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Controllable multipartite entanglement is a crucial element in quantum information processing. Here we
present a scheme that generates switchable bipartite and genuine tripartite entanglement between microwave
and optical photons via an optoelectromechanical interface, where microwave and optical cavities are coupled
to a mechanical mode with controllable coupling constants. We show that by tuning an effective gauge phase
between the coupling constants to the “sweet spots,” bipartite entanglement can be generated and switched
between designated output photons. The bipartite entanglement is robust against the mechanical noise and the
signal loss to the mechanical mode when the couplings are chosen to satisfy the impedance-matching condition.
When the gauge phase is tuned away from the “sweet spots,” genuine tripartite entanglement can be generated
and verified with homodyne measurement on the quadratures of the output fields. Our result can lead to the
implementation of controllable and robust multipartite entanglement in hybrid quantum systems operated in
distinctively different frequencies.
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I. INTRODUCTION

Entanglement is a profound feature in quantum theory and
an indispensable resource in quantum communication and
quantum networks [1,2]. Bipartite and tripartite entanglement
for qubits and continuous variables has been demonstrated
in a variety of physical systems, such as superconducting
qubits [3,4], atomic ensembles [5], and optical modes [6,7].
The generation of controllable entanglement between systems
of distinctively different frequencies such as microwave and
optical photons is crucial for hybrid quantum computing,
where different systems are bridged together to boost the
overall performance of the quantum devices. However, due to
the difficulty of interfacing different systems in a noiseless and
lossless manner, it is often challenging to generate switchable
and robust entanglement in hybrid quantum systems. For
example, when coupling a superconducting qubit to an optical
device, extreme care has to be taken to prevent stray photons
from exciting quasiparticles and destroying the quantum co-
herence of the qubit [8].

Optomechanical and electromechanical systems provide an
excellent candidate for an interface that connects different
components in hybrid quantum systems [9–14]. Because of
the ubiquitous existence of mechanical vibrations, mechanical
resonators can be coupled to devices of a broad spectral range
from acoustic to infrared frequencies via radiation pressure
force [15]. Furthermore, the optical (electrical) response of an
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optomechanical (electromechanical) system can be tuned by
applying strong driving fields in selected phonon sidebands to
the cavity mode, which gives us a toolbox to manipulate the
quantum states of the cavity and the mechanical modes. Un-
der red-detuned driving, the phenomena of optomechanically
induced transparency [16,17], sideband cooling [18,19], and
quantum state conversion [20–22] have been demonstrated.
With quantum-engineered time-reversal symmetry to gener-
ate unidirectionality, nonreciprocal transmission via optome-
chanical and electromechanical interface has been studied
recently [23–41]. With blue-detuned driving, the generation
of bipartite entanglement between various optical, electrical,
and mechanical modes has been proposed [42–54]. It was
demonstrated in a recent experiment that stationary entangle-
ment and two-mode squeezing between microwave photons
can be achieved via a mechanical resonator [55]. People
have also studied the generation of tripartite entanglement via
mechanical systems [56–59]. In particular, it was shown that
genuine tripartite entanglement can be generated in a cavity
magnomechanical system [60]. In experiments, entanglement
between a mechanical oscillator and a microwave mode [61],
entanglement between two mechanical oscillators [62,63],
and parametric amplification in mechanical and electrical
modes [64] have been demonstrated.

Here, we present a scheme that generates switchable bipar-
tite and genuine tripartite entanglement between microwave
and optical photons via an optoelectromechanical interface.
In our system, microwave and optical cavities are coupled
to a mechanical resonator via radiation pressure force with
the cavities driven by red- or blue-detuned fields. One of
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the cavities, either on the microwave or the optical side, is
used as an ancilla mode to facilitate the controllability of the
generated entanglement. We show that by tuning an effective
gauge phase between the linearized optomechanical and elec-
tromechanical couplings to the “sweet spots,” bipartite entan-
glement can be selectively generated between output photons
of designated microwave and optical cavities with the output
state of the third cavity separated from the entangled state. The
entanglement of formation (EOF) [65,66], i.e., the convex-
roof extension of the entropy of entanglement, is employed to
quantitatively characterize the generated continuous variable
entanglement. Compared to the logarithmic negativity, an
entanglement monotone used in a number of previous works
[47–49], the EOF (even though harder to compute) constitutes
a proper entanglement measure satisfying properties such as
convexity and asymptotic continuity that logarithmic nega-
tivity does not. We find that the bipartite entanglement is
not only switchable between different cavity outputs, but is
also robust against mechanical noise and signal loss to the
mechanical mode by choosing impedance-matched coupling
constants. Furthermore, using the violation of an inequality
developed in [67] and detected in [6,7] as the criterion, we are
able to show that genuine tripartite entanglement is created
between the output photons of all three cavities when the
gauge phase is tuned away from the sweet spots. The tripartite
entanglement can be verified experimentally by conducting
homodyne measurement on the quadratures of the output
modes. Our result can lead to the generation and verification
of multipartite entanglement in continuous variable modes
with distinctively different frequencies.

The paper is organized as follows. In Sec. II, we describe
the model of the optoelectromechanical interface in detail
and derive the transmission matrix connecting the input and
output field modes. In Sec. III, we study the properties of
the transmission matrix elements in detail and derive the
conditions for achieving switchable bipartite entanglement.
The bipartite entanglement is then characterized quantitatively
as functions of the gauge phase, the coupling constants, the
input frequency, and the thermal occupation number of the
mechanical mode in Sec. IV. In Sec. V, we study the genuine
tripartite entanglement when the gauge phase is tuned away
from the sweet spots and discuss how to verify this entangle-
ment by conducting homodyne detection on the quadratures
of the output modes. Conclusions are given in Sec. VI.

II. SYSTEM

A schematic of our optoelectromechanical interface is
shown in Fig. 1(a). Here, three cavity modes (labeled α =
a, c, d) are coupled to a common mechanical resonator b
via radiation pressure force. The interactions have the form
gαα̂†α̂(b̂ + b̂†) for cavity mode α with a single-photon cou-
pling strength gα , where α̂ (α̂†) and b̂ (b̂†) are the annihilation
(creation) operators of the corresponding cavity and mechan-
ical modes. Without loss of generality, we assume that the
frequency of cavity mode a is distinctively different from that
of cavity modes c and d . For example, mode a could be in the
microwave regime with modes c, d in the optical regime, or
vice versa. Meanwhile, cavities c and d are directly coupled
via a linear coupling Gx(ĉ + ĉ†)(d̂ + d̂†) with the coupling

FIG. 1. (a) The schematic of the optoelectromechanical inter-
face. Three cavity modes a, c, d are coupled to a mechanical mode
b. The thick lines correspond to the linearized couplings Ga,c,d and
the photon hopping rate Gx . The relative phase of Gd with respect
to the other couplings is φ = π/2. The input fields for cavities a
and d are indicated by arrows. Bipartite entanglement between the
outputs of cavities a and c is generated by mixing the inputs of a and
d at φ = π/2, where E ac

F represents the entanglement of formation
between the outputs of cavities a and c. (b) Spectrum of the driving
frequencies (vertical arrows) in relation to the corresponding cavity
resonances ωα . The detunings are labeled as �α (α = a, c, d).

strength Gx. There is no direct coupling between modes of
distinctively different frequencies, such as the microwave and
the optical modes, because it could result in extra circuit noise
or other technical challenges.

By applying driving fields to the cavity modes, the radi-
ation pressure interactions can be linearized. We denote ωdα

as the driving frequency on cavity α and �α = ωdα − ωα as
the detuning between the driving frequency and the cavity
frequency ωα . Assume that cavity a is driven by a blue-
detuned field with �a ≈ ωm and ωm being the frequency of
the mechanical mode, and cavities c, d are driven by red-
detuned fields with �c,d ≈ −ωm, as illustrated in Fig. 1(b).
We can also assume that cavity a is driven by a red-detuned
field and cavities c, d are driven by blue-detuned fields, and
similar results can be obtained. After a standard linearization
procedure [42,43], the total Hamiltonian of this system in the
rotating frame of the driving fields becomes Ĥt = Ĥ0 + Ĥint

with

Ĥ0 = −
∑

α

�αα̂†α̂ + ωmb̂†b̂, (1)

being the unperturbed Hamiltonian and Hint being the lin-
earized coupling Hamiltonian. Let Gα be the linearized cou-
pling strength between cavity α and the mechanical mode that
depends on the corresponding driving field. Here, we assume
|Gα| � |�α|, ωm. Under this condition and with |�α| ≈ ωm,
we apply the rotating-wave approximation to the coupling
Hamiltonian to omit fast-oscillating terms such as â†b̂ and
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ĉb̂ in Ĥint , and we have

Ĥint = (Gaâb̂ + G�
ab̂†â†) + (Gcĉ†b̂ + G�

cb̂†ĉ)

+ (Gd d̂†b̂ + G�
d b̂†d̂ ) + (Gxĉ†d̂ + G�

xd̂†ĉ), (2)

where Gx is the photon hopping rate between cavity modes
c and d and G�

α is the complex conjugate of the coupling
constant Gα . By varying the driving fields applied to the
cavity modes, both the magnitude and phase of the coupling
strengths Ga,c,d can be tuned.

Aside from the driving fields, the cavity and mechani-
cal modes are also coupled to input modes α̂in(t ) that in-
duce damping. The correlation functions for the cavity in-
puts have the form 〈α̂in(t )α̂†

in(t ′)〉 = δ(t − t ′) (α = a, c, d)
at times t and t ′, which correspond to vacuum input states.
For the mechanical input field, the correlation functions
are 〈b̂in(t )b̂†in(t ′)〉 = (nth + 1)δ(t − t ′) and 〈b̂†in(t )b̂in(t ′)〉 =
nthδ(t − t ′), which refer to thermal phonon state at temper-
ature T and thermal phonon number nth = 1/(eh̄ωm/kBT − 1).
We only consider external damping of the cavities with damp-
ing rates κα and neglect internal dissipation for simplicity
of discussion. We also assume that the mechanical damping
rate γm is much weaker than the cavity damping rates with
γm � κα .

The dynamics of the above interface can be described
by Langevin equations. We define a vector v̂ = [â†, b̂, ĉ, d̂]T

for the system operators and v̂in = [â†
in, b̂in, ĉin, d̂in]T for the

input operators [13]. Assume that the cavity detunings �a =
−�c,d = ωm. In the rotating frame of the Hamiltonian Ĥ0, the
Langevin equation for the vector v̂ can be derived as

d v̂/dt = Mv̂ +
√

K v̂in, (3)

with the dynamic matrix

M =

⎛⎜⎜⎜⎝
− κa

2 iGa 0 0

−iG�
a − γm

2 −iG�
c −iG�

d

0 −iGc − κc
2 −iGx

0 −iGd −iG�
x − κd

2

⎞⎟⎟⎟⎠ (4)

and the diagonal matrix
√

K = Diag[
√

κa,
√

γm,
√

κc,
√

κd ].
This system is stable when all the real parts of the eigenvalues
of the matrix M are negative. Using the Routh-Hurwitz crite-
rion [68], we can obtain the stability condition for our system.
Denote �α = 4G2

α/κα . When a cavity α is driven by a red-
detuned (blue-detuned) field with the detuning �α = −ωm

(ωm), �α corresponds to the cooling (heating) rate for the me-
chanical mode. With γm � κα, Gα and under the impedance-
matching condition �c = �d , the stability condition is �c,d >

�a, i.e., the cooling rate surpasses the heating rate, as derived
in Appendix C.

With the Fourier transformation ô(t ) = ∫
dω e−iωt ô(ω)/2π

for an arbitrary operator ô, we convert the Langevin equation
(3) from the time domain to the frequency domain with

v̂(ω) = i(ωI − iM )−1
√

K v̂in(ω), (5)

where I is the 4 × 4 identity matrix. Here, the frequency
components of the system modes v̂(ω) are expressed in terms
of the frequency components of the input fields v̂in(ω). Fur-
thermore, denote v̂out = [â†

out, b̂out, ĉout, d̂out]T for the output

operators. Using the input-output theorem [69] and Eq. (5),
we derive that v̂out = T (ω)v̂in with the transmission matrix

T (ω) = I − i
√

K (ωI − iM )−1
√

K . (6)

The input and output operators in the frequency domain are
now connected by the transmission matrix through Eq. (6).
The matrix element Ti j represents the probability amplitude
of the input mode j in the output mode i.

III. TRANSMISSION MATRIX

In this section, we study the properties of the transmission
matrix elements to understand entanglement generation be-
tween the output fields. Without loss of generality, we assume
that the coupling constants Ga,c,x are positive real numbers
and Gd = |Gd |eiφ is a complex number with a nontrivial
phase φ (see details in Appendix A). The phase φ can be
viewed as an effective gauge phase in the loop formed by
the modes b, c, d and is an important control parameter for
this system. In experiments, the linearized coupling constants
Gα (α = a, c, d) are determined by the driving field on the
corresponding cavity [42,43,70]. With current technology, the
magnitude and phase of Gα can be tuned in a wide range by
varying external driving fields.

To generate high-quality bipartite entanglement, it requires
that (i) the input fields to be entangled are only transmitted
to designated output ports (i.e., negligible loss) and (ii) the
output fields in the designated ports only come from selected
input ports (i.e., negligible noise). Using these requirements
and considering input fields at the frequency ω = 0, we derive
a set of operation conditions for entanglement generation:
|Gd | = 2GcGx/κc, φ = π/2, and Gx = √

κcκd/2. Details of
the derivation are given in Appendix B. Here, ω = 0 in the
rotating frame of Ĥ0 corresponds to the resonant frequency of
the cavity and mechanical modes. Under these conditions, the
transmission matrix can be written in terms of �a,c and γm as

T =

⎛⎜⎜⎜⎜⎜⎝
−�c+�a+γm

�c−�a+γm
− 2i

√
�aγm

�c−�a+γm
0 2i

√
�a�c

�c−�a+γm

2i
√

�aγm

�c−�a+γm

�c−�a−γm

�c−�a+γm
0 2

√
�cγm

�c−�a+γm

2
√

�a�c

�c−�a+γm

2i
√

�cγm

�c−�a+γm
0 −i(�c+�a−γm )

�c−�a+γm

0 0 i 0

⎞⎟⎟⎟⎟⎟⎠. (7)

Using this matrix and in the limit of γm/�a,c → 0, the outputs
of cavities a and c can be approximated as

â†
out = −�c + �a

�c − �a
â†

in + 2i
√

�a�c

�c − �a
d̂in, (8)

ĉout = 2
√

�a�c

�c − �a
â†

in − i(�c + �a)

�c − �a
d̂in. (9)

These equations show that the outputs of cavities a and c are
connected by a Bogoliubov transformation on the inputs of
cavities a and d , which clearly indicates bipartite entangle-
ment between the output fields [48,49]. The input fields and
the entanglement between the outputs of cavities a and c are il-
lustrated in Fig. 1(a). The matrix (7) also reveals the following
notable features of the underlying entanglement generation
process. In the limit of γm � �a,c, the input fields of cavities
a and d are mainly transmitted to the output fields of cavities
a and c and become entangled. Meanwhile, the output fields
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of cavities a and c are mainly from the input fields of cavities
a and d . The input field of cavity c is transmitted entirely to
the output of cavity d . As a result, the output of cavity d is not
entangled with other output fields if no previous entanglement
exists. And the mechanical noise is largely retained within the
mechanical channel with its contribution to other output ports
suppressed by a factor ∼√

γm/�α . At finite temperature with
thermal phonon number nth, it requires that γmnth � �a,c to
make the contribution of the mechanical noise to other output
ports negligible, as discussed in our previous work [37].
According to these analyses, the selected input fields have
negligible loss to unwanted output ports and the designated
output fields have negligible noise from unwanted input ports,
especially the mechanical noise.

Meanwhile, the input and output channels of entanglement
generation can be changed by choosing a different set of oper-
ation conditions. Consider the conditions |Gd | = Gcκd/2Gx,
φ = −π/2, and Gx = √

κcκd/2. The transmission matrix then
becomes

T =

⎛⎜⎜⎜⎜⎜⎝
−�c+�a+γm

�c−�a+γm
− 2i

√
�aγm

�c−�a+γm
− 2

√
�a�c

�c−�a+γm
0

2i
√

�aγm

�c−�a+γm

�c−�a−γm

�c−�a+γm

2i
√

�cγm

�c−�a+γm
0

0 0 0 i

− 2i
√

�a�c

�c−�a+γm

2
√

�cγm

�c−�a+γm

−i(�c+�a−γm )
�c−�a+γm

0

⎞⎟⎟⎟⎟⎟⎠. (10)

In the limit of γm → 0, the output operators of cavities a and
d can be approximated as

â†
out = −�c + �a

�c − �a
â†

in − 2
√

�a�c

�c − �a
ĉin, (11)

d̂out = −2i
√

�a�c

�c − �a
â†

in − i(�c + �a)

�c − �a
ĉin. (12)

These equations describe a Bogoliubov transformation on the
inputs of cavities a and c, which reveals the existence of
bipartite entanglement between the outputs of cavities a and
d . The matrix (10) also shows that during the entanglement
generation process, the input fields of cavities a and c are
mainly transmitted to the output fields of cavities a and d to
become entangled. The entanglement also exhibits robustness
against both the loss of input signals to unwanted output
channels and the effect of noise from unwanted input ports.

We note that both sets of operation conditions, with
φ = ±π/2 and Gx = √

κcκd/2, lead to the relation |Gd | =
Gc

√
κd/κc, which is equivalent to the impedance-matching

condition �d = �c for cavity modes c and d . In contrast,
from the expression of T2i and Ti2 (i = 1, 3, 4), we find that
it requires γm � (�c − �a) in addition to γm � �a,c in order
for the mechanical noise not to be enhanced in the cavity
outputs. Hence, �a needs to be sufficiently smaller than �c,d ,
and cavity a is not impedance matched with cavities c and d .

In Fig. 2, we plot several transmission probabilities |Ti j |2 as
functions of the input frequency ω/2π at φ = ±π/2. It can be
seen from Fig. 2(a) that |T11|2 and |T31|2 can be much greater
than unity at the phase φ = π/2 and the input frequency
ω = 0. Meanwhile, the probability |T13|2 approaches zero and
|T43|2 approaches unity as ω → 0. This interface can hence be
used as a nonreciprocal amplifier for classical input fields as
studied in [37]. Similar effects can be observed in Fig. 2(b)
as well. The probabilities |T11|2 and |T31|2 decrease as the

FIG. 2. The transmission probabilities |Ti j |2 (in logarithmic
scale) as functions of the input frequency ω/2π at (a) φ = π/2
and (b) φ = −π/2. Other parameters are κa/2π = 2 MHz, κc/2π =
3 MHz, κd/2π = 3 MHz, γm/2π = 0.01 MHz, Ga/2π = 1.5 MHz,
Gc/2π = 2 MHz, |Gd | = Gc

√
κd/κc, and Gx = √

κcκd/2.

|ω| shifts away from the cavity resonance at ω = 0. The
spectral halfwidth of the peaks in the transmission proba-
bilities can be obtained from the denominators of the trans-
mission matrix elements [48]. The frequency-dependent term
in these denominators has the form A(ω) = ω̃aω̃mω̃cω̃d −
ω̃a(ω̃mG2

x + ω̃d G2
c + ω̃c|Gd |2) + G2

a(ω̃cω̃d − G2
x ) with ω̃α =

ωα + iκα/2 (α = a, c, d) and ω̃m = ωm + iγm/2. Using this
term, we estimate that the spectral halfwidth is on the order of
magnitude of min[κα, �α]. Switchable bipartite entanglement
can be generated between microwave and optical photons via
our interface when the frequency of the input states is within
this halfwidth of the cavity resonances.

IV. SWITCHABLE BIPARTITE ENTANGLEMENT

In this section, we quantitatively characterize the bipartite
entanglement between designated output modes analyzed in
Sec. III. We define a set of input and output operators:

α̂x(ωn) =
∫

dω gd (ω − ωn)α̂x(ω) (13)

at discrete frequencies ωn = n�ω with n being an integer
number, �ω being a small frequency step, α = a, b, c, d and
x = in, out. Here, gd (ω) is a filtering function that integrates
over a small frequency window with

gd (ω) =
{

1/
√

�ω, ω ∈ (−�ω/2, �ω/2)

0, otherwise
(14)

and the width of the integration window �ω � κα, gα . It can
be shown that the discrete input operators in (13) obey the
correlation functions [48]

〈αin(ωm)α†
in(ωn)〉 = δmn, (15)

〈bin(ωm)b†in(ωn)〉 = δmn(nth + 1), (16)

〈b†in(ωm)bin(ωn)〉 = δmnnth (17)
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for the cavity modes α = a, c, d and the mechanical mode
b. The correlation functions correspond to vacuum states for
cavity inputs and a thermal state for the mechanical input with
thermal phonon number nth. The entanglement for Gaussian
states is only related to correlations of the second moments
and does not depend on the first moments. For input states
being coherent states of arbitrary magnitude and phase, the
entanglement will be the same as that for vacuum input states.
In experiments, one can measure the discrete output modes of
a cavity at selected frequencies using spectral filters. In terms
of these discrete operators, the transformation between the in-
put and the output can be written as v̂out (ωn) = T (ωn)v̂in(ωn).

To characterize the entanglement in the cavity outputs, we
denote the quadratures of the discrete output operators as

X̂ (α)
out (ωn) = 1√

2
[α̂out (ωn) + α̂

†
out (ωn)], (18)

P̂(α)
out (ωn) = 1√

2i
[α̂out (ωn) − α̂

†
out (ωn)]. (19)

Define the vector μ̂(ωn) = [X̂ (a)
out , P̂(a)

out , X̂ (c)
out , P̂(c)

out , X̂ (d )
out , P̂(d )

out ]
T

and the covariance matrix V (ωn) with Vi j = 〈μ̂i(ωn)μ̂ j (ωn) +
μ̂ j (ωn)μ̂i(ωn)〉/2. Based on Eqs. (15)–(17), we obtain

V (ωn) =

⎛⎜⎝Vaa(ωn) Vac(ωn) Vad (ωn)

V T
ac(ωn) Vcc(ωn) Vcd (ωn)

V T
ad (ωn) V T

cd (ωn) Vdd (ωn)

⎞⎟⎠, (20)

where Vαα (ωn) = diag[vαα, vαα] are 2 × 2 diagonal matrices,
and for α �= β,

Vαβ (ωn) =
(

Re[vαβ] −Im[vαβ]

−Im[vαβ] −Re[vαβ]

)
. (21)

The coefficients in these matrices can be expressed as

vaa = 1
2 [|T11|2 + (2nth + 1)|T12|2 + |T13|2 + |T14|2],

vcc = 1
2 [|T31|2 + (2nth + 1)|T32|2 + |T33|2 + |T34|2],

vdd = 1
2 [|T41|2 + (2nth + 1)|T42|2 + |T43|2 + |T44|2],

vac = 1
2 [T11T ∗

31 + (2nth + 1)T12T ∗
32 + T13T ∗

33 + T14T ∗
34],

vad = 1
2 [T11T ∗

41 + (2nth + 1)T12T ∗
42 + T13T ∗

43 + T14T ∗
44],

vcd = 1
2 [T31T ∗

41 + (2nth + 1)T32T ∗
42 + T33T ∗

43 + T34T ∗
44],

respectively, in terms of the transmission matrix elements and
the thermal phonon number of the mechanical mode.

The covariance matrix V (ωn) can be used to study both
bipartite and tripartite entanglement in the output modes. To
calculate the bipartite entanglement between selected output
modes, we use the reduced covariance matrix for these modes.
Taking as example the entanglement between the outputs of
cavities a and c, the reduced covariance matrix is

Vbp(ωn) =
(

Vaa(ωn) Vac(ωn)

V T
ac(ωn) Vcc(ωn)

)
. (22)

By applying a phase rotation to Vbp(ωn), it can be transformed
into the standard form V (s)

bp (ωn), where Vaa and Vcc remain
the same as before and Vac becomes diagonal with Vac =
diag[|vac|, −|vac|].

FIG. 3. The EOFs Eac
F , Ead

F , and Ecd
F vs the gauge phase φ/π .

Here the input frequency ωn = 0, the thermal phonon number nth =
0, and other parameters are the same as those in Fig. 2.

Bipartite entanglement can be characterized by calculating
the entanglement of formation (EOF) [65,66], which quan-
tifies the entanglement of a state in terms of the entropy
of entanglement of the least entangled pure state needed to
prepare it (under local operations and classical communi-
cation). Compared to logarithmic negativity, the EOF is a
proper entanglement measure satisfying properties such as
convexity and asymptotic continuity. Even though, in general,
EOF lacks an analytical expression, for states characterized by
a covariance matrix such as V (s)

bp (ωn), the EOF can be written
as [71–73]

EF ≡ cosh2 r0 log2(cosh2 r0) − sinh2 r0 log2(sinh2 r0), (23)

where r0 (characterizing the minimum amount of two-mode
squeezing needed to create an entangled state) is given by

r0 = 1

2
ln

√
κ −

√
κ2 − λ+λ−
λ−

(24)

with κ = 2(16 det[V (s)
bp ] + 1) − 4(vaa − vcc)2 and λ± =

4(vaa + vcc ± 2|vac|)2. For separable states, r0 = 0.
In Fig. 3, we plot the EOFs of designated cavity outputs

vs the gauge phase φ. At φ = π/2, the EOF of the outputs of
cavities a and c reaches its maximum with Eac

F = 8.2, while
the EOF of the outputs of cavities a and d is at its minimum
with Ead

F = 0. The opposite can be observed at φ = −π/2,
where the outputs of cavities a and d are maximally entangled.
In the entire range of the gauge phase, Ecd

F = 0, i.e., no
entanglement ever exists between the outputs of cavities c
and d . This is because both the direct coupling between these
two modes and their respective couplings to the mechanical
mode are beam-splitter type of interaction (linear instead of
bilinear). Furthermore, at the phases φ = 0 and ±π , Eac

F =
Ead

F , i.e., the output of cavity a is equally entangled with
the outputs of cavities c and d . This hints on the existence
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FIG. 4. The EOF Eac
F vs the coupling Ga/2π at several values of

Gc, where the dashed lines correspond to the unstable regimes. Here
φ = π/2 and other parameters are the same as those in Fig. 3.

of nontrivial tripartite entanglement between the three output
modes, which will be discussed in detail in Sec. V. The above
result shows that by choosing the gauge phase φ = ±π/2, we
can selectively entangle the microwave photons in the output
of cavity a to the optical photons and switch the entanglement
to either cavity c or cavity d .

The amount of entanglement can be tuned by varying the
magnitude of the coupling constants. Based on Eqs. (8) and
(9), the coefficients in the Bogoliubov transformation on the
input states diverge when �a → �c, indicating a large amount
of entanglement in the output states. To quantitatively verify
this observation, we plot the EOF Eac

F as a function of Ga at
φ = π/2 and several values of Gc in Fig. 4. It can been seen
that Eac

F increases monotonically with Ga before it reaches
a maximum at Ga ≈ √

κa/κcGc, i.e., �a ≈ �c. Note that as
shown in Appendix C, the system becomes unstable when
�a > �c. On the other hand, from Eqs. (7) and (10), we find
that in the limit of �a → �c, the mechanical noise in the
outputs as well as the loss of the input states to the mechan-
ical mode will be amplified by a factor of 2

√
�α/γm � 1.

Hence, there is a tradeoff between generating large amount
of entanglement and being robust against mechanic noise and
information loss when tuning the coupling strength Ga.

Next, we evaluate the EOF between the cavity outputs at
nonzero input frequency. In Fig. 5(a), we plot Eac

F and Ead
F

vs the input frequency ωn at φ = π/2. Here, Eac
F exhibits a

maximum and Ead
F = 0 when the input fields are on resonance

(ωn = 0) with the frequencies of their corresponding cavities.
The entanglement between the outputs of cavities a and c
decreases as the input fields go off resonance. The EOF Ecd

F ≡
0 in the entire range of the input spectrum, agreeing with our
result in Fig. 3. The halfwidth of the EOF curve also agrees
with our estimation in Sec. III. Similarly, by tuning the phase
φ = −π/2, the output field of cavity a is entangled with the
output of cavity d , as shown in Fig. 5(b).

In the above discussions, we have assumed that the thermal
phonon number nth = 0. For a mechanical resonator with a

FIG. 5. The EOFs Eac
F and Ead

F vs ωn/2π at (a) φ = π/2 and
(b) φ = −π/2. Other parameters are the same as those in Fig. 3.

resonant frequency ωm/2π = 100 MHz, nth will be finite even
at a temperature of 20 mK. Here, we study the effect of
thermal fluctuations on the bipartite entanglement generated
via the optoelectromechanical interface. In Fig. 6, the EOF
Eac

F is plotted vs the thermal phonon number nth at φ =
π/2 and γm/2π = 10−2, 10−3, and 10−4 MHz, which corre-
spond to quality factor Q = 104, 105, and 106, respectively.
Mechanical resonators with such quality factors have been
studied in experiments. It can be seen that Eac

F decreases with
the increase of nth, but the decreasing rate slows down as
nth increases. At nth = 400 and a damping rate of γm/2π =
10−2 MHz, Eac

F = 0.693, which indicates the existence of
entanglement between the output fields. At nth = 400 and
γm = 10−4 MHz, Eac

F = 6.104, which shows that a much
larger entanglement can be generated as γm becomes weaker
[73]. This result demonstrates the robustness of the gener-
ated continuous variable entanglement against the mechanical

FIG. 6. The EOF Eac
F vs the thermal phonon number nth at several

values of the mechanical damping rate γm. Here φ = π/2 and other
parameters are the same as those in Fig. 3.
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noise. The robustness is rooted in the choice of the operation
conditions discussed in Appendix B with the mechanical noise
effectively retained to the mechanical channel.

V. GENUINE TRIPARTITE ENTANGLEMENT

Multipartite entanglement is crucial for quantum commu-
nication between multiparties in a quantum network [1]. The
generation of multipartite entanglement in hybrid quantum
systems with distinctively different frequencies is often hin-
dered by noise propagation, signal loss, and the requirement
on the couplings. In this section, we will show that it is
possible to generate genuine tripartite entanglement between
microwave and optical photons in the cavity outputs via our
optoelectromechanical interface.

A three-mode system is genuinely tripartite entangled
when the density matrix of the system cannot be decomposed
into a mixture of biseparable states. Criteria have been de-
veloped in previous works to verify the existence of genuine
tripartite entanglement in continuous variable systems [67]. A
sufficient (but not necessary) criterion for genuine tripartite
entanglement is the violation of the inequality

�û�v̂ �min{|g3h3| + |h1g1 + h2g2|,
|g2h2| + |h1g1 + h3g3|,
|g1h1| + |g2h2 + h3g3|}, (25)

where �û (�v̂) is the variance of the operator û (v̂) with

û = h1X̂ (a)
out + h2X̂ (c)

out + h3X̂ (d )
out , (26)

v̂ = g1P̂(a)
out + g2P̂(c)

out + g3P̂(d )
out (27)

defined in terms of the quadratures of the cavity outputs X̂ (α)
out

and P̂(α)
out and gi and hi (i = 1, 2, 3) being real numbers. When

this inequality can be violated for arbitrary choices of gi and
hi, the system exhibits genuine tripartite entanglement.

To test the above inequality, we define the difference
�E =�û�v̂ − min{|g3h3| + |h1g1 + h2g2|, |g2h2| + |h1g1 +
h3g3|, |g1h1| + |g2h2 + h3g3|} and choose 5 × 104 random
numbers for each of gi and hi with {gi, hi} ∈ [−1, 1]. Even
though we cannot conduct the test on arbitrary gi and hi,
we think this is a sufficiently large pool of choices for our
purpose. We then calculate �E for these random numbers
at ωn = 0, nth = 0, and the gauge phase φ. In Fig. 7, �E is
plotted as a function of φ. It can be seen that the inequality
(25) is always violated at φ �= ±π/2 with all �E < 0,
which provides evidence for genuine tripartite entanglement
in the cavity outputs. On the contrary, at the sweet spots
of φ = ±π/2, there exist sets of gi and hi with �E > 0.
We also observe that at φ = π/2, the matrix elements
vad = vcd = 0, i.e., the output state of cavity d is separable
from the output state of cavities a and c, and hence there is no
genuine tripartite entanglement. Similar result can be found
at φ = −π/2. This agrees with our result in Fig. 3, where
bipartite entanglement exists only between the outputs of
cavities a and c (d) with the output of cavity d (c) separable
from the states of the other modes at φ = π/2 (−π/2). We
also note that |�E | (or the violation) is at its maximum when
the gauge phase approaches φ = 0. Although the degree
of violation of the inequality (25) does not constitute an

FIG. 7. The difference �E vs the relative phase φ. Other param-
eters are the same as those in Fig. 3.

entanglement measure of genuine tripartite entanglement, it
indicates that φ = 0 is probably where it is easiest to observe
such entanglement.

In Fig. 8, we plot �E as a function of the thermal phonon
number nth at φ = 0 and ωn = 0. It can be seen that �E
remains finite even at a thermal phonon number of nth = 400
and a mechanical damping rate of γm/2π = 10−2 MHz. The
difference �E becomes even larger with �E ∼ −0.6 at nth =
400 and a much weaker damping rate of γm/2π = 10−4 MHz.
This result shows that the genuine tripartite entanglement gen-
erated in our system is robust against thermal noise, similar to
the behavior of the bipartite entanglement shown in Fig. 6.

An interesting effect in our system is that the outputs of
cavities c and d are never entangled bipartitely with Ecd

F ≡ 0
regardless of the gauge phase or the input frequency, as has

FIG. 8. The difference �E vs the thermal phonon number nth at
the gauge phase φ = 0. Other parameters are the same as those in
Fig. 3.
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been shown in Sec. IV. But this does not prevent our system
from being in a genuine tripartite entangled state due to the
entanglement between the outputs of cavities a and c and be-
tween the outputs of cavities a and d . A similar phenomenon
has been explored in a cavity magnomechanical system [60],
where it was shown that genuine tripartite entanglement can
exist even in the case that one bipartite entanglement is absent.

The genuine tripartite entanglement in our system can be
verified by measuring the variances and covariances of the
quadratures of the cavity outputs. With spectral filtering of
the output modes and homodyne detection on the filtered
states, the matrix elements of the covariance matrix V (ωn),
and subsequently the difference �E , can be obtained. Such
homodyne detection can be readily performed in the optical
domain, and it has also been demonstrated for microwave pho-
tons in recent experiments on superconducting systems [74].

VI. CONCLUSIONS

To summarize, we presented a scheme to generate switch-
able bipartite and genuine tripartite entanglement between
microwave and optical photons via an optoelectromechani-
cal interface. The bipartite entanglement can be generated
in designated output channels by manipulating an effective
gauge phase between the linearized optomechanical and elec-
tromechanical couplings. We characterized the entanglement
quantitatively with the EOF and showed that the entanglement
is robust against mechanical noise and signal loss to the
mechanical mode. We also revealed the generation of genuine
tripartite entanglement through the violation of an inequality.
The tripartite entanglement can be verified experimentally
by performing homodyne detections on the quadratures of
the output modes. Our result can lead to future studies of
entanglement and quantum communication via mechanical
interfaces in multipartite hybrid systems.
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APPENDIX A: COUPLINGS AND GAUGE PHASE

In Sec. III, we assume that the coupling constants Ga,c,x are
positive real numbers and Gd = |Gd |eiφ is a complex number
with nontrivial phase φ, which corresponds to a gauge phase.

Here, we explain the origin of the gauge phase and show that
this assumption does not cause any loss of generality. Let all
the couplings be complex numbers with Gα = |Gα|iφα (α =
a, c, d, x) initially. We redefine the operators as

â → â, (A1)

b̂ → b̂e−iφa , (A2)

ĉ → ĉei(φc−φa ), (A3)

d̂ → d̂ei(−φx+φc−φa ). (A4)

The creation operators are redefined accordingly. With these
definitions, the Hamiltonian (2) becomes

Ĥint = (|Ga|âb̂ + |Ga|b̂†â†) + (|Gc|ĉ†b̂ + |Gc|b̂†ĉ)

+ (|Gd |eiφ d̂†b̂ + |Gd |e−iφ b̂†d̂ ) + (|Gx|ĉ†d̂ + |Gx|d̂†ĉ)

(A5)

with φ = φd + φx − φc. Hence, by redefining the operators,
the coupling constants Ga,c,x → |Ga,c,x|, becoming positive
real numbers, and Gd → |Gd |eiφ . Basically, the phase factors
of the complex couplings are now absorbed into the definition
of the operators, which leaves only a nontrivial phase φ in
the coupling Gd . This phase is the accumulated phase of the
couplings in the loop composed of modes b, c, d and can be
treated as a gauge phase of the loop.

In experiments, the linearized coupling constants Gα (α =
a, c, d) are determined by the driving field on the correspond-
ing cavity mode. As shown in previous works [42,43,70], Gα

is linearly proportional to the driving field. By adjusting the
strength and phase of the driving field, the magnitude and
phase of Gα can be tuned. With current technology, Gα can
be tuned in a wide range with designated phase. Therefore,
the gauge phase can be well controlled via external driving
fields.

APPENDIX B: OPERATION CONDITIONS

Here, we utilize two requirements on entanglement
generation to derive the operation conditions. Following
Appendix A, Ga,c,x are positive numbers and Gd = |Gd |eiφ .
And we consider the case of ω = 0.

(i) The input fields to be entangled are only transmitted to
designated output ports (i.e., negligible loss). This requirement
ensures that the signal fields are not transmitted to other
output ports aside from the designated ones. Consider the
transmission of the input field âin, which is characterized by
the matrix elements Ti1 with i = 1, 2, 3, 4. Using Eq. (6), we
have

T41

T31
=

√
κd

κc

Gdκc − 2iGcGx

Gcκd − 2iGd Gx
. (B1)

By choosing

|Gd | = 2GcGx/κc and φ = π/2, (B2)
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we find

T11

T31
= −4G2

cκa + 4G2
aκc + γmκaκc

8GaGc
√

κaκc
, (B3)

T21

T31
= i

√
γmκc

2Gc
, (B4)

T41

T31
= 0. (B5)

In the limit of γm � �a,c, Eq. (B3) shows that |T11/T31| >

1 and approaches unity only when γm = 0 and �a = �c.
Equation (B4) shows that |T21/T31| � 1. Therefore, the input
field of cavity a is mainly transmitted to the outputs of cavities
a and c with no or negligible contribution to the outputs of
cavity d and mechanical mode b. This result also identifies
the outputs of cavities a and c as the designated output ports.

(ii) The output fields in the designated ports only come from
selected input ports (i.e., negligible noise). This requirement
ensures that the output fields do not have contributions from
other input ports aside from the selected ones. Consider the
output field of cavity c with ĉout = ∑

i T3iv̂in,i (i = 1, 2, 3, 4).
In addition to the condition (B2), by choosing

Gx = √
κcκd/2, (B6)

we have

T32

T31
= i

√
γmκa

2Ga
, (B7)

T33

T31
= 0, (B8)

T34

T31
= − i

(
4G2

cκa + 4G2
aκc − γmκaκc

)
8GaGc

√
κaκc

. (B9)

The output of cavity c thus includes components from the
inputs of cavities a and d , but not from the input of cavity
c. With γm � �a,c, |T32/T31| � 1, i.e., the mechanical noise
has negligible contribution to the output of cavity c.

In the above analyses, we apply the negligible loss re-
quirement on the input of cavity a and the negligible noise
requirement on the output of cavity c to derive a set of oper-
ation conditions (B2) and (B6) for entanglement generation.
Under these conditions, T14 = iT31, T34 ≈ iT11, |T24/T31| =√

γm/�a � 1, and T44 = 0. Hence, the input field of cavity
d is mainly transmitted to the outputs of cavities a and c
with the negligible loss requirement also satisfied for the input
field of cavity d . We also find that T12 = −T21, T13 = 0, and
T14 = iT31. It can be seen that the output field of cavity a
mainly includes contributions from the inputs of cavities a and
d with the negligible noise requirement satisfied for the output
field of cavity a as well. Furthermore, T43 = i and T4i = 0
(i = 1, 2, 4), i.e., the output of cavity d is only from the input

of cavity c. While T22 ≈ 1 and |Ti2/T31| � 1 (i = 1, 3, 4),
which shows that the mechanical noise is mainly retained in
the mechanical channel. Hence, under the conditions (B2) and
(B6), the input fields of cavities a and d are transmitted to the
output fields of cavities a and c to become entangled. The
entanglement generation has negligible loss and negligible
noise from the mechanical mode.

Under the operation conditions, the expression of the trans-
mission matrix elements can be simplified using �a,c,d and the
γm. For example, (B3) can be written as

T11

T31
= −�a + �c + γm

2
√

�a�c
. (B10)

Meanwhile, the input and output channels of entanglement
generation can be changed by choosing a different set of
operation conditions. When |Gd | = Gcκd/2Gx, φ = −π/2,
and Gx = √

κcκd/2, it can be shown that the input fields of
cavities a and c are transmitted to the output fields of cavities
a and d to become entangled.

APPENDIX C: STABILITY CONDITION

With blue-detuning driving on (at least) one of the cavities,
the optoelectromechanical interface can become unstable.
Here, we use the Routh-Hurwitz criterion to study the stability
of this system [68]. When the real parts of all four eigenvalues
of the dynamic matrix M in Eq. (4) are negative, the system is
in the stable regime. It can be shown that the eigenvalues of the
matrix M satisfy the equation λ4 + s3λ

3 + s2λ
2 + s1λ + s0 =

0 with the coefficients

s3 = (κa + κc + κd + γm)/2, (C1)

s2 = [κaκc + κaκd + κcκd + γm(κa + κc + κd )]/4

+ G2
x + G2

c + |Gd |2 − G2
a, (C2)

s1 = [γm(κaκc + κaκd + κcκd ) + κaκcκd ]/8

+ (κa + γm)G2
x/2 + (κa + κd )G2

c/2

+ (κa + κc)|Gd |2/2 − (κc + κd )G2
a/2, (C3)

s0 = κaγmκcκd/16 + κaγmG2
x/4 + κaκd G2

c/4

+ κaκc|Gd |2/4 − κcκd G2
a/4 − G2

aG2
x . (C4)

We find that for the system to be stable, these coefficients
should satisfy the following relations: (1) all si > 0, (2) s3s2 −
s1 > 0, and (3) s3s2s1 − s2

1 − s0s2
3 > 0. Under the conditions

of γm � κα, Gα and �c = �d , these relations can be approxi-
mated as �c,d > �a.
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