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Abstract—This paper focuses on designing an energy-efficient
image recognition system for marine monitoring. One of the main
challenges of an underwater imaging system is the strict power
consumption constraints due to the limited on-site resources.
Considering the need for continuous operation in different
water turbidity levels and background illumination conditions,
an energy-efficient approach is needed for effective utilization of
the resources. In this work, we propose a recognition framework
that will adaptively adjust the system parameters, such as camera
frame rate and LED illumination level, based on the environment
conditions to optimize the energy consumption while ensuring
a high recognition accuracy. The first part of the proposed
decision system contains the convolutional neural network (CNN)
based animal recognition block which is used for obtaining the
confidence level for a single frame. The second part is the adaptive
decision block that dynamically changes the system parameters
and combines the results of the recognition block for multiple
frames based on the environment conditions. In our experiments,
we have used nearly 8000 underwater images for training and
testing the single frame recognition block and used nearly 200
different video sequences for training and testing the adaptive
decision block. Based on measurements of a hardware framework
composed of a Raspberry Pi 3 Model B, a Pi NoIR Camera v2.1,
and 850nm LEDs, the proposed system achieves up to 92.7%
energy savings with a comparable recognition performance by
dynamically changing the frame rate and emitted light intensity
based on water turbidity and background illumination level.

Index Terms—underwater object recognition, convolutional
neural networks, energy-efficiency

I. INTRODUCTION

Artisanal gillnet fisheries have been an important source
for food sustaining coastal populations [1]. However, unin-
tended capture of different animal species such as sea turtles,
sharks and other marine mammals can result in decline in
the population of these species and damage the ecosystem
[2]-[4]. This unintended capture, termed bycatch, presents a
threat especially to green turtles, since recent studies estimate
the number of sea turtles killed in fisheries as hundreds
of thousands per year [5]-[8]. Furthermore, these incidents
cause significant financial losses to coastal communities by
damaging the fishing gears or mandating location changes
from profitable regions [9].

To reduce the bycatch of sea turtles, various approaches
have been developed over the years [10]-[12]. These studies
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aim to develop novel fishing gear designs with visual or acous-
tic stimuli to prevent bycatch. However, the effectiveness of the
designs should be maximized by experimenting with different
stimuli and analyzing the associated response given by sea
turtles. Performing this analysis manually by a human operator
is not practical, since it will require monitoring the fishing
areas for long periods and observing the sea turtle behaviours
by altering the stimuli at the right time. Luckily, with the
developments in vision-based object recognition techniques,
an underwater animal recognition system can be designed to
help collect the sorely needed data.

Object recognition is a widely studied problem for many
applications in various fields [13]-[17]. Developments in ma-
chine learning have contributed to achieving very successful
recognition especially in large datasets, making the deep neural
networks a de facto standard for object recognition applica-
tions [18]—[21]. These developments helped the underwater an-
imal recognition task as well [14], [22]-[25]. In these studies,
the main focus is typically improving the recognition accuracy
of the system. However, one of the most significant challenges
for an underwater recognition system is the energy limitation
when real-time operation with an underwater hardware setup
is required. For such a system, camera parameters and emitted
light intensity should be carefully controlled to use power
resources efficiently. However, these parameters have a direct
impact on the recognition performance. Therefore, a high-level
decision mechanism that will consider both the recognition
performance and energy efficiency is required. To this end, we
propose an energy efficient underwater recognition framework
that will optimize the system parameters based on the changing
environment conditions to achieve lower power consumption
while obtaining a successful recognition rate.

The proposed framework contains a deep artificial neural
network for obtaining the confidence level for sea turtle
recognition task. The output of this network for multiple
frames is processed along with the environmental conditions,
such as water turbidity and background illumination level,
to achieve a final decision for the recognition of sea turtles.
Based on the environmental conditions, the decision block also
dynamically changes the system parameters to decrease power
consumption and achieve the best possible recognition rate
under these conditions.

The organization of this paper is as follows: Section II
summarizes the prior work in artificial neural networks and
other machine learning approaches for the object recognition
task. This section also includes various approaches for the
recognition of underwater animal species. In Section III, we
give an overview of the proposed optimization framework and
introduce the functional sub-blocks. Section IV explains our
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methodology for training the deep artificial neural network
and optimizing the system parameters for the proposed adap-
tive decision mechanism. Section V reports the experimental
results, while Section VI provides the concluding remarks.

II. PRIOR WORK

Researchers have long used autonomous underwater camera
systems to observe and understand marine life [26], [27].
In such underwater image capture systems, the camera is
typically placed in a fixed location and works at a fixed frame
rate and background illumination [26], [27]. The results from
the captured images are analyzed and adjustments are made
off-line [26], [27]. Various image processing and machine
learning methods have been proposed for underwater animal
recognition over the past few decades. Early approaches gen-
erally require a controlled environment for performing the
task. For example, in [28], a recognition method based on
the shape and the color of the sample is proposed for fish
species under laboratory conditions. However, recognition of
underwater animal species in the natural environment is a
more challenging problem, since the images captured in these
conditions will contain illumination variations, water turbidity
and background clutter. The recognition task becomes even
more challenging as there is no constraint in the orientation
of the animals of interest. Early methods using texture patterns
and shapes for the recognition in natural environment achieve
good results only for the highly distinguishable shapes and
patterns [29], [30].

With the developments in machine learning, various su-
pervised and unsupervised methods have been employed in
underwater animal recognition problem. Some of the early
approaches utilized principal component analysis (PCA) [13]
or linear discriminant analysis (LCA) [31] for the task and
obtained moderate recognition rates. Sparse representation
classification [14], Gaussian mixture models (GMM), and
support vector machines (SVM) [32], [33] are among the
other machine learning-based approaches proposed later for
the recognition of underwater animal species. Although these
methods achieved more and more successful results over time,
remarkable leaps in the object recognition rates were obtained
after the utilization of deep artificial neural networks. In [34],
Krizhevsky et al. achieved nearly a 10% reduction in the
error rate for the general object recognition task by using
the Convolutional Neural Network (CNN) architecture on the
ImageNet [21] dataset. This successful result quickly turned
CNNs into a commonly used architecture for a wide range of
object recognition applications.

Convolution has already been a commonly used operation
for different computer vision applications such as denoising
or edge detection. In [17], LeCun demonstrated that the filter
coefficients in the convolution operations can be automatically
learned from data using neural networks. Such an architecture
typically contains convolution layers, nonlinear activation lay-
ers, pooling layers and fully connected output layers. Convo-
lution layers in the architecture are used for extracting distin-
guishing features to recognize various object classes. While
the first layers obtain the low level features such as edges

and corners, deeper layers extract more complex and higher
level features. With the increasing number of layers, a proper
architecture will have higher representation power and superior
recognition capability. However, the training process becomes
harder for deeper networks due to the unstable or vanishing
gradient problem [35]. In [36], He et al. proposed the concept
of Residual Learning using Identity mappings through by-pass
connections. This approach provided an alternative route for
the gradient to flow in the back-propagation stage, making
it possible to build deeper networks with fewer trainable
parameters than traditional CNNs. The ResNet architecture
achieved superior recognition performance on ImageNet [21]
dataset when compared to the older approaches. Furthermore,
the number of weights in the network architecture is lower for
ResNet (~25.5M for ResNet50) compared to other commonly
used network architectures, such as AlexNet (~61M) [34]
and VGG-16 (~138M) [37]. Therefore, we have utilized this
network design for our sea turtle recognition task.

Another issue with increasing the depth of a neural network
is the overfitting problem. Since the network becomes more
complex with higher number of layers and coefficients, it
can fit well to training samples, but perform poorly in the
unseen dataset for a limited training dataset. To overcome this
problem, transfer learning is a broadly used approach [38],
where network coefficients trained for a certain application
are partially or fully utilized for another task. In our design,
we used a model with coefficients pre-trained on the ImageNet
[21] dataset.

III. OVERVIEW OF THE RECOGNITION SYSTEM

The proposed recognition system has several components
as shown in Figure 1. The fundamental functional blocks are
explained in the following subsections.
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Fig. 1: Block diagram of the recognition system

A. Artificial Neural Network

A significant part of the recognition system is the deep
neural network architecture that processes the image frames
and computes a confidence level for the animal species of
interest. Convolutional neural networks have been commonly
used for the object recognition task for different applications

[18]-[20], [39]. We have utilized a model that is pre-trained
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Fig. 2: A building block of residual network [36]

on the ImageNet [21] dataset. Normally, this dataset is not
created for underwater animal species, but there are nearly 1.2
million images consisting of a wide range of objects. Training
deep artificial neural networks on such a large dataset that
includes diverse number of sample foreground and background
objects makes it possible to extract representative features for
the recognition of various objects. Therefore, a proper network
architecture can learn color, texture, or shape patterns and
achieve generalization power, if there is sufficient number of
samples and variety in the training set. Due to this generaliza-
tion power, such networks can be utilized in the recognition
task for other new datasets. Even if these datasets are not used
in training the neural network, learnt features are representative
enough to be utilized for the recognition of unseen data
samples. Some of the well known networks that are used
for feature extraction include AlexNet [34], VGGNet [37]
and Resnet [36]. In our implementation, we have utilized the
Deep Residual Network (ResNet-50) architecture [36] and
employed the transfer learning approach [40] for calculating
the network coefficients.

A building block of residual networks is shown in Figure 2.
The weight layers include convolution kernels as found in a
typical CNN architecture. In addition to these convolutional
layers, the main advantage of this structure is the bypass
connections between the inputs and outputs of the layers.
Normally, outputs of the convolution layers in CNNs are
used as inputs for the next layers. However, in this structure,
bypass links propagate the effect of extracted features in the
first layers to the next layers through direct connections. This
architecture not only helps combining a larger set of features
in the deeper layers, it also allows for increasing the depth
of the network for higher recognition accuracy. Another issue
with deep CNNss is unstable or vanishing gradient problem in
the backpropagation process [35]. These bypass connections
also help prevent the vanishing gradient problem, since the
gradient is transmitted directly over the bypass connection in
addition to the gradient through the branch.

In our design, we have replaced the last 2 fully-connected
layers of the utilized ResNet-50 architecture pre-trained on
ImageNet [21] dataset. The coefficients of these 2 fully con-
nected layers are trained using our dataset for the sea turtle
recognition task.

B. Adaptive Decision Block

The trained network can recognize images very accurately
under ideal conditions, such as clear water and significant
background illumination. However, underwater conditions can
change dramatically, reducing the fidelity of the image. Back-
ground illumination can change depending on the time of
day, depth, and water conditions. In order to obtain clear
images, the camera system includes LED lighting that can
provide additional background illumination. However, LEDs
consume significant power and their use when the background
conditions are ideal can lead to unnecessary draining of
the precious resources. Similarly, water turbidity can change
dynamically, inducing a fog-like effect on the images. Luckily,
we can use multiple images to increase the likelihood of
making the correct decision by capturing sequential images.
This solution also leads to increased use of limited resources.
Thus, it is necessary to adjust the background illumination as
well as the number of images processed and capture rate of
the image frames.

The proposed adaptive decision block provides a decision by
combining recognition results for multiple frames. Based on
the turbidity and background illumination level, the decision
block adjusts the system parameters, namely camera frame
rate and the intensity of the emitted light. This block also
changes the internal decision parameters for achieving a high
accuracy for the recognition task. The purpose of the system
is to obtain a sufficient recognition accuracy while keeping
the energy consumption at a minimum level due to the power
constraints.

IV. OPTIMIZATION METHODOLOGY

In our approach, we have focused on developing an energy
efficient marine animal detection system. Since the main
energy consuming components of the detection system are
the camera and LED lighting, we aim to minimize these
energy costs based on the environment conditions. In order
to optimize the parameters based on the changing conditions,
we have emulated the effect of system parameter settings (e.g.
LED intensity) as well as environmental effects (background
illumination, water turbidity) on the resulting images by mod-
ifying the image settings in the existing set. We have also
measured the power consumption patterns of changing LED
intensity and camera frame rate for the experimental hardware
and generated a model to be used in the optimization process.

A. Dataset

We have used two different datasets for training the deep
convolutional network and optimizing the parameters of the
decision block.

1) Single Frame Recognition: The first dataset contains
more than 8000 underwater images to train the network for the
task of recognizing sea turtle with a single frame. Nearly half
of the images are positive samples which include sea turtles
from different angles and with different backgrounds. The
other half of the dataset are negative samples which contains
different underwater scenes with or without different animal
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species. A few examples from the single frame recognition
dataset are given in Figure 3.

We augmented the data by using the cropped and rotated
versions of the images. The number of samples in the dataset
is also increased by adding different levels of a synthetically
generated turbidity effect to the images. We employed a
similar model explained in [41] to extend our dataset using the
properties of turbidity. In this model, effects of color distortion,
blur and contrast degradation are added through the following
equations.

Io(z,y) = (1 - ap)l(z,y) + (ap)g(z,y) (1)

where I is the blurred image and ap is the parameter that
controls the blurring amount by changing the weights of the
original image I and the Gaussian filter result g. Eqn. 2 shows
the computation of g.

N/2  N/2

gzy)= > Y He—ky—Dh(kl) @

k=—N/21=—N/2

where the coefficients of the filter, h, are calculated using the
Eqn. 3.

3)

b,y = Kexp(—27H45) —N/2 <@,y < NJ2
Y 0 elsewhere

where K is normalization factor and o2 is the variance of the
Gaussian filter. In addition to blur, we also emulate the color
distortions and contrast degradation in the turbidity model [41]
as given in Eqn. 4.

Ir(z,y) = (1 —ac)la(z,y) + acCr 4)

(b) Negative samples

Fig. 3: Sample images from the dataset

Fig. 4: Sample images for synthetically generated turbidity
effect. Top row shows the original images while the second,
third, and fourth rows correspond to turbidity level 1, 2, and
3 respectively

where a¢ is the parameter for controlling the contrast degra-
dation and color distortion level. C'r represents the RGB (red,
green, blue) values for turbidity effect. Using this model, we
have emulated three different levels of turbidity with different
parameter sets and generated the turbid image dataset. In order
to build a variety of images and to not overfit a single effect,
we perturbed the parameters for different images. For example,
for the Cp, red value is 0, while green and blue values are
uniformly sampled in the range (0.3,1.0). This gives a random
color with green and blue components for the turbidity effect.
We also used the value ranges given in Table I for the other
parameters.

TABLE I: Parameter values for different turbidity levels.

Turbidity Level || ap | ac o
1 0.32 £ 0.07 | 0.3 +0.1 4+ 1
2 0.57 £0.07 | 0.5 £0.1 7+1
3 0.82 £ 0.07 | 0.7 £ 0.1 10+ 1

Examples from the synthetically generated turbidity images
are given in Figure 4. The enhanced single frame recognition
dataset is utilized for training the residual deep neural network
to achieve a high accuracy in the turtle recognition task. 70%
of the images in this dataset are used for training the network,
while 20% are used for validation and 10% are used for testing
results. The samples are selected randomly and there is no
overlap between the training, validation, and test samples to
eliminate any bias in performance evaluation.

2) Scenario-based Recognition: The proposed framework
aims to achieve high recognition accuracy while minimizing
energy consumption by adapting to environmental conditions.
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Fig. 5: Different brightness levels are simulated using the
reference images taken in the lab conditions

In order to enable this optimization, the decision block should
dynamically adjust the system parameters and provide a recog-
nition output by leveraging multiple frames. Therefore, the
parameters utilized in the system should be trained and tested
for different environment conditions with various turbidity
levels, background illumination levels, and scene content. For
this purpose, we prepared more than 200 video sequences,
each of which includes nearly 300 frames (corresponding to
10 seconds of video with 30 fps). For different environmental
conditions, we also synthetically generated variations of the
image sequences with different background illumination and
turbidity levels.

The turbidity effect is emulated using the same model and
parameters explained in the previous section. In order to em-
ulate the effect of background illumination and LED lighting,
we used a controlled lab setup consisting of a camera, LEDs,
and various objects to capture at a certain distance. Under
dim background illumination, we captured images of the same
scene with different LED lighting levels without changing the
camera settings (Shutter speed, aperture and ISO level). Using
the intensity values of these images as reference, we applied a
transformation to the original dataset to generate images with
these intensity levels. Some of the example images generated
using this approach are given in Figure 5. Our goal in this
process is to mimic varying background illumination level and
different LED intensity levels by adjusting parameters of the
existing underwater images.

B. Multi-frame Decision Algorithm

As explained above, the Deep Residual Network in the
system gives a confidence level for the recognition of the
object of interest in a single frame. The adaptive decision
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Fig. 6: Overview of the decision mechanism

block, on the other hand, uses multiple frame results to provide
the final recognition decision. A brief overview of the system
is depicted in Figure 6. As it can be seen from the figure,
some of the frames are not sampled and processed based
on the dynamically adjusted frame rate. For the processed
frames, confidence levels obtained from the neural network
is combined in the temporal domain. Let us assume that we
have the confidence level y; for the time instance ¢. This value
is averaged with the previous confidence levels to obtain a
filtered and more accurate result v; as shown in Eqn. 5. Here,
vy s the result of filtered confidence level. v is compared with
a detection threshold, Tp, to achieve a binary decision for a
given image set as given in Eqn. 6.

v = (1 —n)ve_1 + Ny )
1 >T
op=4. =D ©6)
0 v<Tp

In order to reach a final decision, a certain number of
consecutive detections (Ir) are expected. These steps are
summarized in Algorithm 1.

C. Energy Optimization

In the previous subsection, we explained our algorithm for
maximizing the number of correct decisions for the object
recognition task using multiple frames. However, we also
need to consider the energy consumption, while keeping a
successful recognition rate. In the proposed system, camera
frame rate and LED illumination level are two main sources
of the energy consumption that we can control. Therefore,
instead of minimizing only the error rate, we define a cost
function that includes energy costs of illumination level and
camera frame rate as well. The defined cost function is given
in Eqn. 7.

J(0) = (1 = Acc(0))® + Acr (0)* + ai(6)?) ©)

where the parameter set, 6, includes camera frame rate, f,
and LED illumination level, [, as well as n, Tp, and Tr
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Algorithm 1 Multi-frame Decision Algorithm

Input: Confidence Level: y;; Threshold Values: Tp, Tr; Filter
coefficient: 7; Number of frames: N

1: Initialize detection counter Cp < 0

2: Initialize filtered confidence level vy < o

3: fort=1— N do

4 Obtain confidence level y,

5 v =nye + (1 —n)viq

6: if v; > Tp then

7: o 1

8 Cp+Cp+1

9 if Cp > Tr then

10: Declare Recognition 7, < 1
11: end if

12: else

13: No Recognition 74 < 0
14: 0 +— 1

15: Cp+0

16: end if

17: end for

Return: Recognition Result: 7,

introduced in the multi-frame decision algorithm. Given this
parameter set, (1—Acc) corresponds to error rate while ¢y and
c; represent the cost of camera frame rate and LED lighting
respectively. The coefficient A is used for adjusting the trade-
off between error rate and energy costs. In this equation, cy
and ¢; should be chosen based on the energy consumption
levels of the camera frame rate and LED illumination.

While our optimization method is not limited to specific
hardware, we adjusted these parameters on an example hard-
ware setup without loss of generality. In order to observe the
energy costs of these parameters, we have used Raspberry Pi
3 Model B [42], Pi Camera v2.1, 850nm LEDs and captured
images with different frame rates and illumination levels.
Figure 7 shows the measured current drawn by the camera
and LEDs under different settings.

Note that brightness levels in Figure 7b are the levels we
used for creating our dataset shown in Figure 5. Thus, we
achieve a correspondence between the utilized cost function
and synthetically generated brightness effect in our dataset.
Since the energy costs will be proportional to the current
values drawn by the camera and LEDs, we set ¢y and ¢; to the
associated current values for given f and [ in the parameter
set.

In the optimization process, A should be chosen such that a
good balance between error rate and energy costs is achieved.
Setting this value too large might cause an insufficient recog-
nition rate while setting it too low could lead to high energy
consumption. In our experiments, we set this value to 3 x 10~7
based on our power measurements and desired recognition
rates.

Now that we have the cost function, we need to find the
parameters that will minimize J under different conditions.
Since we have many parameters with infinitely many possible
values, it is impossible to calculate the cost function at every
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Fig. 7: Current drawn by the camera and LEDs. a) Camera
frame rate vs current b) LED illumination level vs current
(Reference voltage used for both hardware is 5V)

point in the solution space. Moreover, the analytical solution is
not possible, since a part of the cost function comes from the
performance of a deep neural network consisting of millions of
parameters. Furthermore, the cost function possibly includes
multiple local minima as well. Since the problem is a discrete
optimization problem with a large configuration space and
local minima, we have utilized Simulated Annealing [43] for
hill climbing purposes.

V. EXPERIMENTAL RESULTS

In our experiments, we first trained the last 2 fully-
connected layers of the pre-trained ResNet-50 network using
our single frame dataset. After that, we utilized this network
as a part of our multi-frame recognition system and trained
the parameters of the decision block using the scenario-based
recognition dataset. In our experiments, we have used accuracy
and F-score as the performance measures. The definitions of
these measures are given in Eqn. 8 and Eqn. 9.

TP+TN

Acc = 8
“TTPYTN+FP+FN ®
ision, - Il
Fl—2. preclzs'wn reca ©)
precision + recall
o TP
precision = TP
- 1P
recall = TP+ FN

where TP, TN, FP, and F'N represent the number of true
positives, true negatives, false positives, and false negatives
respectively.

A. Single Frame Recognition Results

We conducted a set of experiments to observe the perfor-
mance change when we include the synthetically generated
turbid water images in the training dataset. In these experi-
ments, we first trained the network using the original dataset
and obtained the accuracy results for the test images with
different turbidity levels. Then, we repeated the experiments
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by including turbid water images in the training dataset and
obtained the recognition accuracy for the same test set. The
results are shown in Table II.

TABLE 1I:
training sets

Recognition accuracy obtained using different

Test Set
Training Set H Original T.L1 T.L2 T L3
Original 94.9 929 91.8 72.8
Turbid L3 94.6 92.7 89.5 71.0
Original + Turbid L3 97.2 96.0 94.1 82.0

As the Table II shows, we achieve the best results by
including both the original dataset and synthetically generated
turbidity dataset in the training step. Accuracy and F7-score
of the Deep Residual Neural Network for the single frame
recognition dataset are given in the Table III.

TABLE III: Performance of the Deep Residual Neural Net-
work on the single image dataset

Dataset || Acc | Fi-measure

Original 97.2 96.9
Turbid L1 96.0 96.1
Turbid L2 94.1 93.8
Turbid L3 82.0 81.7

Table III shows that the recognition performance degrades
with the increasing water turbidity level. This is an expected
result, since the synthetically generated turbidity effect de-
creases the contrast, distorts the color, and blurs the details,
causing the degradation in visual features used for the recog-
nition task.

B. Scenario-Based Recognition Results

In these experiments, we make a decision for a scenario
which contains multiple frames rather than a single frame.
Therefore, we should first clarify the definitions of true pos-
itive, true negative, false positive, and false negative for the
scenario-based experiments. In these runs, we simulate a case
where we want to obtain a positive decision, i.e., a sea turtle
enters the observed area at some point. Therefore, a positive
sample in this dataset is an image sequence where there exist
one or more frames containing the animal of interest. That is, a
positive sample in this dataset may not necessarily contain the
sea turtle for all the frames; yet the expected decision for this
sequence is still positive. A negative sample, on the other hand,
does not contain the object of interest in any of the frames
throughout the sequence, meaning the expected outcome from
the decision block is negative. A positive decision is given
when there exist a moment, ¢, in the image sequence where
the recognition result, 4, is 1. For a negative decision, on the
other hand, r; must be O for all the frames throughout the
image sequence. Hence, the definitions of TP, TN, FP, and
FN are made based on this decision per each video sequence.

In Eqn. 7, we defined the cost function based on the
system and environmental parameters. We have used the power
consumption measurements in the cost function and altered the
A parameter to find a good balance between the recognition
accuracy and power cost. We aimed to have a worst case

recognition accuracy around 90% and obtained it for the A
value of 3 x 10~7. To minimize this cost function, we have
searched our parameter space using the Simulated Annealing
method and used the obtained Acc, ¢y and ¢; values in the
equation. Experiments on the synthetically generated turbidity
and illumination datasets gave us the parameter values in Table
IV for the optimized system.

TABLE IV: Parameter optimization result for the scenario-
based recognition dataset

Water Turbidity Level

0 1 2 3
Detection Threshold (7p) 0.83 079 0.69 0.15
Consecutive Rec. Thr (Tf) 1 1 1 14
Output Filtering Weight (n) 0.73 0.71 0.63 045
Camera Frame Rate (fps) (f) 2.73 1.11 .15 429

LED Illumination Level (1) 2 3 3 4
Accuracy (Acc) 99.03 9951 96.6 89.81

When the optimization result for higher water turbidity
levels is examined, it can be observed that the decision
block combines the results of more frames by increasing the
camera frame rate, f, decreasing the filter weight, n, and
increasing the number of consecutive recognition threshold,
Tr. It is also observed that the detection threshold, Tp, is
decreased and LED illumination level is increased as the water
turbidity level increases. These results show that the decision
block adaptively changes the system parameters such that the
parameters associated with higher power consumption, namely
f and [ are minimized when the environment conditions are
better in terms of image quality. In other words, the recognition
task is performed with lower frame rate and LED levels, which
results in lower energy consumption. It might be thought
that decreasing the sampling rate could affect the camera’s
ability to capture the target object. However, for the bycatch
reduction problem specifically, it is unlikely for the target
animal to be traveling at high speeds (e.g. >10m/s). This is
also observed in the video datasets that we processed. The
results also demonstrate that the adaptive parameter selection
scheme enables the decision system to leverage multiple frame
results and achieve more accurate results under challenging
environment conditions.

In order to evaluate the energy savings of our optimization
approach, we first measured hardware parameters of a sample
image capture system, namely, Raspberry Model 3 B [42]
with Pi Camera v2.1. For this system, we have run various
experiments and determined that the major energy consuming
tasks are image capture and processing and background LED
illumination. We have determined that the energy consumption
of these tasks is significantly higher than baseline energy
consumption of the Raspberry Pi Model 3 B. In these hardware
measurements, we use discrete levels of background LED
illumination, ranging from 1 LED unit to 3 LED units. As
expected, the energy consumption of the background illumi-
nation subsystem is linearly related to the illumination level.
Furthermore, we have measured the current consumption of
the hardware setup with Pi Camera v2.1 under various frame
rates to determine the dependency of energy consumption with
respect to the number of captured and processed frames. In
this case, we observe a significant correlation which can be
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Fig. 8: Energy saving percentage of the proposed method
compared to base frame rate and LED lighting level under
different environment conditions

modeled as a polynomial function. The picture of the hardware
measurement results along with the summary of the current
consumption patterns are given in Figure 7.

In order to evaluate the energy consumption benefits of the
proposed optimization system, we define a baseline recog-
nition system that works at 30fps, which is the default rate
of the camera and at maximum background LED illumi-
nation level, which is the default illumination level of the
camera background light. We repeated our experiments with
this baseline system and compared our accuracy and energy
consumption levels. Using the measurements given in Figure
7 and the results given in Table IV, we calculated the energy
saving percentage of the proposed approach for different
environmental conditions compared to the baseline recognition
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Fig. 9: Accuracy and F) score comparison of the base detector
and the proposed energy-efficient detection system

system. Figure 8 shows that the proposed approach provides
up to 92.7% energy consumption savings by the camera and
LEDs depending on the conditions. As we can expect, the
optimizer utilizes more LED units and higher frame rates
for more challenging conditions with higher turbidity levels
and lower background illumination. Even in the worst case
scenario, the optimized system achieves 44.8% energy saving
compared to baseline recognition system. We also compared
the performance of proposed optimized recognition system
and the baseline recognition system on the scenario-based
recognition dataset. Figure 9 shows that the proposed energy-
efficient decision scheme provides comparable accuracy and
F-score with the baseline recognition system. Another impor-
tant observation is that the recognition rates of the scenario
based experiments for all turbidity levels are higher than
the corresponding single frame recognition rates due to the
adaptive decision block that successfully combines multiple
frame results.

VI. CONCLUSION

Automated recognition of underwater animals is an im-
portant task that can help marine life preservation. However,
one of the main challenges of an underwater imaging system
is the limited on-site power resources, including the overall
battery charge, which requires an energy-efficient approach. In
this work, we propose an energy-efficient underwater animal
recognition framework that adaptively optimizes the system
parameters based on the environmental conditions to decrease
power consumption while still providing a successful recog-
nition result. Our experiments on the scenario-based dataset
with synthetically generated turbidity and illumination effects
show that the proposed approach provides up to 92.7% energy
savings by changing the system and decision parameters
based on the environmental conditions. Results also show
that the proposed energy-efficient approach yields comparable
recognition performance with the baseline recognition system
that runs with full frame rate and high emitted light intensity.
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