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Abstract—With the rapid growth in smartphone usage, preventing leakage of personal information and privacy has become a

challenging task. One major consequence of such leakage is impersonation. This type of illegal usage is nearly impossible to prevent

as existing preventive mechanisms (e.g., passcode and fingerprinting), are not capable of continuously monitoring usage and

determining whether the user is authorized. Once unauthorized users can defeat the initial protection mechanisms, they would have full

access to the devices including using stored passwords to access high-value websites. We present KOLLECTOR, a new framework to

detect impersonation based on a multi-view bagging deep learning approach to capture sequential tapping information on the smart-

phone’s keyboard. We construct a sequential-tapping biometrics model to continuously authenticate the user while typing. We

empirically evaluated our system using real-world phone usage sessions from 26 users over eight weeks. We then compared our

model against commonly used shallow machine techniques and find that our system performs better than other approaches and can

achieve an 8.42 percent equal error rate, a 94.24 percent accuracy and a 94.41 percent H-mean using only the accelerometer and only

five keyboard taps. We also experiment with using only three keyboard taps and find that the system still yields high accuracy while

giving additional opportunities to make more decisions that can result in more accurate final decisions.

Index Terms—Mobile, authorization, privacy, deep learning, multi-view learning

Ç

1 INTRODUCTION

THE widespread adoption of smart-mobile devices has
provided users with “any time, anywhere computing”

capability. At the same time, such mobility has also lead to
theft as these smart-mobile devices contain as much sensi-
tive and private information as that contained in less mobile
devices such as desktops and laptops. In 2013, over three
millions Americans were the victims of smartphone theft [1].
When stolen, electronic impersonation is often used to
access personal data through these devices as if the actions
are performed by the device’s owner. Impersonation fraud
is a serious problem that costs U.S. companies nearly $180
million between 2013 and 2014 [2].

While setting access codes can safeguard these devices,
studies have shown that most owners choose very simple
passwords or even no passwords to protect their mobile
devices [3], [4], [5]. Many studies have also shown that
when passcodes are used, attackers can still reverse engi-
neer passwords by observing screens for taps, fingerprints,
and/or smudge patterns [6], [7], [8], [9]. A key aspect of
existing protection mechanisms is that they only try to

prevent unauthorized users from unlocking devices. Once
they are able to bypass these mechanisms, there are no addi-
tional mechanisms to continuously prevent them from
using the device. As such, it is highly desirable to enhance
the authentication mechanisms in smartphones to include
additional defensive measures designed to be non-intrusive
but which can continuously monitor the user activity such
as web browsing or entering information to web applica-
tions to prevent unauthorized usage.

Currently, existing continuous monitoring approaches
use a variety of standard smartphone sensors coupled with
(shallow/traditional) machine learning techniques such as
support vector machines (SVMs) to continuously authenti-
cate the user. One notable aspect of much of this existing
work is a “closed-world” model, wherein the device owner
as well as all potential attackers are in the training set. This is
clearly an unrealistic model. Furthermore, SVMs and other
shallow machine learning techniques are unable to learn the
complicated relationships inherent in sequential activities
like typing. Despite this limitation, some systems combine
several smartphone sensors in order to achieve high accu-
racy rates and low equal error rates. This additional sensor
usage has been shown to degrade battery life [10]. Further-
more, SVM based models have an additional problem in
that they perform classification quite slowly [11].

In light of these issues, we set out to construct a continu-
ous identification system subject to the following design
requirements. First, the system should operate in an “open
world” where attackers are not in the training set. This
requires a new cross-validation system. Second, the system
should be able to identify the device user after just a few
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keyboard inputs while yielding a high accuracy and a low
equal error rate. Third, the system should be able to perform
the classification quickly while minimizing both the number
of employed smartphone sensors as well as the duration
they are enabled.

The proposed system, KOLLECTOR, employs a deep learn-
ing approach to meet our aforementioned requirements. It
continuously monitors and studies sequential tapping bio-
metric behaviors while a user is typing. Our system can detect
when an unauthorized user begins using the keyboard by
collecting sequential tapping features including the dura-
tion of a tap and the horizontal and vertical distances
between successive taps. KOLLECTOR can protect the phone
while user is holding or typing on the mobile. Unlike prior
work that employ many sensors [10], our approach only
uses one built-in sensor, the accelerometer, to record the
position of the device as part of the continuous authentica-
tion process.

To evaluate the effectiveness and efficiency of our pro-
posed system, we implemented a specially-designed key-
board for data collection and installed it on Android
smartphones. We let 26 volunteers use the phones for
eight weeks. These volunteers generated over 14 million
accelerometer data points, 1.3 million keystrokes, and over
37 thousand sessions. Each session is created by our system
from the user starts to end of typing on the mobile each
time. We then evaluated KOLLECTOR’s ability to detect unau-
thorized usage by training and testing our deep learning
models. We found that the proposed system can yield
8.42 percent equal error rate, 94.24 percent accuracy, and
94.41 percent h-mean while using only five keystrokes
and taking only 1 milliseconds to perform classification.
The traditional machine learning algorithms when applied
to our dataset take shorter time to perform classification,
but also produce higher equal error rate (by 9.69 percentage
points), lower accuracy (by 7.64 percentage points) and
lower h-mean (by 8.43 percentage points).

This paper makes the following contributions:

� We propose KOLLECTOR, a protection framework to
prevent impersonation. Our approach monitors and
studies sequential tapping information to continu-
ously authenticate users through our special imple-
mentation of a keyboard. The proposed learning
system is efficient and can detect the sequential tap-
ping behavior of an unauthorized user within three
to five keystrokes.

� We develop multi-view bagging classifier with deep
learning structures. Our system is able to detect
unauthorized usage while allowing the device’s
owner to safely access the device.

� We empirically evaluate the approach by comparing
its performance to traditional machine learning tech-
niques. Our approach yields more accurate classifica-
tion results while utilizing only five keystrokes while
performing classification within a reasonable time.

� We also discuss some potential policies that could be
built on top of KOLLECTOR. In addition, we deploy the
proposed model on both mobile and desktop system,
and evaluate its efficiency and energy consumption.
These results are reported in the supplemental

material, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TMC.2020.2964226.

2 BACKGROUND

In this section, we briefly introduce the deep learning tech-
niques which are integral to our approach.

The problem of continuous identification lends itself well
to machine learning. Shallow machine learning algorithms
are frequently used for behavioral biometrics. The most
common technique is to construct a binary classifier (e.g.,
asking a question such as “Is the current user the owner of
the device?”). Support vector machines and decision trees
(DTs) are commonly used for this purpose. However, one
major limitation of shallow machine learning is that it can
not capture the complex and hidden relationships between
the features and sequential keystrokes. To the best of our
knowledge, this is the first work to apply deep learning to
tapping patterns in order to detect unauthorized users.
Prior efforts in NLP and computer vision have shown that
deep learning can produce accurate models that can achieve
high detection rates [12].

Previous works (see Section 7) use traditional—or shal-
low—machine learning techniques (e.g., SVM) which can-
not capture the sequential information of keystrokes. To
improve the classification performance, traditional machine
learning must use more features by running more sensors
background which leads to excessive energy consumption.
Multi-view bagging (MVB) learning is an attempt to solve
shortcomings in machine learning and deep learning by
constructing multiple “views” of the same data and by
focusing on a different set of features for each view. These
views are analogous to views in a database. By using multi-
ple views when we train a model, we can achieve higher
classification accuracy than we could with a single view.

Bagging learning solves high variance problems by train-
ing multiple models and using a voting strategy for evalua-
tion. To the best of our knowledge, this work represents the
first approach to use multi-view and bagging for continuous
identification on smartphones.

In the next section, we discuss our approach to capture
sequential tapping information that our system uses to
detect typing by unauthorized users. Our goal is to con-
struct a deep learning system leveraging MVB models that
can produce accurate identification with only a few taps on
the keyboard.

3 KOLLECTOR: A FRAMEWORK TO DETECT

FRAUDULENT USAGE OF SMART-PHONES

We propose KOLLECTOR, a multi-view bagging fraudulent
usage detection framework via a deep structure. The pro-
posed framework contains three main steps to detect fraud-
ulent usage. This process is illustrated in Fig. 1 and
summarized below:

1) In the first step, we create a custom software key-
board that can monitor and collect keyboard usage
information. The new keyboard is then installed on
smartphones that will be used in this study.
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2) In the second step, the usage information is collected.
The scale and scope of data collection can vary but in
this study, we invited 40 volunteers to use smart-
phones equipped with the custom keyboard for 8
weeks. We retrieved the sequential tapping informa-
tion from each phone in real time. We then process
the collected data to build a multi-view version that
can be used to detect fraudulent usage.

3) Once the data has been collected, we use the multi-
view data and perform multi-view bagging learning
via a deep structure. To evaluate the effectiveness
of MVB, we also compare the performance of the
proposed approach with those of the traditional
machine learning techniques to perform similar
fraudulent usage detection. The techniques that we
used to compare include support vector machine,
decision tree and random forest.

Next, we describe each of these steps in turn.

3.1 Design of Keyboard to Collect Sequential
Tapping Information

We implemented our keyboard by extending an open-source
keyboard software.1 Our extension, consisting of several hun-
dred lines of code, provides the keyboard logging capability
to track information that we are interested in (e.g., pause,
duration, distance). The modified keyboard serves two pur-
poses. First, wewant it to be able to operate like a normal key-
board that records tapping data information. In addition, we
enhance the keyboard to also collect sequential information
that can be used to help identify users and detect usage pat-
terns indicating fraudulent usages.

The sequential information that we collect from the key-
board includes tap duration, pause (i.e., time since last key),
and vertical and horizontal distance from the previous tap.
We do not collect the individual key presses; however, we
do record the type of key pressed (letters, numbers, sym-
bols, space, and backspace). One consequence of this is if
two 2-gram tap sequences are the same, then the keystroke
distances must be the same, whereas if the two 2-grams are
different, then the keystroke distances are likely to be, but
not necessarily, different. So if two users like to use common
phrases or 2-grams, we will observe some common stroke

distances in their typing. That is to say although the exact
word sequences are not provided, we will still see their sim-
ilarity from the keystroke distances.

In addition to differences in what users tapping, each
user may hold a device in a specific way while typing. As
such, being able to capture tilting information of the device
can also help with user identification. To capture this fea-
ture as part of training and monitoring, we use the acceler-
ometer to provide the X,Y,Z coordinates information.

The collected tapping information forms one view of our
data and the acceleration measurements form the second
view. Our multi-view learning approach described below
makes use of these two views to provide more accurate clas-
sification than that could be achieved if they were combined
into a single view.

Using only a few features means that we need only a
few sensors to operate and only for a short time period.
This can lead to higher energy efficiency than approaches
which use many sensors or which require the sensors to be
on all the time.

3.2 Data Collection and Processing

To preserve user’s privacy, we applied for IRB approval and was
approved prior to any data collection. Data was collected and securely
stored. The information was anonymized prior to processing.

We recruited 40 volunteers for this study, all of whom
had extensive prior experience with smartphones. The vol-
unteers ranged in age from 30 to 63.

Out of the 40 volunteers, we find that 26 of them (17
women and 9 men) used the provided phones at least 20
times in 8 weeks; the most active participant used the
phone 4,702 times while the least active participant only
used the phone 29 times. Since deep learning requires
more training data than traditional machine learning, we
do not use any data from the volunteers who used the
phone less than 20 times.

When collecting tapping data, not every tap has all of the
features we use. For example, the distance from and time
since the previous tap can not be computed for the first tap
in a typing session. In this case, we set a value of 0 for such
features. All features are normalized to the range [0,1].

A typical use of the keyboard results in a session consisting
of one or more keystrokes. For example, a simple message
such as “How are you?” contains sequential keystrokes as
well as multiple types of key presses (letters, spaces, and spe-
cial characters).

We denote the ith user’s jth session by sij. Each session
contains two different types of sequential data: the tapping

data and the acceleration data. Let x ¼ ðcð1Þ; cð2ÞÞ where cð1Þ

is the time series of keystrokes information, and cð2Þ is the
time series of accelerometer values. Note that we also use V
to represent different views of the data set, e.g., V1 is view
of keystrokes data information, andV2 is view of accelerom-
eter data information. It is difficult to align the sequential
features in different views because of different timestamps
and sampling rates. For example, accelerometer values are
much denser than special character keystrokes. Therefore, it

is intuitive to treat c
ð1Þ
ij , and c

ð2Þ
ij as multi-view time series

that contains the complementary information for user
identification.

Fig. 1. Overview of KOLLECTOR.

1. The software keyboard is available from https://github.com/
AnySoftKeyboard/AnySoftKeyboard.
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3.3 Generating Training Models

We create two machine learning models to help detect
fraudulent smartphone usage. First, we create a multi-view
deep learning model to distinguish any two people in the
data set based on their unique sequential tapping informa-
tion. This enables us to validate that individual users really
do have different sequential tapping behaviors that we can
measure. Next, we create a multi-view bagging deep learn-
ing model which we use to distinguish a device’s owner
from an unauthorized user.

3.3.1 Single View on Deep Learning Structure

Deep learning [13] is a branch of machine learning based on
a set of algorithms that attempt to model high level abstrac-
tions in data which also called deep structured learning,
deep neural network learning or deep machine learning.
Deep learning is a concept and a framework instead of a
particular method. In deep learning area, there are two
main branches: Recurrent Neural Network (RNN) [14] and
Convolutional Neural Networks (CNN) [15]. CNN is fre-
quently used in computer vision areas and RNN is applied
to solve sequential problems such as nature language pro-
cess. In the model, we implement Gated Recurrent Unit
(GRU) [16], which is a special case of Long Short Term
Memory networks (LSTM) [17] in the framework of RNN.

Long Short Term Memory network is a special case of
RNN, capable of learning long-term dependencies [17].
RNN only captures the relationship between recent key-
stroke information and uses it for prediction. LSTM, on the
other hand, can capture long-term dependencies. Consider
trying to predict the tapping information in the following
text “I plan to visit China... I need find a place to get some
Chinese currency”. The word “Chinese” is relevant with
respect to the word “China”, but the distance between these
two words is long. We need to use LSTM to capture infor-
mation of long-term dependencies instead of the standard
RNNmodel.

While LSTM can be effective, it is a complex deep learning
structure that can result in high overhead. Gated Recurrent
Unit is a special case of LSTM but with simpler structures
(e.g., using fewer parameters) [16]. Inmany problem domains
including ours, GRU can produce similar results to LSTM. In
some cases, it can even produce better results than LSTM.We
illustrate the GRU framework and describe the components
next. Note that we describe symbols and notations used to
define these components in Table 1.

The output vector ht is a hidden state which can be consid-
ered as a compact representation of input sequence

½x1; . . . ; xt�. It is a linear interpolation between the previous
output vectorht�1 and the candidate state ~ht at order t inGRU,

ht ¼ zt ~ht þ ð1� ztÞht�1; (1)

where zt is the update gate which decides howmuch the unit
updates its activation or content. Here, zt is computed as

zt ¼ sgðWzxt þ Uzht�1Þ: (2)

where W , U are parameter matrices, sgð�Þ is the sigmoid
function sg ¼ 1=ð1þ e�xÞ, and xt is the sequential input at
order t in the input data set.

The GRU reset gate rt can effectively make the unit act as
if it is reading the first symbol of an input sequence. In
essence, the reset gate allows it to forget its previously com-
puted state. It is computed similarly to the update gate

rt ¼ sgðWrxt þ Urht�1Þ: (3)

The candidate activation ~ht is computed similarly to that
of the traditional recurrent unit

~ht ¼ shðWxt þ Uðrt � ht�1ÞÞ; (4)

where rt is a set of reset gates and � is an element-wise mul-
tiplication, and sh ¼ tanh is the hyperbolic tangent.

One advantage of the GRU over LSTM is that it is easy
for each unit to remember the existence of a specific pattern
in the input stream over a long series of time steps. Any
information and patterns will be overwritten by update
gate due to its importance.

We can build single-view binary-classification deep
learning model using GRU as shown in Fig. 2a. We choose
any single view of the dataset, such as a view of letters. We
use the normalized dataset as the input of GRU. GRU will
produce a final output vector which can help us to continu-
ous identification.

3.4 Multi-View Bagging Deep Learning

Now, we discuss the approach to apply deep learning for
constructing the fraudulent usage detection model. The
approach is based on multi-view bagging learning with a
deep structure.

As mentioned previously, we employ two different
views. Each view Vi contains different number of features
and different number of samples. One possible approach is
to concatenate the two views into a single view as shown in
Fig. 2a, which is also named early fusion. However, this
does not work because the number of features, and the
number of records in each view of a session are different.
Instead of using early fusion to concatenate multiple views
into one view, we decide to use multi-view deep learning
with late fusion. First, we choose to model each view sepa-
rately. Then, we use deep learning model to find the latent
vector representation of each view. Last, we concatenate the
latent vectors of each view for fraudulent activity predic-
tion, which is named late fusion. Multi-view learning based
on late fusion can avoid losing information as in the case
when multiple views are combined to create single view.
One key piece of information that we want to preserve is
the sequence of keystrokes. By using multi-view, we are

TABLE 1
Symbols and Notation

Symbol Meaning

c A record generated during keystroke
x A keystroke session, inputs of the model
V Views of Inputs
1 A vector of 1s
yðxÞ yðxÞ ¼ 1means the session x is predicted as owner, 0

otherwise
sgð�Þ The sigmoid function
shð�Þ The hyperbolic tangent
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able to maintain each view separately but then use multiple
views to make predictions.

In this manner, we develop a multi-view deep learning
model. This model performs better than the single-view since
it can better utilize the information fromdifferent views of the
dataset. In our work, we generate the multi-view learning
model to detect attackers when we can well separate one user
with other users in our training dataset. The model is shown
in Fig. 2b. First, we randomly separate the data set into train-
ing and testing datawithmultiple views. In this case, we have
a view of keystrokes information, and a view of accelerometer
information. Then, we use GRU-BRNN to build the hidden
layers for each view. We then concatenate the last hidden
layer information from each GRU-BRNN model. We use the
last concatenated layer, which contains all information from
different views for authorization. In the output layer, we use
softmax function to perform binary classification. As the GRU
extracts a latent feature representation out of each time series,
where the notions of sequence length and sampling time
points are removed from the latent space, this avoids the prob-
lem of dealing directly with the heterogeneity of the time
series from each view.

Our approach uses fully connected deep learning model.
This is a straightforward and efficient model. As the first
step, we apply GRU on each view to generate the latent vec-
tors of each view. Then, we apply late fusion to concatenate
latent feature vectors from multiple views together, i.e., h ¼
½hð1Þ; . . . ;hðkÞ� 2 Rd , where d is the total number of multi-
view features, and d ¼ 2kdv for BRNNs, where k is the num-
ber of the views and dh is the number of recurrent units. We
then feed forward h into one or more fully connected neural
network layers with a nonlinear function sð�Þ between each
layer. The number of views of KOLLECTOR, k, is two, then the
output ŷ of multi-view deep learning is defined as

ŷ ¼ W ð2Þ � sðW ð1Þ½hð1Þ;hð2Þ; 1�Þ; (5)

where W ð1Þ 2 Rq�ðdþ1Þ, W ð2Þ 2 Rc�q, q is the number of hid-
den units, c is the number of classes, and the constant signal
“1” is to model the global bias.

Note that in deep learning, different optimization func-
tions can greatly influence the training speed and the final
performance. There are several optimizers such as RMSprop
and Adam [18]. In our work, we use an improved version of
Adam called Nesterov Adam (Nadam) which is a RMSprop
withNesterovmomentum.

After we generate the multi-view deep learning model
for fraudulent usage detection in the training process, we
apply a bagging policy in the testing process as shown in
Fig. 2c. Generally, we use random initialization of an odd
number m of the same dataset, and then choose to generate
learning models for each initialization. Next, we use differ-
ent trained models with one testing data set. Finally, we
apply a majority voting strategy for the final output. For
example, KOLLECTOR has three models for three random ini-
tializations in the training process. In testing process, for
each input sample, we apply all three models on the this
sample to generate three detection results and output the
majority result by the bagging policy. The bagging policy
is majority voting,

ŷoutput ¼ vote
Xm
j¼1

ŷj

 !
; (6)

where ŷi 2 ½0; 1�, i 2 f1; 2; 3; . . . mg, and voteðxÞ is 1 when

x > m=2, 0 otherwise.
After applying the bagging strategy with multi-view deep

learning, the proposed system becomes more robust, since
one initialization of the datasetmay causewrong classification
for some sampleswhich can bewell-classifiedwith other initi-
alizations. The idea is applied similarly in traditional machine
learning techniques such as random forests.

In our experiments, bagging produced a more accurate
classifier than using a single model.

4 EXPERIMENTAL METHODOLOGY

To examine the performance of KOLLECTOR in identifying
fraudulent activities in mobile apps, we conducted exten-
sive experiments on our real-world data set and compared
the results with those from several state-of-the-art shallow
machine learning methods. As shown in Table 2, our dataset
include over 1.3 million keystrokes and 14 million acceler-
ometer data points. These data points can be grouped into
more than 37 thousand sessions. Note that the length of a
sequence is measured in terms of the number of data points
in a sample rather than a duration in time.

Next we describe our features and the method that we
used to collect the data, the baseline systems that we used
for comparisons with KOLLECTOR, the metrics used for evalu-
ation, and lastly, the cross-validation system.

Fig. 2. A comparison of different learning frameworks.
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4.1 User Data and Pattern Analysis

In this section, we study the collected data for participants
who had used the phones at least 20 times during the study
duration of eight weeks. Through studying the feature pat-
terns of the dataset and the difference of feature patterns
between different users, we can find which pattern is most
effective for user authorization. Since we have two views of
dataset and we have different features in each view, we
now introduce each view in the following sections.

4.1.1 Keystroke Information Data

In the keystrokes information view, we first analyze the four
features including duration of a keystroke, time since last
keystroke, and distances from last key along two axes. In
Fig. 3, we shows the complementary cumulative distribu-
tion functions (CCDFs) of four different features. We illus-
trate the CCDFs of (a) the duration of a keystroke, (b) the
time since last keystroke, (c) the distance from last key along
the x-axis, and (d) the distance from last key along the
y-axis. From the CCDFs of the duration of a keystroke in
Fig. 3a, it is clear that most users have their own unique dis-
tribution. We also find that for most users, their durations
are very fast with median of 85ms. Although tap duration is
a good feature for distinguishing different users, the distri-
butions of the durations of some users are very close, so we
need other features to help separate them.

Next we see the CCDFs of time since last keystroke in
Fig. 3b. From the figure, the pause time since the last

keystroke is also a good feature for distinguishing different
users due to different distribution of pauses between differ-
ent users. Overall, this distribution is heavily skewed, with
most time intervals being very short with median of 380ms.
Like the duration of a keystroke, we cannot use only the
time since the previous keystroke to separate all users.

From the CCDFs of the distance from the previous key
along the x-axis (Fig. 3c) and the distance from the previous
key along the y-axis (Fig. 3d), it is clear that the distributions
of different users are very similar. This is not surprising
since most users use similar keys on the keyboard. They
also often use common words. If we use traditional machine
learning, these two features may hardly help to distinguish
the users. However, by using MVB with GRU, we can cap-
ture the sequence information of the keystroke. So, these
two features help to further improve the performance of
KOLLECTOR.

Fig. 5 shows the scatter plot between rates of different
types of keystroke. We use one-hot encoding for typing
behaviors including alphanumeric characters, backspace,
space, and other. In these four different type of keystrokes,
compared to alphanumeric characters, the others are usu-
ally much sparser. From the figures, we can observe some
interesting patterns. For example, the rate of alphanumeric
keys is negatively correlated with the rate of backspace
(from the subfigure at the 1nd row, 4th column). On the
diagonal there are kernel density estimations. It shows that
the rate of alphanumeric characters is generally high in a
session, followed by space and backspace. In the next sec-
tion, we will analyze the other view of the inputs.

4.1.2 Accelerometer Information Data

We also collect the accelerometer value while users are tap-
ping on the keyboard. No matter how the user holds the
phone or moves around, the accelerometer values of users
are different which can be used for fraudulent detection.
Accelerometer values are recorded by the accelerometer

TABLE 2
Dataset Statistics

Statistics Keystroke Acceleration

Number of data points 1,374,547 14,237,503
Number of sessions 34,993 37,647
Minimum session length 14 259
Maximum session length 538 90,193

Fig. 3. Complementary Cumulative Distribution Functions (CCDFs) of four features. Each colored line represents one user.

Fig. 4. CCDFs of absolute acceleration along the three axes.
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sensor which is running in the background during an active
session regardless of a person’s typing speed. In Figs. 4a,
4b, and 4c, the CCDFs of accelerometer values around three
axes are displayed. We can see that accelerometer values on
three axes have different CCDFs, and all of accelerometer
features can help to distinguish users due to unique distri-
bution. To discover more values from the accelerometer, we
also study the distribution of two or more axes of acceler-
ometer in Figs. 6a, 6b, and 6c. We find that the distribution
of two axes of accelerometer can do better separation
between different users. For example, the distributions
among five users between y- and z-axes show distinct char-
acteristics (Fig. 6c).

4.2 Baseline Systems: Keystroke-Based Behavior
Biometric Methods for Continuous Identification

Previous work on keystroke-based continuous identification
with machine learning techniques [6], [19], [20], [21], often

utilizes shallow learning techniques such as Support Vector
Machine, Decision Tree, and Random Forest [22], [23], [24].
As such, we compare the performance of KOLLECTOR against
those shallow learning techniques. To do so, we apply these
techniques on our dataset, which contains keystroke and
accelerometer information. It is worth noting that compared
to some prior work on performing continuous identification
based on keystroke information [19], our approach uses
fewer sensors. Next, we briefly describe these baseline tech-
niques in turn.

Support Vector Machine (SVM). SVM is widely used in
many previous works [6], [19], [20]. SVM is a linear model
that finds the best hyperplane by maximizing the margin
between two classes. In this case, we need to find the maxi-
mum margin with hyperplane to distinguish between autho-
rized and unauthorized usage of a device. Bo et al. [19]
achieves 80 percent accuracy by using 10 keystrokes, and
Alghamdi et al. [20] achieves 12.2 percent EER by using SVM

Fig. 5. Scatter plot between rates of different type of keystrokes.

Fig. 6. Distribution of five users’ accelerometer readings.
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and keystroke information. A C-SVC type SVM is used in the
following experiments. The cost is set to 10. We use the radial
basis function kernel.

Random Forests and Decision Trees. Other learning methods
such as random forests and decision trees have not been
widely adopted for continuous identification based on key-
stroke information. A decision tree is an interpretable classifi-
cationmodel for binary classification. It is a tree structure, and
features form patterns that are nodes in the tree. Random for-
ests are an ensemble learning method for classification that
builds many decision trees during training and combines
their outputs for the final prediction. Sun et al. [25] shows tree
structure methods can work more efficiently than SVM, and
can do better binary classification compared to SVM. For the
random forests, the number of trees is set as 3 and the max
depth of the tree is 3. Themax depth of the decision tree classi-
fier used in the following experiments is set as 3.

For all shallow models, we first collect the data from each
view. Then, for each session, we concatenate each view infor-
mation as a long vector. Since we only use the first three key-
strokes data in one session, the size of input is fixed.

4.3 Metrics

We use three measures to evaluate the performance of KOL-

LECTOR. These measures are accuracy, H-mean, and equal error
rate. For each testing session s, we make a binary prediction.
There are four possible outcomes.

1) A session by an owner is classified as owner’s ses-
sion by a fraudulent activities detector. This is
referred to as True Positive (TP ).

2) A session by an owner is not classified as owner’s
session by a fraudulent activities detector. This is
referred to as False Negative (FN).

3) A session by others is classified as others by a fraud-
ulent activities detector. This is referred to as True
Negative (TN),

4) A session by others is not classified as others by a
fraudulent activities detector. This is referred to as
False Positive (FP ).

Our first standard metric, accuracy, is the proportion of
correctly classified sessions in all sessions

accuracy ¼ TP þ TN

TP þ TN þ FP þ TN
: (7)

Our second standard metric, H-mean [26], [27], is the
harmonic mean of the True Positive Rate TPR ¼ TP

TPþTN and
the True Negative Rate TNR ¼ TN

TNþFP . That is,

H-mean ¼ 2
TPR � TNR

TPRþ TNR
: (8)

Our final standard metric, equal error rate (EER) is a bio-
metric security system algorithm used to measure the system
performance against another system (the lower the better).
First we need to calculate False Alarm Rate (FAR) and False
Reject Rate (FRR, or missing rate), where FAR ¼ 1� TNR
and FRR ¼ 1� TPR. When the two rates are equal, the com-
mon value is referred to as the EER. However, if two rates are

not equal, we find the EER by finding the at least nearly equal
or themin distance.

4.4 Our Cross-Validation System

BecauseKOLLECTOR operates in an “openworld” fashion, activ-
ities from attackers are not included as part of the training set.
However, KOLLECTOR needs to be able to distinguish between
two possible users. Thus, we also need to include positive
data (owner’s activities) and negative data (activities by
others). Therefore, we need to develop a new cross-validation
system to evaluate our work. Our cross-validation system
adheres to the following rules.

1) We set the data of the device owner as positive
data. Then we select 80 percent of the remaining
data as negative data in the training process. We
save 20 percent as attackers in the testing process.
So for example, if we have 11 users (user1 to
user11) in our study, user1 is a device owner. We
then use data from other 8 users (e.g., user2-user9)
as negative data for training and cross-validating.
Data generated by user10 and user11 is used during
the testing process.

2) Next we repeat the process but using positive data
from another randomly selected owner (e.g., user2)
and again negative data from another 8 users (e.g.,
user3 to user10). The remaining data from the other
two users (e.g., user1 and user11) is used as
attacker’s data during the testing process.

3) Each person is once used as an attacker in the system.
To implement these rules, we separate negative people

besides the owner into five groups. Two different groups
would share same users’ data. Each time, we use four
groups as negative data in the training process and the last
group as attackers in the testing process. Every group
would be once used as attackers in the testing set.

5 RESULTS

In this section, we report the results of our experiments to
evaluate: (1) the ability of KOLLECTOR to detect fraudulent
activities conducted by unauthorized users, and (2) the effi-
ciency of KOLLECTOR.

Next, we report the results of our investigation in turn.

5.1 Fraudulent Activities Detection

In this section, we evaluate the effectiveness of KOLLECTOR to
detect fraudulent activities carried out by unauthorized
users. The parameter configuration is shown in Table 6. We
construct two separate models to apply to two different sit-
uations: one is for performing authentication using five key-
strokes whereas the second uses only three keystrokes.

Unlike the previous section where we tried to distinguish
users for which we have training data, in this section, we
consider an “open world” where we want to distinguish a
device owner from an attacker we have never seen before.
To this end, we perform a series of experiments using the
data from the 26 volunteers from our study who produced
at least 20 typing sessions. In each experiment, we select
one volunteer as the device owner, five as attackers, and the
remaining 20 are used along with the owner to construct
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our models. The attackers’ data do not appear in the train-
ing set for a given model. The owner and other 20 users
data is split into no-overlapping training and testing sets.

Our goal is to evaluate how well KOLLECTOR can distin-
guish the device owner from the attackers. To that end, we
measure the TPR, the TNR for attackers, the accuracy, H-
mean, and the EER. For completeness, we also report the
TNR when we instead consider the other 20 volunteers
whose training data we used to build our models. Tables 3
and 4 show our results when considering only the first three
keystrokes and the first five keystrokes of a typing session.

For comparison with shallow machine learning appro-
aches, Tables 3 and 4 show the classification results when
using random forests, decision trees, and SVMs. To show
the effect that bagging has on our results, we also report our
results when we do not use bagging. As the tables show,
KOLLECTOR (with or without bagging) consistently outper-
forms the shallow learning techniques.

Unlike the case of distinguishing two users whose train-
ing data we have from the previous section, random forest
shows best performance on fraudulent detection instead of
decision tree. The difference between random forest and
decision tree is that random forest is a bagging decision
trees. This indicates that bagging provides a not insubstan-
tial improvement. Indeed, after we apply bagging with
multi-view, we can see that KOLLECTOR shows much better
performance compared to KOLLECTOR without bagging. In
particular, for the five keystroke model, the accuracy
improves by 4.45 percentage points, the H-mean by
improves by 4.62 percentage points, and the EER improves
by 4.72 percentage points. We see a similar, if smaller,
improvement with the three keystroke model.

Table 5 gives the performance of using different features
of the data. As we can see, both keystroke information and
accelerometer information can detect fraudulent activities
by itself with a relatively high accuracy. Their performance
is similar to each other. Further, if we combine them
together, we can achieve much better performance by using
the bagging strategy.

These results show that with just a few taps, KOLLECTOR

can distinguish the device owner. This is precisely what we
need to perform continuous identification while meeting all
of the design constraints listed in Section 1. (The runtime
performance is discussed in the following section.)

5.2 Efficiency

To evaluate relative efficiency of KOLLECTOR compared to
shallow machine learning techniques, we employ a 15”
MacBook Pro with a 2.5 GHz Intel Core i7 and 16 GB of
1600 MHz DDR3 memory, and NVIDIA GeForce GT 750M
with 2 GB of video memory. We test each technique five
times. Table 7 reports the per-session classification time for
each technique, including the average running time and
the variance of running times. We see that SVM, when
used for continuous identification of sequential data set is
the slowest technique. Decision trees are the fastest and
KOLLECTOR and random forests are smaller than 1� 10�3

ms per classification.

TABLE 3
Results of Detectors During Three Keystrokes Information

System TPR (%) TNR training (%) TNR attacker (%) Accuracy (%) H-mean (%) EER (%)

KOLLECTOR 88.73 94.08 93.38 94.07 93.66 8.94
KOLLECTOR (no bagging) 84.10 90.07 90.56 90.07 90.28 12.67
Random forest 84.30 88.95 79.20 88.96 81.99 18.25
Decision tree 88.26 92.01 69.27 91.49 77.48 21.24
SVM 83.50 88.97 71.31 88.84 73.92 22.59

TABLE 4
Results of Detectors During Five Keystrokes Information

System TPR (%) TNR training (%) TNR attacker (%) Accuracy (%) H-mean (%) EER (%)

KOLLECTOR 88.55 94.24 94.60 94.24 94.41 8.43
KOLLECTOR (no bagging) 83.89 89.79 89.82 89.79 89.79 13.15
Random forest 83.82 88.71 79.80 88.75 82.21 18.19
Decision tree 88.62 92.19 68.51 91.65 76.82 21.43
SVM 84.79 89.82 64.21 89.50 69.27 25.50

TABLE 5
Results Using Different Views of the Metadata

Parameter Accuracy H-mean EER

Keystroke Only 89.23% 84.73% 16.73%
Accelerator Only 89.26% 85.66% 15.62%
All (no bagging) 90.07% 90.28% 12.67%
All (bagging) 94.07% 93.66% 8.94%

TABLE 6
Parameter Configuration

Parameter Value

#class 2
#hidden units (h) 16
#epochs 371
batch size 256
learning rate 0.1
dropout fraction 0.1
maximum sequence length 3,5
minimum sequence length 2
train/test split 0.2
loss binary_crossentropy
optimizer Nadam()
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Based on the run times on a laptop, we believe that
whenever a SVM is sufficiently performant for use in con-
tinuous identification—as with much prior work—KOLLEC-

TOR is as well. For more experimental results on a phone,
please refer to the supplemental material, available online.

6 DISCUSSION

In this section, we briefly discuss some potential policies that
could be built on top of KOLLECTOR. For more discussions,
please refer to the supplemental material, available online.

Policies: KOLLECTOR only performs identification. We have
not prescribed any action that should occur when KOLLECTOR

detects that the smartphone’s owner is not the one typing on
the phone. Indeed, this sort of policy decision is out of scope
of our paper. Nevertheless, we layout a few potential poli-
cies that could be implemented on top of KOLLECTOR.

� Reporting only. One simple policy is to send a report
of the unauthorized access to a server. Under this
policy, an attacker would be able to use the phone as
normal, but could not do so in a stealthy fashion.
The policy does have the advantage that the impact
of KOLLECTOR on the device owner is minimal since
false alarms do not block functionality.

� Multiple decisions. KOLLECTOR can perform accurate
detection by using only a short sequence. This would
mean that it can divide a long input sequence into
smaller chunks, each can then be used to form a deci-
sion. Based on all the decisions from these chunks,
we can develop a policy that considers all these deci-
sions to form the final decision. This can potentially
improve the accuracy over an approach that consid-
ers the entire long input sequences. For example,
KOLLECTOR can make 5 decisions with 15 keystrokes
inputs. If more than half of these five decisions are
the final decision, with the reported 8.94 percent
EER, the percentage to get a wrong final decision
after using 15 keystrokes is only 0.715 percent (i.e.,
C2

5 � ð8:94%Þ3 ¼ 0:715%).
� Immediate lockout. On the other extreme, we can

consider a policy of immediately locking the phone
until the owner can provide some additional form of
authentication. In this case, an attacker would be
unable to do anything with a phone that involves
typing without being quickly locked out. However,
any false alarms also lock the owner out. This policy
is unlikely to be useful in practice.

� Less restrictive than the previous policy. We can also
consider a configurable threshold of the number of
allowable alarms in a given period. As long as KOL-

LECTOR does not raise more alarms than the threshold,
nothing happens. Once the number of alarms

reaches the threshold, the phone locks. Separate
from and lower than the lock threshold, we can envi-
sion a report threshold where once the number of
alarms reaches the report threshold, a report is sent
to the server. This policy has the advantage of
decreasing the number of times the phone locks but
gives the attacker the ability to do more damage.

7 RELATED WORK

This section provides an overview of prior efforts on contin-
uous user identification based on biometrics.

Continuous authorization approaches have been studied
over the past several years. Most techniques have been
deployed in desktop environment and the features they
focused on mainly include physiological information such
as facial features and iris features [28], [29], [30]. These
approaches often require high computing power to work
well as they tend to be intensively processing images. As
such, deploying them in desktop environments is sensible.
However, mobile devices have more stringent energy con-
straints so these approaches are not commonly used.
Instead, keystroke information has also been used for con-
tinuous identification in smart-mobile platforms [31], [32],
[33]. Many researchers in behavioral biometric have been
studying tapping behavior in smartphone platforms, since
these are the most straightforward features and information
can be easily collected from the smartphone.

Furthermore, smartphones often contain more sensors
such as accelerometer and gyroscope that can be helpful in
doing continuous identification. Miluzzo et al. [6] intro-
duced a framework called TAPPRINTS to illustrate tapping
locations on a touch screen can be computed by using accel-
erometer and gyroscope sensor data. Bo et al. [34] showed
how to use inertial sensors to determine whether users are
texting while driving. The following up work [19] per-
formed continuous user identification based on taps and
motion sensors. Zheng et al. [35] discovered that individual
users have their own interacting behavior patterns on the
touch screen, and the use of motion sensors can help iden-
tify different users. These prior efforts provide us with
approaches that we can use to implement the keyboard to
capture sequential tapping information. However, these
approaches tend to rely on shallow machine learning to do
binary classification to tackle unauthorized and fraudulent
device usage. Our approach employs deep learning to
uncover inherent tapping behaviors that are useful for iden-
tifying users.

Most recent efforts also focus on studying touchscreen
gestures [36], [37], [38], [39] or behavioral biometric behav-
iors such as reading, walking, driving and tapping [19],
[34], [39]. Sitova et al. and Bo et al. [19], [39] discovered that
people exhibit different behaviors that can be detected by
sensors based on their current activities (e.g., sitting is a
much easier task than walking). Work by Sitova et al. [39]
also showed that using features such as keystroke and ges-
tures can help to improve the classification performance.
However, they did not disclose their methods to train their
classification system. Instead, they only claimed to use shal-
low learning and ten cross-validation techniques. Many of
them did not work. Work by Bo et al. [19] is closet to our

TABLE 7
Per-Session Classification Time

System Time (ms)

KOLLECTOR 0.99 	 0.020
SVM 1.37 	 0.084
Random forest 6.30e-4 	 4.1e-5
Decision tree 3.42e-4 	 2.6e-5

1474 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 20, NO. 4, APRIL 2021

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on March 10,2021 at 01:29:46 UTC from IEEE Xplore.  Restrictions apply. 



work as their approach also collects continuous tapping and
other information to distinguish guests and the owner. But
the accuracy of their approach is only 80 percent when they
have 10 keystrokes as input. Our approach can produce
higher accuracy while using only 5 keystrokes for identifica-
tion. None of prior systems using keystrokes information
can achieve our performance with only 3 keystrokes.

A state-of-art systems can achieve 5.84 percent EER by
studying multi-touch gestures [38]. They studied different
gestures for authorization. By studying different movements
with different number of fingers, they can achieve high
accuracy with only 5.84 percent EER. However, their goal is
not to target detection of fraudulent activities that can occur
through keyboard usage. Instead, their work focuses on
general authorization by leveraging a large amount of infor-
mation. Our work, on the other hand, mainly focuses on
short sequential input for identification. Typing is a more
straight-forward way for an attacker to interact with a
device to perform unauthorized activities. As such, our
work is more applicable than approaches that perform iden-
tification and authorization mainly through gestures.

As previously mentioned that existing approaches tend to
employ shallow learning for identification. We would like to
point out that the major benefit of using deep learning over
shallow learning is that deep learning can generate many
latent features to capture different sequential information and
give a final embedding space for detection. These latent fea-
tures are only generated by algorithms instead of collecting
them directly. Because of using latent features from our
designed model, KOLLECTOR can use fewer features, but
achieve 94.07 percent accuracy and 8.9 percent EER which is
better than the existing approaches [19], [39]. When we use
five keystrokes, we can achieve even better performance with
94.24 percent accuracy and 8.4 percent EER.

8 CONCLUSION

We propose KOLLECTOR, a new framework for continuous
user identification. We use sequential tapping information
to construct a powerful detector by using state-of-the-art
learning methods. We also experiment with using only
three keystrokes and find that the system still yields high
accuracy while giving additional opportunities to make
more decisions that can result in more accurate final deci-
sions. Comparing to other shallow machine learning meth-
ods, KOLLECTOR is more effective at detecting fraudulent
usage while being highly efficient. Therefore, it is feasible to
use KOLLECTOR for real life.
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