, AFAP1-AS1, CASCY9, CRNDE, DNM30S, EMX20S, FAM83H-AS1, FENDRR, GATA2-AS1, GATA6-AS1,
H19, HAGLR, HAND2-AS1, HCG11, HNF14-AS1, LHFPL3-AS1, LINC00261, LINC00511, LINCO1116, LINC01133, LINC01139, LINC01158, MALATI, MEG3,
MNXI1-AS1, NR2F1-AS1, PIK3CD-AS2, PTCSC2, SATB2-AS1, SFTAIP, TRPM2-AS, UCAI, VPS9D1-AS1, XIST, ZNF667-AS1

Novel IncRNAs (n=31) Based on /IncRNA disease v2.0 (http://www.rnanut.net/Incrnadisease/) dated: July 2020

AC005082.12, AC079630.4, AP001626.1, CECR7, CTA-384D8.31, CTD-2377D24.4, CTD-3032H12.2, GATA3-AS1, HOXA10-AS, HOXA11-AS, HOXD-AS2,
LINC00958, LINC01082, LINC01272, MIR205HG, NKX2-1-AS1, RP1-288H2.2, RP1-60019.1, RP11-1017G21.5, RP11-1055B8.3, RP11-264B14.2, RP11-
3P17.5, RP11-465B22.8, RP11-47A48.5, RP11-807H17.1, RP3-416H24.1, SLCO4A41-AS1, TBX5-AS1, U47924.27, U91324.1, ZFPM2-AS1

AC005082.12
Cox p =0.0015

Log rank p = 0.0365
Cancer: KIRP

Survival probability

Ok 1k k 4
Survival time (days)
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GATA3-AS1
025 COx p=0.0400
Log rank p=0.0114
Cancer: LGG

ok 1k 2k

Survival probability

w;;mn time (d’ays)
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CECR7 HOXA11-AS
Cox p = 0.0789 Cox p = 0.0002
Log rank p = 0.0906 Logrank p=0.0131
Cancer: BLCA Cancer: KIRC
S T I T
— High expression group — Low expression group

Fig. 9: Kaplan-Meier survival analysis curve of high-risk and low-risk patients evaluated on novel IncRNA (AC005082.12, CECR7, GATA3-AS1, and HOXA11-AS).

IncRNAs have the potential to be considered as novel biomarkers
for cancers. Survival analysis suggests that some of 31 IncRNAs
are novel biomarkers as shown in Fig. 9. Many studies have been
conducted using mRNA expression for predicting cancer types as
well as developing screening tools. No such tools are available
that used expression profiles of IncRNAs. Hence, the identified
69 IncRNAs can be used not only as a screening tool for cancer
diagnosis but also as therapeutic targets for different cancers, for
which further studies are required.

V.  CONCLUSION

In this paper, a computational framework was developed
using concrete autoencoder, a deep learning-based unsupervised
feature selection algorithm, to identify the key features. The
proposed method was evaluated in identifying the origin of 33
different cancers using the expression profiles of selected features
(69 IncRNAs) from the original feature space of 12 thousand
IncRNAs. Existing literature and validation support that the
selected IncRNAs could be potential biomarkers for diagnosis
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and prognosis of 33 different cancers. This paper accounts for
both feature selection and identifying the origin of different
cancers. However, other avenues can also be explored using the
proposed method. For example, the proposed method can be used
to identify important genes while classifying patients of a single
cancer into molecular subtypes. It can also be used to integrate
multi-omics data such as both coding and non-coding RNA
expression as well as DNA methylation.
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