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ABSTRACT
Graph Neural Networks (GNNs) have been widely applied to fraud
detection problems in recent years, revealing the suspiciousness of
nodes by aggregating their neighborhood information via different
relations. However, few prior works have noticed the camouflage be-
havior of fraudsters, which could hamper the performance of GNN-
based fraud detectors during the aggregation process. In this paper,
we introduce two types of camouflages based on recent empirical
studies, i.e., the feature camouflage and the relation camouflage.
Existing GNNs have not addressed these two camouflages, which
results in their poor performance in fraud detection problems. Al-
ternatively, we propose a new model named CAmouflage-REsistant
GNN (CARE-GNN), to enhance the GNN aggregation process with
three unique modules against camouflages. Concretely, we first
devise a label-aware similarity measure to find informative neigh-
boring nodes. Then, we leverage reinforcement learning (RL) to find
the optimal amounts of neighbors to be selected. Finally, the selected
neighbors across different relations are aggregated together. Com-
prehensive experiments on two real-world fraud datasets demon-
strate the effectiveness of the RL algorithm. The proposed CARE-
GNN also outperforms state-of-the-art GNNs and GNN-based fraud
detectors. We integrate all GNN-based fraud detectors as an open-
source toolbox1. The CARE-GNN code and datasets are available
at https://github.com/YingtongDou/CARE-GNN.

CCS CONCEPTS
• Security and privacy → Web application security; • Com-
puting methodologies → Neural networks.
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1 INTRODUCTION
As Internet services thrive, they also incubate various kinds of
fraudulent activities [14]. Fraudsters disguise as regular users to
bypass the anti-fraud system and disperse disinformation [44] or
reap end-users’ privacy [32]. To detect those fraudulent activities,
graph-based methods have become an effective approach in both
academic [7, 21, 38] and industrial communities [2, 28, 50]. Graph-
based methods connect entities with different relations and reveal
the suspiciousness of these entities at the graph level, since fraud-
sters with the same goal tend to connect with each other [1].

Recently, as the development of Graph Neural Networks (GNNs)
(e.g., GCN [17], GAT [34], and GraphSAGE [12]), many GNN-based
fraud detectors have been proposed to detect opinion fraud [19,
25, 39], financial fraud [23, 24, 37], mobile fraud [41], and cyber
criminal [48]. In contrast to traditional graph-based approaches,
GNN-based methods aggregate neighborhood information to learn
the representation of a center node with neural modules. They
can be trained in an end-to-end and semi-supervised fashion, which
saves much feature engineering and data annotation cost.

However, existing GNN-based fraud detection works only apply
GNNs in a narrow scope while ignoring the camouflage behaviors
of fraudsters, which have been drawing great attention from both
researchers [8, 15, 16, 49] and practitioners [2, 19, 41]. Meanwhile,
theoretical studies prove the limitations and vulnerabilities of GNNs
when graphs have noisy nodes and edges [3, 4, 13, 33]. Therefore,
failing to tackle the camouflaged fraudsters would sabotage the
performance of GNN-based fraud detectors. Though some recent
works [4, 9, 13, 25, 41] have noticed similar challenges, their so-
lutions either fail to fit the fraud detection problems or break the
end-to-end learning fashion of GNNs.

To demonstrate the challenges induced by camouflaged fraud-
sters during the neighbor aggregation of GNNs, as shown in Fig-
ure 1, we construct a graph with two relations and two types of
entities. The relation can be any common attributes supposing to
be shared by similar entities (e.g., the User-IP-User relation con-
nects entities with the same IP address). There are two types of
camouflages as follows: 1) Feature camouflage: smart fraudsters
may adjust their behaviors [8, 10], add special characters in re-
views [19, 41] (so-called spamouflage), or employ deep language
generation models [15] to gloss over explicit suspicious outcomes.
Like Figure 1 shows, a fraudster can add some special characters to
a fake review, which helps to bypass feature-based detectors [41]. 2)
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Figure 1: Two types of fraudster camouflage. (1) Feature cam-
ouflage: fraudsters add special characters to the text and
make it delusive for feature-based spam detectors. (2) Rela-
tion camouflage: center fraudster connects to many benign
entities under Relation II to attenuate its suspiciousness.

Relation camouflage: previous works [16, 49] show that crowd
workers are actively committing opinion fraud on online social
networks. They can probe the graphs used by defenders [43] and
adjust their behavior to alleviate the suspiciousness [44]. Specifi-
cally, these crafty fraudsters camouflage themselves via connecting
to many benign entities (i.e., posting regular reviews or connecting
to reputable users). As Figure 1 shows, under Relation II, there are
more benign entities than fraudsters.

Directly applying GNNs to graphs with camouflaged fraudsters
will hamper the neighbor aggregation process of GNNs. As Figure 1
shows, if we aggregate neighbors with the intriguing reviews as
node features, it will probably smooth out the suspiciousness of the
center fraudster [13, 25]. Similarly, if we aggregate all neighbors
under Relation II, where there are more dissimilar neighbors, it will
eliminate the suspiciousness of the center fraudster.

Considering the agility of real-world fraudsters [8, 10], design-
ing GNN-based detectors that exactly capture these camouflaged
fraudsters is impractical. Therefore, based on the outcomes of two
camouflages and the aggregation process of GNNs, we propose
three neural modules to enhance the GNNs against the camouflages.
1) For the feature camouflage, we propose a label-aware simi-
larity measure to find the most similar neighbors based on node
features. Specifically, we design a neural classifier as a similarity
measure, which is directly optimized according to experts with
domain knowledge (i.e., annotated data). 2) For the relation camou-
flage, we devise a similarity-aware neighbor selector to select
the similar neighbors of a center node within a relation. Further-
more, we leverage reinforcement learning (RL) to adaptively find
the optimal neighbor selection threshold along with the GNN train-
ing process. 3) We utilize the neighbor filtering thresholds learned
by RL to formulate a relation-aware neighbor aggregatorwhich
combines neighborhood information from different relations and
obtains the final center node representation.

We integrate above three modules together with general GNN
frameworks and name our model as CAmouflage REsistant Graph
Neural Network (CARE-GNN). Experimental results on two real-
world fraud datasets demonstrate that our model boosts the GNN
performance on graphs with camouflaged fraudsters. The proposed
neighbor selector can find optimal neighbors and CARE-GNN out-
performs state-of-the-art baselines under various settings.

Table 1: Glossary of Notations.

Symbol Definition
G;V;E;X Graph; Node set; Edge set; Node feature set

yv ;Y Label for node v ; Node label set
r ;R Relation; Total number of relations
l ;L GNN layer number; Total number of layers
b;B Training batch number; Total number of batches
e;E Training epoch number; Total number of epochs

Vtrain ;Vb Nodes in the training set; Node set at batch b
E
(l )
r Edge set under relation r at the l-th layer
h(l )v The embedding of node v at the l-th layer
h(l )v,r The embedding of node v under relation r at the l-th layer

D(l )(v,v ′) The distance between node v and v ′ at the l-th layer
S(l )(v,v ′) The similarity between node v and v ′ at the l-th layer
p
(l )
r ∈ P The filtering threshold for relation r at the l-th layer

a
(l )
r ∈ A;τ RL action space; Action step size
G(D

(l )
r ) Average neighbor distances for relation r at the l-th layer

f (p
(l )
r ,a

(l )
r ) RL reward function

AGG(l )r Intra-relation aggregator for relation r at the l-th layer
AGG(l )all Inter-relation aggregator at the l-th layer

zv Final embedding for node v

We highlight the advantages of CARE-GNN as follows:
• Adaptability. CARE-GNN adaptively selects best neighbors
for aggregation given arbitrary multi-relation graph.
• High-efficiency. CARE-GNN has a high computational ef-
ficiency without attention and deep reinforcement learning.
• Flexibility.Many other neural modules and external knowl-
edge can be plugged into the CARE-GNN.

2 PROBLEM DEFINITION
In this section, we first define the multi-relation graph and the
graph-based fraud detection problem. Then, we introduce how to
apply GNN to fraud detection problems. All important notations in
this paper are summarized in Table 1.

Definition 2.1. Multi-relationGraph.Wedefine amulti-relation
graph as G =

{
V,X, {Er }|

R
r=1,Y

}
, where V is the set of nodes

{v1, . . . ,vn }. Each node vi has a d-dimensional feature vector
xi ∈ Rd and X = {x1, . . . , xn } represents a set of all node fea-
tures. eri, j = (vi ,vj ) ∈ Er is an edge between vi and vj with a
relation r ∈ {1, · · · ,R}. Note that an edge can be associated with
multiple relations and there are R different types of relations. Y is
the a set of labels for each node inV .

Definition 2.2. Fraud Detection on Graph. For the fraud de-
tection problem, the node v represents the target entity whose
suspiciousness needs to be justified. For example, it can be a re-
view on the review website [19, 29] or a transaction in the trading
system [23, 37]. The node has a label yv ∈ {0, 1} ∈ Y where 0 rep-
resents benign and 1 represents suspicious. The relations R are rules,
interactions, or shared attributes between nodes, e.g., two reviews
from the same user [25] or transactions from the same devices [24].
The graph-based fraud detection problem is a semi-supervised bi-
nary node classification problem on the graph. Graph-based fraud
detectors are trained based on the labeled node information along
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Figure 2: The aggregation process of proposed CARE-GNN at the training phase.

with the graph composed of multi-relations. The trained models
are then used to predict the suspiciousness of unlabeled nodes.

Definition 2.3. GNN-based Fraud Detection. A Graph Neural
Network (GNN) is a deep learning framework to embed graph-
structured data via aggregating the information from its neighbor-
ing nodes [12, 17, 34]. Based on the defined multi-relation graph in
Definition 2.2, we unify the formulation of GNNs from the perspec-
tive of neighbor aggregation (as shown in the left side of Figure 2):

h(l )v = σ
(
h(l−1)
v ⊕ AGG(l )

(
{h(l−1)

v ′,r : (v,v ′) ∈ E(l )r }|Rr=1

))
. (1)

For a center node v , h(l )v is the hidden embedding at l-th layer and
h(0)v = xi is the input feature. E(l )r denotes edges under relation r at
the l-th layer. h(l−1)

v ′,r is the embedding of neighboring nodev ′ under
relation r . AGG represents the aggregation function that mapping
the neighborhood information from different relations into a vector,
e.g., mean aggregation [12] and attention aggregation [34]. ⊕ is the
operator that combines the information of v and its neighboring
information, e.g., concatenation or summation [12].

For fraud detection problems, we first construct a multi-relation
graph based on domain knowledge. Then, the GNN is trained with
partially labeled nodes supervised by binary classification loss func-
tions. Instead of directly aggregating the neighbors for all relations,
we separate the aggregation part as intra-relation aggregation and
inter-relation aggregation process. During the intra-relation aggre-
gation process, the embedding of neighbors under each relation is
aggregated simultaneously. Then, the embeddings for each relation
are combined during the inter-relation aggregation process. Finally,
the node embeddings at the last layer are used for prediction.

3 PROPOSED MODEL
3.1 Model Overview
The proposed CARE-GNN has three neural modules and its pipeline
is shown in Figure 2. For a center nodev , we first compute its neigh-
bor similarities based with proposed label-aware similarity measure
(Section 3.2). Then we filter the dissimilar neighbors under each

relation with the proposed neighbor selector (Section 3.3). The
neighbor selector is optimized using reinforcement learning during
training the GNN (purple module in Figure 2). At the aggregation
step, we first use the intra-relation aggregator to aggregate neighbor
embeddings under each relation. Then, we combine embeddings
across different relations with the inter-relation aggregator (Sec-
tion 3.4). The optimization steps and the algorithm procedure are
presented in Section 3.5 and Algorithm 1, respectively.

3.2 Label-aware Similarity Measure
Previous studies have introduced various fraudster camouflage
types from behavior [8, 10] and semantic [15, 41] perspectives.
Those camouflages could make the features of fraudsters and be-
nign entities similar to each other, and further mislead GNNs to
generate uninformative node embeddings. To tackle those node
feature camouflages, we deem that an effective similarity measure is
needed to filter the camouflaged neighbors before applying GNNs.
Previous works have proposed unsupervised similarity metrics like
Cosine Similarity [25] or Neural Networks [45]. However, many
fraud problems like financial fraud and opinion fraud require ex-
tra domain knowledge to identify fraud instances. For example, in
opinion fraud, unsupervised similarity measures could not identify
the camouflaged fake reviews, which are even indistinguishable
by humans [15]. Therefore, we need a parameterized similarity
measure to compute node similarity with supervised signals from
domain experts (e.g., high-fidelity data annotations).

For the parameterized similarity measure, AGCN [20] employs a
Mahalanobis distance plus a Gaussian kernel, and DIAL-GNN [6]
uses the parameterized cosine similarity. However, those two types
of measures suffer from high time complexity O(|V|D̄d), where D̄
is the average degree of nodes which is extremely high in real-world
graphs (see Table 2) and d is the feature dimension.
Label-aware Similarity Measure. Inspired by LAGCN [4] which
uses a Multi-layer Perceptron (MLP) as the edge label predictor, we
employ a one-layer MLP as the node label predictor at each layer
and use the l1-distance between the prediction results of two nodes
as their similarity measure. For a center node v under relation r at
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the l-th layer and edge (v,v ′) ∈ E(l−1)
r , the distance between v and

v ′ is the l1-distance of two embeddings:

D(l )(v,v ′) =



σ (

MLP (l )(h(l−1)
v )

)
− σ

(
MLP (l )(h(l−1)

v ′ )
)




1
, (2)

and we can define the similarity measure as:

S(l )(v,v ′) = 1 − D(l )(v,v ′), (3)

where each layer has its own similarity measure. The input of
MLP at the l-th layer is the node embedding at the previous layer,
and the output of MLP is a scalar which is then fed into a non-
linear activation function σ (we use tanh in our work). To save
the computational cost, we only take the embedding of the node
itself as the input instead of using combined embeddings like the
LAGCN [4]. Therefore, taking the S(1)r (v,v ′) as an example where
the input is the raw feature, the time complexity of the proposed
similarity measure reduces significantly fromO(|V|D̄d) toO(|V|d)
since it predicts the node label solely based on its feature.
Optimization.To train the similaritymeasure together with GNNs,
a heuristic approach is to append it as a new layer before the aggre-
gation layer of GCN [20]. However, if the similarity measure could
not effectively filter the camouflaged neighbors at the first layer,
it will hamper the performance of following GNN layers. Conse-
quently, the MLP parameters cannot be well-updated through the
back-propagation process. To train the similar measure with a direct
supervised signal from labels, like [35], we define the cross-entropy
loss of the MLP at l-layer as:

L
(l )
Simi =

∑
v ∈V

− log
(
yv · σ

(
MLP (l )(h(l )v )

))
. (4)

During the training process, the similarity measure parameters are
directly updated through the above loss function. It guarantees sim-
ilar neighbors can be quickly selected within the first few batches
and help regularize the GNN training process.

3.3 Similarity-aware Neighbor Selector
Given the similarity scores between the center node and its neigh-
bors with Eq. (3), we should select similar neighbors (i.e., filter cam-
ouflaged ones) to improve the capability of GNNs. According to the
relation camouflage, fraudsters may connect to different amounts
of benign entities under different relations [44]. However, since
data annotation is costly for real-world fraud detection problems,
computing the number of similar neighbors under each relation
through data labeling is impossible. We should devise an adaptive
filtering/sampling criteria to select an optimal amount of similar
neighbors automatically. Thus, we design a similarity-aware neigh-
bor selector. It selects similar neighbors under each relation using
top-p sampling with an adaptive filtering threshold. We also devise
a reinforcement learning (RL) algorithm to find optimal thresholds
during the GNN training process.

3.3.1 Top-p Sampling. We employ top-p sampling to filter cam-
ouflaged neighbors under each relation. The filtering threshold
for relation r at the l-th layer is p(l )r ∈ [0, 1]. The closed interval
means we could discard or keep all neighbors of a node under a rela-
tion. Specifically, during the training phase, for a node v in current
batch under relation r , we first compute a set of similarity scores

{S(l )(v,v ′)} using Eq. (3) at the l-th layer where (v,v ′) ∈ E(l )r . E(l )r
is a set of edges under relation r at the l-th layer. Then we rank its
neighbors based on {S(l )(v,v ′)} in descending order and take the
first p(l )r · |{S(l )(v,v ′)}| neighbors as the selected neighbors at the
l-th layer. All other nodes are discarded at the current batch and
will not attend the aggregation process. The top-p sampling process
is applied to the center node at every layer for each relation.

3.3.2 Finding the Optimal Thresholds with RL. Previous works [6,
25] set the filtering threshold as a hyperparameter and tune it with
validation to find the optimal value. However, their models are built
upon homogeneous benchmark graphs, and without noise induced
by camouflaged fraudsters. However, owing to the multi-relation
graph of fraud problems as well as the relation camouflage problem,
we need an automatic approach to find the optimal threshold p(l )r
for each relation. Since p(l )r is a probability and has no gradient, we
cannot use back-propagation from the classification loss to update
it. Meanwhile, given a p(l )r , it is infeasible to estimate the quality
of selected neighbors solely based on the similarity scores under
the current batch/epoch. To overcome the above challenges, we
propose to employ a reinforcement learning (RL) framework to find
optimal thresholds.

Concretely, we formulate the RL process as a Bernoulli Multi-
armed Bandit (BMAB) B(A, f ,T ) between the neighbor selector
and the GNN with the similarity measure. A is the action space, f
is the reward function, and T is the terminal condition [36]. Given
an initial p(l )r , the neighbor selector choose to increase or decrease
p
(l )
r as actions and the reward is dependent on the average distance
differences between two consecutive epochs. Next, we introduce
the details of each BMAB component:

• Action. The action represents how RL updates the p(l )r based on
the reward. Since p(l )r ∈ [0, 1], we define the action a

(l )
r as plus

or minus a fixed small value τ ∈ [0, 1] from p
(l )
r .

• Reward. The optimalp(l )r is expected to find the most similar (i.e.,
minimum distances in Eq. (2)) neighbors of a center node under
relation r at the l-th layer. We cannot sense the state of GNN due
to its black-box nature; thus, we design a binary stochastic reward
solely based on the average distance differences between two
consecutive epochs. The average neighbor distances for relation
r at the l-th layer for epoch e is:

G(D
(l )
r )
(e) =

∑
v ∈Vtrain D

(l )
r (v,v

′)(e)

|Vtrain |
. (5)

Then, we can define the reward for epoch e as:

f (p
(l )
r ,a

(l )
r )
(e) =

{
+1,G(D(l )r )(e−1) −G(D(l )r )

(e) ≥ 0,
−1,G(D(l )r )(e−1) −G(D(l )r )

(e) < 0.
(6)

The reward is positive when the average distance of newly se-
lected neighbors at epoch e is less than that of the previous epoch,
and vice versa. It is not easy to estimate the cumulative reward.
Thus, we use the immediate reward to update the action greedily
without exploration. Concretely, we increase p(l )r with a positive
reward and decrease it vice versa.
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• Terminal. We define the terminal condition for RL as:�� e∑
e−10

f (p
(l )
r ,a

(l )
r )
(e)�� ≤ 2, where e ≥ 10. (7)

It means that the RL converges in the recent ten epochs and indi-
cates an optimal threshold p(l )r is discovered. After the RL module
terminates, the filtering thresholds are fixed as the optimal one
until the convergence of GNN.

Discussion. Different node classes may have different amounts of
similar neighbors under the same relation. For instance, as Table 2
shows, under the R-S-R relation of the Yelp dataset, for positive
nodes, only 5% of their neighbors have the same label. This is due
to the class-imbalance nature of fraud problems and the relation
camouflage of fraudsters. According to the cost-sensitive learning
research [30], misclassifying a fraudster has a much higher cost to
defenders than misclassifying a benign entity. Meanwhile, a large
number of benign entities already fuel sufficient information for the
classifier. Therefore, to accelerate the training process, we compute
the filtering thresholds by only considering positive center nodes
(i.e., fraudsters) and apply them for all node classes. The complete
RL process is shown in Lines 15-19 of Algorithm 1. The experiment
results in Section 4.4 verify the RL effectiveness.

3.4 Relation-aware Neighbor Aggregator
After filtering neighbors under each relation, the next step is to
aggregate the neighbor information from different relations. Pre-
vious methods adopt attention mechanism [23, 37, 48] or devise
weighting parameters [24] to learn the relation weights during ag-
gregating information from different relations. However, supposing
we have selected the most similar neighbors under each relation,
the attention coefficients or weighting parameters should be simi-
lar among different relations. Thus, to save the computational cost
while retaining the relation importance information, we directly
apply the optimal filtering threshold p(l )r learned by the RL process
as the inter-relation aggregation weights. Formally, under relation
r at the l-th layer, after applying the top-p sampling, for node v , we
define the intra-relation neighbor aggregation as follows:

h(l )v,r = ReLU
(
AGG(l )r

({
h(l−1)
v ′ : (v,v ′) ∈ E(l )r

}))
, (8)

where a mean aggregator is used for all AGG(l )r . Then, we define
the inter-relation aggregation as follows:

h(l )v = ReLU
(
AGG(l )all

(
h(l−1)
v ⊕ {p

(l )
r · h

(l )
v,r }|

R
r=1

))
, (9)

where h(l−1)
v is the center node embedding at the previous layer,

h(l )v,r is the intra-relation neighbor embedding at the l-th layer and
p
(l )
r is filtering threshold of relation r which is directly used as
its inter-relation aggregation weight. ⊕ denotes the embedding
summation operation. AGGlall can be any type of aggregator, and
we test them in Section 4.3.

3.5 Proposed CARE-GNN
Optimization. For each node v , its final embedding is the output
of the GNN at the last layer zv = h(L)v . We can define the loss of

GNN as a cross-entropy loss function:

LGNN =
∑
v ∈V

− log (yv · σ (MLP(zv ))) . (10)

Together with the loss function of the similarity measure in Eq. (4),
we define the loss of CARE-GNN as:

LCARE = LGNN + λ1L
(1)
Simi + λ2 | |Θ| |2, (11)

where | |Θ| |2 is the L2-norm of all model parameters, λ1 and λ2 are
weighting parameters. Since the neighbor filtering process at the
first layer is critical to both GNN and similarity measures in the
following layers, we only use the similarity measure loss at the first
layer to update the parameterized similarity measure in Eq. (3).
Algorithm Description. Algorithm 1 shows the training process
of the proposed CARE-GNN. Given a multi-relational fraud graph,
we employ the mini-batch training technique [11] as the result of its
large scale. In the beginning, we randomly initialize the parameters
of the similarity measure module and GNN module. We initialize
all filtering thresholds as 0.5 (Line 2). For each batch of nodes, we
first compute the neighbor similarities using Eq. (3) (Line 7) and

Algorithm 1: CARE-GNN: Camouflage Resistant GNN.
Input :An undirected multi-relation graph with node

features and labels: G =
{
V,X, {Er }|Rr=1,Y

}
;

Number of layers, batches, epochs: L,B,E;
Parameterized similarity measures: {S(l )(·, ·)}|Ll=1;
Filtering thresholds: P = {p(l )1 , . . . ,p

(l )
R }|

L
l=1;

Intra-R aggregators: {AGG(l )r }|Rr=1,∀l ∈ {1, . . . ,L};
Inter-R aggregators: {AGG(l )all },∀l ∈ {1, . . . ,L}.

Output :Vector representations zv ,∀v ∈ Vtrain .
1 // Initialization

2 h0
v ← xv ,∀v ∈ V; p(0)r = 0.5, E(0)r = E, ∀r ∈ {1, . . . ,R};

3 for e = 1, · · · ,E do // Train CARE-GNN
4 for b = 1, · · · ,B do
5 for l = 1, · · · ,L do
6 for r = 1, · · · ,R do
7 S(l )(v,v ′) ← Eq. (3) , ∀(v,v ′) ∈ E(l−1)

r ;
8 E

(l )
r ← top-p sampling (Section 3.3.1);

9 h(l )v,r ← Eq. (8) ∀v ∈ Vb ; // Intra-R AGG

10 h(l )v ← Eq. (9) ∀v ∈ Vb ; // Inter-R AGG

11 L
(1)
Simi ← Eq. (4); // Simi loss

12 zv ← h(L)v ,∀v ∈ Vb ; // Batch node embeddings

13 LGNN ← Eq. (10); // GNN loss

14 LCARE ← Eq. (11); // CARE-GNN loss

15 for l = 1, · · · ,L do // RL Module
16 for r = 1, · · · ,R do
17 if Eq. (7) is False then
18 f (p

(l )
r ,a

(l )
r )
(e) ← Eqs.(5) and (6);

19 p
(l )
r ← p

(l )
r + f (p

(l )
r ,a

(l )
r )
(e) · τ ;
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then filter the neighbors using top-p sampling (Line 8). Then, we
can compute the intra-relation embeddings (Line 9), inter-relation
embeddings (Line 10), loss functions (Lines 11-14) for the current
batch, respectively. As for the RL process, we assign random actions
for the first epoch since it has no reference. From the second epoch,
we update p(l )r according to Lines 15-19.

4 EXPERIMENTS
In the experiment section, we mainly present:
• how we construct multi-relation graphs upon different fraud
data (Section 4.1.2);
• camouflage evidences in real-world fraud data (Section 4.2);
• the performance comparison over baselines and CARE-GNN
variants (Section 4.3);
• the learning process and explanation of the RL algorithm
(Section 4.4);
• the sensitivity study of hyper-parameters and their effects
on model designing (Section 4.5).

4.1 Experimental Setup

Table 2: Dataset and graph statistics.
#Nodes
(Fraud%) Relation #Edges

Avg. Feature
Similarity

Avg. Label
Similarity

Ye
lp 45,954

(14.5%)

R-U-R 49,315 0.83 0.90
R-T-R 573,616 0.79 0.05
R-S-R 3,402,743 0.77 0.05
ALL 3,846,979 0.77 0.07

A
m
az
on 11,944

(9.5%)

U-P-U 175,608 0.61 0.19
U-S-U 3,566,479 0.64 0.04
U-V-U 1,036,737 0.71 0.03
ALL 4,398,392 0.65 0.05

4.1.1 Dataset. We use the Yelp review dataset [29] and Amazon
review dataset [26] to study the fraudster camouflage and GNN-
based fraud detection problem. The Yelp dataset includes hotel and
restaurant reviews filtered (spam) and recommended (legitimate)
by Yelp. The Amazon dataset includes product reviews under the
Musical Instruments category. Similar to [47], we label users with
more than 80% helpful votes as benign entities and users with less
than 20% helpful votes as fraudulent entities. Though previous
works have proposed other fraud datasets like Epinions [18] and
Bitcoin [40], they only contain graph structures and compacted
features, with which we cannot build meaningful multi-relation
graphs. In this paper, we conduct a spam review detection (fraudu-
lent user detection resp.) task on the Yelp dataset (Amazon dataset
resp.), which is a binary classification task. We take 32 handcrafted
features from [29] (25 handcrafted features from [47] resp.) as the
raw node features for Yelp (Amazon resp.) dataset. Table 2 shows
the dataset statistics.

4.1.2 Graph Construction. Yelp: based on previous studies [27,
29] which show that opinion fraudsters have connections in user,
product, review text, and time, we take reviews as nodes in the
graph and design three relations: 1) R-U-R: it connects reviews
posted by the same user; 2) R-S-R: it connects reviews under the

same product with the same star rating (1-5 stars); 3) R-T-R: it
connects two reviews under the same product posted in the same
month. Amazon: similarly, we take users as nodes in the graph
and design three relations: 1) U-P-U : it connects users reviewing at
least one same product; 2) U-S-V : it connects users having at least
one same star rating within one week; 3) U-V-U : it connects users
with top 5% mutual review text similarities (measured by TF-IDF)
among all users. The number of edges belonging to each relation is
shown in Table 2.

4.1.3 Baselines. To verify the ability of CARE-GNN in alleviat-
ing the negative influence induced by camouflaged fraudsters, we
compare it with various GNN baselines under the semi-supervised
learning setting. We select GCN [17], GAT [34], RGCN [31], and
GraphSAGE [12] to represent general GNN models. We choose Ge-
niePath [23], Player2Vec [48], SemiGNN [37], and GraphConsis [25]
as four state-of-the-art GNN-based fraud detectors. Their detailed
introduction can be found in Section 5. We also implement several
variants of CARE-GNN: CARE-Att, CARE-Weight, and CARE-Mean,
and they differ from each other in Attention [34], Weight [24], and
Mean [12] inter-relation aggregator respectively.

Among those baselines, GCN, GAT, GraphSAGE, and GeniePath
are run on homogeneous graphs (i.e., Relation ALL in Table 2)
where all relations are merged together. Other models are run on
multi-relation graphs where they handle information from different
relations in their approaches.

4.1.4 Experimental Setting. From Table 2, we can see that the per-
centage of fraudsters are small in both datasets. Meanwhile, real-
world graphs usually have great scales. To improve the training
efficiency and avoid overfitting, we employ mini-batch training [11]
and under-sampling [22] techniques to train CARE-GNN and other
baselines. Specifically, under each mini-batch, we randomly sample
the same number of negative instances as the number of positive
instances. We also study the sample ratio sensitivity in Section 4.5.

We use unified node embedding size (64), batch size (1024 for
Yelp, 256 for Amazon), number of layers(1), learning rate (0.01),
optimizer (Adam), and L2 regularization weight (λ2 = 0.001) for
all models. For CARE-GNN and its variants, we set the RL action
step size (τ ) as 0.02 and the similarity loss weight (λ1) as 2. In
Section 4.5, we present the sensitivity study for the number of
layers, embedding size, and λ1.

4.1.5 Implementation. For the GCN, GAT, RGCN, GraphSAGE, Ge-
niePath, we use the source code provided by authors. For Player2Vec,
SemiGNN, and GraphConsis, we use the open-source implemen-
tations2. We implement CARE-GNN with Pytorch. All models are
running on Python 3.7.3, 2 NVIDIA GTX 1080 Ti GPUs, 64GB RAM,
3.50GHz Intel Core i5 Linux desktop.

4.1.6 Evaluation Metric. Since the Yelp dataset has imbalanced
classes, and we focus more on fraudsters (positive instances), like
previous work [29], we utilize ROC-AUC (AUC) and Recall to evalu-
ate the overall performance of all classifiers. AUC is computed based
on the relative ranking of prediction probabilities of all instances,
which could eliminate the influence of imbalanced classes.

2https://github.com/safe-graph/DGFraud
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Table 3: Fraud detection performance (%) on two datasets under different percentage of training data.

Metric Train% GCN GAT RGCN
Graph-
SAGE

Genie-
Path

Player-
2Vec

Semi-
GNN

Graph-
Consis

CARE-
Att

CARE-
Weight

CARE-
Mean

CARE-
GNN

Ye
lp

AUC

5% 54.98 56.23 50.21 53.82 56.33 51.03 53.73 61.58 66.08 71.10 69.83 71.26
10% 50.94 55.45 55.12 54.20 56.29 50.15 51.68 62.07 70.21 71.02 71.85 73.31
20% 53.15 57.69 55.05 56.12 57.32 51.56 51.55 62.31 73.26 74.32 73.32 74.45
40% 52.47 56.24 53.38 54.00 55.91 53.65 51.58 62.07 74.98 74.42 74.77 75.70

Recall

5% 53.12 54.68 50.38 54.25 52.33 50.00 52.28 62.60 63.52 66.64 68.09 67.53
10% 51.10 52.34 51.75 52.23 54.35 50.00 52.57 62.08 67.38 68.35 68.92 67.77
20% 53.87 53.20 50.92 52.69 54.84 50.00 52.16 62.35 68.34 69.07 69.48 68.60
40% 50.81 54.52 50.43 52.86 50.94 50.00 50.59 62.08 71.13 70.22 69.25 71.92

A
m
az
on

AUC

5% 74.44 73.89 75.12 70.71 71.56 76.86 70.25 85.46 89.49 89.36 89.35 89.54
10% 75.25 74.55 74.13 73.97 72.23 75.73 76.21 85.29 89.58 89.37 89.43 89.44
20% 75.13 72.10 75.58 73.97 71.89 74.55 73.98 85.50 89.58 89.68 89.34 89.45
40% 74.34 75.16 74.68 75.27 72.65 56.94 70.35 85.50 89.70 89.69 89.52 89.73

Recall

5% 65.54 63.22 64.23 69.09 65.56 50.00 63.29 85.49 88.22 88.31 88.02 88.34
10% 67.81 65.84 67.22 69.36 66.63 50.00 63.32 85.38 87.87 88.36 88.12 88.29
20% 66.15 67.13 65.08 70.30 65.08 50.00 61.28 85.59 88.40 88.60 88.00 88.27
40% 67.45 65.51 67.68 70.16 65.41 50.00 62.89 85.53 88.41 88.45 88.22 88.48

4.2 Camouflage Evidence
We analyze fraudster camouflage using two metrics introduced
in [25]. For the feature camouflage, we compute the feature similar-
ity of neighboring nodes based on their feature vectors’ Euclidean
distance, ranging from 0 to 1. The average feature similarity is
normalized w.r.t. the total number of edges, which is presented
in Table 2. We observe that the averaged similarity scores under
all relations are high. High feature similarity implies that fraud-
sters camouflage their features in a similar way to benign nodes.
Moreover, the minor feature similarity difference across different
relations proves that the unsupervised similarity measure cannot
effectively discriminate fraudsters and benign entities. For instance,
the label similarity difference between R-U-R and R-T-R is 0.85, but
the feature similarity difference is only 0.04.

For the relation camouflage, we study it by calculating the label
similarity based on whether two connected nodes have the same
label. The label similarity is normalized w.r.t. the total number of
edges. The average label similarity for each relation is shown in
Table 2. High label similarity score implies that the fraudsters fail
to camouflage, and low score implies that fraudsters camouflage
successfully. We observe that only R-U-R relation has a high la-
bel similarity score, while the other relations have label similarity
scores less than 20%. It suggests that we need to select different
amounts of neighbors for different relations to facilitate the GNN
aggregation process. Meanwhile, we should distinguish relations
in order to prevent fraudsters from camouflaging.

4.3 Overall Evaluation
Table 3 shows the performance of proposed CARE-GNN and various
GNN baselines under the fraud detection task on two datasets. We
report the best testing results after thirty epochs. We observe that
CARE-GNN outperforms other baselines under most of the training
proportions and metrics.
Single-relation vs. Multi-relation. Among all GNN baselines in
Table 3, GCN, GAT, GraphSAGE, and GeniePath run on single-
relation (i.e., homogeneous) graph where all relations are merged

together (ALL in Table 2). Other baselines are built upon multi-
relation graphs. The performances of single-relation GNNs are
better than Player2Vec and SemiGNN, which indicates previously
designed fraud detection methods are not suitable for multi-relation
graphs. Among the multi-relation GNNs, GraphConsis outperforms
all other multi-relation GNNs. The reason is that GraphConsis sam-
ples the neighbors based on the node features before aggregating
them. Better than GraphConsis, CARE-GNN and its variants adopt
parameterized similarity measure and adaptive sampling thresh-
olds, which could better identify and filter camouflaged fraudsters.
It demonstrates that neighbor filtering is critical to GNNs when
the graph contains many noises (i.e., dissimilar/camouflaged neigh-
bors). Also, CARE-GNN has higher scores than all single-relation
GNNs, suggesting that a noisy graph undermines the performance
of multi-relation GNNs. A possible reason is the higher complexity
of multi-relation GNNs comparing to single-relation ones.
Training Percentage. From Table 3, there is little performance
gain for GNNs when increasing the training percentages. It demon-
strates the advantage of semi-supervised learning, where a small
amount of supervised signals is enough to train a good model.
Meanwhile, with informative handcraft features as inputs for two
datasets, GNNs are much easier to learn high-quality embeddings.
CARE-GNN Variants. The last four columns of Table 3 show the
performance of CARE-GNN and its variants with different inter-
relation aggregators. It is observed that those four models have
similar performances under most training percentages and metrics.
It verifies our assumption in Section 3.4 that the attention coef-
ficients and relation weights will become unnecessary when we
select similar neighbors under all relations. Moreover, for the Yelp
dataset, the CARE-Att has worse performances under a smaller
training percentage (e.g., 5%). While for CARE-GNN, since it does
not need to train extra attention weights, it attains the best perfor-
mance against other variants. The first column of Figure 3 presents
more evidence that the relation weights finally become equal for
all relations under both datasets. The better performance of CARE-
GNN comparing to CARE-Mean shows that keeping the filtering
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Figure 3: The training process and testing performance of CARE-Weight on Yelp (upper) and Amazon (lower) dataset.

threshold as inter-relation aggregation weights could enhance the
GNN performance and reduce model complexity.
GNN vs. SimilarityMeasure (Figure 3 Column 4). Figure 3 Col-
umn 4 shows the testing performances solely based on the outputs
of the GNN module and similarity measure module during train-
ing. For the Yelp dataset, GNN has better AUC and Recall than the
similarity measure, which suggests that leveraging the structural
information benefits the model to classify fraud and benign entities.
For Amazon, the performance of GNN and the similarity measure
are comparable with each other. It is because the input features
provide enough information to discriminate fraudsters.

4.4 RL Process Analysis
In this paper, we jointly train the similarity measure and GNN
together and employ RL to find the neighbor filtering thresholds
adaptively. To present the RL process from different perspectives, in
Figure 3, we plot the updating process of three parameters without
terminating the RL process during training CARE-Weight. Since
CARE-Weight learns the aggregation weight for each relation, plot-
ting its training process instead of CARE-GNN could help under-
stand the effects of our proposed GNN enhancement modules. Dur-
ing training, we also test the model every three epochs for Yelp
(four epochs for Amazon) and plot the testing performance for both
GNN and similarity measure at the last column of Figure 3.
Relation Weights (Figure 3 Column 1). We observe that the
randomly initialized relation aggregation weights gradually con-
verge to the same value as the neighbor selector updates its filtering
thresholds and selects more similar neighbors under each relation.
When neighbors under each relation provide similar information,
their aggregation weights will be similar as well.

Relation Distance (Figure 3 Column 2). As the training epoch
increases, it is clearly that the differences between neighbor dis-
tances under each relation (computed by Eq. (5)) become larger
and comparable to each other. The reason is that the GNN projects
the node embeddings to a broader range of space and makes them
more distinguishable. As the model filters more noisy neighbors,
the average distance across different relations become closer.
Neighbor Filtering Threshold (Figure 3 Column 3). We take
0.02 as the action step size; all thresholds are updated and con-
verge to different values. When the filtering threshold oscillates
for several rounds, it reaches the terminal condition in Eq. (7). For
different datasets, the proposed RL algorithm could adaptively find
the optimal filtering thresholds.

To demonstrate the advantage of the optimal neighbor filtering
thresholds found by RL, in Figure 4, we plot the testing perfor-
mances of three different neighbor selection criteria under two
datasets. Adaptive filters neighbors using converged thresholds
found by RL (as shown in Figure 3 Column 3); Fixed-Half keeps
the top 50% similar neighbors under each relation and Fixed-All
keeps all neighbors without filtering. It is illustrated that CARE-
GNN with adaptive filtering thresholds is optimized faster than
the other two neighbor selectors. Meanwhile, it has a better and
smoother performance during training. It verifies the effectiveness
of the proposed RL algorithm, which is able to find informative
neighbors under each relation.

4.5 Hyper-parameter Sensitivity
Figure 5 shows the testing performance of CARE-GNN regarding
four hyper-parameters on the Yelp dataset. From Figure 5(a), we
observe that increasing the number of layers barely improves the
performance of CARE-GNN. For the three-layer model, the CARE-
GNN suffers the overfitting problem (Recall = 0.5). Therefore, the
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Figure 4: The testing AUC and Recall for CARE-GNN with
different neighbor filtering methods during training.

one-layer model is not only able to save the computational cost but
also achieve better classification results. Figure 5(b) presents the
CARE-GNN performance under different under-sampling ratios
as introduced in Section 4.1.4. Note that CARE-GNN is tested on
an imbalanced test set. Moreover, CARE-GNN is overfitted when
negative instances are less than positive ones (under 1:0.2 and 1:0.5,
Recalls are equal to 0.5). An equal under-sampling ratio guarantees
a good and fair performance of CARE-GNN. Figure 5(c) shows the
influence of different embedding sizes. Embedding sizes with 16,
32, and 64 have comparable performance. Figure 5(d) illustrates the
effects of different weighting values for the similarity loss (λ1 in
Eq. (11)). When the weight of similarity loss is doubled compared
to which of GNN loss, CARE-GNN reaches the best performance.
Therefore, the similarity measure is crucial for GNN training.

4.6 Discussion
Since the multi-relation graphs used in the experiments are very
dense (average node degree > 150), one-layer CARE-GNN (which
aggregates one-hop neighbors) has already utilized abundant infor-
mation and thus can achieve excellent performance. CARE-GNN
with more layers is suitable for sparse graphs. We improve the com-
putational efficiency using multiple approaches: the light-weight
similarity measure, the classic and fast RL framework, positive-node
based neighbor selector, no attention mechanism, and mini-batch
training with under-sampling. For CARE-GNN, each epoch only
takes 17 seconds on Yelp (3 seconds on Amazon), and it has a great
performance gain comparing to other baselines.

5 RELATEDWORK
GNN and Its Enhancement. As the most popular deep learn-
ing framework on graph data, GNNs have two major types [42]: 1)
Spectral-based GNNs (GCN [17], AGCN [20]): they turn a graph into
a Laplacian matrix and make convolutional operations in the spec-
tral domain. 2) Spatial-based GNNs (GAT [34], GraphSAGE [12]):
they propagate the information based on the spatial relation (i.e.,
the adjacent nodes). Since spatial-based GNNs are more flexible,
many GNN variants belong to this type. The proposed CARE-GNN
is a spatial-based GNN as well.

To enhance the GNN performance on graphs with noisy nodes.
One approach is the graph structure learning (GSL) [6, 9, 20]. Those
works learn new graph structures from original graphs, which could
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Figure 5: Parameter Sensitivity. For each parameter configu-
ration, only the best results among 30 epochs are recorded.

better render the latent connections between nodes. Comparing to
our work, those papers only investigate the single-relation bench-
mark datasets without camouflaged fraudsters. Our model filters
dissimilar neighbors instead of learning new structures.

Another approach is the metric learning [4, 13]. Those works
devise new metrics to measure the similarity between connect
nodes and aggregate neighbors according to the metrics. Among
those works, [4] proposes a neural network to predict the labels
of neighboring nodes. [13] devises two metrics to measure the
average neighborhood similarity and label similarity in a graph.
However, those methods either have weak similarity metrics or
fixed neighbor filtering thresholds, which need to be calibrated
empirically. CARE-GNN proposed by us is more flexible which
could learn the similarity metric based on domain knowledge. The
relation filtering thresholds of CARE-GNN are optimized during
training GNN which retains the end-to-end learning fashion.

GNN samplingmethods [5, 46, 51] also filter the neighbors.While
these works only consider selecting representative nodes to ac-
celerate GNN training. For our work, taking account of domain
knowledge and relational information, our goal is to filter dissimilar
neighbors before aggregation, which could alleviate the negative
effect of camouflaged fraudsters.
GNN-based Fraud Detection. Many GNN-based fraud detectors
transfer the heterogeneous data into homogeneous data before
applying GNNs. Fdgars [39] and GraphConsis [25] construct a sin-
gle homo-graph based on multiple relations and employ GNNs to
aggregate neighborhood information. GeniePath [23] learns con-
volutional layers and neighbor weights using LSTM and the at-
tention mechanism [34]. GEM [24], SemiGNN [37], ASA [41], and
Player2Vec [48] all construct multiple homo-graphs based on node
relations in corresponding datasets. After aggregating neighbor-
hood information with GNNs on each homo-graph, SemiGNN and
Player2Vec adopt attention mechanism to aggregate node embed-
dings across multiple homo-graphs; while GEM learns weighting
parameters for different homo-graphs, and ASA directly sums in-
formation from each homo-graph. Player2Vec leverages GCN &
GAT to encode the intra- & inter-relation neighbor information.
GAS [19] learns unique aggregators for different node types and
updates the embeddings of each node types iteratively.

In this paper, CARE-GNN constructs multiple homo-graphs with
only one node type like GEM and ASA. Among the above works,
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only two works [25, 41] have noticed the camouflage behaviors
of fraudsters. While [41] only crafts new but inflexible features,
and [25] suffers from unsupervised similarity measures and fixed
filtering thresholds. CARE-GNN remedies those shortcomings by
filtering neighbors based on label-aware similarity measures with
adaptive filtering thresholds.

6 CONCLUSION
This paper investigates the camouflage behavior of fraudsters and
their negative influence on GNN-based fraud detectors. To enhance
the GNN-based fraud detectors against the feature camouflage and
relation camouflage of fraudsters, we propose a label-aware simi-
larity measure and a similarity-aware neighbor selector using re-
inforcement learning. Along with two neural modules, we further
propose a relation-aware aggregator tomaximize the computational
utility. Experiment results on real-world fraud datasets present evi-
dence of fraudster camouflage and demonstrate the effectiveness
and efficiency of proposed enhancement modules, especially the
reinforcement learning module.
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