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ANDERSON ACCELERATION FOR A CLASS OF NONSMOOTH
FIXED-POINT PROBLEMS\ast 

WEI BIAN† , XIAOJUN CHEN‡ , AND C. T. KELLEY§

Abstract. We prove convergence of Anderson acceleration for a class of nonsmooth fixed-point
problems for which the nonlinearities can be split into a smooth contractive part and a nonsmooth
part which has a small Lipschitz constant. These problems arise from compositions of completely
continuous integral operators and pointwise nonsmooth functions. We illustrate the results with two
examples.
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1. Introduction. In this paper we prove convergence of Anderson acceleration
[1] for a class of nonsmooth fixed-point problems.

Anderson acceleration was originally designed for integral equations and is now
very common in electronic structure computations (see [6] and many references since
then). Anderson acceleration is essentially the same as direct inversion on the iterative
subspace (DIIS) [18, 19, 26, 27], nonlinear GMRES [2, 21, 23, 32], and interface quasi-
Newton [7, 13, 20]. It is also closely related to Pulay mixing [25], also known as
Commutator DIIS [10, 15, 16, 26].

Convergence analysis has been reported in the literature only recently, and most of
that work assumes at least continuous differentiability of the fixed-point map. There
are convergence results for the linear case [30, 31], the continuously differentiable
case [3], the Lipschitz continuously differentiable case [29, 30], and even smoother
cases [8, 24].

In this paper we assume that nonlinearities can be split into a smooth part and a
nonsmooth part with a small Lipschitz constant. The splittings we use in this paper
are similar to ones used in nonsmooth nonlinear equations [5, 14, 17]. In those papers
the norm of the nonsmooth part was small enough so that using the derivative of
the smooth part led to a rapidly convergent Newton-like iteration. In this paper the
splitting is only used in the analysis, and the algorithm does not change. However,
the classes of problems to which the methods apply are very similar.
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1.1. Notation and problem setting. In this paper we use bold faced fonts for
vectors and operators which are finite dimensional or generic vectors and operators
which can be either finite or infinite dimensional. We will use standard fonts for
operators and (in section 3) vectors which are only defined in infinite dimensional
function spaces.

The objective is to solve fixed-point problems of the form

(1.1) u = G(u),

where G is a Lipschitz continuous function defined on a Banach space X. We will
make the following assumptions on G throughout this paper.

Assumption 1.1. G is a contraction with contractivity constant c \in (0, 1) in a
closed convex set B in a Banach space X. u\ast is the fixed point of G in B.

The Anderson acceleration algorithm is as follows:

Anderson(m)(u0,G,m)

u1 = G(u0); F0 = G(u0) - u0.
for k = 1, . . . do
Choose mk \leq min(m, k).
Fk = G(uk) - uk.
Minimize \| \sum mk

j=0 \alpha 
k
jFk - mk+j\| subject to

\sum mk

j=0 \alpha 
k
j = 1.

uk+1 =
\sum mk

j=0 \alpha 
k
jG(uk - mk+j).

end for

The depth m is the amount of storage needed beyond that of Anderson(0), which
is simple Picard iteration:

uk+1 = G(uk).

We call the \alpha ’s the coefficients.
The algorithm does not specify any norm, and the theory, for the most part, is

independent of the choice of norm. Some results for Anderson(1) (see section 1.2.2)
require a Hilbert space norm. In the case of a Hilbert space norm, the optimization
problem can be formulated as a linear least squares problem [1]. For L1 and L\infty 

norms in finite dimension, the optimization problem can be formulated as a linear
programming problem [30]. The examples in section 3 use the L2 and the L\infty norms.

The first convergence results for Anderson acceleration were reported in [30]. We
state Theorem 1.1, one of the results from that paper, as generalized in [3], in order
to compare it to the main results in this paper.

We allow for several ways to solve the optimization problem and also for different
formulations (see section 1.2.1). Hence, following [30], we make an assumption on the
optimization problem for the coefficients and its solution.

Assumption 1.2. The solution \{ \alpha k
j \} of the optimization problem satisfies

1. \| 
\sum mk

j=0 \alpha 
k
jF(uk - mk+j)\| \leq \| F(uk)\| ,

2.
\sum mk

j=0 \alpha 
k
j = 1, and

3. there is Mα such that for all k \geq 0,
\sum mk

j=1 | \alpha k
j | \leq Mα.

The first two parts of Assumption 1.2 simply state that the optimization problem
finds an objective function value no larger than that for Picard iteration (m = 0 or
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\alpha k
mk

= 1) and that the constraints hold. To see this write the optimization problem
as

min
α\in Q

\phi (\alpha ),

where

Q =

\left\{ 

 

 

\alpha \in Rmk+1 | 
mk
\sum 

j=0

\alpha k
j = 1

\right\} 

 

 

.

Let

\alpha \ast = argminα\in Q\phi (\alpha ).

Since \phi (\̄alpha \ast ) \leq \phi (\alpha ) for all \alpha \in Q, we have \phi (\̄alpha \ast ) = minα\in Q \phi (\alpha ) \leq \phi ((0, 0, . . . , 1)) =
\| F(uk)\| .

The third part is generally not a consequence of the optimization problem for-
mulation (unless m = 1 and \| \cdot \| is a Hilbert space norm, or we add a nonnegativity
constraint) and is critical in the proof. We have never observed that the bound of the
L1 norm of the coefficients is problematic (see [30] where we looked at this numeri-
cally).

As is standard, we denote the error u - u\ast by e.

Theorem 1.1 ([3, 30]). Let Assumptions 1.1 and 1.2 hold. Let G be continuously
differentiable in

B(\rho ) = \{ u | \| u - u\ast \| < \rho \} \subset B

for some \rho > 0. Let c < 1 be the contractivity constant from Assumption 1.1. Then if
\| e0\| is sufficiently small, the Anderson(m) iteration remains in B(\rho ) and converges
to u\ast r-linearly with r-factor c,

(1.2) lim sup
k\rightarrow \infty 

\biggl( \| F(uk)\| 
\| F(u0)\| 

\biggr) 1/k

\leq c,

which implies

(1.3) lim sup
k\rightarrow \infty 

\biggl( \| ek\| 
\| e0\| 

\biggr) 1/k

\leq c.

1.2. Previous results for nonsmooth nonlinearaties. While the formula-
tion of Anderson acceleration does not involve derivatives, there has been very little
analysis of the method for nonsmooth G. In this section we will discuss the results for
general Lipschitz contractions. Those results, which we review in sections 1.2.1 and
1.2.2, are unsatisfactory because the estimate of the convergence rate is larger than
c. Theorem 1.2 is a global convergence result, and the poor convergence rate is only
a problem when the iteration is far from the solution. This is the result we extend in
subsection 2.2.

The second result in subsubsection 1.2.2 is only for Anderson(1) and imposes the
strong restriction c < 2 - 

\surd 
3. This result is interesting for two reasons. The first is that

the original form of this result in [30] assumed differentiability, but that assumption
is not necessary. Our proof in the nondifferentiable case is new but borrows heavily
from the analysis in [30]. Secondly, the proof we give motivates the one for result in
subsection 2.1, where we show q-linear convergence with q-factor c for Anderson(1)
for a class of nonsmooth problems.
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1.2.1. The energy DIIS (EDIIS) algorithm. The EDIIS [18] algorithm adds
a nonnegativity constraint to the optimization problem. The new optimization prob-
lem is

Minimize

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

Fk  - 
mk - 1
\sum 

j=0

\alpha k
j (Fk - mk+j  - Fk)

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

2

2

subject to
mk - 1
\sum 

j=0

\alpha k
j = 1, \alpha k

j \geq 0.

This problem is harder to solve than the linear least squares problem one must solve
for Anderson acceleration, but one can obtain convergence from initial iterates in a
larger set. Note that the solution of the EDIIS optimization problem satisfies all three
parts of Assumption 1.2 by construction with Mα =

\sum mk - 1
j=0 \alpha k

j = 1.
The result from [3] is the following.

Theorem 1.2. If G is Lipschitz continuous with Lipschitz constant c \in (0, 1) in
a convex set B, then the EDIIS iteration converges for any u0 \in B, and

(1.4) \| ek\| \leq ck/(m+1)\| e0\| .

Moreover, if G is continuously differentiable, then the local convergence rate is no
worse than that of Picard iteration, i.e.,

(1.5) lim sup
k\rightarrow \infty 

\biggl( \| F(uk)\| 
\| F(u0)\| 

\biggr) 1/k

\leq c.

The estimate (1.4) is valid for any Lipschitz continuous contraction but has a
very pessimistic convergence rate. Continuous differentiability was necessary for the
proof of (1.5). One contribution of this paper is to show that (1.5) holds for a class
of nonsmooth problems.

1.2.2. Local convergence for Anderson(1). The proof of Theorem 1.3, the
result in this section, is a direct extension of a proof in [28, 30] (Theorem 2.4, page
812 in [30]) of a similar result for the differentiable case. As we said earlier, the proof
in [30] used continuous differentiability but really did not need it. We give the proof
here in detail both for completeness and to illustrate the primary components in the
new results in the paper. The convergence rate in Theorem 1.3 is q-linear rather
than r-linear. In [30, Corollary 2.5, page 814], smoothness is used in an important
way to obtain q-linear convergence with q-factor c for all c \in (0, 1). Theorem 2.1 in
subsection 2.1 in this paper extends that result to a class of nonsmooth problems.

Theorem 1.3. Let X be a Hilbert space with scalar product (\cdot , \cdot ). Assume that
the optimization problem is solved in the norm of X. Let G be Lipschitz continuous
with Lipschitz constant c < 2 - 

\surd 
3 in a ball of radius \rho about a fixed point u\ast . Then

for u0 sufficiently close to u\ast , the Anderson(1) residuals converge q-linearly to u\ast 

with q-factor

ĉ \equiv 3c - c2

1 - c
< 1

in the sense that for all k sufficiently large

(1.6) \| F (uk+1)\| \leq ĉ\| F (uk)\| 
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and uk \rightarrow u\ast r-linearly in the sense that

(1.7) lim sup
k\rightarrow \infty 

\biggl( \| ek\| 
\| e0\| 

\biggr) 1/k

\leq ĉ.

Proof. We proceed by induction and allow for a “warm start” which may have an
inferior convergence rate as EDIIS could. For example, this could be the final k0 + 1
iterations of a longer EDIIS initialization phase or several Picard iterations. Assume
that, for 0 \leq j \leq k0,

uj \in B(\rho ) \equiv \{ u | \| u - u\ast \| \leq \rho \} ,
and for 0 \leq j < k and some ĉ \leq c̃ < 1,

(1.8) \| F(uj+1)\| \leq c̃\| F(uj)\| .

This assumption is clearly satisfied if u1 = G(u0) and k0 = 0.
Note that if u \in B(\rho ), then

(1.9) (1 - c)\| e\| \leq \| F(u)\| = \| G(u) - u\| = \| G(u) - G(u\ast ) - (u - u\ast )\| \leq (1+c)\| e\| .

We now show that (1.6) holds for all k \geq k0 if (1.8) (which is implied by (1.6))
holds for all smaller k. The optimization problem can be solved in closed form for
m = 1. We have

(1.10) uk+1 = (1 - \alpha k)G(uk) + \alpha kG(uk - 1),

where

\alpha k =
(F(uk),F(uk) - F(uk - 1))

\| F(uk) - F(uk - 1)\| 2
.

We estimate \alpha k using the induction hypothesis:

(1.11)

| \alpha k| \leq \| F(uk)\| 
\| F(uk) - F(uk−1)\| 

\leq c̃\| F(uk−1)\| 
(1 - c̃)\| F(uk−1)\| 

\leq \̄alpha \equiv c̃
1 - c̃ .

Our first task is to show that if \| e0\| < \rho is sufficiently small, then uk+1 \in B(\rho ).
The formula (1.10) implies that

ek+1 = (1 - \alpha k)(G(uk) - G(u\ast )) + \alpha k(G(uk - 1) - G(u\ast ))

and hence
\| ek+1\| \leq c(1 + \̄alpha )\| ek\| + c\̄alpha \| ek - 1\| .

The induction hypothesis and (1.9) imply that, for 0 \leq j \leq k,

\| ej\| \leq \| F(uj)\| 
1 - c

\leq c̃j

1 - c
\| F(u0)\| \leq c̃j(1 + c)

1 - c
\| e0\| .

Hence,
\| ek+1\| \leq c(1 + \̄alpha )\| ek\| + c\̄alpha \| ek - 1\| 

\leq c(1 + \̄alpha ) c̃
k(1+c)
1 - c \| e0\| + c\̄alpha c̃k−1(1+c)

1 - c \| e0\| 

= cc̃k−1(1+c)
1 - c (\̄alpha + (1 + \̄alpha )c̃)\| e0\| .
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Since c̃, c < 1, we have \̄alpha + (1 + \̄alpha )c̃ \leq (1 + 2\̄alpha ) and cc̃k - 1 < 1. Hence

\| ek+1\| \leq (1 + c)(1 + 2\̄alpha )

1 - c
\| e0\| < \rho ,

if

\| e0\| <
(1 - c)\rho 

(1 + c)(1 + 2\̄alpha )
,

which we will assume throughout.
Now we obtain the asymptotic result (1.6). Write

F(uk+1) = G(uk+1) - uk+1 = Ak +Bk,

where

Ak = G(uk+1) - G((1 - \alpha k)uk + \alpha kuk - 1)

and

(1.12) Bk = G((1 - \alpha k)uk + \alpha kuk - 1) - uk+1.

We next estimate \| Ak\| and \| Bk\| separately.
The estimation for \| Ak\| is straightforward, as it will be throughout the paper.

(1.13)

\| Ak\| = \| G(uk+1) - G((1 - \alpha k)uk + \alpha kuk - 1)\| 

\leq c\| uk+1  - (1 - \alpha k)uk  - \alpha kuk - 1\| 

= c\| (1 - \alpha k)(G(uk) - uk) + \alpha k(G(uk - 1) - uk - 1)\| 

= c\| (1 - \alpha k)F(uk) + \alpha kF(uk - 1)\| \leq c\| F(uk)\| ,

where the last inequality follows from optimality of the coefficients.
The estimate for \| Bk\| is where differentiability was used, but not really needed,

in [3, 30]. The analysis in those papers used the fundamental theorem of calculus
to estimate the left side of (1.14) in terms of the errors and, in the case of [30], the
Lipschitz constant of the Jacobian. The more recent paper [3] used the modulus of
continuity of the Jacobian, and we employ similar logic in the proof of Theorem 2.1
(see (2.5)).

We begin by using (1.12) and (1.10) to obtain

(1.14)
Bk = G((1 - \alpha k)uk + \alpha kuk - 1) - (1 - \alpha k)G(uk) - \alpha kG(uk - 1)

= G(uk + \alpha k\delta k) - G(uk) + \alpha k(G(uk) - G(uk - 1)).

Using contractivity, we obtain

\| Bk\| \leq 2c| \alpha k| \| \delta k\| ,

where \delta k = uk - 1  - uk. The next step is to estimate the product | \alpha k| \| \delta k\| .
The difference in residuals is

F(uk) - F(uk - 1) = G(uk) - G(uk - 1) + \delta k.
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Using contractivity \| G(uk) - G(uk - 1)\| \leq c\| \delta k\| we obtain

\| F(uk) - F(uk - 1)\| \geq (1 - c)\| \delta k\| .

Hence

(1.15) \| \delta k\| \leq \| F(uk) - F(uk - 1)\| /(1 - c).

Finally, we use the formula for \alpha k to obtain

(1.16) | \alpha k| \| \delta k\| \leq \| F(uk)\| 
\| F(uk) - F(uk - 1)\| 

\| \delta k\| \leq \| F(uk)\| 
1 - c

.

So

\| F(uk+1)\| \leq c\| F(uk)\| + 2c\| F(uk)\| 
1 - c

= 3c - c2

1 - c \| F(uk)\| = ĉ\| F(uk)\| .

This completes the proof.

The important point for this paper in the proof of Theorem 1.3 is the decom-
position of F(uk+1) into Ak and Bk. In the results in section 2 we use the same
decomposition, and, as in the proof of Theorem 1.3, the estimate of \| Ak\| only uses
the contractivity of G. The estimate for \| Bk\| , however, is new and uses the structure
of the nonsmoothness, which we describe in the next section.

2. Splitting-based results for nonsmooth problems. The results in this sec-
tion depend on Assumption 2.1, which states that G can be locally split into smooth
(GS) and nonsmooth (GN ) parts, with the nonsmooth part having a small Lipschitz
constant. The motivation for this is a class of nonsmooth compact fixed-point prob-
lems, which we fully describe in section 3. We will also assume that Assumption 1.1
and (except for the Hilbert space case with m = 1) Assumption 1.2 hold.

Assumption 2.1. There is \rho such that B(\rho ) \subset B. There are nonincreasing non-
negative functions \sigma and \omega defined on (0, 1) such that for any 0 < \rho < \rho ,

1. limt\rightarrow 0 \omega (t) = 0,
2. limt\rightarrow 0 \sigma (t) = 0,
3. G = Gρ

S +Gρ
N ,

4. Gρ
S is uniformly (in \rho ) continuously differentiable in the sense that

\| (Gρ
S)

\prime (u) - (Gρ
S)

\prime (v)\| \leq \omega (\| u - v\| )

for all u,v \in B(\rho ), and
5. Gρ

N is Lipschitz continuous in B(\rho ) with Lipschitz constant \sigma (\rho ).

As we said in the introduction, the splitting is only exploited in the analysis.
The algorithm is unchanged. The construction in this paper is different from the
one used in nonlinear equations [5, 14, 17] in that we need the nonsmooth part to
have a small Lipschitz constant, not a small norm. The examples in section 3 are
compositions of nonsmooth substitution operators and integral operators and fit nicely
with Assumption 2.1.

As was the case in [30], we are able to prove q-linear convergence of the residual
norms only for m = 1. We obtain r-linear convergence for m > 1.



S8 WEI BIAN, XIAOJUN CHEN, AND C. T. KELLEY

2.1. Anderson(1). In this section we extend Corollary 2.5 from [30, page 814].
That result was from the proof of Theorem 2.4 [30, page 812] in that paper. We
extended that result to the nonsmooth case in Theorem 1.3 in section 1.2.2 in the
present paper.

Theorem 2.1. Let X be a Hilbert space with scalar product (\cdot , \cdot ). Assume that the
optimization problem is solved in the norm of X. Let Assumptions 1.1 and 2.1 hold.
Then for u0 sufficiently close to u\ast , the Anderson(1) residuals converge q-linearly to
0 with q-factor c in the sense that

(2.1) lim sup
k\rightarrow \infty 

\| F(uk+1)\| 
\| F(uk)\| 

\leq c.

Proof. As in the proof of Theorem 1.3 we allow for a warm start and assume that
(1.8) holds for some \rho < \rho , c̃ < 1, and all 0 \leq j \leq k0. Most of the analysis we need
in this proof can be taken directly from the proof of Theorem 1.3 or Corollary 2.5
from [30].

We show that if (1.8) holds for all 0 \leq j \leq k with k \geq k0, then

\| F(uk+1)\| \leq \| F(uk)\| (c+ \epsilon k),

where \epsilon k \rightarrow 0 as k \rightarrow \infty . This will imply that (2.1) holds. Our proof will give an
explict formula for \epsilon k.

We begin by finding \rho k so that

(2.2) uk + t\alpha k\delta k \in B(\rho k/2) and uk + t\delta k \in B(\rho k/2)

for all t \in [0, 1]. This will allow us to use the splitting in our estimate of \| F(uk+1)\| .
Using (1.9) and (1.8) we see that for j = k  - 1, k,

(2.3) \| ej\| \leq \| F(uj)\| /(1 - c) \leq c̃j\| F(u0)\| /(1 - c) \leq c̃k - 1\| F(u0)\| /(1 - c).

Therefore, for all t \in [0, 1],

(2.4)
\| ek + t\alpha k\delta k\| \leq \| ek\| + \̄alpha (\| ek\| + \| ek - 1\| )

\leq c̃k - 1(1 + 2\̄alpha )\| F(u0)\| /(1 - c).

We simplify the notation for the splitting by writing GS = Gρk

S and GN = Gρk

N ,
where

\rho k = 2c̃k - 1(1 + 2\̄alpha )\| F(u0)\| /(1 - c).

With this choice, (2.4) implies (2.2).
We split F(uk+1) into three parts:

F(uk+1) = G(uk+1) - uk+1 = Ak + Ck +Dk.

Here
Ak = G(uk+1) - G((1 - \alpha k)uk + \alpha kuk - 1).

We use (1.14) to split Bk = Ck +Dk, where

Ck = GS(uk + \alpha k\delta k) - GS(uk) + \alpha k(GS(uk) - GS(uk - 1))

and
Dk = GN (uk + \alpha k\delta k) - GN (uk) + \alpha k(GN (uk) - GN (uk - 1)).
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The estimate for \| Ak\| is unchanged:

\| Ak\| \leq c\| F(uk)\| .

The estimate for \| Ck\| is done exactly the same way as in [30] or [3]. We use
differentiability of GS to get the estimate (see equation (2.27), page 813, in [30])

(2.5) \| Ck\| \leq | \alpha k| \| \delta k\| 
\int 1

0

\| G\prime 
S(uk + t\alpha k\delta k) - G\prime 

S(uk + t\delta k)\| dt.

We invoke Assumption 2.1 and the estimates (2.2), (2.3), and (1.16) to obtain

\| Ck\| \leq | \alpha k| \| \delta k\| \omega (| 1 - \alpha k| \delta k)

\leq \| F(uk)\| ω(ξk)
1 - c ,

where
\xi k = 2(1 + \̄alpha )c̃k - 1\| F(u0)\| /(1 - c).

Finally we estimate \| Dk\| , which is the new part of the analysis. We have, using
(1.16),

\| Dk\| \leq \| GN (uk + \alpha k\delta k) - GN (uk)\| + | \alpha k| \| GN (uk) - GN (uk - 1))\| 

\leq 2\sigma (\rho k)| \alpha k| \| \delta k\| \leq 2\sigma (\rho k)\| F(uk)\| /(1 - c).

Hence,
\| F(uk+1)\| \leq \| F(uk)\| (c+ (\omega (\xi k) + 2\sigma (\rho k))/(1 - c)).

This will complete the proof with

\epsilon k = (\omega (\xi k) + 2\sigma (\rho k))/(1 - c).

2.2. The case m ≥ 1. In this section we prove a nonsmooth analogue of The-
orem 1.2. As was the case in subsection 2.1, we split G(uk+1) and analyze the parts
separately. Many parts of the proof are taken from the proof of Theorem 1.2 in [3],
and we will simply refer to the relevant pages in [3] for that material rather than copy
the details.

The main result is Theorem 2.2.

Theorem 2.2. Let Assumptions 1.1, 2.1, and 1.2 hold. Then if \| e0\| is suffi-
ciently small the Anderson(m) iterations converge and (1.5) holds.

Proof. We will allow for a warm start and assume that (1.8) holds for 0 \leq j \leq k
with k \geq k0. As before, this assumption is clearly satisfied if k0 = 0 and u1 = G(u0),
a cold start. We assume that uj \in B(\rho ) for 0 \leq j \leq k.

Let ĉ \in (c, 1) be given. We will show that

(2.6) lim sup
k\rightarrow \infty 

\biggl( \| F(uk)\| 
\| F(u0)\| 

\biggr) 1/k

\leq ĉ

by showing that there is L such that

(2.7) \| F(uk)\| \leq Lĉk\| F(u0)\| ,
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which implies (2.6) since limk\rightarrow \infty L1/k = 1. This will complete the proof of (1.5) as
ĉ \in (c, 1) is arbitrary.

We may, without loss of generality, assume that c̃ \in (ĉ, 1), where c̃ is the con-
vergence rate from (1.8). The estimate (2.7) holds for k \leq k0 if we use L = (c̃/ĉ)m,
which will begin an induction on k.

We assume that (2.7) holds for k and all j < k. We also assume that

(2.8) \| e0\| <
\rho cm(1 - c)

LMα(1 + c)
,

where Mα is the bound from Assumption 1.2.
First note that (2.7) will imply that uk \in B(\rho ) because u0 \in B(\rho ) and (2.8)

implies that

\| e0\| \leq \rho (1 - c)

L(1 + c)
.

We use the formula for the Anderson iteration

uk+1 =

mk
\sum 

j=0

\alpha k
jG(uk - mk+j)

to split F(uk+1). We have, following [3],

F(uk+1) = G(uk+1) - uk+1

= G(uk+1) - G(
\sum mk

j=0 \alpha 
k
juk - mk+j) +G(

\sum mk

j=0 \alpha 
k
juk - mk+j) - uk+1.

We begin with the usual splitting F(uk+1) = Ak +Bk, where

Ak = G(uk+1) - G

\left( 

 

mk
\sum 

j=0

\alpha k
juk - mk+j

\right) 

 

and
Bk = G(

\sum mk

j=0 \alpha 
k
juk - mk+j) - uk+1

= G(
\sum mk

j=0 \alpha 
k
juk - mk+j) - 

\sum mk

j=0 \alpha 
k
jG(uk - mk+j).

The proof that

(2.9) \| Ak\| \leq c\| F(uk)\| \leq Lcĉk\| F(u0)\| 

carries over unchanged from (1.13) in this paper or from equation (2.15) on page A372
of [3].

Note that (2.7) and (2.8) imply that

uj \in B(\rho k) for j = k  - mk, . . . , k + 1,

and

wk =

mk
\sum 

j=0

\alpha k
juk - mk+j \in B(\rho k).

Here,

(2.10) \rho k = LMαĉ
k - mk\| F(u0)\| /(1 - c) \leq Mαĉ

k - mL(1 + c)\| e0\| /(1 - c).

Equation (2.8) implies that \rho k < \rho .
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This allows us to split Bk as we did in the Anderson(1) case:

Bk = Ck +Dk,

where

Ck = GS

\left( 

 

mk
\sum 

j=0

\alpha k
juk - mk+j

\right) 

  - 
mk
\sum 

j=0

\alpha k
jGS(uk - mk+j)

and

Dk = GN

\left( 

 

mk
\sum 

j=0

\alpha k
juk - mk+j

\right) 

  - 
mk
\sum 

j=0

\alpha k
jGN (uk - mk+j).

The estimate for \| Ck\| uses exactly the same analysis as in [3, pages A372–A374].
We obtain

\| Ck\| \leq 2Mα\omega (\rho k)\rho k \leq (2M2
α\omega (\rho k)Lĉ

k - m)\| F (u0)\| /(1 - c) \leq 2M2
α\omega (\rho k)

ĉm(1 - c)
Lĉk\| F(u0)\| .

Reduce \| e0\| if necessary so that

(2.11)
2M2

α\omega (\rho k)

ĉm(1 - c)
< (ĉ - c)/2.

Finally, write

Dk =

\left( 

 GN

\left( 

 

mk
\sum 

j=0

\alpha k
juk - mk+j

\right) 

  - GN (u\ast )

\right) 

  - 

\left( 

 

mk
\sum 

j=0

\alpha k
jGN (uk - mk+j) - GN (u\ast )

\right) 

 

to obtain

(2.12)

\| Dk\| \leq 2\sigma (\rho k)Mα max0\leq j\leq mk
\| ek - mk+j\| 

\leq 2σ(ρk)Mα

1 - c max0\leq j\leq mk
\| F(uk - mk+j)\| 

\leq 2σ(ρk)Mα

(1 - c)ĉm Lĉk\| F(u0)\| .

Reduce \| e0\| if necessary to make

(2.13)
2\sigma (\rho k)Mα

(1 - c)ĉm
< (ĉ - c)/2.

This completes the proof since (2.11) and (2.13) imply that

\| F(uk+1)\| \leq \| Ak\| + \| Ck\| + \| Dk\| < Lĉk+1\| F(u0)\| .

2.3. Approximations. If X is finite dimensional, as it will be for discretizations
of problems in function space, then part 2 of Assumption 2.1 may not hold. However,
as we illustrate in the examples in section 3, we will still have a small (but generally
nonzero) lim sup\sigma (t). We replace part 2 of Assumption 2.1 with

(2.14) lim sup
t\rightarrow 0

\sigma (t) = \sigma .

For any q \in (0, 1) and \sigma sufficiently small, we will still obtain r-linear convergence
with r-factor c + \sigma q. We summarize the results for Anderson(m) in the following
theorem.
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Theorem 2.3. Let Assumptions 1.1, 1.2, and 2.1 hold with part 2 replaced by
(2.14) and

(2.15) \sigma < min

\biggl( 

(1 - c)1/q,

\biggl( 

(1 - c)cm

8Mα

\biggr) 1/(1 - q)\biggr) 

for some q \in (0, 1). Then if \| e0\| is sufficiently small, then the Anderson(m) iterations
converge and

(2.16) lim sup
k\rightarrow \infty 

\biggl( \| F(uk)\| 
\| F(u0)\| 

\biggr) 1/k

\leq c+ \sigma q < 1.

Proof. We will reduce \sigma in the course of the proof. Set ĉ = c + \sigma q < 1. We can
then use the proof of Theorem 2.2 with very little change. We let L̃ = (c̃/c)m, which
will play the role of L from the proof of Theorem 2.2.

We decompose the residual

F(uk+1) = Ak + Ck +Dk

and use the estimates (2.9) and (2.11) without change (reducing \| e0\| as needed).
The only difference is the estimate for Dk. Let \| e0\| be small enough so that

\sigma (t) \leq 2\sigma for all t \leq \| e0\| . We have, as before,

\| Dk\| \leq 4σMα

(1 - c)ĉm L̃ĉk\| F(u0)\| 

\leq 4σMα

(1 - c)cm L̃ĉk\| F(u0)\| .

Then (2.15) implies that

4\sigma Mα

(1 - c)cm
\leq \sigma q/2 = (ĉ - c)/2.

This estimate completes the proof exactly as it did in the proof of Theorem 2.2.

The result for Anderson(1) is similar, and we omit the proof, which is essentially
the same as that for Theorem 2.3.

Theorem 2.4. Let X be a Hilbert space with scalar product (\cdot , \cdot ). Assume that
the optimization problem is solved in the norm of X. Let Assumptions 1.1 and 2.1
hold with part 2 replaced by (2.14). Let q \in (0, 1) be given. Then if \sigma \in (0, (1 - c)1/q) is
sufficiently small and u0 is sufficiently close to u\ast , the Anderson(1) residuals converge
q-linearly to u\ast with q-factor c+ \sigma q in the sense that

(2.17) lim sup
k\rightarrow \infty 

\| F(uk+1)\| 
\| F(uk)\| 

\leq c+ \sigma q.

3. Examples. Our examples are compositions of nonsmooth substitution oper-
ators and nonlinear Hammerstein integral operators.

We let C = C([0, 1]) be the space of continuous functions on [0, 1] with the usual
L\infty norm and L2 = L2([0, 1]). We have two examples. The one in subsection 3.1 is
in L2 and the other, in subsection 3.2, is in C.

We let g \in C([0, 1]\times [0, 1]) and let \scrG be the integral operator given by

\scrG (u)(x) =
\int 1

0

g(x, y)u(y) dy.
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In all the examples in this paper g is the Green’s function for the negative Laplacian in
one space dimension with zero boundary conditions. We discretize with the standard
second-order central difference scheme and realize the product of \scrG with a vector via
a tridiagonal solver. We used a grid of N = 100 interior grid points and the composite
trapezoid rule for integration.

The important properties of \scrG are that
\bullet \scrG is a bounded operator on L2 and
\bullet \scrG is a bounded operator from L2 to C:

\| \scrG (u)\| \infty \leq \| g\| \infty \| u\| 2.

The maps in this section are compositions of nonsmooth substitution operators
and nonlinear integral operators of the form

(3.1) GI(u)(x) = \scrG (f(u))(x) =
\int 1

0

g(x, y)f(u(y)) dy.

GI maps L2 to C if f(\xi ) = O(| \xi | ) for large | \xi | and is Fréchet differentiable if f \prime is
bounded. In that case G\prime 

I(u) is the linear integral operator defined by

(G\prime 
I(u)w)(x) =

\int 1

0

g(x, y)f \prime (u(y))w(y) dy.

G\prime 
I is a compact linear operator from L2 to C.

Since f \prime is bounded, f is Lipschitz continuous with Lipschitz constant Lf . This
implies that GI is a Lipschitz continuous map from L2 to C. In fact, for u, v \in L2

and x \in [0, 1], we may apply the Cauchy–Schwarz inequality to obtain

(3.2)
| GI(u)(x) - GI(v)(x)| \leq \| g\| \infty Lf

\int 1

0
| u(y) - v(y)| dy

\leq \| g\| \infty Lf\| u - v\| 2.

After integration of (3.2) we obtain

\| GI(u) - GI(v)\| \infty \leq \| g\| \infty Lf\| u - v\| 2.

We consider nonsmooth substitution maps Φ that are based on point evaluation.
Examples include

Φ(u)(x) = max(u(x) + b(x), 0),

where b \in C is given. In general we assume the following.

Assumption 3.1. There is a real-valued function \beta and b \in C such that

(3.3) Φ(u)(x) = \beta (u(x) + b(x))

and \beta is Lipschitz continuous and differentiable except for finitely many points.

In our examples the function \beta will be differentiable except at one point.
If \beta is differentiable, then Φ is defined and Fréchet differentiable on both C[0, 1]

and L2[0, 1] if
\bullet | \beta (\xi )| = O(| \xi | ) for | \xi | large and
\bullet \beta \prime is bounded.
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In that case the Fréchet derivative Φ\prime (u) of Φ at u is the operator of multiplication
by \beta \prime (u+ b) i.e.,

Φ\prime (u)w(x) = \beta \prime (u(x) + b(x))w(x).

In the examples \beta is nondifferentiable only at w = 0 and is uniformly Lipschitz
continuously differentiable away from w = 0. We formalize this as the following.

Assumption 3.2. \beta is Lipschitz continuous with Lipschitz constant Lβ . There is
\gamma β > 0 such that if u and v have the same sign, then

| \beta \prime (u) - \beta \prime (v)| \leq \gamma β | u - v| .

For example, if \beta (u) = | u| , then \gamma β = 0.

3.1. A class of integral operators. We consider fixed-point maps of the form

(3.4) u = G(u) = Φ(GI(u)).

We will work in L2 in this example. We use the fact that GI maps L2 to C in the
analysis in a significant way.

We will assume that f is a real-valued Lipschitz continuously differentiable func-
tion and that f \prime has Lipschitz constant \gamma f .

We assume that Assumption 1.1 holds and that

B(\rho ) = \{ u | \| u - u\ast \| 2 \leq \rho \} \subset B.

If \rho \leq \rho and u \in B(\rho ), then (3.2) implies that

\| GI(u) - GI(u
\ast )\| \infty \leq \| g\| \infty Lf\| u - u\ast \| 2 \leq \| g\| \infty Lf\rho \equiv \epsilon (\rho ).

We can now construct the splitting. This will motivate the assumptions of our
convergence result. Let

Ωρ = \{ x | | GI(u
\ast )(x) + b(x)| < 2\epsilon (\rho )\} ,

and let \chi ρ be the characteristic function of Ωρ.
We define

Gρ
N (u)(x) = \chi ρ(x)G(u)(x)

and

Gρ
S(u)(x) = G(u)(x) - Gρ

N (u)(x) = (1 - \chi ρ(x))G(u)(x).

Suppose u \in B(\rho ). Then GI(u)(x) + b(x) has the same sign as GI(u
\ast )(x) + b(x)

for all x \in Ωc
ρ, the complement of Ωρ. This implies that Gρ

S is differentiable at u, and
for all w \in L2 and x \not \in Ωρ,

(3.5)

(Gρ
S)

\prime (u)w(x) = \beta \prime (GI(u)(x) + b(x))(Gρ
S)

\prime (u)w)(x)

= \beta \prime (GI(u)(x) + b(x))
\int 1

0
g(x, y)f \prime (u(y))w(y) dy.

For x \in Ωρ, (G
ρ
S)

\prime (u)w(x) = 0. Moreover, if v \in B\infty (\rho ), then

(3.6) \| (Gρ
S)

\prime (u) - (Gρ
S)

\prime (v)\| 2 \leq \gamma β\| g\| \infty \gamma f\| u - v\| 2.
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As for the nonsmooth part, note that for x \in [0, 1] we may use (3.2) to obain

| Gρ
N (u)(x) - Gρ

N (v)(x)| \leq \chi ρ(x)| Φ(GI(u)(x)) - Φ(GI(v)(x))| 

\leq \chi ρ(x)Lβ\| g\| \infty Lf\| u - v\| 2.

Hence, using the Cauchy–Schwarz inequality again,

\| Gρ
N (u) - Gρ

N (v)\| 2 \leq \| g\| \infty LfLβ

\sqrt{} 

\mu (Ωρ)\| u - v\| 2,

because the L2 norm of the characteristic function of Ωρ is
\sqrt{} 

\mu (Ωρ) where \mu is a
Lebesgue measure.

The critical assumption is the splitting method in [14, 17] is that the support of
nonsmoothness for u\ast is small. In the setting of this paper, we assume that

lim
ρ\rightarrow 0

\mu (Ωρ) = 0.

So we have the splitting with

\sigma (\rho ) = \| g\| \infty LfLβ

\sqrt{} 

\mu (Ωρ) and \omega (\rho ) = \gamma β\| g\| \infty \gamma f\rho .

3.1.1. Norms in finite dimension. In the computations we must, of course,
approximate the integrals by quadratures. We use the composite trapezoid rule. A
more subtle point is that we must scale the norm so that discretizations of constant
functions have the same norm independently of N . Hence we use the discrete \ell 2 norm

\| u\| 2 =
1\surd 
N

\sqrt{} 

 

 

 

N
\sum 

j=1

u2
j

and \ell 1 norm

\| u\| 1 =
1

N

N
\sum 

j=1

| uj | .

Using the scaled norm does not matter in Anderson acceleration because the scaling is
irrelevant in the optimization problem and cancels in the relative residuals. However,
it does matter when computing the Lipschitz constant. In the example in subsection
3.1.2, GI(u

\ast )(x)+b(x) = 0 at only two points. For the approximate finite dimensional
problem, this means that the set Ωρ, for \rho sufficently small, contains at most two
grid points. The correct computation of \mu (Ωρ) is to use the discrete L1 norm, and,
therefore, to apply Theorem 2.3 to this example we would use

\sigma \leq LfLβ

\sqrt{} 

2/N.

3.1.2. Obstacle Bratu problem. The equation in this section is an integral
equation formulation of the obstacle Bratu problem [22]:

(3.7) u = min(\lambda \scrG (eu), \alpha ).

Here \alpha is a given function of x. In the example here \lambda = 5 and

\alpha (x) = 1 + sin(2\pi x)/2.
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The right side of Figure 3.1 is a plot of the solution and the upper bound. One
can see that the \lambda \scrG (eu) is equal to \alpha at only two points. The left of the plot is the
iteration history. We have tuned \lambda to make Picard iteration perform poorly. The
Anderson(m) iterations for m = 1, 2, 3 perform equally well and significantly better
than Picard iteration.
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Fig. 3.1. Example 1: Obstacle Bratu Problem.

Table 3.1

Convergence rates for the Bratu problem.

Picard Anderson 1 Anderson 2 Anderson 3
4.27e-01 1.42e-01 1.14e-01 1.54e-01

We can quantify the observations in Figure 3.1 by estimating the r-factors for the
four methods. As we did in [3] we estimate the r-factor by

(3.8)

\biggl( \| F(uk̄)\| 
\| F(u0)\| 

\biggr) 1/k̄

,

where k̄ is the final iteration index. k̄ varies over the method-problem combinations.
In Table 3.1 we see that the estimate rates are consistent with Figure 3.1.

3.2. Compositions of the form G = G(Φ). In this section we consider prob-
lems of the form

(3.9) u = G(u) = \scrG (Φ(u)).
We can now construct the splitting. We do this via an example which readily

extends to the general case. We will solve the optimization problem in the L\infty norm
for this example.

For this case we let

Ωρ = \{ x | | u\ast (x) + b(x)| < 2\rho \} .
We define

Gρ
N (u)(x) =

\int 

Ωρ

g(x, y)Φ(u)(y) dy =

\int 

Ωρ

g(x, y)\beta (u(y) + b(y)) dy
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and

Gρ
S(u) = G(u) - Gρ

N (u) =

\int 

Ωc
ρ

g(x, y)\beta (u(y) + b(y)) dy,

where Ωc
ρ is the complement of Ωρ in [0, 1]. Suppose u \in B\infty (\rho ); then u(x)+ b(x) has

the same sign as u\ast (x) + b(x) for all x \in Ωc
ρ. This implies that Gρ

S is differentiable at
u and that for all w \in C,

(3.10) (Gρ
S)

\prime (u)w =

\int 

Ωc
ρ

g(x, y)\beta \prime (u(y) + b(y))w(y) dy.

Moreover, if v \in B\infty (\rho /2), then

(3.11) \| (Gρ
S)

\prime (u) - (Gρ
S)

\prime (u)\| \infty \leq \| g\| \infty \gamma β\| u - v\| \infty .

As for the nonsmooth part, note that

Gρ
N (u) - Gρ

N (v) =

\int 

Ωρ

g(x, y)(\beta (u(y) + b(y)) - \beta (v(y) + b(y))) dy.

So, by the Hölder inequality,

\| Gρ
N (u) - Gρ

N (v)\| \leq \| g\| \infty Lβ

\int 

Ωρ
| u(y) - v(y)| dy

\leq \| g\| \infty Lβ\mu (Ωρ)\| u - v\| \infty .

The critical assumption for the splitting method in [14, 17] is that the support of
nonsmoothness for u\ast is small. In the setting for this paper, we assume that

lim
ρ\rightarrow 0

\mu (Ωρ) = 0.

We have constructed the splitting with

\sigma (\rho ) = \| g\| \infty Lβ\mu (Ωρ) and \omega (t) = \| g\| \infty \gamma βt.

The comments in subsection 3.1.1 are relevant here as well. In this case we need
the discrete measure of Ωρ which converges to 0 as N \rightarrow \infty . In the example in
subsection 3.2, this set contains only one point, so

\sigma \leq LfLβ
1

N
.

3.2.1. Nonsmooth Dirichelet problem. The example, taken from [4], is

(3.12)  - v\prime \prime = \lambda max(v  - \alpha , 0), v(0) = v0, v(1) = v1.

In this problem the nonsmoothness is in the forcing term.
We convert (3.12) to a compact fixed-point problem by setting v = u+ \phi , where

\phi (x) = v1x+(1 - x)v0, letting \scrG be the integral operator which inverts  - d2/dx2 with
zero boundary conditions and then multiplying the equation by G.

We obtain a nonlinear compact fixed-point problem:

u = G(u) \equiv \lambda \scrG (max(u+ \phi  - \alpha , 0)).

In the numerical experiment we use central differences with 100 interior grid points
and solve the problem with Anderson(m) for m = 0, 1, 2, 3.
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In the computation we used v0 = 1, v1 = .5, \lambda = 11.65, and \alpha = .8. The value of \lambda 
was tuned to make the contractivity constant large so that Picard iteration performed
very poorly.

We report two sets of results, one for L2 optimization (Figure 3.2) and the other
(Figure 3.3) for L\infty optimization. We plot iteration histories and graphs of the solu-
tion v and  - v\prime \prime = \lambda max(v - \alpha , 0). The plot of  - v\prime \prime clearly shows that v\prime \prime is nonsmooth
at the solution at only one point.

The L\infty optimization problem can be expressed as a linear programming problem
[9]. We solved that with the CVX MATLAB software [11, 12]. We used the SeDuMi
solver and set the precision in cvx to high. Solving the optimization problem in
L2 is much easier, requiring only the solution of a linear least squares problem. It is
temping to do the optimization problem in L2 even though the theory requires an L\infty 

optimization. In Figure 3.2 we do exactly that. On the right side of Figure 3.2 we
plot graphs of v and  - v\prime \prime = \lambda max(v  - \alpha , 0). The plot of  - v\prime \prime clearly shows that v\prime \prime 

is nonsmooth at the solution at only one point. On the left we plot the results using
an L2 optimization rather than the L\infty optimization that the theory requires.

In Figure 3.3 we use the L\infty norm for the optimization problem for the coefficients
and show on the left the residual norms in the L2 norm to best compare the two
approaches. On the right we show the residual L\infty norms. The figures show that
the results are very similar and that the norm used for the optimization makes little
difference.

We use (3.8) to estimate the r-factors for both L2 and L\infty optimization. The
estimates in Table 3.2 are consistent with the results in Figures 3.2 and 3.3. In
particular, we see that Picard is slowly convergent in this example and that there is
little difference between the two norms used for optimization.

Table 3.2

Convergence rates for the Dirichlet problem.

Picard Anderson 1 Anderson 2 Anderson 3
L
2 optimization

8.91e-01 2.34e-01 1.70e-01 1.56e-01
L
∞ optimization

8.91e-01 2.01e-01 1.77e-01 1.52e-01
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Fig. 3.2. Example 2: Nonsmooth forcing term, L2 optimization.
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Fig. 3.3. Example 2: Nonsmooth forcing term, L∞ optimization.

4. Conclusions. In this paper we prove convergence of Anderson acceleration
for a class of nonsmooth fixed-point problems. Compositions of nonsmooth substitu-
tion operators and integral operators are examples of such problems. We illustrate
the theoretical results with examples.
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