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Abstract- Long noncoding RNA plays important role in changing 
the expression profiles of various target genes that leads to cancer 
development. So, identifying key lncRNAs related to the origin 
of different types of cancers might help in developing cancer 
therapy. To discover the critical lncRNAs that can identify the 
origin of different cancers, we proposed to use the state-of-the-art 
deep learning algorithm Concreate Autoencoder (CAE). The 
motivation behind using the CAE was that it takes advantage of 
both AE (which can achieve the highest classification accuracy) 
and concrete relaxation-based feature selection (which is capable 
of selecting actual features instead of latent features). To compare 
the performance of CAE, three frequently used embedded feature 
selection techniques including Least Absolute Shrinkage and 
Selection Operator (LASSO), Random Forest (RF), and Support 
Vector Machine with Recursive Feature Elimination (SVM-RFE) 
were used. To obtain a stable set of lncRNAs capable of 
identifying the origin of 33 different cancers, a lncRNA that was 
isolated by at least two of the four techniques (CAE, LASSO, RF, 
and SVM-RFE) was added to the final list of key lncRNAs.  

The genome-wide lncRNA expression profiles of 33 
different types of cancers, a total of 9566 samples, available in 
The Cancer Genome Atlas (TCGA) were analyzed to discover the 
key lncRNAs. Our results showed that CAE performs better in 
feature selection, specially, in selecting small number of features, 
compared to LASSO, RF, and SVM-RFE. With the increasing 
number of selected features ranging from 10 to 500 lncRNAs, the 
accuracy of different feature selection approaches increases as - 
CAE: 70% to 96%; LASSO: 55% to 94%; RF: 38% to 95%; 
SVM-RFE: 50% to 94%. This study discovered a set of 69 
lncRNAs that can identify the origin of 33 different cancers with 
an accuracy of 93%. Note that the accuracy could be higher using 
AE, which uses latent features for classification thus failing to 
correlate the origin of cancers with the actual features (lncRNAs). 

 The proposed computational framework can be used as a 
diagnostic tool by the physicians to discover the origin of cancers 
using the expression profiles of lncRNAs. The discovered 
lncRNAs can be studied further by biologists or drug designer to 
identify possible targets for cancer therapy.  
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I. INTRODUCTION 
Recent studies indicate that several cancer risk loci are 

transcribed into long non-coding RNAs (lncRNAs) and these 
transcripts play key roles in tumorigenesis [1], [2]. The lncRNAs 
also have key functions in transcriptional, post-transcriptional, 
and epigenetic gene regulation [3]. Schmitt et al. discussed the 
impact of lncRNA in cancer pathways [4]. They described the 
involvement of lncRNAs in six hallmarks of cancer such as 
proliferation, growth suppression, motility, immortality, 
angiogenesis, and viability [5].  

Hoadley et al. showed that cell of origin patterns dominate 
the molecular classification of tumors available in The Cancer 
Genome Atlas (TCGA) [6]. For their analysis, they used copy 
number, mutation, DNA methylation, RPPA protein, mRNA, and 
miRNA expression. But they did not consider another important 
molecular signature of cancer, which is lncRNA expression. This 
work motivated us to investigate the importance of lncRNAs in 
identifying cancer origins.  

Though RNAseq data from TCGA contains a reasonable 
number of samples, even it poses challenges for classification 
tasks due to a large number of features (lncRNAs) with respect to 
the number of samples. Many computational methods fail to 
identify a small number of relevant features, rather increase 
learning costs and deteriorate performance [7]. It may be argued 
that the larger the feature set, the better the classification. 
However, in a general setting, not all of these features will be 
necessary for optimal classification. Only a selected number of 
significant or relevant features can lead to optimal classification. 
A large part of the remaining features are not significant and 
could be either noise, irrelevant to the study, or even redundant 
[8]. The use of such insignificant features can lead to unwanted 
computational complexities and deteriorate the performance of 
the model. This is more pronounced when working with high-
dimensional data. Thus, it is essential to identify the set of 
significant features that can provide us with the optimal 
classification and clustering. To accomplish this objective, we 
need a robust method that can eliminate the redundant features 
and noise that do not carry any information about the labels of 
data, thus providing us with only relevant features [9].  

Any dataset with N-number of features has 2ே-possible 
subset of features [8]. In the presence of such a large number of 
possible combinations, finding the best subset of N features is 
computationally challenging and expensive [10]. An optimally 
selected set of features not only optimizes the performance of 
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classification models but also helps in alleviating the effect of 
overfitting and high-dimensionality. Along with these benefits, 
selecting the appropriate features helps in the easier interpretation 
of the model as well as its predictions. On the other hand, the use 
of gratuitous features can significantly impact the training speeds 
and the accuracy of the learning models. 

Filter, wrapper, embedded methods are the three general 
classes or types of feature selection techniques. The filtering 
method works by ranking the features using a statistical score that 
is assigned to each of them depending on their relevance to the 
class type.  In both univariate and multivariate filter methods, the 
interactions among features are disregarded in the selection 
process. Studies like the ones in Pearson correlation 
coefficient(PCC), t-statistics(TS) [11], F-Test [12], and ANOVA 
[13]  are examples where the filtering method is used. It is 
observed that these methods are effective for selecting features in 
high-dimensional data because of the reduced computation 
expenses. However, they fail to provide good accuracy as 
discussed in [14]. 

As an enhancement, the researcher developed the wrapper-
based feature selection method with a learning algorithm and a 
classifier to find a suitable subset of features. Initially, a random 
solution is generated, following which, an objective function is 
maximized using black-box type optimization methods [15] like 
simulated annealing [16], particle swarm optimization [17], 
genetic algorithm [18], and ant colony optimization [19]. The 
iterative evaluation of every candidate subset of the features by a 
wrapper method leads to the identification of a strong relationship 
between features, however with an increase in the computational 
expense. 

Embedded feature selection methods on the other hand 
reduces computational costs because these are used as a part of 
the learning phase. Well-known embedded methods, which are 
considered as the state-of-the-art, are least absolute shrinkage and 
selection operator (LASSO) [20], recursive feature elimination 
with support vector machine estimator (SVM-RFE) [21]–[23], 
random forest [24], [25], Adaboost [26] , KNN [27] , and 
autoencoder [28]. 

In general, the use of feature selection is worthwhile when  
the whole set of features is difficult to collect or  expensive to 
generate [34].. For example, in TCGA, the lncRNA expression 
profile dataset contains more than 12 thousand features 
(lncRNAs) for each of 33 different cancers and it is expensive to 
generate this data. Consequently, it is important to answer the 
question: Is there a set of salient features (lncRNAs) capable of 
identifying the origin of 33 cancers? 

The distribution of number of samples for 33 cancers in 
TCGA is highly imbalanced, ranging from 36 for CHOL cancer 
to 1089 for BRCA. Any supervised feature selection approach 
will be biased to heavy groups. To solve this problem, we need a 
robust unsupervised feature selection approach capable of finding 
appropriate features related to 33 different cancers.  

Feature selection works differently compared to the standard 
dimension reduction techniques such as principal component 
analysis (PCA) [29], and autoencoders [30]. The standard 
dimension reduction methods can preserve maximum variance 
with a highly reduced number of latent features. This means that 
PCA and standard autoencoder do not provide the original 

features in the reduced dimension or these work as a black-box. 
For real application of diagnosing the origin of cancer, a tool 
should be able to tell what actual or measurable features are 
relevant. Recently, few deep learning-based feature selection 
methods showed little improvement in selecting original features 
in both settings supervised and unsupervised [31]–[33]. 

In this paper, we proposed to use concrete autoencoder 
(CAE) [34], a deep learning-based unsupervised feature selection 
algorithm,  to discover the relevant lncRNAs that are capable of 
identifying the origin of different cancers. The CAE takes 
advantage of both (a) AE, which can achieve the highest 
classification accuracy and (b) concrete relaxation-based feature 
selection [35], [36], which is capable of selecting actual features 
instead of latent features. Proposed model filtered the key 
lncRNAs from 12,309 lncRNAs, that are related to 33 different 
cancers. The key lncRNAs discovered using the proposed CAE 
method produced higher classification accuracy and better 
diagnosis of cancer origin compared to the state-of-the-art 
embedded feature selection approaches – LASSO, RF, and SVM-
RFE - while using small number of lncRNAs. 

 
II. MATERIALS AND METHODS 

The overall process flow diagram is illustrated in Figure 1. 
The following subsections describe the different aspects of 
process flow diagram: (a) Data Preparation, (b) Feature Selection, 
(c) Reconstruction and Classification, and (d) Evaluation and 
Validation. 

 

 
Fig. 1: Process flow diagram. Data Preparation, Feature Selection, Classification 

and Validation. 

A. Data Preparation 
To characterize the cancer-associated lncRNA, expression 

profiles and clinical data for 33 different cancers were 
downloaded from UCSC Xena database [37] . This dataset 
contains expression profiles of about 60 thousand RNAs 
including coding genes (mRNAs) and non-coding genes 
(lncRNAs and miRNAs). In this study, only the expression 
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profiles of lncRNA (n = 12,309) were considered for analysis and 
model evaluation. It should be noted that this study was based on 
cancer patients only. So, normal samples available in the same 
cancer were removed. The final dataset contains 9,566 cancer 
patients. The cancer-specific distributions based on 75/25 
(training/testing) split are shown in Fig. 2. Each lncRNA 
expression was processed using a min-max normalization method 
to achieve good training performance. 

 

 
Fig. 2: Sample distribution for 33 cancers along with 75-25 split for training and 

testing. 
B. Features Selection 

For selecting important features (lncRNAs), a state-of-the-
art deep learning-based unsupervised algorithm, Concreate 
Autoencoder (CAE), was used. To compare the results of CAE, 
3 frequently used embedded feature selection models, including 
LASSO, Random Forest (RF), and Support Vector Machine with 
Recursive Feature Elimination (SVM-RFE), were used. 
Following subsections briefly describe the implementation of 
feature selection algorithms. 
1) Concrete Autoencoder (CAE) 

Concrete autoencoder (CAE) proposed by Abid et al. [34] is 
a variation of the original autoencoder (AE) [30],  which is used 
for dimension reduction. The motivation behind selecting CAE 
in the present study is that it takes advantage of both AE (which 
can achieve the highest classification accuracy) and concrete 
relaxation-based feature selection (which is capable of selecting 
actual features instead of latent features). An AE is a neural 
network that consists of two parts: (a) an encoder that selects 
latent features and (b) a decoder that uses selected latent features 
to reconstruct an output that matches the input with minimum 
error. In CAE, instead of using a sequence of fully connected 
layers in the encoder, a concrete relaxation-based feature 
selection layer is used where the user can define the number of 
nodes (features to be selected), k as shown in Fig. 3. This layer 
selects a probabilistic linear arrangement of input features while 
training, which converges to a discrete set of k features by the end 
of training phase, which are subsequently used in the testing 
phase.  

Let's p(x) is a probability distribution over a d-dimensional 
vector. The objective is to identify a subset of features, S≡{1…k} 
of size |S|=k. Also, learning a reconstruction function ௥݂(. ): Թ୩		 ∆→ Թୢ, such that the loss between original sample x and 
reconstructed sample ௥݂(ݔௌ) is minimized as stated in Eq. 1,  

‖௣(௫)ሾܧ	ௌ,௥݊݅݉݃ݎܽ  ௥݂	(ݔௌ	) െ  ଶሿ…………… (1)‖ݔ
 
where ݔ௦ ∈ Թ௞ consists of only selected features ݔ௜ s.t. ݅ ∈ ܵ. 
Note that samples are represented in a 2D matrix, X∈Թ௡ൈௗ,		and	
aim is to pick k columns of X such that sub-matrix ܺ௦ ∈ Թ௡ൈ௞.  
 

 
Fig. 3: Architecture of Concrete Autoencoder. CAE architecture consists of an 
encoder and a decoder. The layer after input layer of encoder is called concrete 
feature selection layer shown in yellow. This layer has k number of node where 
each node is for each feature to be selected. During the training stage, the ݅ ௧௛ node ݒ(௜) takes the value ்ܺ f(i), where f(i) is the corresponding weight vector of node 
i. During testing stage, these weights are fixed and the element with the highest 
value is selected by the corresponding ݅௧௛ hidden node. The architecture of the 
decoder remains the same during training and testing. 
 
Then, selected feature set ݔ௦ can be used to reconstruct the 
original matrix X and classify the cancer types. 

In feature selection layer of CAE, (Fig.3), the original 
features are selected based on the temperature of this layer which 
is tuned using an annealing schedule. More specifically, the 
concrete selector layer identifies k important features as the 
temperature decreases to zero. For reconstructing the input, a 
simple decoder similar to the ones associated with a standard AE 
is used. The temperature ߬ of the random variable in the selector 
layer has a significant impact in forming the output of each node. 
Initially, when ߬ is high, search space is large, since it considers 
a linear combination of all features as shown in Fig. 4(a). In 
contrast, the selector layer will not be able to search all possible 
combinations of features at low ߬ and thus, the model converges 
to a poor local minimum. This means that as temperature goes 
down, small number of features are necessary for stable 
convergence. Annealing or gradual decrease in temperature 
avoids the model convergence to a poor local minimum. The 
effect of annealing in feature selection is shown in Fig. 4(a). For 
example, at starting temperature, ߬௦, the number of input features  
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Fig. 4: Effect of annealing in reducing search space. (a) An example: at starting temperature ߬௦, the number of input features is 10 and the number of features to be 
selected is k = 3; at the next epoch when the temperature is ߬௦ାଵ, the number of possible features reduces to 6; after some epochs, when the temperature reaches to its 
lower bound ߬௦௧௢௣, the number of features further reduces to 3, which is equal to k. (b) Effect of temperature change in reducing the loss while training the concrete 
autoencoder on lncRNA expression data with k = 100 features to be selected from original feature space of 12,309 lncRNAs.  

 
is 10 and the number of features to be selected, k is 3. At the next 
epoch when the temperature is ߬௦ାଵ, the number of possible 
features reduces to 6. After some epochs, when the temperature 
reaches its lower bound  ߬௦௧௢௣, the number of features further 
reduces to 3, which is equal to k, user-specified number of 
features to be selected. Instead of using a fixed temperature, a 
simple annealing scheduling scheme is used for every concrete 
variable. It starts with a user-defined high temperature (߬௦) and 
steadily lowers the temperature, until it touches the end bound 
(߬௘), by every epoch as follows:  ߬(௘) = ߬௦	(߬ே ߬௦⁄ )௘ ௡⁄ ………………..(2) 
where  ߬௘ is the temperature at epoch e, N refers to total number 
of epochs. Adam optimizer with a learning rate of 0.001 is used 
for all the experiments for CAE. Figure 4(b) shows an example 
of the effect of temperature in reducing the loss while training the 
CAE to select a reduced set of 100 features from the original 
feature space of 12,309 lncRNAs. The starting temperature of 
CAE was set to 10 and it ends at 0.01. To control the performance, 
the model was trained for the same number of epoch (n = 100). 
2) Implementation of LASSO 

To select the important features, LASSO applies a 
regularization (shrinking) process where it penalizes the 
coefficients of the regression variables and shrinks these to zero. 
The variables that still have a non-zero coefficient are selected as 
the top features. The tuning parameter ߣ controls the strength of 
the penalty. The larger is the parameter ߣ, the larger number of 
coefficients are shrunk to zero and smaller number of features are 
selected. In this experiment, the optimized ߣ was set in a range of 
0.005 to 0.01 to select a different number of features ranging from 
10 to 500. 
3) Implementation of RF 

Random Forest works based on tree structure that employs 
ensemble. RF consists of a number of decision trees. Every node 
in the decision trees is a condition on a single feature, designed 
to split the dataset into two branches so that similar response 
values end up in the same set. The optimal condition is chosen 
based on impurity. For classification, it is either Gini impurity or  
information gain/entropy. Thus, when the tree is fully developed, 
it can compute how much each feature decreases the weighted 
impurity on the tree. For forest, the impurity decrease from each 
feature can be measured as a feature rank. The feature importance 
is calculated as the sum over the number of splits (across all trees) 
that include the feature, proportionally to the number of samples 
it splits [39]. RF needs three parameters to be tuned: (i) 

n_estimator: number of estimators, also known as number of 
trees in the forest, (ii) min_sample_split: minimum number of 
nodes required to split, and (iii) criterion: impurity to measure 
the quality of a split. In GridSearch, the ranges of values assigned 
to tune n_estimator and min_sample_split were from 2 to 300 and 
1 to 150, respectively. Two options, Gini and entropy, were used 
to optimize the impurity parameter criterion. The optimum values 
or options for n_estimator, min_sample_split, and criterion 
found by the GridSearch method are 100, 120, and Gini, 
respectively. 
4) Implementation of SVM-RFE 

Recursive feature elimination is a recursive method in which 
less important features are eliminated in every iteration. In RFE 
technique, SVM was used as the estimator in the present study. A 
linear kernel with a regularization parameter C = 0.05 was used. 
C controls the tradeoff between the error and norm of the learning 
weights. The GridSearch algorithm was used to estimate the best 
set of parameters for SVM. In every iteration of RFE, the number 
of dropped features was set to 100. 

LASSO, RF, and SVM-RFE were implemented  using the 
scikit-learn framework [40] whereas CAE was implemented  
using TensorFlow [41]  based deep learning framework, Keras 
[42]. Experiments are parallelized on NVIDIA Quadro K620 
GPU with 384 cores and 2GB memory devices. To avoid 
overfitting, the dataset was split into the train and test set 
according to 75/25 ratio, as shown in Fig. 2. The training set was 
used to estimate the learning parameters and the test set was used 
for performance evaluation. 
C. Reconstruction and Classification 

The feature selection capability of CAE is compared with 
standard autoencoder (AE), LASSO, RF, and SVM-RFE in two 
different ways: (a) reconstruction of all input features using the 
selected features and (b) classification performance in classifying 
33 different cancer types using the selected features. A subset of 
features by varying k from 10 to 500 were extracted using CAE. 
For the comparison to be fair and along the same grounds with 
CAE, the same number of lncRNAs were selected using all other 
models. The SVM was used for classifying 33 cancer types using 
the selected features. To reconstruct all the input features from 
the selected features, we trained a linear regressor with no 
regularization. 
D. Evaluation and Validation 

Five different evaluation metrics have been used to record 
the classification and reconstruction performance such as 
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accuracy, precision, recall, f1 score, and mean squared error 
(MSE). Accuracy is the number of correct predictions made by 
the model over all kinds of predictions made. Precision is the 
number of correct positive results divided by the number of 
positive results predicted by the model. It indicates the predicted 
positive portion of the samples. Recall is the number of correct 
positive results divided by the number of all relevant samples. F1 
score is the harmonic mean of precision and recall. 
Reconstruction performance measure, MSE, was calculated using 
linear regression on the test set. 

All classification performance metrices were measured by 
comparing the predicted labels with the true labels of independent 
test samples. The optimal set of features was selected based on 
two criteria: (a) the number of features should be as few as 
possible, and (b) classification accuracy using the selected 
features should be > 90%. The final list of key lncRNAs is 
selected from the union of features derived from the binary 
intersection of four approaches,  (ܧܣܥ ∩ (ܱܵܵܣܮ ∪ ܧܣܥ) ∩ (ܨܴ ∪ ܧܣܥ) ∩ (ܧܨܴܯܸܵ ܱܵܵܣܮ)∪ ∩ (ܨܴ ∪ ܱܵܵܣܮ) ∩ (ܧܨܴܯܸܵ ∪ ܨܴ)  (3)..…..……………………………………………(ܧܨܴܯܸܵ∩
Then each lncRNA discovered in this study was cross-checked 
with existing literature whether it is already a known biomarker 
or not. The capability of selected lncRNAs in pan-cancer 
classification was visually validated using unsupervised 
visualization technique t-SNE [43]. To validate the prognostic 
performance of discovered lncRNAs, survival analysis of cancer 
patients using Kaplan-Meier [44] method was performed [45].  

 

III. RESULTS 
A series of experiments were conducted to compare the 

performance of CAE with other state-of-the-art feature selection 
methods such as standard autoencoder, LASSO, RF, and SVM-
RFE. Each of these methods was used to select features in the 
range of 10 to 500. These features were then used to train a linear 
classifier SVM to classify 33 cancer types using expression 
profiles of lncRNAs.   

A. Classification Performance Using Selected Sets of 
Features 

Fig. 5 shows classification performance using different sets 
of selected features. The initial stages of the experiments were 
performed with a smaller subset of the selected features as we 
wanted to understand the performance of the models being 
compared. The optimal classification performance with CAE 
(accuracy > 90% with the smallest number of features) was 
observed with about 100 features. Beyond this point, the increase 
in performance was not significant.  

It is clear from Fig. 5 that, for all sets of selected features, 
CAE performed better than LASSO, RF, and SVM-RFE in terms 
of four evaluation matrices, including accuracy, precision, recall, 
and f1 score. Of course, it could not beat the standard AE, as 
expected. It is noticeable that even with a smaller number of 
features (say 10), the accuracy of CAE was close to 70%, whereas 
LASSO (55% accuracy), RF (38% accuracy), and SVM-RFE 
(50% accuracy) showed poor results for the same number of 
features. The trend remains the same with the increase of number 
of features. 

 
 
 
Fig. 1: Classification performances of proposed method using selected features. Comparison of CAE with other feature selection methods. Throughout the all values 
of k tested on both (a) Accuracy, (b) Precision, c) Recall, and d) f1 score; CAE have highest classification performance after AE. 
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B. Reconstruction Performance of Feature Selection 

Algorithms 
Figure 6 shows the comparison of reconstruction 

performance among five feature selection algorithms. Note that 
AE select latent features, whereas, other four algorithms select 
actual features. The CAE starts with an MSE of 60 and quickly 
reduces to a value of less than 10 within the use of the top 100 
features as shown in Fig. 6. It is also clear from this figure that 
CAE has lower reconstruction error compared to LASSO, RF, 
and SVM-RFE for any set of selected features. Again, CAE 
cannot beat AE, as expected, since AE uses latent features. 

 
Fig. 2: Reconstruction mean squared error for different feature sizes selected by 
different models 

 
C. Combined Features 
Based on the performance of CAE, a set of 100 lncRNAs 

(features) produced an optimal classification. So, to produce a 
stable set of features for this problem, each of the four feature 
selection algorithms were run to extract 100 features.  The final 
list of 69 key lncRNAs was the result of the union of features 
derived from the binary intersection of four approaches as 
mentioned in eq. 3.  Figure 7 shows the Venn diagram of the 
common features extracted by four algorithms. It is clear from the 
Venn diagram that 67 (100 – 23) out of 69 lncRNAs came from 
CAE, which dictates the superiority of CAE. 

 

 
Fig. 7: Common features selected by different methods 

 
Table I shows the comparison of classification (Accuracy, 

Precision, Recall, and f1) and reconstruction (MSE) performance 
among the four approaches. Selected 100 features from each 
method was passed to a linear regressor for reconstructing the 
input features. Performance using the combined feature set of 69 
lncRNAs is also shown in the table. It is clear from this table and 
Fig. 6 that CAE is more resilient to reconstruction error, whereas, 
the error is more pronounced in the other competing methods. It 
is also clear from this table and Fig. 6 that CAE outperforms other 

state-of-the-art feature selection approaches. But it is noticeable 
that combined 69 features has better performance compared to 
the results produced by 100 features selected by three shallow 
feature selection approaches (LASSO, RF, and SVM-RFE). Not 
only that the combined 69 lncRNAs performs at the same level of 
CAE with 100 lncRNAs (93% accuracy). Of 69 combined 
features, 67 are coming from the 100 lncRNAs selected by CAE 
(Fig. 7). This means that a considerable number of lncRNAs (~30 
lncRNAs) are not contributing in classification, which demand 
further investigation. 
 
TABLE I: Classification and reconstruction performances using combined 69 
lncRNAs and selected 100 lncRNAs using different models.  

Model  Accuracy Precision Recall F1 MSE 
Combined 0.93±0.02 0.91±0.01 0.91±0.02 0.9±0.03 13.46±0.10

LASSO 0.92±0.01 0.87±0.02 0.88±0.02 0.87±0.01 13.84±0.08

SVM-RFE 0.85±0.03 0.85±0.02 0.82±0.03 0.83±0.02 25.98±0.08

RF 0.89±0.02 0.86±0.03 0.81±0.03 0.81±0.03 22.91±0.12

CAE 0.93±0.01 0.89±0.01 0.9±0.02 0.9±0.02 12.23±0.09

 
D. Visual Validation of Selected Features 
Fig. 8 shows the unsupervised clustering capability of 

expression profiles of discovered 69 lncRNAs using the t-SNE 
plot [43].  It is clear from the t-SNE plot that the discovered 
lncRNAs are capable of discovering the heterogeneity among 33 
cancers. So, the newly identified lncRNAs can be considered as 
essential features for diagnosis, prognosis, and therapeutic target 
for different cancers. Then each lncRNA was cross-checked with 
the existing literature whether it is already a known biomarker. 
Of the 69 lncRNAs, 38 were found in existing literature as known 
biomarkers for different cancers as shown in Table 2. The 
remaining 31 lncRNAs were novel discovery based on the 
lncRNA disease database v2.0.   

 
Fig. 8: t-SNE using top 69 lncRNAs where each dot represents a cancer sample 
and each color represents a cancer type. 
 

IV. DISCUSSION 
It is clear from the literature that lncRNAs play a key role in 

cancer development. More research is needed to identify cancer-
specific lncRNAs. Existing methods used co-expression 
networks such as lncRNA-mRNA or lncRNA-miRNA-mRNA. 
As per our knowledge, no study used lncRNA expression only to 
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classify cancer types except our previous work [46] where feature 
extraction was not considered.  

In this study, we identified 69 key lncRNAs that can identify 
the origins of 33 different cancers. When compared against the 
existing literature, 38 (55%) lncRNAs have been reported as 

important prognostic biomarkers for various cancers, Table II. 
Since the proposed method can identify already known lncRNA 
biomarkers, it can be concluded that the newly discovered 31 

TABLE II: 69 key lncRNAs identified in this study 

Known lncRNAs (n=38) 
AC005083.1, AC008268.1, AC093850.2, AC133528.2, AFAP1-AS1, CASC9, CRNDE, DNM3OS, EMX2OS, FAM83H-AS1, FENDRR, GATA2-AS1, GATA6-AS1, 
H19, HAGLR, HAND2-AS1, HCG11, HNF1A-AS1, LHFPL3-AS1, LINC00261, LINC00511, LINC01116, LINC01133, LINC01139, LINC01158, MALAT1, MEG3, 
MNX1-AS1, NR2F1-AS1, PIK3CD-AS2, PTCSC2, SATB2-AS1, SFTA1P, TRPM2-AS, UCA1, VPS9D1-AS1, XIST, ZNF667-AS1 

Novel lncRNAs (n=31) Based on lncRNA disease v2.0 (http://www.rnanut.net/lncrnadisease/) dated: July 2020 
AC005082.12, AC079630.4, AP001626.1, CECR7, CTA-384D8.31, CTD-2377D24.4, CTD-3032H12.2, GATA3-AS1, HOXA10-AS, HOXA11-AS, HOXD-AS2, 
LINC00958, LINC01082, LINC01272, MIR205HG, NKX2-1-AS1, RP1-288H2.2, RP1-60O19.1, RP11-1017G21.5, RP11-1055B8.3, RP11-264B14.2, RP11-
3P17.5, RP11-465B22.8, RP11-47A8.5, RP11-807H17.1, RP3-416H24.1, SLCO4A1-AS1, TBX5-AS1, U47924.27, U91324.1, ZFPM2-AS1 

 
 

Fig. 9: Kaplan-Meier survival analysis curve of high-risk and low-risk patients evaluated on novel lncRNA (AC005082.12, CECR7, GATA3-AS1, and HOXA11-AS).  
 
lncRNAs have the potential to be considered as novel biomarkers 
for cancers. Survival analysis suggests that some of 31 lncRNAs 
are novel biomarkers as shown in Fig. 9. Many studies have been 
conducted using mRNA expression for predicting cancer types as 
well as developing screening tools. No such tools are available 
that used expression profiles of lncRNAs. Hence, the identified 
69 lncRNAs can be used not only as a screening tool for cancer 
diagnosis but also as therapeutic targets for different cancers, for 
which further studies are required.  
 

V. CONCLUSION 
In this paper, a computational framework was developed 

using concrete autoencoder, a deep learning-based unsupervised 
feature selection algorithm, to identify the key features. The 
proposed method was evaluated in identifying the origin of 33 
different cancers using the expression profiles of selected features 
(69 lncRNAs) from the original feature space of 12 thousand 
lncRNAs. Existing literature and validation support that the 
selected lncRNAs could be potential biomarkers for diagnosis 

and prognosis of 33 different cancers. This paper accounts for 
both feature selection and identifying the origin of different 
cancers. However, other avenues can also be explored using the 
proposed method. For example, the proposed method can be used 
to identify important genes while classifying patients of a single 
cancer into molecular subtypes. It can also be used to integrate 
multi-omics data such as both coding and non-coding RNA 
expression as well as DNA methylation.  
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