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ANDERSON ACCELERATION FOR A CLASS OF NONSMOOTH
FIXED-POINT PROBLEMS*
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Abstract. We prove convergence of Anderson acceleration for a class of nonsmooth fixed-point
problems for which the nonlinearities can be split into a smooth contractive part and a nonsmooth
part which has a small Lipschitz constant. These problems arise from compositions of completely
continuous integral operators and pointwise nonsmooth functions. We illustrate the results with two
examples.
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1. Introduction. In this paper we prove convergence of Anderson acceleration
[1] for a class of nonsmooth fixed-point problems.

Anderson acceleration was originally designed for integral equations and is now
very common in electronic structure computations (see [6] and many references since
then). Anderson acceleration is essentially the same as direct inversion on the iterative
subspace (DIIS) [18, 19, 26, 27], nonlinear GMRES [2, 21, 23, 32|, and interface quasi-
Newton [7, 13, 20]. It is also closely related to Pulay mixing [25], also known as
Commutator DIIS [10, 15, 16, 26].

Convergence analysis has been reported in the literature only recently, and most of
that work assumes at least continuous differentiability of the fixed-point map. There
are convergence results for the linear case [30, 31], the continuously differentiable
case [3], the Lipschitz continuously differentiable case [29, 30], and even smoother
cases [8, 24].

In this paper we assume that nonlinearities can be split into a smooth part and a
nonsmooth part with a small Lipschitz constant. The splittings we use in this paper
are similar to ones used in nonsmooth nonlinear equations [5, 14, 17]. In those papers
the norm of the nonsmooth part was small enough so that using the derivative of
the smooth part led to a rapidly convergent Newton-like iteration. In this paper the
splitting is only used in the analysis, and the algorithm does not change. However,
the classes of problems to which the methods apply are very similar.
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1.1. Notation and problem setting. In this paper we use bold faced fonts for
vectors and operators which are finite dimensional or generic vectors and operators
which can be either finite or infinite dimensional. We will use standard fonts for
operators and (in section 3) vectors which are only defined in infinite dimensional
function spaces.

The objective is to solve fixed-point problems of the form

(1.1) u= G(u),
where G is a Lipschitz continuous function defined on a Banach space X. We will

make the following assumptions on G throughout this paper.

Assumption 1.1. G is a contraction with contractivity constant ¢ € (0,1) in a
closed convex set B in a Banach space X. u* is the fixed point of G in B.

The Anderson acceleration algorithm is as follows:

Anderson (m) (ug, G, m)

u; = G(UO); Fo = G(UO) — Up.

for k=1,... do
Choose my, < min(m, k).
Fk = G(U.k) — Ug.
Minimize || 7%, ¥ Fp 44 subject to > i=0 ak =1.
Ug41 = ijko afG(uk—mk+J‘)~

end for

The depth m is the amount of storage needed beyond that of Anderson(0), which
is simple Picard iteration:

Ui4+1 = G(uk).

We call the a’s the coefficients.

The algorithm does not specify any norm, and the theory, for the most part, is
independent of the choice of norm. Some results for Anderson(1) (see section 1.2.2)
require a Hilbert space norm. In the case of a Hilbert space norm, the optimization
problem can be formulated as a linear least squares problem [1]. For L' and L*°
norms in finite dimension, the optimization problem can be formulated as a linear
programming problem [30]. The examples in section 3 use the L? and the L norms.

The first convergence results for Anderson acceleration were reported in [30]. We
state Theorem 1.1, one of the results from that paper, as generalized in [3], in order
to compare it to the main results in this paper.

We allow for several ways to solve the optimization problem and also for different
formulations (see section 1.2.1). Hence, following [30], we make an assumption on the
optimization problem for the coefficients and its solution.

Assumption 1.2. The solution {a;?} of the optimization problem satisfies
LIS 0P ()| < [F ()]
2. Y ok =1, and
3. there is M, such that for all & > 0, Zy;"l |a§?\ < M,,.

The first two parts of Assumption 1.2 simply state that the optimization problem
finds an objective function value no larger than that for Picard iteration (m = 0 or
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ok ~=1) and that the constraints hold. To see this write the optimization problem
as
min ¢(a@),
min 6(a)
where
mp
— 1 k
Q=< aecRm™" \Zaj =1
§=0
Let

@ = argmingeqd(@).

Since ¢(a*) < ¢(@) for all @ € Q, we have ¢(&*) = mingeg ¢(@) < ¢((0,0,...,1)) =

ACTIE
The third part is generally not a consequence of the optimization problem for-
mulation (unless m =1 and || - || is a Hilbert space norm, or we add a nonnegativity

constraint) and is critical in the proof. We have never observed that the bound of the
L' norm of the coefficients is problematic (see [30] where we looked at this numeri-
cally).

As is standard, we denote the error u — u* by e.

THEOREM 1.1 ([3,30]). Let Assumptions 1.1 and 1.2 hold. Let G be continuously
differentiable in
B(p) = {ul[lu-u"| <p} C B

for some p > 0. Let ¢ <1 be the contractivity constant from Assumption 1.1. Then if
lleol| is sufficiently small, the Anderson(m) iteration remains in B(p) and converges
to u* r-linearly with r-factor c,

| ||F<uk>||>”’“
1.2 lim sup ( <.,
-2 2 1 )|
which implies

. Jexl )"
(1.3) lim sup <ec

k—o0 ||90H

1.2. Previous results for nonsmooth nonlinearaties. While the formula-
tion of Anderson acceleration does not involve derivatives, there has been very little
analysis of the method for nonsmooth G. In this section we will discuss the results for
general Lipschitz contractions. Those results, which we review in sections 1.2.1 and
1.2.2, are unsatisfactory because the estimate of the convergence rate is larger than
c. Theorem 1.2 is a global convergence result, and the poor convergence rate is only
a problem when the iteration is far from the solution. This is the result we extend in
subsection 2.2.

The second result in subsubsection 1.2.2 is only for Anderson(1) and imposes the
strong restriction ¢ < 2—+/3. This result is interesting for two reasons. The first is that
the original form of this result in [30] assumed differentiability, but that assumption
is not necessary. Our proof in the nondifferentiable case is new but borrows heavily
from the analysis in [30]. Secondly, the proof we give motivates the one for result in
subsection 2.1, where we show g-linear convergence with g-factor ¢ for Anderson(1)
for a class of nonsmooth problems.
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1.2.1. The energy DIIS (EDIIS) algorithm. The EDIIS [18] algorithm adds
a nonnegativity constraint to the optimization problem. The new optimization prob-

lem is
my—1

Fy — Z O‘?(Fk—mk-i-j - Fk)

j=0

2
Minimize

2

subject to

This problem is harder to solve than the linear least squares problem one must solve
for Anderson acceleration, but one can obtain convergence from initial iterates in a
larger set. Note that the solution of the EDIIS optimization problem satisfies all three
parts of Assumption 1.2 by construction with M, = Z;'Zo_l of = 1.

The result from [3] is the following.

THEOREM 1.2. If G is Lipschitz continuous with Lipschitz constant ¢ € (0,1) in
a convex set B, then the EDIIS iteration converges for any vy € B, and

(1.4) llex | < */™+ D el

Moreover, if G is continuously differentiable, then the local convergence rate is no
worse than that of Picard iteration, i.e.,

. IF ()] )
(1:5) lim sup (umwu) =¢

The estimate (1.4) is valid for any Lipschitz continuous contraction but has a
very pessimistic convergence rate. Continuous differentiability was necessary for the
proof of (1.5). One contribution of this paper is to show that (1.5) holds for a class
of nonsmooth problems.

1.2.2. Local convergence for Anderson(1). The proof of Theorem 1.3, the
result in this section, is a direct extension of a proof in [28, 30] (Theorem 2.4, page
812 in [30]) of a similar result for the differentiable case. As we said earlier, the proof
in [30] used continuous differentiability but really did not need it. We give the proof
here in detail both for completeness and to illustrate the primary components in the
new results in the paper. The convergence rate in Theorem 1.3 is g-linear rather
than r-linear. In [30, Corollary 2.5, page 814], smoothness is used in an important
way to obtain g-linear convergence with g-factor ¢ for all ¢ € (0,1). Theorem 2.1 in
subsection 2.1 in this paper extends that result to a class of nonsmooth problems.

THEOREM 1.3. Let X be a Hilbert space with scalar product (-,-). Assume that
the optimization problem is solved in the norm of X. Let G be Lipschitz continuous
with Lipschitz constant ¢ < 2 — /3 in a ball of radius p about a fived point u*. Then
for ug sufficiently close to u*, the Anderson(1) residuals converge g-linearly to u*
with q-factor

3c — c?
1-c

in the sense that for all k sufficiently large

<1

¢

(1.6) [ (up4 1) < e[| F(u)]]
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and up, — u* r-linearly in the sense that

s (el
(1.7) lim sup <é.

k—o00 Heo||

Proof. We proceed by induction and allow for a “warm start” which may have an
inferior convergence rate as EDIIS could. For example, this could be the final kg + 1
iterations of a longer EDIIS initialization phase or several Picard iterations. Assume
that, for 0 < j < ko,

u; € B(p) =A{uf|jlu—u"[| < p},

and for 0 < j < k and some ¢ < ¢ < 1,
(1.8) [F (1) < €llF (uy)ll.

This assumption is clearly satisfied if uy = G(ug) and kg = 0.
Note that if v € B(p), then

(1.9) (1=c)lle] < [[F(u)]| = [[G(u) —uf| = [[G(u) = G(u") = (u—u")[| < (1+c)[e]|.

We now show that (1.6) holds for all k& > kg if (1.8) (which is implied by (1.6))
holds for all smaller k. The optimization problem can be solved in closed form for
m = 1. We have

(1.10) w1 = (1 - a®)G(ug) + a*G(uy_y),

where
p_ (F(ug), F(ug) — F(ug—1))
[F(ur) — F(up—1)|?

We estimate o using the induction hypothesis:

[IF (u) [
¥ (ax)—F(up—1)|l

IN

o]
(1.11)

¢||F(ug—1)]| R
S TR SO = 1%

Our first task is to show that if |leg] < P is sufficiently small, then ug+1 € B(p).
The formula (1.10) implies that

err1 = (1—a")(G(u;) — G(u*)) + *(G(up—1) — G(u*))
and hence
ler+1ll < c(L+a)llex| + cafler—1].

The induction hypothesis and (1.9) imply that, for 0 < j <k,
& F(1+c)
[F(uo)]| < —

[Pl _

<
lesl < 5220 <

leol-
Hence,
lewsill < c(l+a)llexl + caller—i|l

~k ~k—1
< e(1 4 a@) T e || + catE ) ||e|

— @104 (5 4 (1 4 @)8)|Jeol-

l1—c
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Since & ¢ < 1, we have @ + (14 @)é < (1 + 2a@) and ¢&*~! < 1. Hence

(1+¢)(1+ 2a)

el < p,
1— lleoll < p

el <
if
(I—c)p

e < )
leoll < T3 o+ 20)

which we will assume throughout.
Now we obtain the asymptotic result (1.6). Write

F(uk+1) = G(uk_H) —ugy1 = Ag + By,

where

A = G(uk+1) — G((l — ozk)uk + akuk_l)
and
(1.12) B = G((1 — &®)ug 4+ aFup_y) — upys.

We next estimate || Ag|| and || B|| separately.
The estimation for ||Ag|| is straightforward, as it will be throughout the paper.

Al = 1G(aps1) = G((1 = @F)ug + aFug_y) |

IN

C||11k+1 — (1 — ozk)uk — akuk_lH
(1.13)
cl(1 = o*)(G(ur) — wp) + a*(G(ug-1) — up—1)||

= (1 = a")F(ug) + o"F(up_1)|| < ]| F(up)]l,

where the last inequality follows from optimality of the coefficients.

The estimate for ||By|| is where differentiability was used, but not really needed,
in [3, 30]. The analysis in those papers used the fundamental theorem of calculus
to estimate the left side of (1.14) in terms of the errors and, in the case of [30], the
Lipschitz constant of the Jacobian. The more recent paper [3] used the modulus of
continuity of the Jacobian, and we employ similar logic in the proof of Theorem 2.1
(see (2.5)).

We begin by using (1.12) and (1.10) to obtain

B =G((1-a")u, +afup_1) = (1 - a*)G(ug) — o*G(ug-1)
(1.14)
= G(uy + a¥6y) — G(ug) + o*(G(ug) — G(ug_1)).
Using contractivity, we obtain

1Brll < 2¢la®| |18,

where 0, = u,_1 — u;. The next step is to estimate the product |o*|||d]|.
The difference in residuals is

F(uk) — F(uk_l) = G(uk) — G(uk_l) + 0.
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Using contractivity |G (ux) — G(uk—1)|| < ¢||dk]|| we obtain
IF(u) = Fup—1)] = (1 = c)[|6k]-
Hence
(1.15) 161 < [[F(ux) = F(ug-1)[l/(1 = c).

Finally, we use the formula for o* to obtain

F(uy,)| |F ()|
1.16 o161 < I 5ol < 122K
(1.16) o110 < s —Fe 19+ € T
So
[F(wern)]| < cl[F(uy)| + 2dECL
= 3= | F(wy)|| = &F (). 0

This completes the proof.

The important point for this paper in the proof of Theorem 1.3 is the decom-
position of F(ug41) into Ay and Bg. In the results in section 2 we use the same
decomposition, and, as in the proof of Theorem 1.3, the estimate of ||Ag|| only uses
the contractivity of G. The estimate for || B ||, however, is new and uses the structure
of the nonsmoothness, which we describe in the next section.

2. Splitting-based results for nonsmooth problems. The results in this sec-
tion depend on Assumption 2.1, which states that G can be locally split into smooth
(Gg) and nonsmooth (Gy) parts, with the nonsmooth part having a small Lipschitz
constant. The motivation for this is a class of nonsmooth compact fixed-point prob-
lems, which we fully describe in section 3. We will also assume that Assumption 1.1
and (except for the Hilbert space case with m = 1) Assumption 1.2 hold.

Assumption 2.1. There is p such that B(p) C B. There are nonincreasing non-
negative functions o and w defined on (0, 1) such that for any 0 < p < p,
1. limy_ow(t) =0,
2. 1imt_>o O'(t) = O7
3. G=G{+GfR,
4. G% is uniformly (in p) continuously differentiable in the sense that

(G%) (0) = (GG)' (V)| < w(llu—vl])

for all u,v € B(p), and
5. GR; is Lipschitz continuous in B(p) with Lipschitz constant o(p).

As we said in the introduction, the splitting is only exploited in the analysis.
The algorithm is unchanged. The construction in this paper is different from the
one used in nonlinear equations [5, 14, 17] in that we need the nonsmooth part to
have a small Lipschitz constant, not a small norm. The examples in section 3 are
compositions of nonsmooth substitution operators and integral operators and fit nicely
with Assumption 2.1.

As was the case in [30], we are able to prove g-linear convergence of the residual
norms only for m = 1. We obtain r-linear convergence for m > 1.
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2.1. Anderson(1). In this section we extend Corollary 2.5 from [30, page 814].
That result was from the proof of Theorem 2.4 [30, page 812] in that paper. We
extended that result to the nonsmooth case in Theorem 1.3 in section 1.2.2 in the
present paper.

THEOREM 2.1. Let X be a Hilbert space with scalar product (-,-). Assume that the
optimization problem is solved in the norm of X. Let Assumptions 1.1 and 2.1 hold.
Then for ug sufficiently close to u*, the Anderson(1) residuals converge g-linearly to
0 with g-factor c in the sense that

F
(2.1) lim sup ¥ Cus)ll <ec.

koo [[F(up)ll 7~

Proof. As in the proof of Theorem 1.3 we allow for a warm start and assume that
(1.8) holds for some p < p, ¢ < 1, and all 0 < j < kg. Most of the analysis we need
in this proof can be taken directly from the proof of Theorem 1.3 or Corollary 2.5
from [30].

We show that if (1.8) holds for all 0 < j < k with k > ko, then

IF (uga) | < [[F(ap)ll(c + ex),

where ¢, — 0 as k — oo. This will imply that (2.1) holds. Our proof will give an
explict formula for €.
We begin by finding pj so that

(22) uy + takék S B(pk/Q) and uy + td, € B(pk/2)

for all ¢ € [0,1]. This will allow us to use the splitting in our estimate of |F(ugt1)]|-
Using (1.9) and (1.8) we see that for j =k — 1, k,

(2.3) lejll < [F(uy)ll/(1 =€) <& [F(uo)[|/(1 =) <& HF(uo)|l/(1 = ).
Therefore, for all ¢ € [0, 1],

lex +ta*or]| < llex| +a(llerl + llex—1ll)
(2.4)
< &1+ 2a)|[F(uo)l|/(1 - ¢).

We simplify the notation for the splitting by writing Gg = G%& and Gy = G%,
where

pr = 28" (1+2a) || F(uo)||/(1 — o).

With this choice, (2.4) implies (2.2).
We split F(ug41) into three parts:

F(uk+1) = G(uk+1) —Ugy1 = A, + Cy + Dy.

Here
A = G(uk+1) — G((l — Ozk)llk + ozkuk_l).

We use (1.14) to split By, = Cj, + Dy, where
Cr = Gs(ug + 0F6,) — Gs(u) + o*(Gg(up) — Gs(up—1))

and
Dk = GN(llk + ak(Sk) — GN(uk) + ak(GN(uk) — GN(uk,l)).
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The estimate for ||Ag|| is unchanged:
[ Akl < c|[F(ug)].

The estimate for ||Ck|| is done exactly the same way as in [30] or [3]. We use
differentiability of Gg to get the estimate (see equation (2.27), page 813, in [30])

1
(2.5) ICk]l < |0/€|||5k\|/O IG5 (ur + towdy) — Gs(ap + )| dt.

We invoke Assumption 2.1 and the estimates (2.2), (2.3), and (1.16) to obtain

ICkIl <l [l|dk]|w (|1 — ox]dr)

< [[F () || 55,

where
& = 2(1+ @)@ Y [F(ug)[|/(1 - ¢).

Finally we estimate || Dy]|, which is the new part of the analysis. We have, using
(1.16),

Dkl < 1Gw (uk + ) — G (u)|| + [o"[|G v (ar) — G (ur-1))]]

< 20 (pi) | |[|0k]| < 20 (o) [F (we) [ /(1 — c).

Hence,
[F(uer1)|| < 1F(ue)ll(c + (w(&k) + 20 (px)) /(1 = ¢)).

This will complete the proof with

er, = (W) +20(px))/(1 —c). a

2.2. The case m > 1. In this section we prove a nonsmooth analogue of The-
orem 1.2. As was the case in subsection 2.1, we split G(ug+1) and analyze the parts
separately. Many parts of the proof are taken from the proof of Theorem 1.2 in [3],
and we will simply refer to the relevant pages in [3] for that material rather than copy
the details.

The main result is Theorem 2.2.

THEOREM 2.2. Let Assumptions 1.1, 2.1, and 1.2 hold. Then if |leo| is suffi-
ciently small the Anderson(m) iterations converge and (1.5) holds.

Proof. We will allow for a warm start and assume that (1.8) holds for 0 < j < k
with k > kqg. As before, this assumption is clearly satisfied if kg = 0 and u; = G(up),
a cold start. We assume that u; € B(p) for 0 < j < k.

Let ¢ € (¢,1) be given. We will show that

. IF ) \7*
(2.6) h/?isip (|F(110)||> <c

by showing that there is L such that

(2.7) 1F ()| < Lé*|[F (o),
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which implies (2.6) since limy_,o, L*/* = 1. This will complete the proof of (1.5) as
¢ € (¢, 1) is arbitrary.

We may, without loss of generality, assume that ¢ € (¢, 1), where ¢ is the con-
vergence rate from (1.8). The estimate (2.7) holds for k < ko if we use L = (¢/é)™
which will begin an induction on k.

We assume that (2.7) holds for k and all j < k. We also assume that

pcm(1—¢)

2.
(28) leol < Fir 1o

where M, is the bound from Assumption 1.2.
First note that (2.7) will imply that uy € B(p) because ug € B(p) and (2.8)
implies that
M

We use the formula for the Anderson iteration
mp
W1 = Y ¥ Gk, 1)
j=0
to split F(ug4+1). We have, following [3],

F(up+1) = G(upt1) =t

= G(up41) — G(Z;‘Zﬂo aﬁuk—mk-ﬂ) + G(Z; =0 ;guk i) = Wkl

We begin with the usual splitting F(u4+1) = A + By, where

Ar = G(ug41) Za Uk iyt

and
By, _G(Z] =0 Juk my+i) — Wkt

_G(Z] =0 guk‘ M) — Z;rioa?(}(uk—mk-i-j)
The proof that
(2.9) 1A%]| < ellF(up)]| < Lee® | F(uo)|

carries over unchanged from (1.13) in this paper or from equation (2.15) on page A372
of [3].
Note that (2.7) and (2.8) imply that

u; € B(pg) for j =k —my,..., k+1,

and .
Wg = Z a?uk—mk-‘ri € B(pr)-
=0
Here,
(2.10) pr = LMo ™ [F (o) || /(1 — ¢) < Mo ™ L(1 + c)|leol/(1 = ).

Equation (2.8) implies that p, < p.
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This allows us to split By as we did in the Anderson(1) case:

By, = Cy, + Dy,
where
my mp
k k
Crh=Gs | > ol ;| =D alGe(up_m, )
=0 =0
and

my mi
k k
Dip=Gn | Y ofup i | =D oGy (thmms)-
=0 =0

The estimate for ||Cy|| uses exactly the same analysis as in [3, pages A372-A374].
We obtain

2 sk—m 2M3w(pr) | ok
[Ck |l < 2Maw(pr)pr < (2Mgw(pr) L™ ™)[[F(uo)[|/(1 = ¢) < oo [[F(ao)]]-
Reduce ||leg]| if necessary so that
2MZw(pr)
2.11 — c—c)/2
(211) et < (-
Finally, write

mi mi
D= |Gy (D ol | —Gy(u) | = | D abGn(ur—m,ti) — Gy (u?)

j=0 =0
to obtain

1Dkl < 20(pk) Mo maxo<j<m, [|€k—mi+
o(pr) M,
(2.12) < 220N may< oy, | (Wit
20 My 1 A
< S LM [P (w) .
Reduce ||eg]| if necessary to make
2J(pk)Ma ~
2.13 —— < (¢ —0¢)/2.
(213) T < (=0
This completes the proof since (2.11) and (2.13) imply that
IF ()| < A&l + ICk] + 1 Dx]l < L& [F(uo)]. 0

2.3. Approximations. If X is finite dimensional, as it will be for discretizations
of problems in function space, then part 2 of Assumption 2.1 may not hold. However,
as we illustrate in the examples in section 3, we will still have a small (but generally
nonzero) limsup o(t). We replace part 2 of Assumption 2.1 with
(2.14) limsupo(t) =7.

t—0
For any ¢ € (0,1) and & sufficiently small, we will still obtain r-linear convergence
with r-factor ¢ + 2. We summarize the results for Anderson(m) in the following
theorem.
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THEOREM 2.3. Let Assumptions 1.1, 1.2, and 2.1 hold with part 2 replaced by
(2.14) and

(2.15) 7 < min((l -9, (U;J\ZCM> 1/(1_Q)>

for some q € (0,1). Then if ||eo|| is sufficiently small, then the Anderson(m) iterations
converge and

: [[F (ug) | _
(2.16) lim sup ( < c+7? <1
k—oo  \ |[F(uo)l
Proof. We will reduce @ in the course of the proof. Set ¢ = ¢+ < 1. We can
then use the proof of Theorem 2.2 with very little change. We let L = (¢/¢)™, which
will play the role of L from the proof of Theorem 2.2.
We decompose the residual

F(upy1) = Ay + C + Dy,

and use the estimates (2.9) and (2.11) without change (reducing ||eq|| as needed).
The only difference is the estimate for Dy. Let ||eg|| be small enough so that
o(t) <27 for all t < ||eg||. We have, as before,

1Dk < (;*"ﬁ% Lé*|[F(uo) |

< i 2hyem Lt | F(o).

(1—c) cm

Then (2.15) implies that
4o M,

Ao ST2= (=02

This estimate completes the proof exactly as it did in the proof of Theorem 2.2.

The result for Anderson(1) is similar, and we omit the proof, which is essentially
the same as that for Theorem 2.3.

THEOREM 2.4. Let X be a Hilbert space with scalar product (-,-). Assume that
the optimization problem is solved in the norm of X. Let Assumptions 1.1 and 2.1
hold with part 2 replaced by (2.14). Let g € (0,1) be given. Then if G € (0, (1—c)'/9) is
sufficiently small and ug is sufficiently close to u*, the Anderson(1) residuals converge
g-linearly to u* with g-factor ¢ + @ in the sense that

, [F (up )|

(217) B S (g |

3. Examples. Our examples are compositions of nonsmooth substitution oper-
ators and nonlinear Hammerstein integral operators.

We let C' = C([0,1]) be the space of continuous functions on [0, 1] with the usual
L* norm and L? = L?([0,1]). We have two examples. The one in subsection 3.1 is
in L? and the other, in subsection 3.2, is in C.

We let g € C([0,1] x [0,1]) and let G be the integral operator given by

<c+79.

1
G(u)(x) = / oz, y)uy) dy.



ANDERSON ACCELERATION S13

In all the examples in this paper g is the Green’s function for the negative Laplacian in
one space dimension with zero boundary conditions. We discretize with the standard
second-order central difference scheme and realize the product of G with a vector via
a tridiagonal solver. We used a grid of N = 100 interior grid points and the composite
trapezoid rule for integration.
The important properties of G are that
e G is a bounded operator on L? and
e G is a bounded operator from L? to C:

1G(W)]loe < llglloollull2-

The maps in this section are compositions of nonsmooth substitution operators
and nonlinear integral operators of the form

1
(3.1) GI(U)(z):g(f(U))(I):/O 9(x,y) f(uly)) dy.

G maps L? to C if f(£) = O(|¢]) for large €| and is Fréchet differentiable if f’ is
bounded. In that case G (u) is the linear integral operator defined by

1
(G (wyw)(z) = / oz 9) f (uly)wly) dy.

G'; is a compact linear operator from L? to C.

Since f’ is bounded, f is Lipschitz continuous with Lipschitz constant L;. This
implies that G is a Lipschitz continuous map from L? to C. In fact, for u,v € L?
and z € [0,1], we may apply the Cauchy—Schwarz inequality to obtain

G1(w)(@) = G1()(@)] < llgllooLy [y luly) — v(y)|dy
(3.2)
< llglloc Lgllu = v]l2.

After integration of (3.2) we obtain

1G1(u) = Gr(v)lloo < llgllcoLsllu = vll2-

We consider nonsmooth substitution maps ¢ that are based on point evaluation.
Examples include
®(u)(z) = max(u(z) + b(x),0),
where b € C' is given. In general we assume the following.

Assumption 3.1. There is a real-valued function 8 and b € C such that
(3.3) ®(u)(x) = B(u(z) + b(x))

and S is Lipschitz continuous and differentiable except for finitely many points.

In our examples the function 8 will be differentiable except at one point.
If 8 is differentiable, then ® is defined and Fréchet differentiable on both C[0, 1]
and L2[0,1] if
o 18(6)] = O(l¢]) for |¢] large and
e (3’ is bounded.
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In that case the Fréchet derivative ®'(u) of ® at w is the operator of multiplication
by 8'(u+b) i.e.,
' (u)w(x) = B'(u(z) + b(z))w(®).

In the examples § is nondifferentiable only at w = 0 and is uniformly Lipschitz
continuously differentiable away from w = 0. We formalize this as the following.

Assumption 3.2. (8 is Lipschitz continuous with Lipschitz constant Lg. There is
g > 0 such that if © and v have the same sign, then

18" (u) — B'(v)] < yslu —vl.
For example, if S(u) = |u|, then 5 = 0.
3.1. A class of integral operators. We consider fixed-point maps of the form
(3.4) u=G(u) = ®(Gr(u)).

We will work in L? in this example. We use the fact that G; maps L? to C in the
analysis in a significant way.

We will assume that f is a real-valued Lipschitz continuously differentiable func-
tion and that f’ has Lipschitz constant ~¢.

We assume that Assumption 1.1 holds and that

B(p) = {ulllu —u*|2 <p} C B.
If p <pand u € B(p), then (3.2) implies that
1G1(u) = Gr(u)lloo < llglloo Lyl ="l < llgllocLsp = €(p)-

We can now construct the splitting. This will motivate the assumptions of our
convergence result. Let

Q, = {2 |[G1(w")(z) + b(x)] < 2¢(p)},

and let x, be the characteristic function of 2.
We define

Gy (u)(z) = x,(2)G(u)(z)
and
GS(u)(x) = G(u)(z) — G (u)(z) = (1 — X,(2))G(u) (2).

Suppose u € B(p). Then Gy(u)(x) + b(z) has the same sign as Gy(u*)(x) + b(z)
for all z € €27, the complement of €2,. This implies that G% is differentiable at u, and
for all w € L? and z ¢ Q,,,

(GS) (ww(x) = B/(Gr(u)(x) + b(x))(G5) (w)w)(z)

= B'(Gr(u)(x) + b(@)) i gz, y) f (uly))w(y) dy.

For z € Q,, (G%)'(u)w(z) = 0. Moreover, if v € B>(p), then

(3.5)

(3.6) (GS) () = (GG ()12 < sllgllocvsllu = vll2.
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As for the nonsmooth part, note that for z € [0, 1] we may use (3.2) to obain
IGR () (@) = GR(0)(@)] < xp(2)[2(Gr(u)(x)) — ©(G1(v)(2))]

< Xp(@) Lllglloc L sllu = vl]2-

Hence, using the Cauchy—-Schwarz inequality again,
1G% (1) = GR (V)2 < llglloe Ly Lpy/ 1(2p) lu = v]2,

because the L? norm of the characteristic function of Q, is \/u(Q,) where u is a
Lebesgue measure.

The critical assumption is the splitting method in [14, 17] is that the support of
nonsmoothness for ©* is small. In the setting of this paper, we assume that

T 41(€2,) = 0.
So we have the splitting with

a(p) = llglloc Ly L/ 1(8p) and w(p) = vslgllocs -

3.1.1. Norms in finite dimension. In the computations we must, of course,
approximate the integrals by quadratures. We use the composite trapezoid rule. A
more subtle point is that we must scale the norm so that discretizations of constant
functions have the same norm independently of N. Hence we use the discrete 2 norm

and ¢! norm
L
= 3l
j=1

Using the scaled norm does not matter in Anderson acceleration because the scaling is
irrelevant in the optimization problem and cancels in the relative residuals. However,
it does matter when computing the Lipschitz constant. In the example in subsection
3.1.2, Gr(u*)(x)+b(x) = 0 at only two points. For the approximate finite dimensional
problem, this means that the set €,, for p sufficently small, contains at most two
grid points. The correct computation of p(€2,) is to use the discrete L' norm, and,
therefore, to apply Theorem 2.3 to this example we would use

o< LfL[g\/Z/N.

3.1.2. Obstacle Bratu problem. The equation in this section is an integral
equation formulation of the obstacle Bratu problem [22]:

(3.7 u = min(AG(e"), a).
Here « is a given function of z. In the example here A =5 and

a(z) =1+ sin(27x) /2.
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The right side of Figure 3.1 is a plot of the solution and the upper bound. One
can see that the AG(e¥) is equal to a at only two points. The left of the plot is the
iteration history. We have tuned A to make Picard iteration perform poorly. The

Anderson(m) iterations for m = 1,2,3 perform equally well and significantly better
than Picard iteration.

10°& ;
—— Anderson(1)
====Anderson(2)
N —e— Anderson(3)
10—2 L W\ N = = Picard
[\ N
\ \
o \
\ \
= 4 \
10 N
w \ \
= A
- N\
w \
= 10%; U \
N
W \
i .
-8 L \ \
10 i
\
\
10.10 I I I I
0 5 10 15 20 25

iterations

Fic. 3.1. Ezample 1: Obstacle Bratu Problem.

TABLE 3.1
Convergence rates for the Bratu problem.

Picard Anderson 1 Anderson 2

Anderson 3
4.27¢-01  1.42e-01 1.14e-01

1.54e-01

We can quantify the observations in Figure 3.1 by estimating the r-factors for the
four methods. As we did in [3] we estimate the r-factor by

33) Omwwy@

[IF (uo) |

where k is the final iteration index. k varies over the method-problem combinations.
In Table 3.1 we see that the estimate rates are consistent with Figure 3.1.

3.2. Compositions of the form G = G(®). In this section we consider prob-
lems of the form

(3.9) u=G(u) =G(®(u)).
We can now construct the splitting. We do this via an example which readily

extends to the general case. We will solve the optimization problem in the L°° norm
for this example.

For this case we let

Q, = {x||u*(z) + b{x)| < 20}.
We define

Gmwm=égmwmww@:/gwmmwwumw

P Qp
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and

G4 (u) = G(u) — G (u) = /Q oz, 9)Buly) + b(y)) dy,

where f is the complement of Q, in [0, 1]. Suppose u € B>(p); then u(z) + b(z) has
the same sign as u*(z) 4 b(x) for all z € Qf. This implies that G is differentiable at
u and that for all w € C,

(3.10) (G2) (wyw = / o, 1) (u(y) + b(y))w(y) dy.

c
P

Moreover, if v € B*(p/2), then

(3.11) (G) () = (G%) (W)l < lgllscysllu = o

As for the nonsmooth part, note that

Gi(u) =Gy (v) = / 9(z,y)(B(uly) + b(y)) = B(v(y) +b(y))) dy.

Qp

So, by the Holder inequality,

1GR () =GR < llglleeLs fg, [uly) = v(y)] dy

< lglloe Lsn(2p) 1 = vlloo-

The critical assumption for the splitting method in [14, 17] is that the support of
nonsmoothness for ©* is small. In the setting for this paper, we assume that

lim () = 0.
We have constructed the splitting with

a(p) = llgllco Lppa(€2y) and w(t) = ||gl|ocvst-

The comments in subsection 3.1.1 are relevant here as well. In this case we need
the discrete measure of €, which converges to 0 as N — oo. In the example in
subsection 3.2, this set contains only one point, so

1
o< LiLg—.
0= Ly ’BN
3.2.1. Nonsmooth Dirichelet problem. The example, taken from [4], is
(3.12) — " = Amax(v — ,0), v(0) = vg,v(1) = v;.

In this problem the nonsmoothness is in the forcing term.

We convert (3.12) to a compact fixed-point problem by setting v = u + ¢, where
é(x) = viz + (1 — x)vy, letting G be the integral operator which inverts —d?/dx? with
zero boundary conditions and then multiplying the equation by G.

We obtain a nonlinear compact fixed-point problem:

u= G(u) = A\G(max(u + ¢ — ,0)).

In the numerical experiment we use central differences with 100 interior grid points
and solve the problem with Anderson(m) for m =0, 1,2, 3.
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In the computation we used vg = 1, v1 = .5, A = 11.65, and o = .8. The value of A
was tuned to make the contractivity constant large so that Picard iteration performed
very poorly.

We report two sets of results, one for L? optimization (Figure 3.2) and the other
(Figure 3.3) for L* optimization. We plot iteration histories and graphs of the solu-
tion v and —v”" = Amax(v—c, 0). The plot of —v” clearly shows that v" is nonsmooth
at the solution at only one point.

The L°° optimization problem can be expressed as a linear programming problem
[9]. We solved that with the CVX MATLAB software [11, 12]. We used the SeDuMi
solver and set the precision in cvx to high. Solving the optimization problem in
L? is much easier, requiring only the solution of a linear least squares problem. It is
temping to do the optimization problem in L? even though the theory requires an L™
optimization. In Figure 3.2 we do exactly that. On the right side of Figure 3.2 we
plot graphs of v and —v” = Amax(v — «,0). The plot of —v” clearly shows that v
is nonsmooth at the solution at only one point. On the left we plot the results using
an L? optimization rather than the L optimization that the theory requires.

In Figure 3.3 we use the L> norm for the optimization problem for the coefficients
and show on the left the residual norms in the L? norm to best compare the two
approaches. On the right we show the residual L°° norms. The figures show that
the results are very similar and that the norm used for the optimization makes little
difference.

We use (3.8) to estimate the r-factors for both L? and L*° optimization. The
estimates in Table 3.2 are consistent with the results in Figures 3.2 and 3.3. In
particular, we see that Picard is slowly convergent in this example and that there is
little difference between the two norms used for optimization.

TABLE 3.2
Convergence rates for the Dirichlet problem.

Picard Anderson 1  Anderson 2 Anderson 3
L? optimization

8.91e-01  2.34e-01 1.70e-01 1.56e-01
L°° optimization
8.91e-01  2.01e-01 1.77e-01 1.52e-01
10° 3 a
e T .
________ 257, \\
1072 Rl N
2 ‘\
\
10 1.5 \\

Anderson(1)
—-—=-Anderson(2)
—6— Anderson(3)

'| ]
i
! - - P 1 \ ,
108k i Picard ]
l‘ \
\ 05 '

108 ¢ 3 \

TRyl

. . . 05 . . . .
0 10 20 30 40 0 0.2 0.4 0.6 0.8 1

iterations

10710

FIG. 3.2. Ezample 2: Nonsmooth forcing term, L? optimization.
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Fic. 3.3. Example 2: Nonsmooth forcing term, L optimization.

4. Conclusions. In this paper we prove convergence of Anderson acceleration

for a class of nonsmooth fixed-point problems. Compositions of nonsmooth substitu-
tion operators and integral operators are examples of such problems. We illustrate
the theoretical results with examples.
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