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Extreme quantum nonlinearity in superfluid thin-film surface

waves

Y. L. Sfendla®'™, C. G. Baker@®', G. I. Harris @', L. Tian

? R. A. Harrison
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We show that highly confined superfluid films are extremely nonlinear mechanical resonators, offering the prospect to realize a
mechanical qubit. Specifically, we consider third-sound surface waves, with nonlinearities introduced by the van der Waals
interaction with the substrate. Confining these waves to a disk, we derive analytic expressions for the cubic and quartic
nonlinearities and determine the resonance frequency shifts they introduce. We predict single-phonon shifts that are three orders
of magnitude larger than in current state-of-the-art nonlinear resonators. Combined with the exquisitely low intrinsic dissipation of
superfluid helium and the strongly suppressed acoustic radiation loss in phononic crystal cavities, we predict that this could allow
blockade interactions between phonons as well as two-level-system-like behavior. Our work provides a pathway towards extreme
mechanical nonlinearities, and towards quantum devices that use mechanical resonators as qubits.
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INTRODUCTION

Nonlinearities are widely used in quantum technologies. For
instance, they allow the generation of nonclassical states'™®, two-
qubit interactions’®, and quantum nondemolition measure-
ments'®'%. Sufficiently strong nonlinearities can introduce resol-
vable anharmonicity in a resonator, so that when resonantly
driven it can only absorb a single quantum of energy, mimicking
the behavior of a two-level system. This provides the possibility of
blockade-type interactions, where phonons (or photons, depend-
ing on the resonator) can only pass through the resonator one at a
time'>™"”. It also allows artificial qubits to be engineered, such as
the superconducting qubits widely used in quantum computing'®,
Mechanical nonlinear resonators have quantum applications
ranging from the preparation of nonclassical states'®?* to
quantum-enhanced force sensing”™’, quantum backaction-
evading measurement®®, and mechanical quantum state tomo-
graphy®®. Achieving the single-phonon nonlinear regime in a
mechanical resonator is of both fundamental and technological
importance. It would allow artificial atoms to be built from massive
objects consisting of billions of atoms, testing quantum physics in
uncharted regimes of macroscopicity, and would provide a qubit
for quantum computation among other quantum applications'”*°,
Reaching the single-phonon nonlinear regime in a mechanical
resonator requires an intrinsic nonlinearity far stronger than what
has been achieved to date*'’, combined with exceptionally low
dissipation so that the energy level shifts introduced by the
nonlinearity are resolvable. Here, we propose to achieve this using
a thin spatially confined superfluid helium film, similar to the ones
used in recent experimental work on optomechanical cooling®®,
lasing®, and quantized vortex detection®®. The superfluid
resonator is a third-sound surface wave with restoring force
provided by the Van der Waals interaction with the substrate.
We derive an analytical model of the cubic and quartic (Duffing)
nonlinearities due to van der Waals forces for a film confined on a
circular disk. We find that the nonlinearities depend strongly on
the radius of confinement, and predict that the quartic
nonlinearity in a 5-nm-thick film with 100 nm radius would

manifest single-phonon frequency shifts three orders of magni-
tude larger than those seen in state-of-the-art nonlinear mechan-
ical resonators including graphene sheets®®, carbon nanotubes®®,
and molecule-coupled resonators®’. Our analysis shows that the
primary effect of the cubic nonlinearity is to modify the
magnitude of the quartic term, consistent with previous work
on classical mechanical resonators*'~*. This result has broad
relevance, since a wide variety of mechanical resonators exhibit
both cubic and quartic nonlinearities*'.

Even with extremely high nonlinearities, achieving sufficiently
low dissipation to enter the single-phonon nonlinear regime is a
significant challenge. Superfluid helium affords exceptionally low
intrinsic dissipation. Indeed, sub-millihertz dissipation rates have
been observed in third-sound resonators with millimeter dimen-
sions**. However, radiative dissipation increases with increasing
spatial confinement. We introduce the concept of superfluid thin-
film phononic crystal cavities to overcome this, showing that
radiative dissipation can be greatly suppressed, even at hundred-
nanometer size scales. We further predict that dissipation due to
thermalization and vortices should not be a barrier to reaching the
single-phonon nonlinear regime. Together with the level of
nonlinearity predicted by our model, this suggests that the
single-phonon nonlinear regime can be reached, opening a path
to probe quantum macroscopicity in a new domain and to build a
new class of qubits for quantum computing and metrology.

RESULTS
The anharmonic superfluid oscillator potential

Liquid helium exhibits superfluidity below a critical temperature
T). It can then be described as an effective mixture of a normal
fluid with density p, and a superfluid with density p, with total
density pue =0 + pn*®. At temperatures well below the critical
temperature the ratio p/pne approaches 1. For instance, for a
critical temperature T)=22K, p/ppe>0.98 for temperatures
beneath 1K*. In this low-temperature limit, superfluid helium
has a combination of traits often sought after in mechanical
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Anharmonic superfluid disk-resonator. a lllustration of a surface wave of amplitude n[r, 6] in a thin superfluid helium film of mean

thickness d, confined to a circular geometry of radius R. b Previously demonstrated experimental methods for circular confinement of a
superfluid helium film include adsorption of the film on the surface of an on-chip microdisk as shown in this SEM micrograph®®°°, or on the
inside of parallel disks of a capacitor as in refs. 7%73, Scale bar: 5 pm. ¢ Anharmonic potential of a superfluid oscillator with spring constant k,

cubic nonlinear constant B, and quartic (Duffing) constant a.

resonators: low mechanical dissipation arising from near-zero
viscosity and ultralow optical absorption. Indeed, it has been used
as the mechanical resonator in several recent optomechanical
platforms38394853 and in experiments that study the physics of
quantum fluids*®®®, In these references, the superfluid fills a
cavity’' ™3 or channel®, is levitated as a droplet®®, or spread out
on a surface as a few nanometers thin film>#3>**%7_The latter case
is investigated here. Due to the thinness of the film, the normal
component can be considered viscously clamped to the surface®
while the superfluid component exhibits thickness fluctuations
that resemble shallow water waves, as illustrated in Fig. 1a. These
waves are named "third sound” and are unique to two-
dimensional superfluid helium films**>7>8,

In this work, we consider the superfluid film to be confined to a
circular surface of radius R. This geometry is quite general, and can
be realized for instance by condensing the film on the surface of a
microscopic silica disk (see Fig. 1b)*®29495° That design is
attractive because it allows laser light to circulate in the disk.
These "whispering-gallery” light waves interact strongly with the
third-sound waves in the superfluid, and can serve as a tool to
observe and control the superfluid motion®. In this study,
however, we focus on the film’s dynamics: while constrained here
to a circular disk, we expect our predictions to be qualitatively
mirrored in other superfluid thin-film geometries.

A helium atom at height z is attracted to the substrate atoms via
the van der Waals force*>*¢. This leads to a height-dependent
potential energy per unit mass stored in a film. The analysis here is
restricted to films with mean thicknesses d between 1 and 30 nm,
and with diameters much larger than their thickness. In this case
the potential is well approximated by®®’

Avdw

V(z] = — g

. M

with dyqw the substrate-dependent van der Waals coefficient
characterizing the attraction strength. The scaling with height is
modified for thicker and lower-aspect-ratio films*®®%, while for
thinner films (on the order of a few atomic layers) corrections due
to the approximately one inactive atomic layer must be taken into
account®*®, The potential provides a restoring force for
fluctuations of the film surface. Turning to Fig. 1a, the circularly
confined film somewhat resembles a drumhead—and in fact, the
helium surface undulates like the skin of a resonating drum. While
it is clear that Eq. (1) is nonlinear and therefore does not describe a
Hookean potential, in the small amplitude limit (where nonlinea-
rities can be neglected) the resonances of the surface can be
described by Bessel modes®®. These eigenmodes are, strictly
speaking, valid only for a linear oscillator. However, they are a
good approximation for the high-quality (see “Results”) mechan-
ical resonances considered here where the nonlinearity only shifts
the mechanical resonance frequency by a small fraction.

The time-dependent Bessel mode amplitude h[r,0,t] that
quantifies the deviation of the film height from the mean
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thickness d with polar coordinates r and 8 is given by*®

h[r,6,t] = n[r, 0] sin(Qmt) (2)
with
nlr,6) =AJ, {C,“, }cos(u@) 3)

Here, A is the amplitude, J, is the Bessel function of the first kind of
integer order u, and Qn, = ({,,c3)/R is the mechanical resonance
frequency in the absence of nonlinearity. Here the resonance

frequency depends on the superfluid speed of sound c¢; =

3avaw(P/Pre) d > and a parameter (,,, which depends on the

boundary conditions. In the absence of flow across the resonator
boundary, the film is described by volume-conserving Bessel
modes, i.e, Bessel functions with free boundary conditions®
These mode amplitudes have an extremum at r=R: a condition
met by choosing {,,, as the vth zero of J"j. We restrict our analysis
to these boundary conditions since they match previous observa-
tions with disk resonators in ref. *°. However, fixed boundary
conditions could alternatively be used by choosing the zeroes of
J,, for the coefficient ,,,. nlr, 6] is the time-independent amplitude
of a drumhead mode typically specified by its mode numbers (u, v)
with the order u the number of nodal diameters, also called
azimuthal mode number (i.e., 2u is the number of zeros in the
azimuthal direction for 6 =0-2m) and v the number of nodal
circles, also called radial mode number (i.e., v is the number of
zeros in the radial direction for r=0 to R). The Bessel mode
function J, [C,J#v ﬂ is graphed in Fig. 2, and the values ,, for the
first three mode numbers are tabulated in Table 1.

The van der Waals potential energy stored in the surface
deformation U is obtained by integrating the potential V over the
deviation from equilibrium>®:

2n d+nlr.6]
U= p/ / / V(z] r drd6dz 4

with Eq. (1) and the Taylor series expansion, we obtain

d-+n[r.0] Audw 1 1
Vizldz = — = 5
fo v <<d+n[r, o)’ d2> ”

_ ‘;(j;v Z(/ +2 ( . e])w. ©)

The majority of previous work on third sound considers only the
first two terms in this expansion, which describe the potential of
an harmonic oscillator. The higher-order terms introduce non-
linearities. Experiments have investigated a variety of nonlinea-
rities*®®*%6~7% in millimeter and centimeter-scale devices, far away
from the regime we consider here.

The first term (proportional to n) averages out to zero for
volume-conserving Bessel modes with [, [,n[r, 6] = 0. The third-
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Fig. 2 Bessel mode profiles. Bessel modes with free boundary conditions J, [{u.v ﬂ of (azimuthal) orders u=0, 1, and 2 for radial mode

number v=1-3.

Table 1. Bessel function derivative roots.

Guv

v=1 v=2 v=3
u=0 3.83 7.02 10.2
u=1 1.84 5.33 8.54
u=2 3.05 6.71 9.97

The first three roots (v = 1-3) of the derivative of the Bessel function Ji’lg",

and fourth-order terms, respectively, represent cubic and quartic
nonlinearities. We neglect terms of fifth order in n and higher,
expecting them to be small compared to these first two nonlinear
terms. Thus, Eq. (4) becomes

_ 2avdwn3 [I’, 9}

U /2" /R 3ayqwn?r, 6]
=° I/, 2 &

linear spring quadratic spring

+ Savdwn:[r7 e}
2d

—_——

cubic spring

r dr dé,

where we have identified the quadratic, cubic, and quartic
potential energies associated with linear, quadratic, and cubic
spring terms. (In this work we label the nonlinearities by the orders
in which they appear as energies and potentials, because we work
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exclusively in the Hamiltonian formalism. In some other work,
especially early work on spring forces, they may be labeled by
their lower order in force and acceleration equations.) By
introducing a reference point x: = n[R, 0]—that is, the displace-
ment at the periphery of the disk at an angular location 6 = 0—we
can rewrite the potential energy as

1 1 1
U:Ekx2+§Bx3+fax4. (8)

4

This is the potential energy of an anharmonic oscillator (see Fig.
1¢) with restoring force F= —V U= —kx—Bx* —ax’, where k is
the linear spring constant given by

k:3pivdw/2n/R
d o Jo

and B and a are the nonlinear spring constants. The cubic
nonlinearity is given by

B:_Gpavdw/zn/.R
a o Jo

and the quartic (also known as Duffing) nonlinearity is given by

g 1o péavdW/Z" /R
d o Jo

By evaluating the integrals (see Supplementary Methods), the
strong dependence of the (non)linear spring constants on the film

2
a5

}
R0) rdrdo,

n’[r, 0

]
71R.0] rdrdé

(10)

n*lr, 6]

7[R, 0] rdrdé.

(m
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Table 2. Coefficients in (non)linear superfluid spring constants.
o7
V= v=2 v=3
u=0 1/2 1/2 1/2
u=1 0.353 0.482 0.493
u=2 0.286 0.456 0.480
o)
u=0 —0.437 0.259 —0.236
d)H“‘v
u=0 1.28 1.48 1.61
u=1 0.290 0.837 1.03
u=2 0.223 0.704 0.891
ZM-Vjp
Coefficients (/)L‘_"} = f‘}z;%[[q(]q]dq for p=1{2, 3, 4} with " the vth zero of the
Bessel function J,. ™" ”V

thickness d and confinement radius R is exposed:

2

R
k= (1+ 8,0)37 pavaw (/)’(123 7

37 2\ R?
= (1 +6IJO) 7pavdw (1 s ) s

T2
o

R2
B = —8u0 127 Payaw ¢(()3,3 pr
and
2
(15)

5m R
a= (3+56) S Pavw ¢fj}3 F-

Here we have introduced the Kronecker delta function §, and

“* flalq dg

integrals of the Bessel function (/:ffg = % for p=1{2, 3, 4}
’ VIR [YHY

tabulated in Table 2. It is worth noting that the cubic nonlinearity
B vanishes for all but the rotationally invariant (u = 0) modes.
The film thickness d can be independently determined and
tuned in situ, as we demonstrated in previous work®®, while the
confinement radius R can be changed through choice of device
geometry. By controlling these, Egs. (14) and (15) reveal that it is
possible to access a wide range of cubic and quartic nonlinearities.
Although the relationships found here suggest that the
nonlinear coefficients are larger for thinner films and larger radii,
the desired parameter regime depends on the relative magni-
tudes of the nonlinear and linear coefficients, and the mass. In the
following section, we will derive what exactly that regime is and
what platform parameters one should aim for in order to reach it.

Single-phonon transition resonances
We consider the Hamiltonian for the oscillator with natural
frequency Q, effective mass mer = k/Q2 and zero-point

fluctuation amplitude Xzof = \/h/2Megr Qm:

2
H=5—+U (16
3 4

= hQm(n +1) + 2 B(a + ah)’ + 2t g(a + ah?
with a (a') the phonon annihilation (creation) operators satisfying
the commutation relation [a, a'] = 1, the canonical position and
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momentum operators x and p satisfying x = x,p¢ (a + a") and [x, pl
=ih, and n = a'a the phonon number. The nonlinearities modify
the eigenenergies of the oscillator (see Fig. 3). To second order in
perturbation theory we find that the transition between states n
and n+ 1 occurs at frequency

Qln] = Qp + (n+1)50 (17)

(see Supplementary Methods) with the single-phonon nonlinear
shift
x4 ¢ Qeff
60:=3 2 — (18)
h

and acgla, B] the effective quartic nonlinearity absorbing the cubic
nonlinearity:

Qore — a_Exgpfﬁz _ o YP

"9, T 9k’

The frequency shift in Eq. (18) is the mechanical analog of the
Kerr nonlinearity in quantum electrodynamics’', but with the
quartic nonlinear coefficient a reduced to a.¢ due to the presence
of the cubic nonlinearity. The modification, Eq. (19), agrees with
the classical result found in refs. 41~%3,

When the mechanical decay rate (or linewidth) I of the
oscillator is smaller than the spectral splitting, i.e.,

r<6Q, (20)

the resonator is sufficiently anharmonic that a single absorbed
phonon shifts the frequency off resonance for phonons that arrive
later, causing phonon blockade: it behaves more like a two-level
system than an harmonic oscillator'.

The criterion in Eq. (20) can be re-expressed in terms of the

critical amplitude xcie = /2241, which defines the amplitude

at which a classical Duffing resonator become bistable. In this
form the criterion is X,pr > Xrir, that is, the mechanical zero-point
motion must exceed the critical amplitude to reach the single-
phonon nonlinear regime®’.

Substituting the superfluid spring constants from Eqg. (12) to (15)

1082 (19)

yields
(3))°
E:1_50§( °'V) 21)
a 3 @
¢0.v

Hence, the effective modification of the Duffing nonlinearity by
the cubic nonlinearity 8 depends only on the mode symmetry
numbers u and v. Furthermore, as v increases, Qe rapidly
approaches a. Indeed, since

2
3
) o
g e
we have
. Oeff
lim — =

v—oo d

1. (22)

For example, for the (u=0; v=1) mode, a.; = 0.6 a while for a
(u=0; v=10) mode a.¢=0.98 a.

Open quantum system spectrum

To determine the expected resonator spectrum in the presence
of decoherence and validate our perturbation theory calcula-
tion, we numerically solve the Lindblad master equation
for a resonator with cubic and quartic nonlinearities (see
Supplementary Methods). We compare the resulting correlation
spectra S,, for three cases: a superfluid resonator with finite
quartic and cubic nonlinearity S,,[a, B], a pure Duffing resonator
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Fig. 3 Nondegenerate spectrum. a Energy spectrum (analytical solutions) for R= 0.5 pm, d = 10 nm of a linear (gray) and nonlinear (blue)
resonator, with energy shifts enlarged by a factor 108 to facilitate visual representation. b Illustration of the corresponding single-phonon
transition frequencies. The harmonic oscillator features only a single resonance at Q,, (gray); the anharmonic oscillator (blue) exhibits

degenerate spectral features at Q[n] = Qu + (n + 1)6Q.

Sxla, 0], and a pure Duffing resonator with an effective
quartic strength S, [aesr, 0] conform to Eq. (21). They are
shown, for a range of single-photon nonlinear strengths 6Q/T,
in Fig. 4.

It is evident at a glance that as the single-phonon nonlinear
strength 6Q/T exceeds unity, the nonlinearity lifts the oscillator’s
spectral degeneracy. The spectra for pure Duffing resonators
S«la, 0] manifest transition resonances at the values Q[n] =Q,,
+ (n + 1)6Qla] obtained analytically from first-order perturbation
theory. (The small discrepancy stems from the numerical error on
the bare energy eigenstates E,, which increases with n. This
absolute error is inversely proportional to the size of the basis
spanning the Hilbert space in the numerical algorithm; the
smaller a and 6Q, the larger the basis must be chosen to mitigate
the relative error on the transition frequencies.) The pure Duffing
spectrum does, however, differ significantly from the full-
Hamiltonian third-sound resonator spectrum S,,[a, 8], and from
that of the effective Duffing third-sound resonator S,,[dcs;, 0. The
latter two are nearly identical in all cases, both in terms of
amplitude and transition resonance frequencies. This indicates
that the third-sound resonator with a quadratic nonlinearity £ is
accurately described by the effective Duffing resonator according
to Eq. (21), and its single-phonon transition frequencies are
correctly analytically predicted as Q[n] = Qq + (0 + 1)6Q[Aes]
from Eq. (18).

Published in partnership with The University of New South Wales

Single-phonon nonlinear shift for a superfluid resonator

Using Eqs. (12) to (15) and (19) we can express 8Q in terms of the
adjustable parameters R and d. With

o

h 1 da
Xapt = J— N (23)
(1 + 6;10)" 3avdwx/ppHe (1 - 5?7)
one obtains
2

s 15h P — 8 iel) T,

(2 + 60)71Pre (1 PZ>2 Rid 24)

(;24.\/

This equation is valid in the limit of a third-sound wavelength
large compared to the film thickness d, and a motional amplitude
n<d, which is the case for all examples considered here. It
identifies every parameter available to the researcher who seeks to
maximize the single-phonon nonlinear strength of the superfluid
resonator: the shift grows strongly with decreasing confinement
radius R, scales with the inverse of the film thickness d, but
is independent of the van der Waals coefficient a,q, between the
helium film and the substrate. The shift is always positive, so
the oscillator is effectively “spring-hardened”. Its dependence on the
mode numbers (y; v) is rather intricate due to the lack of a closed
form of the coefficients {,, and 4)’(;‘3 (see Supplementary Methods).
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Fig. 4 Spectrum for open quantum system. Numerically simulated spectra for the full master equation with a quartic Duffing (a) and cubic

(B) nonlinearity of the potential (

Sxla, Bl, solid lines), the approxmated model where the cubic nonlinearity manifests as a correction to the

quartic Duffing strength (S,,[aes, 0], dashed lines), and the spectra in absence of a cubic nonlinearity (S,,[a, 0], dotted lines). Vertical lines at

(Enyq —Ep)/hforn=0,1,2,.

Q=1%x10%R=20nm,d=5nm, Q=1x 10%

Therefore, we have graphed the frequency shift as a function of the
mode numbers (y; v) in Fig. 5. In this figure and henceforth we take
p/pre = 1, considering only the regime where the temperature is
well beneath T,. It can be seen that the nonlinear strength 6Q can
grow by four orders of magnitude when the Bessel mode order u

npj Quantum Information (2021) 62

. indicate the analytic values of transition energies accordlng to Eq. (17) with 8Q[aef] (dashed) and 6Q[a] (dotted).
Input parameters T=50 mK and from top to bottom: R=3nm,d=5nm, Q=1x10%R=

3nm, d=25nm, Q=1x10%R=10nm,d=5nm,

and radial mode number v vary from 0 (for the mode order) and 1
(for the radial mode number) to 20.

The predicted nonlinearity of the superfluid film is compared to
other systems in Table 3 for a range of confinement radii R and
radial nodes v. From the table it is clear that the simultaneous

Published in partnership with The University of New South Wales
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Fig. 5 Mode-number dependence of single-phonon shift. Resonance frequency shift induced by a single phonon, 6Q = 3aeffx;‘pf /h, as a
function of the Bessel mode order u and radial node number v for a 5-nm-thick superfluid film confined to a 1 pm radius.

attainment of large a and x.u¢ is nontrivial for many platforms,
while for the superfluid third-sound resonator both are intrinsically
large and tunable. When a 5-nm-thick superfluid film is confined
to a radius of 10 um, its predicted single-phonon frequency shift
surpasses those in membranes®’, cantilevers®?, and SisN,
beams*37°, For R=1pm, it exceeds levitated nanoparticles that
inherit their strong nonlinearity from an optical trapping
potential’? and resonators with an engineered chemical bond®’.
Finally, in the submicron regime, single-phonon nonlinear shifts
might surpass by orders of magnitude those of carbon nanotubes
and graphene sheets®, exceeding the single-phonon nonlinear
threshold.

Reaching the single-phonon regime in thin superfluid helium
Having obtained the parameter space required to bring a thin-film
superfluid resonator into the single-phonon nonlinear regime, the
question becomes: Are there platforms available that may
facilitate these requirements? Can one reasonably engineer an
on-chip superfluid resonator whose damping I' approaches the
single-phonon frequency shift 6Q?

In the earliest third-sound resonators”™’>, the superfluid film
was adsorbed on the inside of two parallel metalized silica disks.
This approach allowed capacitive detection of the film’s dynamics:
film thickness variations change the capacitance between the
plates. In previous works, we have used a few-nanometer-thick
film adsorbed on a single on-chip silica microdisk allowing a
reduction in confinement radius of three orders of magnitude
together with optical detection of the film's dynamics.>84%°,
Such disks, however, become unsuitable for confinement below
~10 um. Using high refractive index materials such as silicon or
gallium arsenide instead, the disks can be miniaturized down to
~1 um radii’?. These set-ups span the hatched region in Fig. 6a; it
can be seen that reaching the single-phonon nonlinear regime
then requires damping rates in the millihertz regime. This is a
challenging condition, yet such low damping rates—with
corresponding mechanical quality factors Q =Q,,/I in excess of
10°—have been experimentally observed in ref. **, albeit for larger
millimeter dimensions. For bulk modes in superfluid “He, quality
factors in excess of 10% have been measured’”.

Further size reduction could be achieved through the use of
phononic crystal cavities’®”®, When condensed on a patterned
silicon substrate, the superfluid third-sound wave experiences a
periodic modulation of its speed of sound and a periodic

70,73
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potential’®. This provides the possibility to engineer phononic
crystal band structures that contain frequency ranges, or band
gaps, for which wave propagation in the crystal is not allowed. In
analogy to photonic crystals and solid-state phononic crystals, we
find that third-sound modes can be trapped or confined in a
defect in the crystal as long as its frequency lies in the band gap,
as shown in Fig. 6b. Thereby, phononic crystal cavities could
enable confinement down to and below hundreds of nanometers
(Fig. 6a, gray).

Here, as an example, we calculate the band structure for a 11-
nm-thick superfluid film condensed on a suspended silicon slab
perforated with 55 nm diameter holes and a 100-nm lattice
constant, as shown in Fig. 6b. The hydrodynamic third-sound
equations are solved through finite-element method (FEM)
simulation (see Supplementary Methods and ref. *®), showing a
complete band gap at around 30 MHz. When a hole is removed to
form a central defect, it confines a 30 MHz acoustic mode. This
trapped mode closely resembles the (u=0, v=1) R=56nm
circular Bessel mode (see Supplementary Fig. 2). From Eq. (24), the
corresponding single-phonon frequency shift is &Qlaegl/2m =
35 Hz (indicated with an X-mark in Fig. 6a), so that a quality factor
of 9% 10° is required to reach the single-phonon nonlinear
regime.

Unambiguous identification of all damping mechanisms in third
sound remains an open problem in the field’2°83, The known
main dissipation channels are thermal dissipation that arises due
to the temperature gradient between the peaks and troughs of
the sound wave, dissipation due to interactions with pinned-
vortices”®®*, and radiation®**™*° (or clamping®) losses.

Aside from allowing submicron confinement, a virtue of the
phononic crystal architecture is the ability to control the radiation
loss associated with imperfect reflection of the wave at the
confining boundary. Our model confirms (see Supplementary Fig.
3) that the radiation damping decreases strongly as the number of
cells in the phononic crystal lattice increases. Indeed, for the
30 MHz mode in Fig. 6 the threshold for single-phonon resolution
Q=9x10" is reached for just 10-cell lattices.

Thermal dissipation occurs as the result both of evaporation
and recondensation within the superfluid wave itself*’, and of
irreversible heat flow through the film and substrate*>#2# (similar
to thermoelastic losses in micromechanical resonators®’). These
mechanisms were modeled for a plane wave by Atkins in ref. *.
Using this model (see Supplementary Fig. 4) we find that these
mechanisms are greatly suppressed at low temperatures (where
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Fig. 6 Radial dependence of single-phonon shift and band structure phononic crystal. a Resonance frequency shift induced by a single
phonon 6Q = 3aeffx;‘pf/h as a function of mode confinement radius R for various superfluid film thicknesses d for the (u=0; v=1) mode. The
quantized nature of the anharmonic oscillator energy spectrum is resolvable if the mechanical linewidth T" < 6Q. Hatched: confinement radii
for microdisks®*®~*%*°, Gray shaded: confinement radii achievable through phononic crystal (PnC) trapping. X-mark: mode confined in PnC
cavity with lattice constant 100 nm. b PnC band structure and complete band gap (gray shaded) for a hexagonal honeycomb lattice with holes
55 nm in diameter, lattice constant 100 nm, and the van der Waals coefficient for silicon dyqw =3.5% 10 2*m®s2 (ref. ). A central defect
(absence of hole) introduces a Bessel-like mode at 30 MHz—within the band gap—as shown by the finite-element-method simulation.

the temperature gradients in the wave are reduced) and also for
high mechanical frequencies. The suppression with increasing
mechanical frequency is perhaps surprising. However, it can be
understood since if the frequency is significantly higher than the
rate of thermal equilibration, then heat has insufficient time to
flow between troughs and peaks. A similar phenomenon has been
observed for thermoelastic losses®®. Combined, we predict that
thermal losses will not be a significant source of dissipation for
strongly confined films at low temperatures. For the specific
example of the phononic crystal structure modeled in Fig. 6b, we
find that the thermal dissipation rate is suppressed beneath the
frequency shift due to a single-phonon even at temperatures as

Published in partnership with The University of New South Wales

high as 0.5 K. Indeed, sub-hundred millikelvin thermalization is not
uncommon for third sound**>8636466687089.90 i \which case
Atkins’ model predicts that the thermal dissipation dominated
superfluid quality factor Querma Would exceed 10'°.

Dissipation resulting from interactions with quantized vortices
pinned to the resonator surface is thought to arise due to both
vortex-normal fluid interactions and vortex dimple drag’®%%
These damping mechanisms require large pinned vortex densities
in order to account for the observed dissipation, with densities on
the order of 10" cm™2 estimated in ref. 3*. Recent experimental
work, however, shows that coherent vortex-vortex interactions
dominate pinning when the superfluid film is confined at hundred
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micron-scales on smooth microfabricated resonators*. The vortex
distribution then evolves towards its lowest energy, vortex-free,
configuration over minute periods. As the resonator radius is
scaled down, it is expected that the influence of pinning sites will
be further reduced since the sound-vortex coupling scales
inversely with the resonator area®®, causing vortices to be
dislodged from pinning sites and their subsequent annihilation.

Liquid helium only remains superfluid as long as the fluid
particle velocity is less than the superfluid critical velocity. It is
interesting then to ask whether there are any fundamental limits
to how strongly the superfluid film may be confined, both in
thickness and radius, before superfluidity breaks down, and
whether these constrain the possibility of entering the single
phonon nonlinear regime. In the Supplementary Discussion we
consider two cases, first a third-sound mode cooled to its motional
ground state, and second a third-sound mode in thermal
equilibrium with its environment. For both cases, we find that a
10-nm-thick film would need to be confined to a radius beneath
its thickness for the fluid particle velocity to exceed the critical
velocity (a parameter regime outside the validity of our model).
We conclude, therefore, that the breakdown of superfluidity
places no constraints on reaching the single phonon strong
coupling regime with the hundred-nanometer-and-above dia-
meter superfluid resonators considered here.

DISCUSSION

We have shown that third-sound resonances (surface oscillations
of two-dimensional superfluid helium) are intrinsically strongly
nonlinear, and have identified the specific parameters that allow
maximization of the nonlinearities: film thickness, confinement
radius, and radial and rotational mode symmetry. We showed that
the cubic nonlinearity can be treated analytically as an effective
reduction of the quartic nonlinearity, which diminishes rapidly for
surface waves with an increasing number of radial nodes.

We calculated the expected output spectrum in the presence of
decoherence and predict that single-phonon nonlinear frequency
shifts exceeding even those of graphene sheets and carbon
nanotubes by orders of magnitude may be possible. Combined
with the intrinsically low dissipation of motional states in
superfluid*®, and phononic crystal cavities providing sub-100-nm
confinement and strongly suppressed radiation damping, this may
well open the door to the single-phonon nonlinear regime where
a single phonon can shift the resonance frequency by more than
the mechanical linewidth.

Our results dovetail recent theoretical proposals that lay out how
strong Duffing nonlinearities can be used for quantum control and
metrology'>2*2>272192 Jltimately, they provide a pathway towards
tests of quantum macroscopicity and new tools for quantum
technologies, where mechanical resonators can function not only as
oscillators, memories, and interfaces, but also as qubits.
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