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Abstract-

Background: Aberrant protein glycosylation is a common
feature of cancer and contributes to malignant behavior.
However, how and to what extent the cellular glycome is
involved in cancer development and progression is still
undefined. The primary objective of this study is to conduct in-
silico identification of glycome genes that could reveal a
signature of cancer using expression profiles of cancer genomes.
There exists a list of ~500 glycome genes in several molecular
categories. This study is based on the hypothesis that if the
glycosylation is a common feature of cancer, there exists a
shortlist of cancer glycome genes and their expression profiles
should carry the signature capable of differentiating 33 different
cancers available in The Cancer Genome Atlas (TCGA).

Method: The distribution of cancer samples in TCGA is
highly imbalanced, ranging from 36 for Cholangiocarcinoma
(CHOL) to 1089 for Breast Cancer (BRCA). Supervised feature
selection approaches to identify the signature genes would be
biased to larger groups. We developed a computational
framework using concrete autoencoder (CAE), a deep learning-
based unsupervised feature selection algorithm, to find the
cancer-related glycome genes. The criteria of optimal feature
subset used in this study are (a) the number of features should be
as few as possible, and (b) accuracy of classification using the
selected features should be > 90%.

Results: Our experiment showed a shortlist of glycome
genes (132 genes) that can differentiate 33 different cancers with
an accuracy of 92%. This study reflects that the cancer glycome
genes signify the origins of cancer.
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Selection, Cancer Glycobiology. Glycome Gene.
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I.  INTRODUCTION

One of the most ubiquitous pathways in nature is cell
glycosylation. Post-translational glycosylation of proteins is a
common cellular activity, wherein most if not all proteins are
glycosylated [1]. While adding structure and stability, protein
glycosylations also provide binding motifs for other molecular
partners (e.g., Lectins). They often offer physical subtleties that
impact protein complexing, membrane/cytosolic dynamics, and
functional activity. In cancer, these biological characteristics
imparted by cellular glycosylation are fundamentally aberrant
due to variances in the 'glycome' gene [2]-[4]. Altered protein
glycans and their glycan-modifying enzymes are now considered
key features of cancer. Intensive efforts are underway to
understand better how aberrant glycosylation can facilitate
tumorigenicity, tumor progression, and metastatic behavior [1].
Considering the breadth and mounting evidence for the key role
of aberrant glycosylations in cancer progression, we speculate
that distinct glycome gene signatures align with a particular
cancer glycosylation pattern originating from a particular cell
lineage.

Many computational methods fail to identify a small number
of relevant features, rather increase learning costs and deteriorate
performance [5]. It may be argued that the larger the feature set,
the better the classification. However, in a general setting, not all
of these features will be necessary for optimal classification [6],
[7]. Only a selected number of significant or relevant features can
lead to optimal classification. Many of the remaining features are
not significant and could be either noise, irrelevant to the study,
or even redundant [8]. The use of such insignificant features can
lead to unwanted computational complexities and deteriorate the
model's performance. This is more pronounced when working
with high-dimensional data. Thus, it is essential to identify the set
of significant features that can provide us with the optimal
classification and clustering. To accomplish this objective, we
need a robust method that can eliminate the redundant features



and noise that do not carry any information about the data labels,
thus providing us with only relevant features [9].

The problem in consideration comes with a highly
imbalanced distribution of data ranging from 36 for CHOL cancer
to 1089 for BRCA. Any supervised feature selection approaches
such as LASSO, RF, and RFE will be biased to heavy groups. To
find appropriate features that can differentiate 33 different cancer,
we need a robust unsupervised feature selection approach.

Over the past decade, many unsupervised feature selection
algorithms have been developed. The popular algorithms, using
regularization as the means for selecting discrete features, are
Multi-Cluster Feature Selection (MCFS) [10], Unsupervised
Discriminative Feature Selection (UDFS) [11], and AutoEncoder
Feature Selector (AEFS) [12]. Recently, Abid et al. [13]
developed Concrete Autoencoder (CAE) without resorting to
regularization. Rather, they used a continuous relaxation of the
discrete random variables, the Concrete distribution [14]. MCFS
[10] uses regularization to isolate the features preserving the
clustering structure in the data. UDFS [11] incorporates
discriminative analysis and [, ;-norm minimization on a set of
weights applied to the input to select features most useful for local
discriminative analysis. AEFS [12] uses [, ; regularization on the
weights of the encoder that maps the input data to a latent space
and optimizes these weights for their ability to reconstruct the
original input.

The CAE [13] is an end-to-end differentiable method for
global feature selection and capable of efficiently identifying a
subset of the most informative features. It takes advantage of both
(a) autoencoder (AE), which can achieve the highest
classification accuracy, and (b) relaxation of the discrete random
variables, the Concrete distribution [8], which is capable of
selecting actual features instead of latent features. It has also been
shown that CAE performs better than MCFS, UDFS, and AEFS
in selecting discrete features [13], which motivated us to use CAE
for feature selection in this study. The CAE filtered a shorter list
of glycome genes related to 33 different cancers from the original
larger list.

II. MATERIALS AND METHODS
A. Data Description

The expression profiles and clinical data for 33 different
cancers were downloaded from the UCSC Xena database [15].
This dataset contains expression profiles of about 60 thousand
RNAs, including coding genes (mRNAs) and non-coding genes
(IncRNAs and miRNAs). In this study, the expression profiles of
glycome-related genes (n = 498) were considered for analysis and
model evaluation. The glycome genes were procured from the
study by Sweeney et al. [1]. Table I shows the distribution of
glycome genes in 12 different categories at different levels of
analysis. The original list consists of 696 genes with some
duplicates. After removing duplicates, the unique list consists of
529 glycome genes. Of 529, 498 genes have expression profiles
for all the samples for 33 cancers, which were used to select a
reduced list of features. It should be noted that this study was
based on cancer patients only. So, normal samples available in
the same cancer were removed. The final dataset contains 9,566
cancer patients. The cancer-specific distributions based on 75/25
(training/testing) split are shown in Fig. 1. Each mRNA
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expression was processed using a min-max normalization method
to achieve good training performance.
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Fig. 1: Sample distribution for 33 cancers along with 75-25 split for training and
testing.

B. Features Selection

It is clear from Figure 1 that the distribution of cancer
samples is highly imbalanced, ranging from 36 for
Cholangiocarcinoma (CHOL) to 1089 for Breast Cancer
(BRCA). Since the data is highly imbalanced, a choice of
supervised feature selection will result in highly biased results
toward heavy groups. So, for selecting important features
(glycome genes), a state-of-the-art deep learning-based
unsupervised algorithm, Concrete Autoencoder (CAE), was used.
The CAE takes advantage of both Autoencoder (AE) [16],
capable of producing the highest accuracy, and Concrete
Relaxation [14], capable of selecting actual features instead of
latent features.

TABLE I: Distribution of glycome genes among 12 different categories. Original
dataset:696 glycome genes with some duplicates. Unique list:529 genes. Feature
selection experiment: 498 genes used.

Category Original | Unique | Experiment
Adhesion Molecule 9 7 7
CBP:C-Type Lectin 105 80 74
CBP:I-Type lectin 27 21 20
Galectin 14 13 12
Glycan Degradation 87 61 59
Glycosyltransferases 256 199 187
Glycoproteins 53 38 31
gl;rlzgzlrl:llar protein 13 ] ]
Miscellaneous 8 6 6
eides | [ o | w
Proteoglycans 41 31 29
Sulfotransferases 11 8 8
Total 696 529 498
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Fig. 2: Architecture of Concrete Autoencoder. CAE architecture consists
of an encoder and a decoder. The layer after the encoder's input layer is called the
concrete feature selection layer, as shown in yellow. This layer has k number of
nodes where each node is for each feature to be selected. During the training stage,
the i™® node v® takes the value X7 f{i), where f{i) is the corresponding weight
vector of node i. During the testing stage, these weights are fixed, and the element
with the highest value is selected by the corresponding i** hidden node. The
architecture of the decoder remains the same during training and testing.

Concrete autoencoder (CAE) proposed by [13] is a variation
of the original autoencoder (AE) [16], which is used for
dimension reduction. An AE is a neural network that consists of
two parts: (a) an encoder that selects latent features and (b) a
decoder that uses selected latent features to reconstruct an output
that matches the input with minimum error. In CAE, instead of
using a sequence of fully connected layers in the encoder, a
concrete relaxation-based feature selection layer is used where
the user can define the number of nodes (features), k, as shown in
Fig. 2. This layer selects a probabilistic linear arrangement of
input features while training, which converges to a discrete set of
k features by the end of the training phase, subsequently used in
the testing phase.

Let's p(x) is a probability distribution over a d-dimensional
vector. The objective is to identify a subset of features, S={1.. .k}
of size |S|=k. Also, learning a reconstruction function

A
£-():RX = RY, such that the loss between original sample x and
reconstructed sample f;(xs) is minimized as stated in Eq. 1,

argming, Epoo[llfy (xs) —xll2]..oeonnnnnnt. (1)
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where x; € R¥ consists of only selected features x; s.t. i € S.
Note that samples are represented in a 2D matrix, XER™ 4, and
the aim is to pick k columns of X such that sub-matrix X, € R™*¥,
Later, selected feature set xg can be used to reconstruct the
original matrix X and classify the cancer types.

In the feature selection layer of CAE in Fig. 2, the original
features are selected based on this layer's temperature, which is
tuned using an annealing schedule, as shown in Fig. 3. More
specifically, the concrete selector layer identifies k important
features as the temperature decreases to zero, Fig 3b. For
reconstructing the input, a simple decoder similar to the ones
associated with a standard AE is used. The temperature 7, of the
random variable in the selector layer, has a significant impact on
forming each node's output. Initially, when 7 is high, search space
is large since it considers a linear combination of all features, as
shown in Fig. 3(a). In contrast, the selector layer will not be able
to search all possible combinations of features at low 7, and thus,
the model converges to a poor local minimum. This means that
as temperature goes down, a small number of features are
necessary for stable convergence. Annealing or gradual decrease
in temperature avoids the model convergence to a poor local
minimum. The effect of annealing in feature selection is shown
in Fig. 3(a). For example, at the starting temperature, T, the
number of input features is 10, and the number of features to be
selected is k = 3. At the next epoch, when the temperature is 7, 1,
the number of possible features reduces to 6. After some epochs,
when the temperature reaches its lower bound gy, the number
of features further reduces to 3, equal to k, the user-specified
number of features to be selected. Instead of using a fixed
temperature, a simple annealing scheduling scheme is used for
feature selection. It starts with a user-defined high temperature
(t5) and steadily lowers the temperature until it touches the end
bound (z,), by every epoch as follows:

Tey = Ts (TN /T ™ i, 2)

Where, t, is the temperature at epoch e, N refers to the total
number of epochs. Adam optimizer, with a learning rate of 0.001,
was used for all the experiments for CAE. The starting
temperature of CAE was set to 10, and it ends at 0.01.
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Fig. 3: Effect of annealing in reducing search space. (a) An example: at starting temperature 7, the number of input features is 10 and the number of features to be
selected is k = 3; at the next epoch when the temperature is 7,,,, the number of possible features reduces to 6; after some epochs, when the temperature reaches to its
lower bound gy, the number of features further reduces to 3, which is equal to k. (b) Effect of temperature change in reducing the loss while training the concrete
autoencoder on mRNA expression data to select the desired number of features, k. If the temperature is exponentially decayed (the annealing schedule), the feature

selection layer converges to informative features with minimum loss.
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C. Classification

To check the relevance of the selected features (glycome
genes) to the origin of 33 different cancers, five classification
algorithms including Gaussian Naive Bayes (GNB), K-nearest
Neighbor (KNN), Random Forest (RF), Support Vector Machine
(SVM), and Logistic Regression (LR) were used. The dataset was
split into the train and test set according to a 75/25 ratio to avoid
overfitting. The numbers of training and testing samples of 33
cancers are shown in Fig. 1. The training set was used to estimate
the learning parameters, and the test set was used for performance
evaluation. The mean accuracy of 10 different runs was reported
in results where the dataset has been shuffled and split (75/25) for
every run.

Four different evaluation metrics have been used to record
the classification performance, such as accuracy, precision,
recall, and f1 score. Accuracy is the number of correct predictions
made by the model over all kinds of predictions made. Precision
is the number of correct positive results divided by the number of
positive results predicted by the model. It indicates the predicted
positive portion of the samples. The recall is the number of
correct positive results divided by the number of all relevant
samples. F1 score is the harmonic mean of precision and recall.

All performance metrics are measured on the predicted labels
and true labels of independent test samples. The optimal number
of features are selected based on two criteria: (a) the number of
features should be as few as possible, and (b) the classification
accuracy using the selected features should be > 90%.

D. Comparison

The feature selection capability of concrete autoencoder
(CAE) was compared with the standard autoencoder (AE). Both
AE and CAE are unsupervised approaches, but the former
produces latent features, and the latter produces actual features.
It is also known that AE performs better, maybe at the highest
level, since it comes up with a reduced number of latent features
with maximum variance. The objective of comparing CAE with
AE is to check how close CAE's performance is to that of AE.

1. RESULTS AND DISCUSSION

A. Feature Selection and Classification Results

Finding Optimal k-value: The conditions for optimal feature
set are (a) the number of features should be as few as possible,
and (b) classification accuracy using the optimal feature set
should be > 90%. As shown in Figure 4(a), a series of
experiments were conducted to find the optimal number of
features using CAE for classifying 33 different cancers. It is clear
from this figure that the initial increase in the number of selected
features from 25 to 100 showed a sharp increase. Beyond this
point, the increase in performance was not significant. For
example, to increase the performance from 92% to 93%, one
needs to increase the number of features from 100 to 200, which
is not worthwhile. The optimal classification performance for the
present problem with CAE (accuracy > 90% with the smallest
number of features) was observed with about 100 features. In
other words, the optimal k-value for this problem is 100.
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Finding a Stable Set of Features: With the same value of k =
100, the CAE produces a different optimal subset of 100 features
in different runs. To get a stable set of features, the model was
run 10 times with k = 100. Without loss of generality, it can be
assumed that a gene that appears in more than one run can be
considered as an important feature. In 10 runs, it was observed
that 269, 132, 50, and 15 genes appeared in = 2, > 3, > 4, and >
5 runs, respectively. The classification performance using these
four subsets of features are shown in Figure 4(b). The feature sets
269 (= 2) and 132 (= 3) produced accuracy > 90%. It is
noticeable that to increase the accuracy from 92% to 94%, one
needs to increase the number of features from 132 to 269. In other
words, to increase the accuracy by 2%, we need twice as many
features, which is not worthwhile. So, the set of 132 genes that
appeared in 3 or more runs were considered the stable feature set
(the gene names are shown in Appendix-A.

Comparing CAE with AE: To compare CAE performance
with AE, 132 latent features were generated using AE. For
completeness, the original feature set of 498 genes was also used
for classification. Table II shows the performance of five
classifiers — GNB, KNN, RF, SVM, and LR - in classifying 33
different cancers. Block A, Block B, and Block C of Table II
shows the performance of five classifiers using original feature
set (498 genes), reduced and stable feature set (132 genes), and
132 latent features. It is clear from this table that SVM performed
better with each set of features in terms of four evaluation
matrices, including accuracy, precision, recall, and f1 score. It is
noticeable that the accuracy using the original feature set of 498
genes was 95%, which indicates that glycome genes carry the
signature of cancers. But to conduct the wet lab experiment to
identify the roles of each of these 498 genes is difficult and
expensive. A reduced and stable set of features are desired to
design a wet lab experiment. The stable set of 132 genes isolated
in this study produces an accuracy of 92%, which satisfies the
conditions for optimal feature set (number of features should be
as few as possible and accuracy should be > 90%). 132 salient
features derived from AE show the upper bound of performance,
94%, for the present problem. The performance of CAE (92%
accuracy) is pretty close to AE (94% accuracy), which provides
confidence in explaining the role of glycome genes in the process
of cancer initiation and progression.

B.  Capability of Selected Features

Figure 5 shows the capability of selected 132 glycome genes
in identifying the origin of 33 cancers with the t-SNE plot and
confusion matrix. It is clear from the t-SNE plot that 132 glycome
genes can distinguish 33 different types of cancer by forming
distinct clusters. It is also clear from the confusion matrix that
most cancers were identified with high accuracy except CHOL,
ESCA, and READ. The number of CHOL samples was very low
(36 only) compared to other cancers, which might play some role
in poor performance. Though the number of samples (161
patients) for ESCA is not low, poor performance could be due to
its complexity. The rectal adenocarcinoma (READ) was confused
with colon adenocarcinoma (COAD). Similarly, some of the
COAD samples were also confused with READ samples.
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Fig 4: Optimal k-value and stable feature set. (a) Optimum k-value: Mean accuracy at different number of features selected by CAE. The initial increase in the number
of selected features from 25 to 100 showed a sharp increase in accuracy from 80% to 92%. Beyond this point, the increase in performance was not significant. From 100
to 200 features, accuracy increased only by 1%, which is not worthwhile. So, 100 features producing 92% accuracy meet the criteria of optimal k-value (number of
features as few as possible and accuracy > 90%). (b) Stable feature set: Mean accuracy at different number of features selected based on the frequency of a feature
appeared in 10 runs with optimal k = 100. 132 genes appearing in > 3 runs produced an accuracy of 92%. To increase the accuracy from 92% to 94% (only by 2%), one
needs twice as many features (269 genes instead of 132 genes). 132 genes with 92% accuracy meet the optimal criteria ((number of features as few as possible and
accuracy > 90%). Thus, the stable feature set consists of 132 genes.

TABLE II: Classification performance: Block A: Using original features of 498 glycome genes. Block B: Using 132 glycome genes selected by CAE. Block C: Using
132 latent features produced by AE.

#features Classifier [ Mean Accuracy | Mean Precision| Mean Recall | Mean f1 Score

GNB | 0.86 (+/-0.01) | 0.84 (+/-0.01) |0.84 (+/- 0.01)| 0.83 (+/- 0.01)

KNN | 0.91 (+/-0.01) | 0.88 (+/-0.01) |0.88 (+/-0.01)| 0.87 (+/- 0.01)

Blgglg A RF 0.91 (+/-0.01) [ 0.89 (+/-0.01) [0.85 (+/-0.01)| 0.85 (+/- 0.01)
SVM 0.95 (+/- 0.01) | 0.93 (+/- 0.01) |0.92 (+/- 0.01)| 0.92 (+/- 0.01)
LR 0.94 (+/-0.01) | 0.92 (+/-0.01) |0.92 (+/- 0.01)] 0.92 (+/- 0.01)
GNB 0.84 (+/-0.01) [ 0.80 (+/- 0.01) [0.83 (+/-0.01)| 0.80 (+/- 0.01)
KNN 0.89 (+/-0.01) [ 0.85 (+/-0.01) [0.85 (+/-0.01)| 0.85 (+/- 0.01)
Block B

A +/-0. . +/- 0. . +/-0. . +/- 0.
CAE132 (> 3| RF | 090(+-001) | 088 (+-002) 083 (+/-001)| 083 (+/-001)

SVM 0.92 (+/- 0.01) | 0.88 (+/- 0.01) (0.89 (+/-0.01)| 0.88 (+/- 0.01)

LR | 0.92(+-0.01) | 0.89 (+/-0.01) |0.88 (+/-0.01)] 0.88 (+/- 0.01)

GNB | 0.83 (+/-0.01) | 0.82 (+/-0.01) |0.85 (+/-0.01)| 0.83 (+/- 0.01)

KNN | 091 (+/-0.01) | 0.86 (+/-0.01) |0.86 (+/-0.01)| 0.86 (+/- 0.01)

Block C

AR 132 RF | 0.92(+/-0.01) | 0.89 (+/-0.01) [0.84 (+/-0.01)| 0.85 (+/- 0.01)

SVM 0.94 (+/- 0.01) | 0.91 (+/- 0.01) (0.90 (+/- 0.01)| 0.90 (+/- 0.01)

LR | 0.91(+-0.01) | 0.89 (+/-0.01) |0.84 (+/-0.01)] 0.85 (+/- 0.01)
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Fig. 5: Capability of selected 132 glycome genes in identifying the origin of 33 cancers. Confusion matrix and visualization of 33 different cancer types. (a) Confusion
matrix generated using 132 glycome genes from SVM. (b) t-SNE using 132 glycome genes where each dot represents a cancer sample, and each color represents a cancer

type.
The reason is that both COAD and READ share many

common features since the colon and rectum are two parts of one
large organ.

C. Importance of Selected Features
Table III shows the distribution of glycome genes before and
after feature selection by CAE.

TABLE III: Distribution of glycome genes before and after selection using CAE.
Total genes: 498 (before) and 132 (after). Accuracy: 95% (before) and 92%
(after). Remarks: Provide a smaller list of 132 glycome genes capable of
identifying the origin of 33 cancers with an accuracy > 90%. This list of 132 genes
could be used to design a wet lab experiment to investigate their role in
tumorigenesis further.

Category Before After
Adhesion Molecule 7 2
CBP:C-Type Lectin 74 20
CBP:I-Type lectin 20 7
Galectin 12 3
Glycan Degradation 59 17
Glycosyltransferases 187 54
Glycoproteins 31 4
Intracellular protein

transport 8 !
Miscellaneous 6 0
NS | | s
Proteoglycans 29 7
Sulfotransferases 8 2
Total 498 132
g'cisusigs;‘“"“ 95% 92%

1866

There was a total of 498 and 132 genes before and after the
selection process, respectively. The accuracy of classification
using 498 and 132 genes was 95% and 92%, respectively (last
row of the table). The objective of this study was to find as few
features (glycome genes) as possible with an accuracy > 90%,
which helps design a wet lab experiment to investigate further the
role of glycome genes in the process of cancer initiation and
progression. It is clear from Table III that the number of genes in
each category has been significantly reduced after the feature
selection process. This means that glycosylation can be explained
with a fewer number of genes in each category. For example, to
explain glycosylation in terms of Adhesion Molecule, one can use
only 2 genes instead of 7 genes. Similarly, to explain Glycan
degradation, one can use 17 genes instead of 59 genes.

IV.  CONCLUSION AND FUTURE REMARK

In this study, we developed an in-silico framework to
identify significant glycome genes related to the origins of 33
different cancers. A deep learning-based unsupervised feature
selection algorithm, concrete autoencoder, was used to develop
the framework. The developed framework successfully identified
an optimal set of glycome genes related to individual cancers.
This optimal set of glycome genes could segregate and
differentiate 33 cancers using expression profiles with an
accuracy of 92%. This study accounts for both feature selection
and identifying the origin of different cancers into its analytical
methods. These findings highlight the role of glycosylation in
cancer development and offer subsets of glycome genes in several
molecular categories that can be investigated further for their
respective role in cancer-specific malignancy.

This study considers only cancer patients to identify cancer-
related glycome genes. In the future, the same framework will be
used for normal samples corresponding to different cancers to
find the glycome genes related to normal tissues. A comparison



between these two sets will help pinpoint the glycome gene
signatures for cancers. Another avenue of future work will be the
identification of differentially expressed glycome genes for
individual cancers, which will help identify the cancer-specific
glycome gene signatures.
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