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Ultrastrong optomechanical interaction is a significant element for the study of the fundamentals and
applications of optomechanical physics, but its realization remains a big challenge in the field of optomechanics.
In this work, we propose a reliable scheme to realize a generalized ultrastrong optomechanical-like coupling in
a cross-Kerr-type coupled two-bosonic-mode system, in which one of the two bosonic modes is strongly driven.
The generalized optomechanical-like interaction takes the form of a product of the excitation number operator of
one mode and the rotated quadrature operator of the other mode. Here, both the coupling strength and the phase
angle of the rotated quadrature operator are tunable via the driving field. The optomechanical-like coupling can
be strongly enhanced to enter the ultrastrong-coupling regime, where the few-photon optomechanical effects
such as photon blockade and macroscopic quantum superposition become accessible. The controllability of
the quadrature phase angle provides a new degree of freedom for the manipulation of optomechanical systems
and enables the implementation of geometric quantum operations. We also present some discussions on the
experimental implementation of this scheme. This study will pave the way to the study of quantum physics and
quantum technology at the few-photon level in optomechanical systems.
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I. INTRODUCTION

Light-matter interaction is at the heart of cavity optome-
chanics [1–3] and is at the root of various quantum co-
herence effects in optomechanical systems. The studies of
cavity optomechanics focus primarily on the understanding,
manipulation, and exploitation of optomechanical couplings
and aim to explore both the fundamentals of quantum theory
and modern quantum technology. Of particular interest is the
study of optomechanics at the few-photon level [4–11]. This is
because the nonlinear optomechanical interaction is an intrin-
sic characteristic of optomechanics. Many interesting effects
appear in this regime, such as phonon sideband spectrum
[4,6], photon blockade in the cavity driven by a continuous
wave [5] or a wave packet [7], and macroscopic quantum
coherence [10,11]. However, the few-photon optomechanical
effects have not been observed in experiments because the
single-photon optomechanical coupling is too weak to be
resolved from the environmental noise. How to enhance the
optomechanical coupling remains a significant challenge in
this field. Until now, people have proposed several methods
to enhance the single-photon optomechanical coupling. These
methods include the construction of an array of mechanical
resonators [12], the use of the nonlinearity in Josephson
junctions [13–15], the modulation of the couplings [16],
and the utilization of quantum squeezing resources [17,18],
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mechanical amplification [19], and delayed quantum feedback
[20]. In addition, a proposal has been made to enhance the
single-photon optomechanical effect by effectively decreasing
the driving detuning of the radiation pressure force [11].

In this paper, we propose an efficient approach to re-
alize a generalized optomechanical-like interaction in the
ultrastrong-coupling regime [21–30]. Here, the ultrastrong
coupling is referred to the scenario when the strength of
the single-photon optomechanical coupling is a considerable
fraction of the mechanical frequency [31]. Our scheme is
realized by applying a strong driving on one of the two
bosonic modes coupled by the cross-Kerr interaction. Note
that the cross-Kerr interaction has been widely used in quan-
tum state preparation [32–34], quantum information proto-
cols [35–38], quantum nondemolition photon measurement
[39,40], phonon counting [41], and optical devices [42]. In
particular, the generalized optomechanical-like coupling takes
the form of the product of the occupation number operator
of one mode and the quadrature operator of the other mode.
Here, the strength of single-photon optomechanical coupling
is enhanced by the driving to reach the ultrastrong-coupling
regime. Our scheme has the following features: (i) The driving
field enhances the optomechanical coupling strength to reach
the ultrastrong coupling regime. (ii) The rotated quadrature
operator in this generalized optomechanical-like coupling
provides a new degree of freedom for the manipulation of
optomechanical systems. (iii) This method works for both
steady-state and transient displacements, which correspond
to constant and modulated optomechanical-coupling cases.
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FIG. 1. Schematic diagram of the system. Two bosonic modes (a
and b) with resonance frequencies ωa and ωb are coupled with each
other by a cross-Kerr interaction with coupling strength χ . One of
the modes (e.g., mode b) is driven by a monochromatic field with the
driving frequency ωLb and driving amplitude �b.

(iv) In the displacement representation (a rotating frame), the
driving detuning plays the role of the effective mechanical fre-
quency, which can be much higher than the natural frequency
of the mechanical mode and hence suppress its thermal noise.

The rest of this paper is organized as follows: In Sec. II, we
introduce the physical model and present the Hamiltonians.
In Sec. III, we derive the approximate optomechanical-like
Hamiltonian and evaluate the validity of the approximate
Hamiltonian. In Secs. IV and V, we study the photon block-
ade effect in mode a and the generation of the Schrödinger
cat states in mode b, respectively. In Sec. VI, we study
the geometric quantum operation and the generation of the
Schrödinger cat and kitten states in mode a. Some discussions
on the experimental implementation of this scheme is present
in Sec. VII. Finally, we conclude this work in Sec. VIII.

II. PHYSICAL MODEL

We consider two bosonic modes coupled by a cross-Kerr
interaction. One of the two modes (for instance mode b) is
driven by a monochromatic field (Fig. 1). The Hamiltonian of
the system reads (h̄ = 1)

Hsys = ωaa
†a + ωbb

†b+ χa†ab†b

+�bb
†e−iωLbt + �∗

bbe
iωLbt , (1)

where a (a†) and b (b†) are the annihilation (creation) op-
erators of the two bosonic modes, with the corresponding
resonance frequencies ωa and ωb. The parameter χ is the
coupling strength of the cross-Kerr interaction between the
two modes. The mode b is driven by a monochromatic field,
with ωLb and �b being the driving frequency and amplitude,
respectively. In a rotating frame with respect to H0 = ωLbb†b,
the Hamiltonian becomes

HI = ωaa
†a + �bb

†b+ χa†ab†b+ �bb
† + �∗

bb, (2)

where �b = ωb − ωLb is the detuning of the resonance
frequency ωb of mode b with respect to the driving
frequency ωLb.

To describe the damping and noise in this system, we
assume that the two bosonic modes are coupled to two individ-
ual Markovian heat baths, then the quantum master equation

governing the evolution of the system can be written as

ρ̇ = i[ρ,HI ] + γa(n̄a + 1)D[a]ρ + γan̄aD[a†]ρ

+ γb(n̄b + 1)D[b]ρ + γbn̄bD[b†]ρ, (3)

where D[o]ρ = oρo† − (o†oρ + ρo†o)/2 is a standard Lind-
blad superoperator for bosonic-mode damping, γa (γb) and n̄a
(n̄b) are the damping rate and environment thermal excitation
occupation of mode a (b), respectively.

III. THE GENERALIZED ULTRASTRONG
OPTOMECHANICAL-LIKE HAMILTONIAN

In this section, we derive the approximate Hamiltonian:
generalized ultrastrong optomechanical-like Hamiltonian and
analyze the parameter conditions of the approximation.

A. Derivation of the approximate Hamiltonian

The motivation of this work is to obtain an ultrastrong
optomechanical-like coupling between the two modes. Under
strong driving, the mode b is excited with a large occupation
number, and the operator b can be written as the summation
of its mean value and a quantum fluctuation b → β + b, and
similarly b† → β∗ + b†. Note that the occupation number of
mode a is independent of the driving on mode b because
the operator a†a is a conserved quantity. The cross-Kerr in-
teraction then becomes χa†a(β∗ + b†)(β + b) = χβ∗βa†a +
χa†a(β∗b+ βb†) + χa†ab†b. Here the first term is a fre-
quency shift of mode a, the second term is the generalized
optomechanical-like coupling with the coupling strength en-
hanced by a factor |β|, and the third term is the cross-Kerr
interaction between mode a and the fluctuation of mode b.
Below, we present a rigorous derivation of the generalized
optomechanical-like Hamiltonian in the open-system case.

In the strong-driving case, the excitation number in mode b
is large and then mode b contains a coherent part. This coher-
ent part can be seen by performing the following displacement
transformation:

ρ′ = Db(β )ρD
†
b(β ), (4)

where ρ ′ is the density matrix of the two-mode system in
the displacement representation, Db(β ) = exp(βb† − β∗b) is
the displacement operator, and β is the coherent displacement
amplitude, which needs to be determined in the transformed
quantum master equation. When the coherent displacement
amplitude β obeys the equation β̇ + (i�b + γb/2)β − i�b =
0, we can obtain the quantum master equation in the displace-
ment representation as

ρ̇ ′ = i[ρ ′,Htra] + γa(n̄a + 1)D[a]ρ ′ + γan̄aD[a†]ρ ′

+ γb(n̄b + 1)D[b]ρ ′ + γbn̄bD[b†]ρ ′, (5)

where the transformed Hamiltonian in the displacement rep-
resentation reads

Htra = (ωa + χ |β|2)a†a + (�b + χa†a)b†b

−χa†a(βb† + β∗b). (6)

Based on the tasks, there are two cases of the displacement:
the steady-state displacement and the transient displacement.
In the former case, the steady-state displacement amplitude
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can be obtained as βss = �b/(�b − iγb/2), which indicates
that the displacement amplitude βss is tunable by choosing
proper parameters �b and �b. The value of |βss| could be
much larger than 1 in the strong-driving case �b � {�b, γb}.
For the transient-solution case, the optomechanical-like cou-
pling becomes a time-dependent interaction. In particular,
the interaction strength g0(t ) = χβ(t ) is tailorable because
we can obtain a desired β(t ) by designing a proper driving
amplitude �b(t ). For example, we can choose �b(t ) such
that a sinusoidal enhancement g0 sin(ωdt ) is obtained, where
ωd is the modulation frequency. It has been proved that the
modulated optomechanical coupling can be used to enhance
the photonic nonlinearity and to generate macroscopic super-
position states [16].

In this work, we mainly focus on the steady-state displace-
ment case, in which the timescale of the system approach-
ing to its steady state is much shorter than other evolution
timescales. In this case, the Hamiltonian becomes

Htra = ω′
aa

†a + (�b + χa†a)b†b− g0a
†a(b†eiθ + be−iθ ),

(7)

where we introduce the normalized frequency ω′
a = ωa +

χ |βss|2, the enhanced coupling strength

g0 = χ |βss|, (8)

and the phase angle θ of the quadrature operator of mode b,
which is defined by βss = |βss|eiθ .

The motivation for realization of the ultrastrong optome-
chanics is to study the few-photon physics in optomechanical
systems, therefore we will focus on the few-photon regime in
the following. Under the condition

|mχ | � �b, (9)

with m being the largest excitation number involved in mode
a, we can neglect the cross-Kerr interaction term in Eq. (7) to
obtain the approximate Hamiltonian as

Happ = ω′
aa

†a + �bb
†b− g0a

†a(b†eiθ + be−iθ ). (10)

This approximate Hamiltonian is the main result of this work.
Here we can see that the effective frequency of mode b is given
by �b, and that the effective coupling strength of the gener-
alized optomechanical-like coupling is given by g0 ≡ χ |βss|.
The effective frequency �b is controllable by tuning the
driving frequency ωLb, and the generalized coupling strength
could be largely enhanced to enter the ultrastrong-coupling
regime by choosing a proper driving amplitude �b. The form
of the optomechanical-like coupling is generalized because
this coupling takes the form of a product of the occupation
number operator of mode a and the quadrature operator of
mode b. The quadrature angle θ can be tuned by choosing the
driving frequency ωLb and amplitude �b.

B. Evaluation of the validity of the approximate Hamiltonian

In the derivation of the approximate Hamiltonian Happ, the
only approximation is the omission of the cross-Kerr interac-
tion term in the transformed Hamiltonian Htra in Eq. (7). The
condition under which the approximation is justified is that
the frequency shift of mode b induced by the cross-Kerr in-
teraction should be much smaller than its effective frequency

�b in the displacement representation. Below, we evaluate
the validity of this approximation by calculating the fidelity
between the exact state and the approximate state. To avoid the
crosstalk from the dissipations, we first consider the closed-
system case, in which the evolutions of the exact state and
the approximate state are governed by the exact Hamiltonian
Htra and the approximate Hamiltonian Happ, respectively. We
assume that the initial state of the system is |ψ (0)〉 = |m〉a|0〉b
so that we can calculate the exact state and the approximate
state analytically. Here |m〉a and |0〉b are the Fock states for
modes a and b, respectively.

Based on the exact Hamiltonian (7), the exact state of the
system at time t can be obtained as

|ψext(t )〉 = e−imω′
at eiζ (t )|m〉a|η(t )〉b, (11)

where the phase and the displacement amplitude are
defined by

ζ (t ) = m2χ2|βss|2
(�b + mχ )2

[(�b + mχ )t − sin [(�b + mχ )t]],

(12)

and

η(t ) = mχβss

(�b + mχ )
(1 − e−i(�b+mχ )t ). (13)

Similarly, the approximate state of the system at time t can be
obtained, in terms of the approximate Hamiltonian (10), as

|ψapp(t )〉 = e−imω′
at eiζ

′(t )|m〉a|η′(t )〉b. (14)

The phase and the displacement amplitude in this case are
defined by

ζ ′(t ) = m2χ2|βss|2
�2

b

[�bt − sin (�bt )], (15)

and

η′(t ) = mχβss

�b
(1 − e−i�bt ). (16)

The fidelity between the exact state |ψext(t )〉 and the approxi-
mate state |ψapp(t )〉 can be calculated as

F (t ) = |〈ψapp(t )|ψext(t )〉|

= exp

[
−1

2

∣∣∣∣mχβss

�b
(1 − e−i�bt )

− mχβss

(�b + mχ )
(1 − e−i(�b+mχ )t )

∣∣∣∣
2
]
. (17)

For investigating the fidelity in single-photon physical
effects, we choose the initial state of the system as |ψ (0)〉 =
|1〉a|0〉b. In Fig. 2(a), we show the fidelity F (t ) for m = 1
and θ = 0 as a function of the evolution time t when χ/�b =
0.005 and |βss| = 100, 500, and 1000. We see that the fidelity
decreases for larger values of |βss|. This can be explained from
the expression of F (t ) that the exponential decreasing rate is
proportional to |βss|2 in this case. Nevertheless, the fidelity
can be very high because of χ � �b. In Fig. 2(b), we display
the fidelity F (ts) at time ts = π/�b (the time for generation
of cat states in mode b) as a function of |βss| and χ/�b. Here
the fidelity is large in a wide parameter space and it is higher
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FIG. 2. (a) The fidelity F (t ) as a function of the evolution time
�bt when χ/�b = 0.005 and |βss| = 100, 500, and 1000, which
correspond to g0/�b = 0.5, 2.5, and 5, respectively. (b) The fidelity
F (ts ) at time ts = π/�b as a function of the parameters |βss| and
χ/�b.

for a smaller χ/�b. For a given value of χ/�b, the fidelity
F is higher for a smaller value of |βss|. With the parameters
for creating moderate displacement, for example χ |βss| = �b,
the fidelity could be larger than 0.99. Note that this fidelity is
independent of ω′

a because the term ω′
aa

†a commutates with
other terms in the Hamiltonian.

Below, we investigate the fidelity when the dissipations
are present. In this case, the evolutions of the exact state and
the approximate state are, respectively, governed by the exact
master equation (5) and the approximation master equation,
which takes the same form as Eq. (5) under the replacement
Htra → Happ. In our simulations, we introduce a parameter η

into the equation of motion by the replacement χ → ηχ in
the last term in Eq. (6) so that we can describe the equations
of motion for the density-matrix elements in a unified form.
The values of η = 1 and η = 0 correspond to the exact- and
approximate-solution cases, respectively. By expressing the
density matrix of the two-mode system in the number-state
representation as

ρ ′ =
∞∑

m, j,n,k=0

ρ ′
m, j,n,k |m〉a| j〉b a〈n|b〈k|, (18)

with ρ ′
m, j,n,k = a〈m|b〈 j|ρ ′|n〉a|k〉b being the density-matrix el-

ements, we can obtain the equations of motion for the density-
matrix elements based on the quantum master equation.

Based on the initial conditions, we can solve the equations
of motion for these density-matrix elements. Without loss of

generality, in the simulations we assume that the initial state
of the system is |α〉a ⊗ |β〉b, where |α〉 and |β〉 are coherent
states, then we have

ρ ′
m, j,n,k (0) = e−|α|2e−|β|2 α

mα∗nβ jβ∗k
√
m! j!n!k!

. (19)

We denote the density matrices corresponding to the two
cases of η = 1 and η = 0 as ρext and ρapp, respectively, then
the fidelity between the exact density matrix ρext and the
approximate density matrix ρapp can be calculated by

F = Tr
[√√

ρextρapp
√

ρext
]
. (20)

In Fig. 3, we plot the fidelity given by Eq. (20) as a function
of the evolution time in the open-system case. Here we choose
the initial state of the system as either |1〉a|0〉b or |α〉a|β〉b. In
addition, we choose the parameters as χ/�b = 0.001, 0.01,
and 0.1. The value of the displacement amplitude |βss| is
chosen such that χ |βss| = �b. We can see that the fidelity
is larger for a smaller value of the ratio χ/�b, which is
in consistent with the analysis on the parameter condition
of the approximation. Owing to the dissipations, the fidelity
experiences some oscillations and then approaches gradually
to a stationary value. For a given value of χ , the fidelity
approaches to its stationary value in a faster manner for a
larger decay rate. When n̄a = n̄b = 0, the fidelity approaches
to 1 in the long-time limit because the steady state of the
system is |0〉a|0〉b when it is governed by the quantum master
equation (5) with either the exact or approximate Hamiltonian.
It can be seen from quantum master equation (5) that the
average photon number experiences an exponential decay
governed by the equations of motion d〈na〉/dt = −γa〈na〉. As
a result, the steady state of the mode b is |0〉b because mode
b is reduced to a free cavity field coupled to a vacuum bath in
this case.

IV. PHOTON BLOCKADE EFFECT IN MODE a

One important application of the optomechanical inter-
action in the ultrastrong-coupling regime is the realization
of photon blockade effect [5,7]. The physical mechanism
for the creation of the photon blockade effect is the anhar-
monicity in the eigenenergy spectrum of the optomechanical
system. In the generalized optomechanical-like model, the
Kerr nonlinearity for mode a can be obtained by diagonalizing
the approximate Hamiltonian Happ as V †HappV = ω′

aa
†a +

�bb†b− (g20/�b)a†aa†a, using the transformation operator
V = exp[g0/�ba†a(b†eiθ − be−iθ )]. To observe the photon
blockade effect, the magnitude of the self-Kerr nonlinearity
should be much larger than the decay rate of mode a, namely
g20/�b � γa, such that the anharmonicity in the energy levels
can be resolved from the cavity field linewidth. In our scheme,
the Kerr nonlinearity can be enhanced by a large coherent
displacement |βss| and a small driving detuning �b. Here we
should point out that a small detuning will not affect the
thermal occupation number n̄b which is determined by the
natural resonance frequency ωb of mode b.

To generate photons in this system, a weak field is intro-
duced to drive mode a. In addition, a strong driving is per-
formed on mode b to enhance the optomechanical coupling.
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FIG. 3. The dynamics of the fidelity defined by Eq. (20) between the exact state and the approximate state in the open-system case, when
the parameter χ takes different values: (a), (d) χ/�b = 0.001; (b), (e) χ/�b = 0.01; and (c), (f) χ/�b = 0.1. Here, the parameter |βss| is
chosen such that χ |βss| = �b. We choose the initial state of the two modes as (a)–(c) |1〉a|0〉b and (d)–(f) |α0〉a|β0〉b with α0 = β0 = 0.2. We
take ω′

a = 0 because the fidelity is independent of this variable ω′
a. The other parameters are given by n̄a = n̄b = 0.

Then the Hamiltonian of the system can be written as

H ′ = Hsys + �aa
†e−iωLat + �∗

aae
iωLat , (21)

where �a and ωLa are the driving amplitude and frequency
of mode a. For observation of photon blockade, the driving
field on mode a is weak, i.e., �a/γa � 1. For enhancement of
the optomechanical coupling, the driving of mode b is strong.
i.e., �b/γb � 1. Then we treat the driving on mode a as a
perturbation in our calculations.

In a rotating frame with respect to H ′
0 = ωLaa†a + ωLbb†b,

Hamiltonian (21) becomes

H ′
I = �aa

†a + �bb
†b+ (�bb

† + �∗
bb) + χa†ab†b

+ (�aa
† + �∗

aa), (22)

where �a = ωa − ωLa is introduced. Using the same method
in Sec. III, we add the dissipation terms of the two modes a
and b into the quantum master equation. Since the driving on
mode a is weak and the driving on mode b is strong, then we
only perform the displacement transformation on mode b as
ρ ′ = Db(β )ρD

†
b(β ). Based on the fact that the displacement

transformation operator commutates with the driving term of
mode a, then the quantummaster equation in the displacement
representation reads

ρ̇ ′ = i[ρ ′,H ′
tra] + γa(n̄a + 1)D[a]ρ ′ + γan̄aD[a†]ρ ′

+ γb(n̄b + 1)D[b]ρ ′ + γbn̄bD[b†]ρ ′, (23)

where the transformed Hamiltonian reads (θ = 0)

H ′
tra = H ′

gop + (�aa
† + �∗

aa), (24)

with the undriven Hamiltonian

H ′
gop = �′

aa
†a + (�b + χa†a)b†b− g0a

†a(b† + b). (25)

Here we introduce the driving detuning �′
a = ω′

a − ωLa for
mode a. Then the eigensystem of the Hamiltonian H ′

gop can be
obtained as

H ′
gop|m〉a| j̃(m)〉b = E ′

m, j |m〉a| j̃(m)〉b, (26)

where the eigenvalues are given by

E ′
m, j = �′

am + (�b + mχ ) j − g20m
2

(�b + χm)
, (27)

and the photon-number-dependent displaced Fock states of
mode b are defined by

| j̃(m)〉b = exp

[
g0m

(�b + χm)

(
b† − b

)]| j〉b. (28)

Equation (27) shows the photonic nonlinearity in the
eigenenergy spectrum, and this nonharmonicity in the energy
spectrum is the physical origin of the appearance of photon
blockade. In our numerical simulations, we solve quantum
master equation (23) and obtain the steady state of the sys-
tem. By calculating the equal-time second-order correlation

063802-5



LIAO, HUANG, TIAN, KUANG, AND SUN PHYSICAL REVIEW A 101, 063802 (2020)

|β
ss

|
0 500 1000 1500 2000

g(2
) (0

)

0

1

2

3

γ
a
/Δ

b
=0.01

γ
a
/Δ

b
=0.05

γ
a
/Δ

b
=0.1

γ
a
/Δ

b

0 0.1 0.2

g(2
) (0

)

0

0.2

0.4

FIG. 4. The equal-time second-order correlation function g(2)(0)
of mode a as a function of |βss| when γa/�b = γb/�b = 0.01,
0.05, and 0.1 and under the single-photon resonance driving �′

a =
g20/(�b + χ ). Other parameters used are χ/�b = 0.001, n̄a = n̄b =
0, and �a/γa = 0.1. The inset shows the correlation function g(2)(0)
at g0/�b = 0.5 as a function of γa/�b.

function

g(2)(0) = 〈a†a†aa〉ss
〈a†a〉2ss

(29)

in the steady state, we can evaluate the photon blockade effect
in this system.

In Fig. 4, we plot the equal-time second-order correlation
function as a function of the enhanced factor |βss| at various
values of γa/�b. Here the operator averages are taken over
the steady state of the system [43]. We can see that the
photon blockade effect (corresponding to g(2)(0) � 1) can
be observed in the resolved-sideband limit γa/�b � 1. The
decay of mode a will harm the photon blockade effect, as
shown in the inset, where we display g(2)(0) as a function of
γa/�b at g0/�b = 0.5, which corresponds to the optimal |βss|
for photon blockade.

To show the dependence of the correlation function g(2)(0)
on the system parameters in a wide parameter space, in Fig. 5
we plot the correlation function g(2)(0) of mode a as a function
of the displacement amplitude |βss| and the decay rate γa/�b.
Here we choose the driving detuning �a = (χ |βss|)2/(�b +
χ ) (determined by E ′

1,0 − E ′
0,0 = 0) such that the first-photon

transition |0〉a|0̃(0)〉b ↔ |1〉a|0̃(1)〉b is resonant. We can see
that the correlation function g(2)(0) increases with the increase
of the decay rate γa. For a small decay rate γa, the correlation
function g(2)(0) exhibits some resonance peaks, which are
induced by the phonon-sideband resonant transitions. In some
parameter regions (the valley region) where the first photon
transition is resonant and the second-photon transition is far
off resonance, then mode a will exhibit the photon blockade
effect.

The thermal noise of the environment of mode bwill affect
the photon blockade effect in mode a. This point can be
seen by calculating the equal-time second-order correlation
function g(2)(0) in the steady state of the quantum master

FIG. 5. Plot of equal-time second-order correlation function
g(2)(0) as a function of displacement amplitude |βss| and decay rate
γa/�b. The driving detuning �a = (χβss )2/(�b + χ ) is chosen such
that the single-photon transition is resonant. Other parameters are
given by χ/�b = 0.001, γb = γa, n̄a = n̄b = 0, and �a/γa = 0.2.

equation. In Fig. 6, we show the correlation function g(2)(0) as
a function of |βss| when the thermal occupation number takes
different values n̄b = 5, 8, and 12. Here we choose different
values of the decay rate of mode b: γb/�b = 0.001 in Fig. 6(a)
and γb/�b = 0.01 in Fig. 6(b). We can see that the lower
envelope of the correlation function will increase with the
increase of the thermal occupation number n̄b. This means that
the thermal noise will harm the photon blockade effect. For a
small decay rate γb/�b = 0.001, the photon blockade effect
still exists for a moderately large thermal occupation number
n̄b. For a larger value of γb/�b = 0.01, the photon blockade
effect in the large region of |βss| will disappear gradually with
the increase of the thermal occupation number n̄b.

V. GENERATION OF THE SCHRÖDINGER CAT
STATES IN MODE b

The optomechanical interaction in the ultrastrong-coupling
regime can be used to generate the Schrödinger cat states [10]
in mode b. In this section, we show the generation of the
Schrödinger cat states of mode b by utilizing the generalized
optomechanical-like coupling. We start our discussion by
considering the Hamiltonian Happ given by Eq. (10). In the
rotating frame with respect to H (0)

app = ω′
aa

†a + �bb†b, the
Hamiltonian Happ becomes

H (I )
app(t ) = −g0a

†a(b†ei�bt eiθ + be−i�bt e−iθ ). (30)

The unitary evolution operator associated with the Hamilto-
nian Happ can be expressed as

U (t ) = e−iH (0)
apptUapp(t ), (31)

where Uapp(t ) is the unitary evolution operator associ-
ated with the Hamiltonian H (I )

app(t ). It takes the form

Uapp(t ) = T exp[−i
∫ t
0 H

(I )
app(t

′)dt ′], where “T ” denotes the
time-ordering integral. The Uapp(t ) is determined by the
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FIG. 6. The equal-time second-order correlation function g(2)(0)
of mode a as a function of |βss| when n̄b = 5, 8, and 12. Here we
choose different values of the decay rate of mode b: γb/�b = 0.001
in panel (a) and γb/�b = 0.01 in panel (b). The driving detuning
�′

a = g20/(�b + χ ) of mode a is taken for satisfying the single-
photon resonance condition. The other parameters used are χ/�b =
0.001, γa/�b = 0.05, n̄a = 0, and �a/γa = 0.1.

equation of motion U̇app(t ) = −iH (I )
app(t )Uapp(t ), under the ini-

tial condition Uapp(0) = I . Using the Magnus expansion, the
solution forUapp(t ) can be obtained as

Uapp(t ) = exp

{
i
g20
�2

b

[�bt − sin (�bt )]a
†aa†a

}

× exp

{
g0
�b

a†a[b†(ei�bt − 1)eiθ

− b(e−i�bt − 1)e−iθ ]

}
. (32)

This unitary operator is a conditional displacement operator
for mode b, where the displacement is proportional to the
excitation number m in mode a: a†a|m〉a = m|m〉a. The dis-
placement amplitude (the maximum displacement) induced
by a single photon is 2g0/�b. When g0/�b > 1, the coherent
state |η′(t )〉b [cf., Eq. (14) for m = 1] can be approximately
distinguished from the vacuum state |0〉b. The displacement
of mode b induced by a single photon can be seen by
calculating the dynamics of the average excitation 〈nb(t )〉 =
〈b†b〉 = |η′(t )|2 in mode b when the system is initially in the
state |1〉a|0〉b. In Fig. 7, we show the dynamics of 〈nb(t )〉
for several values of |βss| in the presence of dissipations.
These plots show that a larger displacement amplitude can
be obtained for a larger |βss|, and that the dissipations will
decrease the amplitude of the displacement. In the inset, we

Δ
b
t

0 20 40 60 80

 n
b(t

)

0

1

2

3

4

|β
ss

|=100

|β
ss

|=500

|β
ss

|=1000

|β
ss

|
0 500 1000

 n
b(t

s)

0

2

4
open
closed

FIG. 7. The dynamics of the average excitation number 〈nb(t )〉 in
mode b when χ/�b = 0.001 and the enhanced factor takes various
values |βss| = 100, 500, and 1000. The inset shows the average
excitation number 〈nb(ts )〉 at time ts = π/�b as a function of |βss| in
both the closed- and open-system cases. The other parameters used
are γa/�b = γb/�b = 0.05 and n̄a = n̄b = 0.

plot the variable 〈nb(ts)〉, which corresponds to the maximal
displacement ηmax, as a function of |βss|. We see that the
maximal displacement could be larger than the zero-point
fluctuation of mode b (i.e., 〈nb〉 > 1). This means that the
conditional displacement dynamics of the system can be used
to create quantum superposition of macroscopically distinct
states in mode b.

We see clearly from the unitary evolution operator (32) that
the displacement of mode b depends on the photon number m
in mode a. To create the Schrödinger cat states for mode b, we
assume that the initial state of the system is

|�(0)〉 = 1√
2
(|0〉a + |1〉a)|0〉b. (33)

Then in terms of the unitary evolution operator (31) we can
obtain the state of the system at time t as

|�(t )〉 = 1√
2
[|0〉a|0〉b + exp[iϑ ′′(t )]|1〉a|η′′(t )〉b], (34)

where the phase and displacement amplitude are defined by

ϑ ′′(t ) = g20
�2

b

[�bt − sin (�bt )] − ω′
at,

η′′(t ) = g0
�b

(1 − e−i�bt )eiθ . (35)

We see that the displacement reaches its maximum η′′
max =

2g0eiθ /�b at time �bt = (2n + 1)π for natural numbers n.
To create quantum superposition of mode b, we measure

the state of mode a with the bases |±〉a = (|0〉a ± |1〉a)/
√
2.

If we express the state of mode a with the basis states |±〉a,
then the state of the system becomes

|�(t )〉 = 1
2 [|+〉a(|0〉b + eiϑ

′′(t )|η′′(t )〉b)
+ |−〉a(|0〉b − eiϑ

′′(t )|η′′(t )〉b)]. (36)
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FIG. 8. Plots of Wigner functions W
ρ
(±)
b

(ξ ) of the generated states ρ
(±)
b (ts ) when the decay rates take different values: (a), (e) γa/�b =

γb/�b = 0; (b), (f) γa/�b = γb/�b = 0.05; (c), (g) γa/�b = γb/�b = 0.1; and (d), (h) γa/�b = γb/�b = 0.5. The Wigner functions in the
first and second rows correspond to the states ρ

(+)
b and ρ

(−)
b , respectively. The other parameters are given by χ/�b = 0.001, β = 2000,

n̄a = n̄b = 0, and ts = π/(�b + χ ).

Corresponding to the states |±〉a are measured, the mode b
will collapse into the states

|φ±(t )〉b = N±(|0〉b ± eiϑ
′′(t )|η′′(t )〉b), (37)

where the normalization constants are defined by

N± = [
2
(
1 ± e− |η′′ (t )|2

2 cosϑ ′′(t )
)]−1/2

. (38)

The corresponding probabilities for the measured states |±〉a
are

P±(t ) = 1
2

[
1 ± e− |η′′ (t )|2

2 cosϑ ′′(t )
]
, (39)

which are approximated as 1/2 when |η′′(t )| � 1.
In numerical simulations, we consider the transformed

Hamiltonian Htra and include the dissipations of the two
modes. By numerically solving the quantum master equation
(5) and performing the measurement at time ts = π/�b, we
can obtain two density matrices of mode b corresponding to
the two measurement states |±〉 of mode a. By expressing
the density matrix of the two-mode system as Eq. (18), we
can solve the equations of motion for these density-matrix
elements, and then obtain the density matrix ρ ′(t ). We pro-
ceed performing the measurement of mode a into the states
|±〉a. After the measurement, we obtain the density matrices
ρ
(±)
b (ts) of mode b. Then we can calculate the Wigner func-

tions for the density matrices ρ
(±)
b based on the definition of

the Wigner function for a density matrix ρb [47]:

W (ξ ) = 2

π
Tr[D†

b(ξ )ρbDb(ξ )(−1)b
†b], (40)

where ξ is a complex variable and Db(ξ ) = exp(ξb† − ξ ∗b) is
the usual displacement operator for mode b.

In Fig. 8, we plot the Wigner functions W
ρ
(±)
b
(ξ ) of the

generated states ρ
(±)
b (ts) in mode b when the decay rates take

different values: Figs. 8(a) and 8(e) γa/�b = 0, Figs 8(b)
and 8(f) γa/�b = 0.05, Figs. 8(c) and 8(g) γa/�b = 0.1, and
Figs. 8(d) and 8(h) γa/�b = 0.5. Figures 8(a)–8(d) and 8(e)–
8(h) are plotted for the states ρ

(+)
b and ρ

(−)
b , respectively. Here

we can see that the Wigner functions exhibit clear evidence
of macroscopically distinct superposition components and
quantum interference pattern. With the increase of the decay
rate, the interference pattern disappears gradually, and the
main peak corresponding to the coherent component |η′′〉
moves toward the origin; this is because the coherent state
decays to the vacuum state in the presence of dissipation.

We also study the influence of the thermal occupation num-
ber in mode b on the cat state generation. This consideration
makes sense in the case where the mode b is a mechanical
resonator and hence the thermal occupation number cannot
be neglected. Usually, for mechanical mode b, the decay rate
γb is smaller than that (γa) of the electromagnetic mode a.
In Fig. 9, we plot the Wigner functionsW

ρ
(±)
b
(ξ ) of the states

ρ
(±)
b (ts) when the thermal occupation number takes different

values: Figs. 9(a) and 9(e) n̄b = 1, Figs. 9(b) and 9(f) n̄b = 3,
Figs. 9(c) and 9(g) n̄b = 5, and Figs. 9(d) and 9(h) n̄b = 8.
The panels in the first and second rows correspond to states
ρ
(+)
b and ρ

(−)
b , respectively. We can see that the interference

phenomenon (i.e., the oscillation between the main peaks) dis-
appears gradually with the increase of the thermal occupation
number n̄b.

VI. GEOMETRICAL QUANTUM OPERATION

In this section, we show that a Kerr interaction of mode
a can be implemented in a geometric manner and that this
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FIG. 9. Plots of Wigner functionsW
ρ
(±)
b

(ξ ) of the generated states ρ
(±)
b (ts ) when the thermal excitation number take different values: (a),

(e) n̄b = 1; (b), (f) n̄b = 3; (c), (g) n̄b = 5; and (d), (h) n̄b = 8. The Wigner functions in the first and second rows correspond to states ρ
(+)
b and

ρ
(−)
b , respectively. The other parameters are given by χ/�b = 0.001, β = 2000, γa/�b = 0.05, γb/�b = 0.01, n̄a = 0, and ts = π/(�b + χ ).

geometric operation can be used to generate the Schrödinger
cat and kitten states.

A. Geometrically induced Kerr interaction

The quadrature operator in the generalized
optomechanical-like interaction can be used to implement
geometric quantum operation of mode a by using the method
of unconventional geometric phase. In this section, we study
how to create a self-Kerr nonlinear interaction of mode a by
designing a sequence of unitary operations. To this end, we
consider the resonant driving case (�b = 0) of mode b, in
which the Hamiltonian becomes

Hres = ω′
aa

†a − g0a
†a(b†eiθ + be−iθ ). (41)

The unitary evolution operator associated with this resonant
driving Hamiltonian Hres is given by

U (t, θ ) = e−iω′
ata

†aeig0ta
†a(b†eiθ +be−iθ ). (42)

Here, the phase angle θ is an important parameter for re-
alization of the geometric operation. Concretely, a self-Kerr
interaction for mode a can be obtained by implementing a
chain of unitary evolution [48] as

Utot = U (t, 3π/2)U (t, π )U (t, π/2)U (t, 0)

= exp[−iθ (t )a†a] exp
[
2ig20t

2(a†aa†a − a†a)
]
, (43)

with θ (t ) = 4ω′
at − 2g20t

2. Note that the present geometric
scheme can also be used to study the Planck-scale physics
[49], and that the geometric operation in pulsed optome-
chanics [50] has been used to generation of nonclassical
mechanical states [51].

The unitary evolution operator Utot represents a pure self-
Kerr interaction of mode a, and it is different from the
transformed Kerr nonlinearity Uapp(t ) associated with the
optomechanical coupling Happ. The pure self-Kerr interaction
is independent of the phonon states and hence the two modes
are decoupled from each other with no phonon sidebands.
However, in the optomechanical interactions, the eigenstates
are the number states for mode a dressed by the displaced
number states for mode b [6]. Moreover, the phase shift
associated with the Kerr interaction 2g20t

2 is continuously
tunable and it can reach π which is needed for realization of
logic gates for quantum computation. The Kerr interaction in
Uapp(t ) only works at time t = 2nπ/�b.

B. Generation of the Schrödinger cat and kitten states

The geometric Kerr interaction can be used to create the
Schrödinger cat and kitten states [52,53] in mode a. To
generate the Schrödinger cat states, we assume that the initial

state of mode a is |α〉 = e− |α|2
2

∑∞
n=0

αn√
n!

|n〉, then, up to a free

evolution exp(−4iω′
ata

†a), the state of the system at time t
becomes

|ψ (τ )〉a = e− |α|2
2

∞∑
n=0

αn

√
n!
ei

τ
2 n(n−1)|n〉a, (44)

where we introduce τ = 4g20t
2. Since n(n − 1) is an even

number, then we know that |�(τ + 2π )〉 is a periodic
function of τ with the period T = 2π , |ψ (τ + 2π )〉a =
|ψ (τ )〉a. Moreover, based on this relation ei

τ
2 (n+2N )(n+2N−1) =

ei
τ
2 n(n−1)eiτN (2N+2n−1), we can see that if we choose the τ =
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2πM/N , then the state can be expressed as

|ψ (MT/N )〉a =
2N−1∑
k=0

ck|αeiϕk 〉a, (45)

where |αeiϕk 〉a are coherent states with the phase ϕk = kπ/N
(k = 0, 1, 2, . . . , 2N − 1). The superposition coefficients are
given by

ck = 1

2N

2N−1∑
n=0

e−i π
N [kn−Mn(n−1)]. (46)

The evolution time is 4t with t = [τ/(4g20)]
1/2 =

[2Mπ/(4g20N )]1/2.
We now show two examples for the generation of the

Schrödinger cat and kitten states. When N = 2 and M = 1,
by calculating the above superposition coefficients and phase
angles, we obtain the cat state as

|ψcat(τ = π )〉a = 1√
2
(e−iπ/4|iα〉a + eiπ/4| − iα〉a). (47)

When N = 3 and M = 1, we obtain a kitten state with three
superposition components as

|ψkitten(τ = 2π/3)〉a
= 1√

3
(eiπ/6|α〉a − i|αei2π/3〉aeiπ/6|αei4π/3〉a). (48)

Note that the generation of Schrödinger cat states in an
optomechanical cavity has been proposed using the dynamical
method [54–56].

The generated Schrödinger cat state and kitten state can be
characterized by plotting their Wigner functions. For mode a
in the density matrix ρa, its Wigner function is defined by

W (ξ ) = 2

π
Tr[D†

a(ξ )ρaDa(ξ )(−1)a
†a], (49)

where ξ is a complex variable and Da(ξ ) = exp(ξa† − ξ ∗a) is
the usual displacement operator for mode a. Corresponding to
the above two states |ψcat(τ = π )〉a and |ψkitten(τ = 2π/3)〉a,
their Wigner functions can be calculated as

W|ψcat (τ=π )〉a (ξ ) = 1

π

[
e−2|ξ−iα|2 + e−2|ξ+iα|2 + 2e−2|ξ |2 sin[4Re(αξ ∗)]

]
, (50)

and

W|ψkitten(τ=2π/3)〉a (ξ ) = 2

3π

{
e−2|ξ−α|2 + e−2|ξ−αei2π/3|2 + e−2|ξ−αei4π/3|2 + 2Re[−i exp[iIm(ξα∗ − ξα∗e−i2π/3)]e−iπ/6C1

+ exp[iIm(ξα∗ − ξα∗e−i4π/3)]C2 + i exp[iIm(ξα∗e−i2π/3 − ξα∗e−i4π/3)]eiπ/6C3]
}
, (51)

where C1 = a〈ξ − α|−ξ + αei2π/3〉a, C2 = a〈ξ − α|−ξ +
αei4π/3〉a, and C3 = a〈ξ − αei2π/3|−ξ + αei4π/3〉a are the
overlaps between coherent states which can be calculated by
using the formula 〈α|β〉 = exp(−|α|2/2 + βα∗ − |β|2/2).

In Fig. 10, we show the two Wigner functions when the
coherent amplitude is taken as α = 2. Here we can see that
there are two and three main peaks, which correspond to the
two and three superposition components in the two states
|ψcat(τ = π )〉a and |ψkitten(τ = 2π/3)〉a, defined in Eqs. (47)
and (48), respectively. These main peaks can be well resolved
because the magnitude of the coherent-state components is
sufficiently large. For generation of quantum superposition
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FIG. 10. Plots of the Wigner functions defined in Eqs. (50) and
(51), of the cat state ψ (τ = π )〉 and the kitten state |ψ (τ = 2π/3)〉
defined in Eqs. (47) and (48), respectively. Here the coherent ampli-
tude of the initial coherent state |α〉 is α = 2.

of macroscopically distinct states, the coherent amplitudes of
superposed coherent states usually should be larger than two.
Moreover, in the areas between these main peaks, we can see
some oscillation pattern, which is the signature of quantum
superposition.

To evaluate the influence of the dissipations on the geomet-
rical state generation, we need to solve four quantum master
equations corresponding to the four steps of evolution (with
different Hamiltonians). However, here we adopt the quantum
trajectory method instead of the quantum mater equation in
our simulations. This is because the dimension of the Hilbert
space is too large to be calculated with our computational
resource. For the master-equation method, the number of the
equations of motion is the square of the dimension of the
total system. Instead, by using the quantum trajectory method,
the number of the equations of motion is largely decreased
because it is equal to the dimension of the total Hilbert space.
For the zero-temperature-environment case, the system can
be described by a non-Hermite Hamiltonian by adding two
imaginary terms phenomenologically as follows:

H (l=1–4) = ω′
aa

†a − g0a
†a(b†eiθl + be−iθl )

− i
γa

2
a†a − i

γb

2
b†b, (52)

where the phase angles are taken as θ1 = 0, θ2 = π/2, θ3 = π ,
and θ4 = 3π/2. Using these Hamiltonians, we can numeri-
cally solve the Schrödinger equations step by step, then we
obtain the final state of the system. Based on the reduced
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FIG. 11. The Wigner functions correspond to the generated cat state and the kitten state in the open system case. Here panels (a)–(d) are
the Wigner functions for the Schrödinger cat state with two superposition components, and panels (e)–(h) are the Wigner functions for the
Schrödinger kitten state with three superposition components. The decay rates in these panels from left to right are given by γa/�b = γb/�b =
0.01, 0.05, 0.1, and 0.2. The coherent amplitude in the initial state |α〉 is α = 2. Since the ω′

a term only introduces a rotation in the phase space,
the shape of the Wigner function is independent of ω′

a. The other parameters are given by χ/�b = 0.001, |βss| = 1000, and n̄a = n̄b = 0.

density matrix of mode a, we can calculate the Wigner func-
tion of the state of mode a.

In Fig. 11 we plot the Wigner functions of the two- and
three-component superposition states when the decay rates of
the two modes take different values. Here, Figs. 11(a)–11(d)
correspond to the Wigner functions of the cat state in the
open-system case, while Figs. 11(e)–11(h) correspond to the
Wigner functions of the kitten state in the open-system case.
We can see that with the increase of the decay rate, the
quantum interference evidence in the Wigner function disap-
pears gradually. Therefore, the dissipation of the two modes
will harm the quantum interference effect in the generated
Schrödinger cat and kitten states.

VII. DISCUSSION OF EXPERIMENTAL
IMPLEMENTATION

Finally, we present a discussion of the experimental imple-
mentation of this scheme. The main result in this work is the
realization of a generalized ultrastrong optomechanical-like
coupling in a cross-Kerr-type coupled two-mode system, in
which one of the two modes is driven by a monochromatic
field. As a result, the nominated physical systems should
contain a cross-Kerr interaction, and one of the two modes
should be driven by a monochromatic field. In addition, the
parameter condition for this scheme is that the cross-Kerr
parameter should be much smaller than the driving detuning
�b of mode b such that the approximation used in discard-
ing the cross-Kerr term in the transformed Hamiltonian is
justified. For observing some quantum nonlinear effects in
the ultrastrong-coupling regime, we need a relatively large
displacement amplitude |βss| (≈103 in our simulations) to en-
hance the generalized optomechanical-like coupling. Lastly,
for resolving some sideband effects induced by mode b, the
sideband-resolution condition �b � γa should be satisfied.

Therefore, the parameter conditions for implementation of
this scheme are given by

�b � χ, �b � γa, g0 ∼ �b. (53)

Note that the generalized optomechanical-like coupling
strength g0 should be much larger than the decay rate γa of
mode a, and the cross-Kerr interaction strength χ could be
either larger or smaller than the decay rate γa. This relaxed
condition of the cross-Kerr interaction raises the possibility
for implementation of this scheme with many quantum optical
systems. In addition, since the driving detuning �b (playing
the role of the effective frequency of mode b in the displace-
ment representation) is a controllable parameter by choosing
a proper driving frequency ωLb, then we can design a proper
�b such that the relations �b � χ and �b � γa are satisfied.
We also choose a proper driving amplitude �b such that the
displacement amplitude |βss| is large enough to confirm the
relation g0 ∼ �b.

In principle, our method is general and hence it can be
implemented in various cross-Kerr-type coupled two-mode
systems. In quantum optics, the cross-Kerr interaction be-
tween two bosonic modes is usually obtained by coupling
these two modes to a common medium, which could be
a three-level atom [24], an “N”-type atom [25–28,57], and
an “M”-type atom [29], where the atom could be either a
natural or an artificial atom, which corresponds to cavity
QED [30] or circuit QED [58–63]. The implementation of the
cross-Kerr interaction can also be realized in optomechanical
systems [64–67] and in a coupled cavity-ion system [68,69].
Some proposals on the cross-Kerr interaction are based on
the system consisting of two continuous-wave optical fields
coupled to an ensemble of atoms with an “N”-type con-
figuration [25–28]. This method also works for the cavity
field case and hence a cross-Kerr interaction between two
cavity fields can be obtained. For optical cavity modes, the
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TABLE I. Parameters of the cross-Kerr-type coupled systems reported in literature: the resonance frequencies ωa and ωb of modes a and b,
the cross-Kerr interaction strength χ , the decay rates γa and γb for modes a and b, the thermal excitation occupations n̄a and n̄b in the baths of
modes a and b. Here the subscripts “E” and “T ” of the reference number denote the reference as an experimental work and a theoretical work,
respectively.

Ref. Description ωa/(2π ) (GHz) ωb/(2π ) (GHz) χ/(2π ) (kHz) γa/(2π ) (kHz) γb/(2π ) (kHz) n̄a n̄b

[62]E Circuit-QED 8.493 9.32 2.59 × 103 1.25 5.25 ≈0 ≈0
[58]T , [63] Circuit-QED ≈5 ≈5 2.5 × 103 ≈30 × 103 ≈30 × 103 ≈0 ≈0
[65]E Quadratic optomech. 282 × 103 0.134 × 10−3 0.395 × 10−4 5.94 × 102 0.122 × 10−3 ≈0 46648
[68]T , [69] Cavity-ion system 351 × 103 �15.1 × 10−3 0.796 41.7 ≈0

resonance frequencies (≈1014 Hz) are much larger than the
decay rates (≈107 Hz), and the thermal occupation numbers
are negligible. In typical optical-cavity-QED systems, the
atom-field coupling strength is of the order of 108 Hz [30].
Since the cross-Kerr interaction is of the order of the atom-
field coupling strength times the cubic order of a small ratio
(the effective coupling is obtained by adiabatically eliminating
the atom coherence, the value of the ratio is much smaller
than one, for example 10−1) [58], then the effective cross-Kerr
parameter could be of the order of 104–105 Hz. For microwave
field modes, the resonance frequencies might be of the order
of 5–10 GHz and the decay rates are 104–105 Hz. The thermal
occupation numbers are negligible at the temperature around
20 mK. The cross-Kerr parameters are of the order of 106 Hz.

For the purpose of comparison, we list in Table I some
relating parameters reported in either theoretical proposals
or realistic experiments concerning the two-mode cross-Kerr-
type-coupled systems. Note that great advances have been
made in circuit QED [58–63]. From Table I we can see that,
depending on the task, the coupled two-mode systems can
be designed to have a wide range of parameters. It should
be pointed out that, although our method also works for
a weak cross-Kerr interaction case, we need a very large
displacement βss to obtain an ultrastrong optomechanical-like
coupling for an extremely weak cross-Kerr interaction (for
example, in quadratic optomechanical systems), which means
that a strong driving on mode b should be implemented. This
might lead to an unwanted heating problem in experiments.
In addition, for the coupled cavity-ion system, although the

cross-Kerr interaction has been studied theoretically [68], the
experimental implementation of the cross-Kerr interaction
between the cavity field and the vibrational mode has not
been reported. Therefore, the circuit-QED systems might be
a promising platform for realizing the present scheme. In this
case, the two modes of the optomechanical-like interaction are
electromagnetic fields.

Based on the above discussion, in Table II we suggest
some parameters for simulation of this scheme. In our model,
the involved parameters include the resonance frequencies
ωa and ωb, the cross-Kerr interaction strength χ , the decay
rates of the two bosonic modes γa and γb, dimensionless
displacement amplitude |βss|, the driving amplitude �b and
frequency ωLb of mode b. Below we analyze the feasibility
of our scheme based on the above listed parameters. Mode a
could be either optical or microwave mode. In the cat state
generation tasks, the free Hamiltonian of mode a will not
affect the dynamics of the system, because it commutates
the other terms in the Hamiltonian. For the photon blockade
task, the single-photon resonance is taken and then useful
parameter is the driving detuning �a = ωa − ωLa. For op-
tical mode a, its frequency is of the order of hundreds of
terahertz, the decay rate might be γa ≈ 2π × 10–100 MHz.
For microwave mode a, its frequency might be ωa ≈ 2π × 5–
10 GHz, the decay rate might be γa ≈ 2π × 100 kHz. The
cross-Kerr interaction between the two modes is of the order
of 1–10 kHz [62]. By choosing proper driving amplitude and
frequency, the system can work in the ultrastrong-coupling
regime.

TABLE II. The parameters used in our simulations: the resonance frequency ω′
a = ωa + χ |βss|2 of mode a, the driving detuning (the

effective frequency in the transformed representation) �b = ωb − ωLb of mode b, the cross-Kerr interaction strength χ , the displacement
amplitude |βss|, the single-photon optomechanical-coupling strength g0 = χ |βss|, the decay rates γa and γb of modes a and b, the thermal
occupation numbers n̄a and n̄b in the baths of modes a and b, and the single-photon strong-coupling condition g0/γa.

Notation Remarks Scaled parameters Parameters

ω′
a Arbitrary

�b As the frequency scales 1 2π × 1 MHz
χ χ/�b � 1 for approximation χ/�b = 0.001–0.01 2π× (1–10) kHz
|βss| |βss| � 1 for coupling enhancement 1000–2000 or 100–200
g0 = χ |βss| Enhanced optomechanical-coupling strength g0/�b ≈ 1–2 2π× (1–2) MHz
γa Decay rate of mode a γa/�b = 0.01–0.1 2π× (10–100) kHz
γb Decay rate of mode b γb/�b = 0.01–0.1 2π× (10–100) kHz
n̄a Negligible for optical and microwave fields 0
n̄b A finite number for a mechanical resonator 0–10
g0/γa Single-photon strong-coupling condition 10–200
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VIII. CONCLUSIONS

In conclusion, we proposed the concept of a general-
ized ultrastrong-optomechanical-like coupling by replacing
the position operator in the radiation-pressure coupling with a
rotated quadrature operator. This generalization will provide
an additional dimension for manipulation of the optomechan-
ical interaction because the rotated quadrature operator is an
additional controllable degree of freedom. We also proposed a
reliable physical scheme to realize this generalized interaction
in a quantum optical model which consists of two bosonic
modes coupled through a cross-Kerr interaction. By using
the transformation method in the quantum master equation,
we derived an approximate Hamiltonian and presented the
detailed parameter conditions under which the approximate
Hamiltonian is valid. Some applications of this generalized
optomechanical-like interactions were proposed. These in-
clude the photon blockade effect, the cat-state generation,
and the implementation of geometric operation. This proposal
provides a reliable method for studying few-photon optome-
chanics or simulating the optomechanical-type interactions

between two electromagnetic fields with current experimental
techniques.
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