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Abstract— Background: In the United States, African American
Males (AAM) have the highest lung cancer incidence and mortality
rate compared to European American Males (EAM). Cigarette is
considered the major risk factor for lung cancer, but smoking alone
fails to interpret the rationale for developing lung cancer between
AAM and EAM. The higher rates of lung cancer among AAM occur
even though they have lower smoking rates, smoke fewer cigarettes
per day, and are less likely to be heavy smokers than EAM.
Identifying genomic signatures such as key genes that can
differentiate lung cancers between AAM and EAM will be a
stepping stone to comprehend the disparity of lung cancer between
AAM and EAM.

Method: The gene expression profiles of whole blood samples
from AAM and EAM patients were used to identify the key genes
that can differentiate the lung cancers between AAM and EAM. Due
to the US population's imbalanced nature between AAM and EAM,
the distribution of samples for the present study is also highly
imbalanced (AAM: 15 and EAM: 153). Here, we developed a
computational framework using a deep learning-based unsupervised
feature selection approach, concrete autoencoder (CAE), which can
select actual features rather than latent features. First, we showed
that features such as differentially expressed genes (DEGs)
discovered by a supervised statistical approach LIMMA could not
differentiate lung cancers between AAM and EAM. Then we
showed that the CAE could isolate essential features capable of
differentiating lung cancers between AAM and EAM.

Results: The proposed framework using CAE was able to detect
34 key features/genes, which outperforms all sets of DEGs
identified using three different thresholds on fold change. Using the
selected 34 genes, the Random Forest classifier was able to classify
lung cancers among AAM and EAM with 99% accuracy and only
one false negative.

Conclusion: The proposed framework using CAE reveals the
key genes that can differentiate lung tumors between AAM and
EAM. These key genes can be used as biomarkers to understand the
difference in lung cancer development between AAM and EAM.
This study also showed that the CAE is capable of extracting
relevant features from a highly imbalanced dataset.
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I. INTRODUCTION

Lung cancer is considered the second most prevalent
type of cancer [1] and the leading cause of death in the United
States [2]. Lung cancer represents approximately 12.7% of
all cancer cases in the United States, and the African
American Males (AAM) have the most lung cancer incidence
and higher mortality rate than European American Males
(EAM) [1]. Cigarette smoking is regarded as one of the major
risk factors for lung cancer, but it is noticed that AAM has a
lower smoking rate than the EAM [3],[4]. So, some other
factors need to be considered, such as geographic regions, the
origin of birth, diet, occupations, etc. [3]. Gene expression
profiles for the tumor cells or whole blood samples from
cancer patients can help identify the disparities among AAM
and EAM.

The work done by Mitchell et al. [5] is relevant to our
work. But some subtle differences make our research unique.
They used expression profiles of tumor and normal tissues,
whereas we used expression profiles of blood samples from
cancer patients only. They identified key genes using
statistical methods (ANOVA and t-test), where they
considered tumor tissue as case and normal tissue as control.
Besides, they considered both males and females together for
their research. Here, we used male patients only, and the
EAM patient was the control, while the AAM patient was the
case. We used both a statistical approach (identifying DEGs)
and a deep learning technique to identify key features from
the dataset. Since the dataset was highly imbalanced, 15
AAM versus 153 EAM, a supervised algorithm will be
biased to the larger group. Here, we developed a
computational framework using a deep learning-based
unsupervised algorithm, concrete autoencoder (CAE) [6], to
identify the signature genes that can differentiate the lung
cancers between AAM and EAM.

In this paper, first, we used LIMMA, an R package,
which uses a statistical approach to identify differentially
expressed genes (DEGs). Second, CAE was used to isolate
the key genes from the original feature space. Finally, three
state-of-the-art machine learning algorithms, Support Vector



Machine (SVM), Random Forest (RF), Logistic Regression
(LR), were used to check the capabilities of the discovered
features to differentiate lung cancers between AAM and
EAM.

II. MATERIALS AND METHODS

The whole blood gene expression profiles of lung cancer
patients were obtained from the NCBI GEO database with
accession ID, GSE135304 [7]. The dataset contains 712
human whole blood samples (311 males and 401 females)
with the information of their demography, disease types, and
nodule statuses. As our current hypothesis focuses on the
male gender, we categorized 311 male samples based on lung
cancers. We found that only 168 patients (15 AAM versus
153 EAM) have lung cancer information for male patients. It
is noticeable that the dataset to be analyzed is highly
imbalanced. Two approaches were used to isolate the key
features that can explain the disparity in lung cancer
development between AAM and EAM: (a) LIMMA, a
statistical approach, and (b) Concrete Autoencoder, a deep
learning-based unsupervised approach.

To check the capability of features selected above in
differentiating lung cancers between AAM and EAM, three
state-of-the-art classification algorithms including Support
Vector Machine (SVM), Random Forest (RF), and Logistic
Regression (LR) were used. We used Scikit-Learn, an open-
source machine learning library in Python. 5-fold cross-
validation was used for measuring the classification
performance.

III. RESULTS AND DISCUSSION

A. Feature selected by LIMMA

Table-I shows the number of DEGs for lung cancer in
AAM compared to EAM. Three sets of DEGs (6, 45, and 317
genes) were found using three different thresholds on fold
change, [logFC| = 2.0, 1.0, and 0.5, respectively, with a P-
Value < 0.05. These DEGs were used as features for finding
the disparity between AAM and EAM, applying three
classification algorithms, SVM, RF, and LR.

Table I: The DEGs for AAM compared to EAM. P-Value <

0.05. (1: upregulated DEGs; |: downregulated DEGs)

[logFC| > 2 [logFC|>1 [logFC| > 0.5
10; |6 18; 137 167; 1250

B. Feature selected by Concrete Autoencoder

DEGs

Table II shows the distribution of the number of features
obtained using two sets of runs, (a) 20 runs to select 317
features, and (b) 140 runs to select 20 features. For k = 317,
20 runs selected a total of 6340 features, of which, 5733 were
unique. Similarly, for k =20, 140 runs selected 2800 features,
of which, 2265 were unique. Finally, the intersection of
features selected by two sets of runs resulted in 34 features,
which were considered as significant features.

Table II: Distribution of the number of features from CAE.
First set of runs: k = 317 features and i1 = 20 runs; Second set
of runs: k = 20 features and i = 140 runs.
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# of features per | # of runs (i) | # of total | # of unique
run (k) features features
317 20 6340 5733
20 140 2800 2265

C. Classification results using the DEGs

Figure 1 shows the performance of three classification
algorithms (SVM, RF, and LR) using three sets of DEGs
(317, 45, and 6 genes). All sets produced the same level of
accuracy ranging from 94% to 97%. But the results are highly
biased to the larger group of 153 EAM patients. Of 153 EAM,
most of them were predicted correctly, and at most, 2 patients
were predicted wrong. On the other hand, of 15 AAM, 5 to 8
patients were predicted wrong.
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Fig 1. Confusion matrix and corresponding accuracy using DEGs.
Classification algorithms used: SVM, RF, and LR. a) Results using 317
DEGs, b) Results using 45 DEGs, and c¢) Results using 6 DEGs.

D.  Classification results using the features from CAE

Figure 2 shows the classification accuracy, and
confusion matrix using three sets of features selected from
two sets of CAE runs, 20 runs with k=317 and 140 runs with
k = 20. The conditions for feature selection are: (i) the
number of features should be as few as possible, (ii) the
accuracy using the selected features should be > 90%, and
(iii) the wrong prediction for the smaller group (AAM)
should be as minimum as possible.

Feature selection from 20 runs with k = 317: Counting
genes that appeared in more than 2, 3, and 4 runs resulted in
72, 7, and 1 gene, respectively. Figure 2 (a & b) shows the
classification performance using 7 and 72 genes,
respectively. It is clear from Figure 2a that performance with
7 genes is the worst since all AAM samples are predicted
wrong using SVM and RF. On the other hand, 72 genes
perform the best, 100% accuracy using SVM, but poor results
using RF (5 out of 15 AAM samples are predicted wrong).

Feature selection from 140 runs with k = 20: Figure 2c
shows the confusion matrix using 31-gene set appeared in




more than 3 runs. It is clear that the 31-gene set performs way
better than that of the 7-gene set (2a) and slightly worse than
the 72-gene set (2b). Since our goal is to select as few features
as possible, 72 gene-set is high to design a wet lab experiment
for further investigation.

Common features between two sets of runs: It is clear
from Figure 2b and 4c that both sets of runs (20 runs with k
= 317 and 140 runs with k = 20) have significant features
capable of differentiating lung cancer between AAM and
EAM. This observation motivated us to use the common 34
features between the two sets of runs.
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Fig 2. Confusion matrix and corresponding accuracy for three
classifiers (SVM, RF, and LR) using the features isolated by CAE. a)
Results using 7 genes: selected from 20 runs with k = 317, each gene
appearing in more than 3 runs; b) Results using 72 genes: selected from 20
runs with k = 317, each gene appearing in more than 2 runs c¢) Results using
31 genes: selected from 140 runs with k = 20, each gene appearing in more
than 3 runs.
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Fig 3. Confusion matrix and corresponding accuracy using 34 common
features from two sets of CAE run. 20 runs with k = 317 and 140
runs with k = 20.

Figure 3 shows the classification performance using 34-
gene set. It is clear that 34 gene-set was able to classify the
lung cancers among AAM and EAM very well. The whole
set of 153 EAM samples were predicted correctly by three
classifiers. Of 15 EAM samples, RF made 14, and SVM and
LR made 12 correct predictions. Comparing 31-gene set

2149

performance in Figure 2¢, 34-gene set in Figure 3 produced
better results. Thus, the signature of the 34-gene set can be
used to develop a wet lab experiment to find the disparity of
lung cancer between AAM and EAM. The list of 34 genes is
provided below.

ACKR1, AIRE, ATP6VODI, CAMP, CASPl, CCDCI25,
DEFAIB, DYSF, FAM210B, FCGR3B, FRAT2, GNAS,
ILMN_ 1693262, ILMN 1762189, ILMN 1827887,
ILMN_ 2338997, ILMN 3246805, ILMN 3278879, ITPRIP,

LINCO00173, LOC644936, MUC6, MXD1, NLRP12, POLR3C,
RNA28S5, RNA28S5, S100P, SERPINA13P, SLC6A1S5, TDPI,
TNPO3, UBAS52, WARS.

IV. CONCLUSION AND FUTURE WORK

We developed a computational framework using a deep
learning-based unsupervised feature selection algorithm,
Concrete Autoencoder (CAE), to identify the key genes
related to the disparity in lung cancers between AAM and
EAM. This study shows that whole blood samples carry the
signature of health disparity in lung cancer between AAM
and EAM.
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