
Neural Networks 132 (2020) 253–268

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

A direct approach for function approximation on data defined
manifolds

H.N. Mhaskar1

Institute of Mathematical Sciences, Claremont Graduate University, Claremont, CA 91711, United States of America

a r t i c l e i n f o

Article history:

Received 23 March 2020

Received in revised form 29 July 2020

Accepted 17 August 2020

Available online 25 August 2020

Keywords:

Manifold learning

Deep networks

Gaussian networks

Weighted polynomial approximation

a b s t r a c t

In much of the literature on function approximation by deep networks, the function is assumed to
be defined on some known domain, such as a cube or a sphere. In practice, the data might not
be dense on these domains, and therefore, the approximation theory results are observed to be too
conservative. In manifold learning, one assumes instead that the data is sampled from an unknown
manifold; i.e., the manifold is defined by the data itself. Function approximation on this unknown
manifold is then a two stage procedure: first, one approximates the Laplace–Beltrami operator (and
its eigen-decomposition) on this manifold using a graph Laplacian, and next, approximates the target
function using the eigen-functions. Alternatively, one estimates first some atlas on the manifold and
then uses local approximation techniques based on the local coordinate charts.

In this paper, we propose a more direct approach to function approximation on unknown, data
defined manifolds without computing the eigen-decomposition of some operator or an atlas for the
manifold, and without any kind of training in the classical sense. Our constructions are universal; i.e.,
do not require the knowledge of any prior on the target function other than continuity on the manifold.
We estimate the degree of approximation. For smooth functions, the estimates do not suffer from the
so-called saturation phenomenon. We demonstrate via a property called good propagation of errors
how the results can be lifted for function approximation using deep networks where each channel
evaluates a Gaussian network on a possibly unknown manifold.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

One of the main problems of machine learning is the following.
Given data {(yj, f (yj)+ϵj)}Mj=1, where f is an unknown function, yj’s
are sampled randomly from a probability distribution µ∗ defined
on a subset of RQ for some typically high dimension Q , and ϵj’s
are realizations of a mean zero random variable, find an approx-
imation P from a class Vn to f (Cucker & Smale, 2002; Cucker
& Zhou, 2007; Girosi & Poggio, 1990), where {Vn} is a nested
sequence of subsets of L2(µ∗). In practice, this approximation is
found by empirical risk minimization, assuming some prior on
f , such as that it belongs to some reproducing kernel Hilbert
space with a known kernel, or that it has a certain number of
derivatives, or that it satisfies some conditions on its Fourier
transform. To set up the minimization problem, one needs to
know in advance the complexity of the model P , typically, the
number of parameters desired to be estimated. In theory, the
usual way of estimating this number is to estimate the so called
approximation error, infP∈Vn Eµ∗ ((f −P)2). Necessarily, this results

E-mail address: hrushikesh.mhaskar@cgu.edu.
1 The research is supported in part by National Science Foundation, United

States of America grant DMS 2012355.

in a fundamental gap in the theory, namely, that the minimizer
of the empirical risk may have no connection with the minimizer
of the approximation error.

Since the fundamental problem is one of function approxima-
tion, it is natural to wonder if appropriate tools in approximation
theory can be developed in order to close this gap. One of the
difficulties in doing so is that most of the results in classical
approximation theory assume that the approximation takes place
on a known domain, such as the cube, or Euclidean space, or
sphere or similar known manifold. In turn, this requires that the
data should be dense on this domain; i.e., the domain should be
the (exact) support of µ∗. The problem is that µ∗ being unknown,
it is not possible to ensure this requirement.

During this century, manifold learning has sought to ame-
liorate the situation, with many practical applications. An early
introduction to this topic is in the special issue (Chui & Donoho,
2006) of Applied and Computational Harmonic Analysis, edited by
Chui and Donoho. In this theory, one assumes that the support
of µ∗ is an unknown smooth compact connected manifold; for
simplicity, even that µ∗ is the Riemannian volume measure for
the manifold, normalized to be a probability measure. Following,
e.g., Belkin and Niyogi (2003, 2004, 2008), Lafon (2004) and
Singer (2006), one constructs first a ‘‘graph Laplacian’’ from the

https://doi.org/10.1016/j.neunet.2020.08.018

0893-6080/© 2020 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.neunet.2020.08.018
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2020.08.018&domain=pdf
mailto:hrushikesh.mhaskar@cgu.edu
https://doi.org/10.1016/j.neunet.2020.08.018

254 H.N. Mhaskar / Neural Networks 132 (2020) 253–268

data, and finds its eigen-decomposition. It is proved in the above

mentioned papers that as the size of the data tends to infinity, the

graph Laplacian converges to the Laplace–Beltrami operator on

the manifold and the eigen-values (respectively, eigen-vectors)

converge to the corresponding quantities on the manifold. A

great deal of work is devoted to studying the geometry of this

unknown manifold (e.g., Jones, Maggioni, & Schul, 2010; Liao &

Maggioni, 2016), based on the so called heat kernel. The theory of

function approximation on such manifolds is also well developed

(e.g., Ehler, Filbir, & Mhaskar, 2012; Filbir & Mhaskar, 2011;

Maggioni & Mhaskar, 2008; Mhaskar, 2010, 2011).

All this work depends upon a two stage procedure — finding

the eigen-decomposition of the graph Laplacian and then us-

ing approximation in terms of the eigen-vectors/eigen-functions.

Once more, this leads to errors not just from the approximation

of the target function but also from the approximation of the

eigen-decomposition of the Laplace–Beltrami operator itself. In

recent years, there are some efforts to explore alternative ap-

proaches using deep networks (e.g., Chen, Jiang, Liao, & Zhao,

2019; Chui & Mhaskar, 2018b; Cloninger, Coifman, Downing, &

Krumholz, 2015; Schmidt-Hieber, 2019). These papers also take a

two-step approach: developing an atlas on the manifold first, and

then using some local approximation schemes based on the local

coordinate charts.

Our objective in this paper is to develop a single-shot method

to solve the problem, knowing only the dimension of the mani-

fold. In particular, we aim not to find any eigen-decomposition

nor to learn any atlas on the manifold, but to give a direct

construction that starts with the data and constructs an approx-

imation without involving any optimization/training and with

guaranteed approximation error estimated in a probabilistic

sense. Our approximation can be implemented as a Gaussian net-

work; i.e., a function of the form x ↦→
∑

k ak exp(−λ|x − yk|22,Q),
where |·|2,Q denotes the ℓ2 norm on R

Q . The size of the data

set required depends only on the dimension of the manifold and

the smoothness of the target function measured in a technical

manner as explained in this paper. We will extend our results to

approximation by deep Gaussian networks.

2. Technical introduction and outline

In this section, let us assume that the data yj is sampled from

some unknown manifold, uniformly with respect to the Rieman-

nian volume element of that manifold. One of the fundamental

results in manifold learning is the following theorem of Belkin

and Niyogi (2008).

Theorem 2.1. Let X be a smooth, compact, q-dimensional sub-

manifold of RQ , µ∗ be its Riemannian volume measure, normalized

by µ∗(X) = 1, and ∆ denote the Laplace–Beltrami operator on X.

Then for a smooth function f : X → R,

lim
t→0

1

t(4π t)q/2

∫

X

exp

(
−

|x − y|22,Q
t

)
(f (y) − f (x))dµ∗(y)

= ∆(f)(x) (2.1)

uniformly for x ∈ X, where |·|2,Q denotes the ℓ2 norm on R
Q .

Equivalently, uniformly for x ∈ X, we have
⏐⏐⏐⏐⏐

1

(4π t)q/2

∫

X

exp

(
−

|x − y|22,Q
t

)
(f (y) − f (x))dµ∗(y) − t∆(f)(x)

⏐⏐⏐⏐⏐
= o(t) (2.2)

as t → 0+.

From an approximation theory point of view, the theorem is
more of a saturation theorem for approximating f on X, anal-
ogous to the Voronovskaya estimates for Bernstein polynomials
(Lorentz, 2013, Section 1.6.1, See Appendix). Thus, (2.2) states
that the rate of approximation of f cannot be better than O(t),
even if f is infinitely differentiable, unless f is in the null space
of the Laplace–Beltrami operator. This is to be expected because
the Gaussian kernel involved is a positive operator. In particular,
this phenomenon holds even if X is a Euclidean space rather
than a manifold. Moreover, the curvature of the manifold con-
tributes to the saturation as well. The Gaussian kernel has many
advantages, invariance under translations and rotations is one of
the them. This plays a major role in the proof of Theorem 2.1.
Nevertheless, it is natural to ask whether another kernel can
be found that leads directly to the approximation of the target
function f on the manifold from the data without knowing the
manifold itself and without having to go through an expensive
eigen-decomposition. The curvature of the manifold will still
affect the rate of convergence, but when applied to an affine
space rather than a manifold, such a construction should lead
to approximation without any saturation, without knowing what
the affine space is (Remark 3.3).

The main objective of this paper is to demonstrate such a
construction using certain localized kernels based on Hermite
polynomials (Theorem 3.1). This theorem gives an analogue of
Theorem 2.1 to obtain function approximation on an unknown
manifold based only on noise-corrupted samples on the manifold,
and give estimates on the degree of approximation. In the case
when the approximation is done on an affine space rather than a
manifold, our construction is free of any saturation, and does not
need to know what the affine space is (Theorem 7.1).

To recapture the advantage of the Gaussian kernel, we will
study approximation by Gaussian networks. A (shallow) Gaussian
network with n neurons has the form x ↦→

∑n

k=1 ak exp(−λ
|x − yk|22,Q). A deep Gaussian network is constructed following
a DAG structure, where each node (referred to as ‘‘channel’’ in
the literature on deep learning) evaluates a Gaussian network.
Using the close connection between Hermite polynomials and
Gaussian networks (cf. Chui & Mhaskar, 2019; Mhaskar, 1996,
2004), we can translate the result about approximation on the
manifold into a result on approximation by shallow Gaussian
networks, where the input is assumed to lie on an unknown low
dimensional manifold of the nominally high dimensional ambi-
ent space (Theorem 5.1). In turn, using a property called ‘‘good
propagation of errors’’ (Theorem 5.2), we will ‘‘lift’’ this theorem
to estimate the degree of approximation by deep Gaussian net-
works, where each channel evaluates a Gaussian network on a
similarly manifold-based data (Theorem 5.3). The networks them-
selves are constructed from certain pre-fabricated networks in
the ambient space to approximate the Hermite functions with a
correspondingly high number of neurons. However, we will give
an explicit formula for such networks (Proposition 6.6), so that
there is no training required here. The amount of information
used in the final synthesis of the network will depend only on
the dimension of the manifold on which the input lives. We
consider this to be a step in bringing approximation theory of
deep networks closer to the practice, so that the results are
proved in the setting of approximation on unknown manifolds
analogous to diffusion geometry rather than on known domains.

The statement of the main results in this paper mentioned
above require a good deal of background information on the
theory of weighted polynomial approximation, which we defer
to Section 6. We will state the main results about approximation
on a manifold in Section 3, and illustrate them using a simple nu-
merical example in Section 4. We explain our ideas about shallow
and deep networks in Section 5. To develop the details required

H.N. Mhaskar / Neural Networks 132 (2020) 253–268 255

in the constructions and proofs, we start by summarizing the
relevant facts from the theory of weighted polynomial approx-
imation in Section 6. Of particular interest is the approximation
of a weighted polynomial using pre-fabricated Gaussian networks
whose weights and centers do not depend upon the polynomial,
as described in Section 6.3. Our main theorem in the context of
approximation on unknown affine spaces is stated and proved in
Section 7. The proofs of the results in Sections 3 and 5 are given
in Sections 8 and 9 respectively.

3. Approximation on manifolds

In this section, we state our main results on approximation
on manifolds. The details and motivations for these constructions
will be clearer after reading Sections 6 and 7. The notation on the
manifolds is described in Section 3.1, the results themselves are
discussed in Section 3.2.

3.1. Definitions

Let Q ≥ q ≥ 1 be integers, X be a q dimensional, com-
pact, connected, sub-manifold of R

Q (without boundary), with
geodesic distance ρ and volume measure µ∗, normalized so that
µ∗(X) = 1. We will identify the tangent space at x ∈ X with an
affine space Tx(X) in R

Q passing through x. For any x ∈ X, we
need to consider in this section three kinds of balls.

BQ (x, r) := {y ∈ R
Q : |x − y|2,Q ≤ r}, BT(x, r)

:= Tx(X) ∩ BQ (x, r), B(x, r) := {y ∈ X : ρ(x, y) ≤ r}.
(3.1)

With this convention, the exponential map Ex at x ∈ X (based
on the definition in (do Carmo Valero, 1992, Proposition 2.9)) is
a diffeomorphism of an open ball centered at x in Tx(X) onto its
image in X such that ρ(x, Ex(u)) = |u − x|2,Q . Since X is compact,
there exists ι∗ > 0 such that for every x ∈ X, Ex is defined on
BT(x, ι

∗), and ρ(x, Ex(u)) = |u − x|2,Q for all u ∈ BT(x, ι
∗).

We now define the smoothness class Wγ (X). If f , g : X → R,
the function fg : X → R is defined as usual by (fg)(x) =
f (x)g(x) for x ∈ X. The space C(X) is the space of all continuous
real-valued functions on X, equipped with the supremum norm
∥ ◦ ∥X. The space C∞(X) is the subspace of C(X) comprising all
infinitely differentiable functions on X. Let f ∈ C(X), γ > 0.
We say that f ∈ Wγ (X) if for every x ∈ X, and φ ∈ C∞(X),
supported on B(x, ι∗/2), the function Fx,φ : Tx(X) → R defined by
Fx,φ(u) := f (Ex(u))φ(Ex(u)) is in Wγ (Tx(X)) in the sense described
in Section 7 (See (6.44), (7.3), and (7.4)). We define

∥f ∥Wγ (X) := sup
x∈X,∥φ∥X≤1

∥Fx,φ∥Wγ (Tx(X)). (3.2)

If γ is an integer and f is γ times differentiable on X then f ∈
Wγ (X). The space Wγ (X) can contain functions which are not
differentiable. For example, we say that f ∈ Lip(X) if

∥f ∥Lip(X) := sup
x,y∈X,x̸=y

|f (x) − f (y)|
ρ(x, y)

< ∞.

We have Lip(X) ⊂ W1(X).
Next, we define the approximation operators. The orthonor-

malized Hermite polynomial hk of degree k is defined recursively
by

hk(x) :=
√

2

k
xhk−1(x) −

√
k − 1

k
hk−2(x), k = 2, 3, . . . ,

h0(x) := π−1/4, h1(t) :=
√
2π−1/4x. (3.3)

We write

ψk(t) := hk(t) exp(−t2/2), t ∈ R, k ∈ Z+. (3.4)

The functions {ψk}∞k=0 are an orthonormal set with respect to the
Lebesgue measure (cf. (6.1)). In the sequel, we fix an infinitely
differentiable function H : [0,∞) → [0, 1], such that H(t) = 1 if
0 ≤ t ≤ 1/2, and H(t) = 0 if t ≥ 1. We define for x ∈ R, m ∈ Z+:

Pm,q(x) :=

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

π−1/4(−1)m
√
(2m)!
2mm!

ψ2m(x), if q = 1,

1

π (2q−1)/4Γ ((q − 1)/2)

m∑

ℓ=0

(−1)ℓ

×
Γ ((q − 1)/2 + m − ℓ)

(m − ℓ)!

√
(2ℓ)!
2ℓℓ!

ψ2ℓ(x), if q ≥ 2,

(3.5)

and the kernel Φ̃n,q for x ∈ R, n ∈ Z+ by

Φ̃n,q(x) :=
⌊n2/2⌋∑

m=0

H

(√
2m

n

)
Pm,q(x). (3.6)

Constant convention:

In the sequel, c, c1, . . . will denote generic positive constants

depending upon the dimension and other fixed quantities in the dis-

cussion, such as the norm. Their values may be different at different

occurrences, even within a single formula. The notation A ∼ B means

c1A ≤ B ≤ c2B. ■

3.2. Approximation theorems

The traditional machine learning paradigm is to consider data
of the form {(yj, f (yj)+ ϵj)}, where yj’s are drawn randomly with
respect to µ∗ and ϵj’s are random, mean 0 samples from an
unknown distribution. More generally, we assume here a noisy
data of the form (y, ϵ), with a joint probability distribution τ and
assume further that the marginal distribution of y with respect to
τ has the form dν∗ = f0dµ

∗ for some f0 ∈ C(X). In place of f (y),
we consider a noisy variant F(y, ϵ), and denote

f (y) := Eτ (F(y, ϵ)|y). (3.7)

Remark 3.1. In practice, the data may not lie on a manifold, but
it is reasonable to assume that it lies on a tubular neighborhood of
the manifold. Our notation accommodates this — if z is a point in
a neighborhood of X, we may view it as a perturbation of a point
y ∈ X, so that the noisy value of the target function is F(y, ϵ),
where ϵ encapsulates the noise in both the y variable and the
value of the target function. An example is given in Example 4.1.

■

Our approximation process is simple: given by

F̂n,α(Y ; x) :=
nq(1−α)

M

M∑

j=1

F(yj, ϵj)Φ̃n,q(n
1−α|x − yj|2,Q), x ∈ R

Q ,

(3.8)

where 0 < α ≤ 1.
Our main theorem is the following.

Theorem 3.1. Let γ > 0, τ be a probability distribution on

X × Ω for some sample space Ω such the marginal distribution of

τ restricted to X is absolutely continuous with respect to µ∗ with

density f0 ∈ Wγ (X). We assume that

sup
x∈X,r>0

µ∗(B(x, r))

rq
≤ c. (3.9)

Let F : X × Ω → R be a bounded function, f defined by (3.7)
be in Wγ (X), the probability density f0 ∈ Wγ (X). Let M ≥ 1,

256 H.N. Mhaskar / Neural Networks 132 (2020) 253–268

Y = {(y1, ϵ1), . . . , (yM , ϵM)} be a set of random samples chosen i.i.d.

from τ . If

0 < α <
4

2 + γ
, α ≤ 1, (3.10)

then for every n ≥ 1, 0 < δ < 1 and M ≥ nq(2−α)+2αγ
√
log(n/δ),

we have with τ -probability ≥ 1 − δ:

̂Fn,α(Y ; ◦) − f0f

X

≤ c1

√
∥f0∥X∥F∥X×Ω + ∥f0f ∥Wγ (X)

nαγ
. (3.11)

We record two corollaries of Theorem 3.1 as separate theo-
rems. The first is the approximation of f itself, assuming that
f0 ≡ 1.

Theorem 3.2. With the set-up as in Theorem 3.1, let f0 ≡ 1 (i.e., the

marginal distribution of ywith respect to τ is µ∗). Then we have with

τ -probability ≥ 1 − δ:

̂Fn,α(Y ; ◦) − f

X

≤ c1
∥F∥X×Ω + ∥f ∥Wγ (X)

nαγ
. (3.12)

The second is a consequence analogous to Theorem 2.1.

Theorem 3.3. With the set-up as in Theorem 3.1, we have with

τ -probability ≥ 1 − δ:

nq(1−α)

M

M∑

j=1

(
F(yj, ϵj) − f (◦)

)
Φ̃n,q(n

1−α|◦ − yj|2,Q)


X

≤ c1

√
∥f0∥X∥F∥X×Ω + ∥f0f ∥Wγ (X)

nαγ
. (3.13)

Remark 3.2. To compare the estimate (3.13) with (2.2), which is
applicable with γ = 2, we are tempted to take any α ∈ (0, 1), set
t = n−2(1−α), and obtain the upper bound tA with A = α/(1 − α).
Clearly, this bound tends to 0 arbitrarily fast with t . However, the
estimate (2.2) uses a fixed kernel, while the estimate (3.13) uses
a kernel depending upon t . ■

Remark 3.3. Although the curvature of the manifold forces us
to put limitations on the rate of convergence in (3.12), this is
not a saturation phenomenon. Thus, it is not ruled out that the
rate can be much better than that given in (3.12) for non-trivial
functions. ■

Remark 3.4. If γ < 2, we may choose α = 1 without knowing
the value of γ . The formula (3.8) itself does not require any prior
knowledge of the smoothness of f . ■

4. Numerical example

We illustrate the theory using the following simple example.
We let X ⊂ R

3 to be the helix defined by

x(t) := (cos(π t), sin(π t), π t), 0 ≤ t ≤ 2π. (4.1)

This does not satisfy the conditions of the theorems in Section 3,
and we will see an ‘‘end point effect’’ in the errors, but we find it
easy to work with this example because of the ease in computing
the various quantities like the volume measure (arc-length) :
dµ∗ = (

√
8π2)−1dt . The target function f is given by

f (x(t)) := cos(x1(t) − x2(t) + x3(t)/2) = cos(cos(π t)

− sin(π t) − π t/2), 0 ≤ t ≤ 2π. (4.2)

Example 4.1. We consider data of the form

F(y, ϵ) := f (y + ϵ) exp(1.125), (4.3)

where ϵ is a random normal variable with mean 0 and standard
deviation 1.5. The factor exp(1.125) ensures that the expected
value of F is f . This example illustrates a multiplicative noise
as well as additive noise. We may also consider this to be an
example where every point y on the helix is perturbed by a
normal noise with mean 0 and standard deviation 1, although we
cannot deal directly with the perturbed points in the calculation
of F̂n,α . We took M = 256, n = 64, α = 1. The results are
reported in Fig. 1 on one trial, as well as the average of F̂n,α over
100 trials. ■

Example 4.2. We consider data of the form

F(y, ϵ) := f (y) + ϵ, (4.4)

where ϵ is a random normal variable with mean 0 and standard
deviation 0.3. We take M = 1024, and M samples of y distributed
uniformly according to µ∗. We take n = 64, α = 1, and compute
the quantity F̂64,1(Y , x) for x = x(t), where t ranges over 2048
equidistant points on [0, 2π]. The results are shown in Fig. 2. ■

5. Gaussian networks

In this section, we describe the consequences of Theorem 3.1
for Gaussian networks. In the case of shallow networks, we can
give an explicit construction and error bounds in Section 5.1. In
the case of deep networks (Section 5.2), we give only an existence
theorem, explaining when the theorem can be described more
constructively.

5.1. Shallow networks

Since Pm,q and hence Φ̃n,q are even polynomials of degree

< n2, Φ̃n,q(n
1−α|◦|2,Q) ∈ Π

Q
n . We will see in Remark 6.2 that

Φ̃n,q(n
1−α|◦|2,Q) = Φn,q,Q (0, n

1−α(◦)) for a polynomial kernel

Φn,q,Q on R
Q . We may then define a pre-fabricated Gaussian

network using (6.41)

G
∗
n,q,Q := GQ (Φn,q,Q (0, (n

1−α(◦)2,Q))). (5.1)

Using Corollary 6.2, we then deduce easily the following theorem
about Gaussian networks. We note again that there is no training
involved here. Even though the number of non-linearities in the
network in the following theorem is O(Mn2Q), this potentially
large number of non-linearities is not as much of a problem as
it would be if we were to use an optimization procedure to train
the network.

Theorem 5.1. Let (3.9) be satisfied, γ > 0, τ be a probability
distribution on X ×Ω for some sample space Ω such the marginal
distribution of τ restricted to X is ν∗ with dν∗ = f0dµ

∗ for some
f0 ∈ Wγ (X). Let F : X × Ω → R be a bounded function, and f
defined by (3.7) be in Wγ (X). Let 0 < δ < 1, α satisfy (3.10). Let
M ≥ 1, Y = {(y1, ϵ1), . . . , (yM , ϵM)} be a set of random samples
chosen i.i.d. from τ . If

M ≥ nq(2−α)+2αγ
√
log(n/δ) (5.2)

we have with τ -probability ≥ 1 − δ:
1

M

M∑

j=1

(
F(yj, ϵj) − f (◦)

)
G

∗
n,q,Q (◦ − yj)


X

≤ c1

√
∥f0∥X∥F∥X×Ω + ∥f0f ∥Wγ (X)

nαγ
. (5.3)

In particular, let

Gn,q,Q (Y ;F)(x) :=
1

M

M∑

j=1

F(yj, ϵj)G
∗
n,q,Q (x−yj), x ∈ R

Q . (5.4)

H.N. Mhaskar / Neural Networks 132 (2020) 253–268 257

Fig. 1. In all figures, black continuous line is the approximation, dashed line (red in color) is the target function (4.2). Left: Reconstruction without noise using

256 random training points, 2048 equidistant test points, Middle: Estimate in one trial, 256 random training points (dots, blue in color) according to (4.3), 2048

equidistant test points, Right: Average of the estimates in 100 trials, 256 random training points plus noise each, 2048 equidistant test points.

Fig. 2. With f and F as in (4.2) and (4.4) respectively, M = 1024, n = 64, α = 1. On the x axis are 2048 equidistant samples on [0, 2π]. Left: The function f in

dashed line (red in color), the sampled values F in dots (blue in color) for one trial, Middle: The function f in dashed line (red in color), the reconstruction F̂64,1
for one trial in black, Right: A cumulative histogram of errors over 50 trials, the point (p, y) signifies that the error is 0.3y at p% of the test data.

If f0 ≡ 1, we have with τ -probability ≥ 1 − δ:

Gn,q,Q (Y ;F) − f

X

≤ c1
∥F∥X×Ω + ∥f ∥Wγ (X)

nαγ
. (5.5)

5.2. Deep networks

The following discussion about the terminology about the

deep networks is based on (almost taken from) the discussion

in Mhaskar and Poggio (2016, 2020), and elaborates upon the

same. In particular, Fig. 3 is taken from the arxiv version of

Mhaskar and Poggio (2016).

A commonly used definition of a deep network is the follow-

ing. Let φ : R → R be an activation function; applied to a vector

x = (x1, . . . , xq), φ(x) = (φ(x1), . . . , φ(xq)). Let L ≥ 2 be an

integer, for ℓ = 0, . . . , L, let qℓ ≥ 1 be an integer (q0 = q),

Tℓ : Rqℓ → R
qℓ+1 be an affine transform, where qL+1 = 1. A deep

network with L− 1 hidden layers is defined as the compositional

function

x ↦→ TLφTL−1φ(TL−2 · · ·φ(T0(x)) · · ·). (5.6)

This definition has several shortcomings. First, it does not dis-

tinguish between a function and the network architecture. As

demonstrated in Mhaskar and Poggio (2020), a function may have

more than one compositional representation, so that the affine

transforms and L are not determined uniquely by the function it-

self. Second, this notion does not capture the connection between

the nature of the target function and its approximation. Third,

the affine transforms Tℓ define a special directed acyclic graph

(DAG). It is cumbersome to describe notions of weight sharing,

convolutions, sparsity, skipping of layers, etc. in terms of these

transforms. Therefore, we have proposed in Mhaskar and Poggio

(2016) to separate the architecture from the function itself, and

describe a deep network more generally as a directed acyclic
graph (DAG) architecture.

Let G be a DAG, with the set of nodes V ∪ S, where S is the set
of source nodes, and V that of non-source nodes. For each node
v ∈ V ∪ S, we denote its in-degree by d(v). Associated with each
v ∈ V ∪S is a compact, connected, Riemannian submanifold Xv of
R

d(v) with dimension qv , metric ρv and volume element µ∗
v . We

assume further that (3.9) is satisfied with qv in place of q. Each
of the in-edges to each node in V ∪ S represents an input real
variable. If v ∈ V , u ∈ V ∪ S, u is called the child of v if there is
an edge from u to v. The notion of the level of a node is defined
as follows. The level of a source node is 0. The level of v ∈ V is
the length of the longest path from the nodes in S to v.

Each node v is supposed to evaluate a function fv on its input
variables, supplied via the in-edges for v. The value of this func-
tion is propagated along the out-edges of v. Each of the source
nodes obtains an input from some smooth manifold as described
in Section 3. Other nodes can also obtain such an input, but by
introducing dummy nodes, it is convenient to assume that only
the source nodes obtain an input from the manifold.

Intuitively, we wish to say that the DAG structure implies a
compositional structure for the functions involved; for example,
if u1, . . . , ud(v) are children of v, then the function evaluated
at v is fv(fu1 , . . . , fud(v)). To make this meaningful, we have to
assume some ‘‘pooling’’ operation on the input variables to make
sure that the output of the vector valued function (fu1 , . . . , fud(v))
belongs to Xv . Thus, for example, if the domain of fv is the cube
[−1, 1]d(v), some clipping operation is required; if the domain is
the torus in d(v) dimensions then some standard substitutions
need to be made (e.g., Mhaskar & Poggio, 2020). We do not
know how to specify the pooling operation in the general case
of an unknown manifold, but assume that this pooling operation
πv : Rd(v) → Xv has the following property: For any two sets of

258 H.N. Mhaskar / Neural Networks 132 (2020) 253–268

Fig. 3. An example of a G-function (f ∗ given in (5.8)). The vertices of the DAG G

are the channels of the network. The input to the various channels is indicated

by the in-edges of the nodes, and the output of the sink node h19 indicates the

output value of the G-function, f ∗ in this example.

functions {fv ∈ C(Xv)}v∈V , {gv ∈ C(Xv)}v∈V ,

ρv
(
πv(fu1 (xu1), . . . , fud(v) (xud(v))), πv(gu1 (xu1), . . . , gud(v) (xud(v)))

)

≤ c(v)

d(v)∑

k=1

∥fuk − guk∥Xuk
, v ∈ V . (5.7)

A G-function is defined to be a set of functions {fv}v∈V∪S such

that each fv ∈ C(Xv), and if v ∈ V , u1, . . . , ud(v) are children of

v, then the function evaluated at v is fv(πv(fu1 , . . . , fud(v))). The

individual functions fv will be called constituent functions.

For example, the DAG G in Fig. 3 (Mhaskar & Poggio, 2016)

represents the compositional function

f ∗(x1, . . . , x9) = h19(h17(h13(h10(x1, x2, x3, h16(h12(x6, x7, x8, x9))),

h11(x4, x5)),

h14(h10, h11), h16),

h18(h15(h11, h12), h16)). (5.8)

The G-function is {h10, . . . , h19 = f ∗}.
We assume that there is only one sink node, v∗ (or v∗(G))

whose output is denoted by fv∗ (the target function). Technically,

there are two functions involved here: one is the final output

as a function of all the inputs to all source nodes, the other

is the final output as a function of the inputs to the node v∗.
We will use the symbol fv∗ to denote both with comments on

which meaning is intended when we feel that it may not be

clear from the context. A similar convention is followed with

respect to each of the constituent functions as well. For example,

in the DAG of Fig. 3, the function h15 can be thought of both as

a function of two variables, namely the outputs of h11 and h12 as

well as a function of six variables x4, . . . , x9. In particular, if each

constituent function is a neural network, h15 is a shallow network

receiving two inputs.

We define the notion of the variables ‘‘seen’’ by a node. If

u ∈ S, then these are the variables input to u. Let v ∈ V , and

u1, . . . , ud(v) be the children of v. If x1, . . . , xd(v) are the inputs

seen by u1, . . . , ud(v), then the inputs seen by v are (x1, . . . , xd(v)),
where the order is respected. For example, consider the function

f ∗(x1, x2, x3, x4) = f (f1(x1, x2), f2(x4, x2), f3(x3, x1)).

The inputs seen by the leaves f1, f2, f3 are (x1, x2), (x4, x2), (x3, x1)
respectively (not (x1, x2), (x2, x4), (x1, x3)). The inputs seen by f ∗

are (x1, x2, x3, x4).
The following theorem enables us to ‘‘lift’’ a theorem about

shallow networks to that about deep networks.

Theorem 5.2. Let G be a DAG as described above, {fv}v∈V∪S,

{gv}v∈V∪S be G-functions, and

∥fv − gv∥Xv ≤ ε, v ∈ V ∪ S. (5.9)

Further assume that for each v ∈ V , fv ∈ Lip(Xv), with L =
maxv∈V ∥fv∥Lip(Xv). Then for the target function, thought of as a

compositional function of all the input variables x to all the nodes in

S, we have

|fv∗ (x) − gv∗ (x)| ≤ c(L, G)ε. (5.10)

Theorem 5.2 allows us to lift Theorem 5.1 to deep networks. In
general, we do not know the constituent functions. Also, for any
given function and a DAG structure, it may not be possible to de-
vise an algorithm to find the constituent functions uniquely. For
example, (cos2 x)2 and (1/4)(1+cos(2x))2 both have the structures
g1(g2(x)) or f1(f2(x)), both representing the same DAG but with
different constituent functions. Thus, even if we may assume that
the noise occurs only in the approximation of the target function
at the sink node and not in the constituent functions, it seems
to be an extremely difficult problem to determine theoretically
for any target function what the optimal DAG structure and the
input/output for the constituent functions ought to be. Therefore,
we have to state our theorem for deep networks only as an
existence theorem, in the non-noisy case, not to complicate the
notations too much. We assume also that at each node v, the
input data is distributed according to the volume measure of Xv .

Theorem 5.3. Let G be a DAG as described above, {fv} be a

G-function, and we assume that each of the constituent functions

fv ∈ Wγ (Xv) ∩ Lip(Xv) for some γ > 0, α satisfies (3.10). Let
n ≥ 1. Then there exists a G-function {gv} such that each gv is a

Gaussian network constructed using O(nqv (2−α)+2αγ log n) samples

of its inputs, such that for any x seen by v∗,

|fv∗ (x) − gv∗ (x)| ≤ c(L, G)n−αγ . (5.11)

6. Background on weighted polynomials

6.1. Weighted polynomials

A good preliminary source of many identities regarding Her-
mite polynomials is the book (Szegö, 1975) of Szegö or the Bate-
man manuscript (Bateman, Erdélyi, Magnus, Oberhettinger, &
Tricomi, 1955).

We denote the class of all univariate algebraic polynomials
of degree < n by Pn. The orthonormalized Hermite polynomial
hk of degree k is defined recursively by (3.3). With ψk(x) =
hk(x) exp(−x2/2), one has the orthogonality relation for k, j ∈ Z+,
∫

R

ψk(x)ψj(x)dx =
{
1, if k = j,
0, if k ̸= j.

(6.1)

Using (3.3), it is easy to deduce by induction that

ψℓ(0) =

⎧
⎨
⎩
π−1/4(−1)ℓ/2

√
ℓ!

2ℓ/2(ℓ/2)!
, if ℓ is even,

0, if ℓ is odd,

(6.2)

H.N. Mhaskar / Neural Networks 132 (2020) 253–268 259

The Hermite polynomial hm has m real and simple zeros xk,m.

Writing

λk,m :=

⎛
⎝

m−1∑

j=0

hj(xk,m)
2

⎞
⎠

−1

, (6.3)

it is well known (cf. Szegö (1975, Section 3.4)) that

m∑

k=1

λk,mP(xk,m) =
∫

R

P(x) exp(−x2)dx, P ∈ P2m. (6.4)

It is also known (cf. Mhaskar (1996, Theorem 8.2.7), applied with

p = 2, b = 0) that

m∑

k=1

λk,m exp(x2k,m) ≤ cm1/2. (6.5)

The Mehler formula (Andrews, Askey, & Roy, 1999, Formula

(6.1.13)) states that

∞∑

j=0

ψj(y)ψj(z)w
j =

1√
π (1 − w2)

exp

(
2yzw − (y2 + z2)w2

1 − w2

)

× exp(−(y2 + z2)/2), y, z ∈ R, w ∈ C, |w| < 1. (6.6)

Next, we introduce and review the properties of Hermite poly-

nomials in the multivariate setting. We will need to use spaces

with many different dimensions. Therefore, in this section, we

will use the symbol d to denote a generic dimension, which will

be replaced later by q, Q , qv , etc.

If d ≥ 2 is an integer, we define Hermite polynomials on R
d

using tensor products. We adopt the notation x = (x1, . . . , xd).

The orthonormalized Hermite function is defined by

ψk(x) :=
d∏

j=1

ψkj (xj). (6.7)

In general, when univariate notation is used in multivariate con-

text, it is to be understood in the tensor product sense as above;

e.g., k! =
∏d

j=1(kj!), xk =
∏d

j=1 x
kj

j , etc. The notation |·|p,d will

denote the ℓp norm on R
d.

For any set A ⊂ R
d and f : A → R, we denote by C(A) the space

of all uniformly continuous and bounded functions on A, with the

norm ∥f ∥A = supx∈A |f (x)|. The space C0(A) is the subspace of all

f ∈ C(A) vanishing at infinity.

We will often use (without mentioning it explicitly) the fact

deduced from the univariate bounds proved in Askey andWainger

(1965) that

|ψk(x)| ≤ c. (6.8)

We will denote by Πd
n the span of {ψk :

√
|k|1,d < n} and by P

d
n

the space of all algebraic polynomials of total degree < n. Thus,

if P ∈ Πd
n , then P(x) = R(x) exp(−|x|22,d/2) for some R ∈ P

d

n2
. The

following proposition lists a few important properties of these

spaces (cf. Mhaskar, 1996, 2005, 2017).

Proposition 6.1. Let n > 0, P ∈ Πd
n .

(a) (Infinite–finite range inequality) For any δ > 0, there exists

c = c(δ) such that

∥P∥
Rd\[−

√
2n(1+δ),

√
2n(1+δ)]d ≤ c1e

−cn2∥P∥[−
√
2n(1+δ),

√
2n(1+δ)]d (6.9)

(b) (MRS identity) We have

∥P∥
Rd = ∥P∥[−

√
2n,

√
2n]d . (6.10)

(c) (Bernstein inequality) There is a positive constant B depending

only on d such that
|∇P|2,d


Rd ≤ Bn∥P∥

Rd . (6.11)

Let m ≥ 1. For a multi-integer j, 1 ≤ j ≤ m, we write

xj,m,d := (xj1,m, . . . , xjd,m), and λj,m,d :=
∏d

ℓ=1 λjℓ,m. We observe

further that if P1, P2 ∈ Πd
m, then P1(x)P2(x) = R(x) exp(−|x|2) for

some R ∈ P
d

2m2 . Therefore, (6.4) and (6.5) lead to the following
fact, which we formulate as a proposition.

Proposition 6.2. For m ≥ 1, we have
∑

1≤j≤m2

λj,m2,d exp(|xj,m2,d|22,d)P1(xj,m2,d)P2(xj,m2,d)

=
∫

Rd

P1(x)P2(x)dx, P1, P2 ∈ Πd
m, (6.12)

and
∑

1≤j≤m2

λj,m2,d exp(|xj,m2,d|22,d) ≤ cmd/2. (6.13)

6.2. Applications of Mehler identity

The Mehler identity for multivariate Hermite polynomials is
expressed conveniently by writing

Projm,d(x, y) :=
∑

|k|1,d=m

ψk(x)ψk(y). (6.14)

Using the univariate Mehler identity (6.6), it is then easy to
deduce that for w ∈ C, |w| < 1,

∑

k∈Zd

ψk(x)ψk(y)w
|k|1,d =

∞∑

m=0

wm
Projm,d(x, y)

=
1

(π (1 − w2))d/2

× exp

(
4wx · y − (1 + w2)(|x|22,d + |y|22,d)

2(1 − w2)

)

=
1

(π (1 − w2))d/2

× exp

(
−

1 + w

1 − w

|x − y|22,d
4

−
1 − w

1 + w

|x + y|22,d
4

)

=
1

(π (1 − w2))d/2

× exp

(
−

1 + w2

2(1 − w2)

⏐⏐⏐⏐x −
2w

1 + w2
y

⏐⏐⏐⏐
2

2,d

)

× exp

(
−

1 − w2

2(1 + w2)
|y|22,d

)
.

(6.15)

We note an identity (6.18) which follows immediately from (6.15)
by setting x = y = 0. For integer d (not necessarily positive), we
define the sequence Dd;r by

Dd;r

:=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

π−d/2(−1)r/2
Γ (1 − d/2)

Γ (1 − d/2 − r/2)(r/2)!
, if r is even, d ≤ 0,

π−d/2 Γ (d/2 + r/2)

Γ (d/2)(r/2)!
, if r is even, d ≥ 1,

0, if r is odd.

(6.16)

260 H.N. Mhaskar / Neural Networks 132 (2020) 253–268

This sequence is chosen so as to satisfy

π−d/2(1 − w2)−d/2 =
∞∑

r=0

Dd;rw
r , |w| < 1. (6.17)

Using the Mehler identity (6.15), we deduce that for any integer
d ≥ 1

∞∑

r=0

w2r
∑

|k|1,d=2r

|ψk(0)|2 = (π (1 − w2))−d/2

= π−d/2

∞∑

r=0

Γ (d/2 + r)

Γ (d/2)r!
w2r

=
∞∑

ℓ=0

Dd;ℓw
ℓ. (6.18)

In this section, we point out the invariance and localization
properties of certain kernels using the Mehler identity.

6.2.1. Rotation invariance

An interesting consequence of the Mehler identity is that the
projection Projm,d is invariant under rotations. For d ≥ 2 and any

x, y ∈ R
d, we may therefore use an appropriate rotation to write

Projm,d(x, y) =
m∑

j=0

Projj,2((|x|2,d, 0), (|y|2,d cos θ, |y|2,d sin θ))

×
∑

|k|1,d−2≤m−j

|ψk(0)|2, (6.19)

where cos θ = x · y/(|x| |y|), with obvious modifications if y = 0.
Hence, we obtain from (6.19) and (6.18) (used with d−2 in place
of d),

Projm,d(x, y) =
m∑

j=0

Projj,2((|x|2,d, 0), (|y|2,d cos θ, |y|2,d sin θ))

× Dd−2;m−j. (6.20)

In the case when d = 1, (6.19) takes the form

Projm,1(x, y) = ψm(|x|)ψm(|y| cos θ), (6.21)

where cos θ = xy/(|x| |y|) = sgn(xy), (sgn(0) = 0).
Let Q ≥ q ≥ 1 be integers. We can extend the definition of

Projm,q to x, y ∈ R
Q by

Projm,q,Q (x, y)

:=

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

m∑

j=0

Projj,2((|x|2,Q , 0), (|y|2,Q cos θ, |y|2,Q sin θ))Dq−2;m−j,

if q = 2,

ψm(|x|2,Q)ψm(|y|2,Q cos θ),

if q = 1.

(6.22)

The relationship between Projm,q,Q and Projm,Q , both defined

on R
Q is given by the following proposition.

Proposition 6.3. Let Q > q ≥ 2 be integers. Let m ≥ 0, and
x, y ∈ R

Q .

(a) We have

Projm,Q (x, y) = π (q−Q)/2

⌊m/2⌋∑

ℓ=0

(
(Q − q)/2 + ℓ− 1

ℓ

)

× Projm−2ℓ,q,Q (x, y). (6.23)

(b) We have

Projm,q,Q (x, y) = π (Q−q)/2

⌊m/2⌋∑

ℓ=0

(−1)ℓ
(
(Q − q)/2

ℓ

)
Projm−2ℓ,Q (x, y). (6.24)

Hence, Projm,q,Q (x, y) is a weighted polynomial in Π
Q
m as a function

of x and y.

(c) If x is a scalar multiple of y, then (6.23) and (6.24) both hold also

when q = 1.

Proof. In this proof, let x′ = (|x|2,Q , 0, 0, . . . , 0  
q−2 times

), y′ = (|y|2,Q cos

θ, |y|2,Q sin θ, 0, . . . , 0  
q−2 times

). In view of (6.19), we observe that

Projm,q,Q (x, y) = Projm,q(x
′, y′). (6.25)

Further, |x − y|2,Q = |x′ − y′|2,q, |x + y|2,Q = |x′ + y′|2,q. There-
fore, the Mehler identity (6.15) shows that

∞∑

m=0

wm
Projm,Q (x, y) =

1

(π (1 − w2))Q/2
exp

(
−

1 + w

1 − w

|x − y|22,Q
4

−
1 − w

1 + w

|x + y|22,Q
4

)

=
1

(π (1 − w2))(Q−q)/2

∞∑

m=0

wm
Projm,q(x

′, y′)

=
1

(π (1 − w2))(Q−q)/2

∞∑

m=0

wm
Projm,q,Q (x, y).

(6.26)

We now recall the McClaurin expansion for (1 − w2)−(Q−q)/2 (cf.
(6.17)), multiply the two power series using the Cauchy–Leibnitz
formula, and compare the coefficients to arrive at (6.23). Part (b)
is proved similarly by observing that

∞∑

m=0

wm
Projm,q,Q (x, y) = π (Q−q)/2(1 − w2)(Q−q)/2

∞∑

m=0

wm

× Projm,Q (x, y). (6.27)

If x is a scalar multiple of y, then sin θ = 0, so that x′ =
(|x|2,Q , 0, . . . , 0  

q−1 times

), y′ = (|y|2,Q cos θ, 0, . . . , 0  
q−1 times

). Part (c) is then

proved using the same calculations as above. ■

Remark 6.1. Clearly, for every x, y ∈ R
Q , Projm,Q ,Q (x, y) =

Projm,Q (x, y), Projm,q,Q (x, y) = Projm,q,Q (−x,−y) and the kernel
(x, y) ↦→ Projm,q,Q (0, x−y) is both rotation invariant and transla-
tion invariant. Using (6.19), (6.2), and (6.18) (used with d = q−1)
show that for all q ≥ 1 and m ∈ Z+, Proj2m−1,q,Q (0, x) = 0, and

Proj2m,q,Q (0, x) = Proj2m,q(0, x
′)

=
2m∑

j=0

ψj(|x|2,Q)ψj(0)
∑

|k|1,q−1≤2m−j

|ψk(0)|2

= Pm(|x|2,Q). ■ (6.28)

6.2.2. Localized kernels

In this section, we recall the localization properties of certain
kernels. In the sequel, H : [0,∞) → [0, 1] is a fixed, infinitely

H.N. Mhaskar / Neural Networks 132 (2020) 253–268 261

differentiable function, with H(t) = 1 if 0 ≤ t ≤ 1/2, H(t) = 0 if
t ≥ 1. All constants may depend upon H as well. We define

Φn,d(H; x, y) := Φn,d(x, y) :=
∑

k∈Zd
+

H

(√
|k|1,d
n

)
ψk(x)ψk(y)

=
n2∑

m=0

H

(√
m

n

)
Projm,d(x, y), x, y ∈ R

d. (6.29)

Using Mehler identity and the Tauberian theorem in Mhaskar
(2018, Theorem 4.3), we proved in Chui and Mhaskar (2018a,
Lemma 4.1) the following proposition.

Proposition 6.4. For n ≥ 1, x, y ∈ R
d, we have

|Φn,d(x, y)| ≤
cnd

max(1, (n|x − y|2,d)S)
. (6.30)

In particular,

|Φn,d(x, y)| ≤ cnd, (6.31)

and for 1 ≤ p < ∞,

sup
x∈Rd

∫

Rd

|Φn,d(x, y)|pdy ≤ cnd(p−1). (6.32)

We extend the definition of Φn,d as follows. Let Q ≥ q ≥ 1 be
integers. We define

Φn,q,Q (x, y) :=
∞∑

m=0

H

(√
m

n

)
Projm,q,Q (x, y), x, y ∈ R

Q .

(6.33)

Remark 6.2. In view of Remark 6.1, the kernel Φ̃n,q de-
fined in (3.6) satisfies Φ̃n,q(|x|2,Q) = Φn,q,Q (0, x). In particular,

Φ̃n,q(|◦|2,Q) ∈ ΠQ
n . ■

Proposition 6.5. Let S > Q ≥ q ≥ 2 be integers. The kernel

Φn,q,Q (x, y) ∈ Π
Q
n as a function of x and y. For x, y ∈ R

Q , n =
1, 2, . . .,

|Φn,q,Q (x, y)| ≤
cnq

max(1, (n|x − y|2,Q)S)
. (6.34)

In particular,

|Φn,q,Q (x, y)| ≤ cnq. (6.35)

If x is a scalar multiple of y, then

|Φn,1,Q (x, y)| ≤
cn

max(1, (n|x − y|2,Q)S)
, |Φn,1,Q (x, y)| ≤ cn.

(6.36)

Proof. Let x′, y′ be as in the proof of Proposition 6.3. Since
Φn,q,Q (x, y) = Φn,q(x

′, y′), this proposition follows directly from
Proposition 6.4. ■

Corollary 6.1. The kernel Φ̃n,q defined in (3.6) satisfies each of the

following properties.

|Φ̃n,q(|x|2,Q)|≤
cnq

max(1, (n|x|2,Q)S)
, x ∈ R

q, (6.37)

|Φ̃n,q(|x|2,Q)| ≤ cnq,

|Φ̃n,q(|x|2,Q) − Φ̃n,q(|y|2,Q)| ≤ cnq+1
⏐⏐|x|2,Q − |y|2,Q

⏐⏐ , x, y ∈ R
Q .

(6.38)

Proof. The estimate (6.37) and the first estimate in (6.38) follow
from Proposition 6.5 and the fact that Φ̃n,q(|x|2,Q) = Φn,q,Q (0, x).
The second estimate in (6.38) follows from the Bernstein in-
equality (6.11) applied with d = 1 to the univariate polynomial
Φ̃n,q. ■

6.3. From Hermite polynomials to Gaussian networks

We discuss in this section the close connection between Her-
mite polynomials and Gaussian networks.

Proposition 6.6. Let m ≥ 1, k ∈ Z
d
+, and for |k|1,d < m2, x ∈ R

d,

Gk,m,d(x) :=
(

3

2π

)d/2

3|k|1,d/2
∑

1≤j≤2m2

λj,2m2,d

× exp(3|xj,2m2,d|22,d/4)ψk(xj,2m2,d)

× exp

⎛
⎝−

⏐⏐⏐⏐⏐x −
√
3

2
xj,2m2,d

⏐⏐⏐⏐⏐

2

2,d

⎞
⎠ . (6.39)

Then

max
|k|1,d<m

ψk − Gk,m,d


Rd ≤ cmd−23−m2/2. (6.40)

Clearly, the number of neurons in the network Gk,m,d is O(m2d).

Proof. This proof is the same as that in Chui and Mhaskar
(2019, Lemma 4.2) and Mhaskar (2004, Lemma 4.1). Using the
last expression in (6.15) with w = 1/

√
3, we obtain

∑

k∈Zd
+

ψk(x)ψk(u)3
−|k|1,d/2 =

(
3

2π

)d/2

exp

⎛
⎝−

⏐⏐⏐⏐⏐x −
√
3

2
u

⏐⏐⏐⏐⏐

2

2,d

⎞
⎠

× exp(−|u|2/4).

In this proof, we denote by ν∗
m,d the measure that associates

the mass λj,2m2,d exp(|xj,2m2,d|22,d) with the point xj,2m2,d for 1 ≤
j1, . . . , jd ≤ 2m2. Therefore, using Proposition 6.2 with m

√
2 in

place of m, we obtain

ψk(x) = 3|k|1,d/2
(

3

2π

)d/2 ∫

Rd

exp

⎛
⎝−

⏐⏐⏐⏐⏐x −
√
3

2
u

⏐⏐⏐⏐⏐

2

2,d

⎞
⎠ψk(u)

× exp(−|u|2/4)dν∗
m,d(u)

−3|k|1,d/2
∫

Rd

∑

|j|1,d≥2m2

ψk(u)ψj(x)

×ψj(u)3
−|j|1,d/2dν∗

m,d(u).

The first term on the right hand side above is Gk,m,d. The second

term is estimated using (6.8) and (6.13) (applied with m
√
2 in

place of m) exactly as in the proof of Chui and Mhaskar (2019,
Lemma 4.2). We omit the details. ■

The following corollary is easy to deduce (cf. Mhaskar, 2004,
Proposition 4.1). If P =

∑
|k|1,d<m2 bkψk ∈ Πd

m, we define

Gd(P) :=
∑

|k|1,d<m2

bkGk,m,d. (6.41)

Corollary 6.2. Let m ≥ 1, P ∈ Πd
m. Then

∥P − Gd(P)∥Rd ≤ c1m
c3−m2/2∥P∥

Rd . (6.42)

262 H.N. Mhaskar / Neural Networks 132 (2020) 253–268

We note that the centers and the number of neurons in the network∑
|k|1,d<m2 bkGk,m,d are independent of P. In particular, the number

of neurons is O(m2d).

6.4. Function approximation

In this section, we describe some results on approximation of
functions on R

d. If f ∈ C0(R
d), we define its degree of approxima-

tion by

En(R
d; f) := min

P∈Πd
n

∥f − P∥
Rd . (6.43)

For γ > 0, the smoothness class Wγ (R
d) comprises f ∈ C0(R

d)
for which

∥f ∥Wγ (Rd) := ∥f ∥
Rd + sup

n≥0

2nγ E2n (R
d; f) < ∞. (6.44)

We need some results from Mhaskar (1996, 2003), reformulated
in the form stated in Theorem 6.1. To state this theorem, we need
some notation first. First, for δ ∈ (0, 1], x ∈ R

d, 1 ≤ k ≤ d, we
write

Q ′
k,δ(x) := min(δ−1, |xk|). (6.45)

For t > 0 and integer j ≥ 0, the forward difference of a function
f : Rd → R is defined by

∆
j

k,t (f)(x) :=
j∑

ℓ=0

(−1)j−ℓ
(
j

ℓ

)
f (x1, . . . , xk−1, xk + ℓt, xk+1, . . . , xd).

and for integers r ≥ 1

ωr (f , δ) :=
d∑

k=1

r∑

j=0

δr−j sup
|t|≤δ

∥(Q ′
k,δ)

r−j∆
j

k,t (f)∥Rd . (6.46)

Remark 6.3. If λ > 0, fλ(x) = f (x/λ), then ∆
j

k,t (fλ)(x) =
∆

j

k,t/λ(f)(x/λ), and Q ′
k,δ(x) = λQ ′

k,λδ(x/λ). Using the fact that
δ ↦→ δQk,δ(x) is non-decreasing for every x, it is not difficult to
deduce that

ωr (fλ, δ) =
d∑

k=1

r∑

j=0

δr−j sup
|t|≤δ

∥(Q ′
k,δ)

r−j∆
j

k,t (fλ)∥Rd

=
d∑

k=1

r∑

j=0

(λδ)r−j sup
|u|≤δ/λ

∥(Q ′
k,λδ)

r−j∆
j

k,u(f)∥Rd

≤ ωr (f ,max(λ, 1/λ)δ). (6.47)

Theorem 6.1. Let f ∈ C0(R
d), r ≥ 1, 0 < γ < r. Then

(a) For n ≥ 1,

En(R
d; f) ≤ cωr (f , 1/n). (6.48)

(b) The function f ∈ Wγ (R
d) if and only if ωr (f , δ) = O(δγ) for

0 < δ ≤ 1. In fact,

∥f ∥Wγ (Rd) ∼ ∥f ∥
Rd + sup

0<δ≤1

δ−γωr (f , δ). (6.49)

Proof. The theorem is already contained in the results in Mhaskar
(2003), but we need to reconcile notation and explain why.
In Mhaskar (2003, Formulas (42),(43)) we have defined a uni-
variate K -functional and a pre-modulus of smoothness for g(x) =
exp(|x|22,d/2)f (x) applied to the kth component of x, k = 1, . . . , d.
The K -functional obtained in this way is denoted in Mhaskar

(2003, Formula (21)) by Kr,k. Likewise, the quantity denoted by
ωr in Mhaskar (2003) is the kth summand of the right hand
side of (6.46). Our definition of Q ′

k,δ is slightly different from

that in Mhaskar (2003) (where it is defined to be min(δ−1, (1 +
x2k)

1/2)). However, our Q ′
k,δ as defined in (6.45) satisfies Q ′

k,δ ∼
min(δ−1, (1 + x2k)

1/2), Therefore, Mhaskar (2003, Theorem 5.1,
Proposition 4.5) lead to the statement of this theorem. ■

Remark 6.4. If γ = r + β , where r ≥ 0 is an integer and
0 < β ≤ 1, f ∈ C r

0(R
d) and satisfies

sup
|u|2,d≤δ

∥f (r)(◦ + u) − f (r)∥
Rd + δ

min(δ−1, |◦|2,d)f (r)

Rd ≤ c(f)δβ ,

(6.50)

for every derivative f (r) of order r , then ωr (f , δ) = O(δγ) for
0 < δ ≤ 1, and f ∈ Wγ (R

d). If f ∈ C r
0(R

d) is compactly supported,

and every derivative f (r) of order r satisfies

sup
|u|2,d≤δ

∥f (r)(◦ + u) − f (r)∥
Rd ≤ c(f)δβ ,

then f ∈ Wγ (R
d). In particular, if f is compactly supported and

satisfies a Lipschitz condition, then f ∈ W1(R
d), and therefore,

also f ∈ Wγ (R
d) for every γ ∈ (0, 1). ■

We define

σn(R
d; f)(x) :=

∫

Rq

Φn,d(x, y)f (y)dy, f ∈ C0(R
d), n > 0, x ∈ R

d.

(6.51)

The following proposition is routine to prove using Proposi-
tion 6.4:

Proposition 6.7. (a) If n > 0 and P ∈ Πd

n/
√
2
, then σn(R

d; P) = P.

(b) If f ∈ C0(R
d), n > 0, then

∥σn(Rd; f)∥
Rd ≤ c∥f ∥

Rd ,

En(R
d; f) ≤ ∥f − σn(R

d; f)∥
Rd ≤ cEn/

√
2(R

d; f). (6.52)

7. Approximation on affine spaces

In the sequel, we fix integers Q ≥ q ≥ 1.
Let Y be a q-dimensional affine subspace of R

Q , passing
through a point x0 ∈ R

Q . Then there exists a rotation operator
R on R

Q depending only on Y such that any point x ∈ Y can be
expressed in the form (with 0Q−q = (0, . . . , 0) ∈ R

Q−q)

x =: x0 + R(u, 0Q−q) u := u(x) := (u1(x), . . . , uq(x)). (7.1)

With an abuse of notation, we will write this as x = x0 + R(u).
In this section only, the function F : Rq → R is defined by

F (u) := f (x0 + R(u)) , (7.2)

we define

En(Y; f) := En(R
q; F). (7.3)

Similarly, if γ > 0, then f ∈ Wγ (Y) if F ∈ Wγ (R
q); i.e., f ∈ Wγ (Y)

if f ∈ C0(Y) and

∥f ∥Wγ (Y) := ∥F∥Wγ (Rq) < ∞. (7.4)

In terms of the points x = x0 + R(u, 0Q−q) ∈ Y, the class of
approximants of functions on Y have the form x ↦→ P(x) exp
(−|x − x0|2/2), where P ∈ P

Q

n2
. If we are interested only in

approximation on Y, we may decide to use some standard point,
such as the best approximation to 0 ∈ R

Q from Y. This section

H.N. Mhaskar / Neural Networks 132 (2020) 253–268 263

is meant to be preparatory to Section 8 where the results in this
section will be used with Y replaced by the tangent space Tx0 (X)
to a manifold X. With this goal in mind, our definition is more
natural. We note that if f is supported on a compact neighbor-
hood of x0, then F is supported on a compact neighborhood of 0 ∈
R

q. Therefore, for such functions, we may use Theorem 6.1 (and
Remark 6.4) with F and get the estimates where the constants do
not depend upon x0, although the space of approximants does.

Our goal in this section is to study the analogue of
Proposition 6.7 in the context of approximation on Y.

We denote the volume measure of Y by µY, and for f ∈ C0(Y),
λ > 0, x = x0 + R(u),

σn,λ(Y; f)(x) := σn,λ(x0,Y; f)(x)

:= λq
∫

Y

Φn,q,Q (λ(x − x0), λ(y − x0))f (y)dµY(y).

(7.5)

Theorem 7.1. Let Q ≥ q ≥ 1 be integers, Y be a q-dimensional

affine subspace of RQ , passing through x0 ∈ R
Q , f ∈ C0(Y), λ > 0.

Then
σn,λ(Y; f) − f


Y

≤ cEn/
√
2(Y; f (x0 + R((◦ − x0)/λ))). (7.6)

In particular, if γ > 0, f ∈ Wγ (Y), λ ≥ 1, then
σn,λ(Y; f) − f


Y

≤ c∥f ∥Wγ (Y)(λ/n)
γ . (7.7)

Here, all the constants are independent of λ.

Proof. Since the kernel Φn,q,Q is invariant under rotations, it is
easy to verify that for x = x0 + Ru ∈ Y,

σn,λ(Y; f)(x) =
∫

Rq

Φn,q(λu, v)F (v/λ)dv.

Hence, (7.6) follows from Proposition 6.7. The estimate (7.7)
follows from Remark 6.3. ■

8. Proofs of the theorems in Section 3

For any x ∈ X, we need to consider in this section three kinds
of balls, defined in (3.1):

BQ (x, r) := {y ∈ R
Q : |x − y|2,Q ≤ r}, BT(x, r) := Tx(X) ∩ BQ (x, r),

B(x, r) := {y ∈ X : ρ(x, y) ≤ r}.
Clearly, if r ≤ ι∗, then B(x, r) = Ex(BT(x, r)).

The following proposition is not difficult to prove using defi-
nitions and Taylor expansions (cf. Belkin & Niyogi, 2008). In this
section, we will simplify the notation to write du in place of
dµTx(X)(u).

Proposition 8.1. There exists a constant C∗ > 0 depending only on

X such that each of the following statements holds for every x ∈ X.

(a) We have
⏐⏐|x − Ex(u)|2,Q − ρ(x, Ex(u))

⏐⏐ =
⏐⏐|x − Ex(u)|2,Q − |x − u|2,Q

⏐⏐
≤ C∗ρ(x, Ex(u))

3, Ex(u) ∈ B(x, ι∗).

(8.1)

(b) If δ ≤ ι∗ then

|Ex(u) − u|2,Q ≤ C∗δ2, Ex(u) ∈ B(x, δ), (8.2)

(c) If δ ≤ ι∗ then∫

B(x,δ)

|dµ∗(Ex(u)) − du| ≤ C∗δq+2. (8.3)

Proof. In this proof only, let r be any geodesic passing through
x, parametrized by the arclength s from x, and g be the metric
tensor of X. Then, using the fact that |r′(s)|2,Q = 1, and r′(s) ·
r′′(s) = 0, it is easy to deduce using Taylor expansions that for
|s| ≤ ι∗,

||r(s) − x|22,Q − s2| ≤ cs4; i.e., 1 −
|r(s) − x|22,Q

s2
≤ cs2.

Since 1 − |r(s) − x|2,Q /s ≤ 1 − |r(s) − x|22,Q /s2, this proves (8.1).
The estimate (8.2) follows from the fact that r(s) = Ex(x + sr′(0))
and a simple estimate using Taylor theorem. The estimate (8.3)
follows from the well known fact that in exponential coordinates√
det(g) = 1 + O(δ2) in B(x, δ) if δ ≤ ι∗. ■

Corollary 8.1. There exists C∗
1 > 0 depending only on X such that

for every x, y ∈ X,

|x − y|2,Q ≤ ρ(x, y) ≤ C∗
1 |x − y|2,Q . (8.4)

In particular, for r > 0,

B(x, r) ⊆ BQ (x, r) ⊆ B(x, C∗
1 r), (8.5)

and (3.9) is equivalent to

sup
x∈X,r>0

µ∗(BQ (x, r))

rq
≤ c. (8.6)

Proof. In this proof only, let a = min((2C∗)−1/2, ι∗/2). Then for
ρ(x, y) ≤ a, (8.1) shows that

0 ≤ 1 −
|x − y|2,Q
ρ(x, y)

≤ C∗ρ(x, y)2 ≤ 1/2.

Therefore,

|x − y|2,Q ≤ ρ(x, y) ≤ 2|x − y|2,Q , if ρ(x, y) ≤ a. (8.7)

In this proof only, let A = {(x, y) ∈ X×X : ρ(x, y) ≥ a}. Then A is
a compact set and the function (x, y) ↦→ |x − y|2,Q /ρ(x, y), being
continuous on A, attains its (necessarily positive) minimum. Thus,
there exists c such that

|x − y|2,Q ≤ ρ(x, y) ≤ c|x − y|2,Q , if ρ(x, y) ≥ a.

Together with (8.7), this leads to (8.4), and hence to (8.5). ■

To motivate the construction of the operator for approxima-
tion, our idea is to transfer the target function locally at each
point to the tangent space at that point. Therefore, we use the
operator defined as in Section 7. In the present situation, at any
point x at which the approximation is desired, the affine space
passes through the point x itself, which plays the dual role of x0 in
Section 7. While there is only one parameter t in Theorem 2.1, our
construction allows us to have two parameters to control localiza-
tion: the parameter n controlling the degree of the polynomials
involved and an additional parameter to control scaling. Recalling
that Φn,q,Q (x, y) = Φn,q,Q (−x,−y) we can define our operator as
a convolution as follows.

σn,λ(X; f)(x) := λq
∫

X

Φn,q,Q (0, λ(y − x))f (y)dµ∗(y)

= λq
∫

X

Φ̃n,q,Q (λ|x − y|2,Q)f (y)dµ∗(y). (8.8)

Our first theorem is the analogue of Theorem 7.1 when X is a
manifold instead of an affine space.

Theorem 8.1. Let γ > 0, f ∈ Wγ (X), 0 < α ≤ 1, α < 4/(γ + 2).
Then for n ≥ 1, λ = n1−α ,

∥f − σn,λ(X; f)∥X ≤ cn−αγ ∥f ∥Wγ (X). (8.9)

264 H.N. Mhaskar / Neural Networks 132 (2020) 253–268

It is convenient to summarize some details of the proof of this
theorem in the form of the following lemma.

Lemma 8.1. Let x ∈ X, g ∈ C(X) be supported on B(x, ι∗/8),
G(u) = g(Ex(u)), γ > 0, 0 < α ≤ 1, α < 4/(γ + 2). Then for

n ≥ 1, λ = n1−α ,
⏐⏐⏐⏐λq

∫

X

Φ̃n,q(λ|x − y|2,Q)g(y)dµ∗(y)

−λq
∫

Tx(X)

Φ̃n,q(λ|x − u|2,Q)G(u)du
⏐⏐⏐⏐ ≤ cn−αγ ∥g∥X, (8.10)

where G is extended outside BT(x, ι
∗/8) as a zero function.

Proof. First, we summarize our choices of various parameters. In
this proof only, let

δ = n−((2−α)(q+1)+αγ)/(q+3),

so that for sufficiently large n,

δ < min(1, ι∗/6), nq+1λq+1δq+3 = n−αγ ,

nλδ = n(4−αγ−2α)/(q+3) ↑ ∞. (8.11)

We choose

S ≥
(q(2 − α) + αγ + 1)(q + 3)

4 − αγ − 2α
, (⇒ nqλq(nλδ)−S ≤ n−αγ−1).

(8.12)

We now assume further that n is large enough so that with C∗ as
in Proposition 8.1, C∗δ2 ≤ δ/2.

Next, we summarize the implications of our choices on the
distances on the manifold, tangent space, and the ambient space.

If y ∈ B(x, ι∗/8) ∩ BQ (x, δ), u ∈ Tx(X), y = Ex(u), then (8.2)
shows that

|x − u|2,Q ≤ |x − y|2,Q + |Ex(u) − u|2,Q ≤ δ + C∗δ2

≤ (3/2)δ, ρ(x, y) ≤ 3δ < ι∗/2. (8.13)

Thus,

Eδ := E
−1
x (B(x, ι∗/8) ∩ BQ (x, δ)) ⊆ BT(x, 3δ/2). (8.14)

If u ∈ BT(x, ι
∗/8) then Ex(u) is well defined. If u ∈ BT(x, ι

∗/8)\Eδ ,
then (8.2), (8.1) show that

|x − u|2,Q ≥ |x − Ex(u)|2,Q − |Ex(u) − u|2,Q ≥ δ − C∗δ2 ≥ δ/2.

(8.15)

With this preparation, we are now ready to start with the main
estimates. Without loss of generality, we assume that ∥g∥X = 1.
Since g is supported on B(x, ι∗/8), we find that (cf. (8.12), (6.37))
∫

X\BQ (x,δ)

|Φ̃n,q(λ|x − y|2,Q)g(y)|dµ∗(y)

=
∫

B(x,ι∗/8)\BQ (x,δ)

|Φ̃n,q(λ|x − y|2,Q)g(y)|dµ∗(y)

≤ cnq(nλδ)−S ≤ cn−αγ−1λ−q. (8.16)

Using (6.38) and (8.1), we deduce that for y = Ex(u) ∈
B(x, ι∗/8) ∩ BQ (x, δ),

|Φ̃n,q(λ|x − Ex(u)|2,Q) − Φ̃n,q(λ|x − u|2,Q)|
≤ cnq+1λ

⏐⏐|x − Ex(u)|2,Q − |x − u|2,Q
⏐⏐ ≤ nq+1λδ3. (8.17)

The estimates (8.13) and (3.9) lead further to
⏐⏐⏐⏐⏐

∫

B(x,ι∗/8)∩BQ (x,δ)

dµ∗(y) −
∫

Eδ

du

⏐⏐⏐⏐⏐ ≤
⏐⏐⏐⏐
∫

Eδ

|dµ∗(Ex(u)) − du|
⏐⏐⏐⏐ ≤ cδq+2.

(8.18)

In view of (8.11), (8.17) and (8.18), we deduce that
⏐⏐⏐⏐⏐

∫

B(x,ι∗/8)∩BQ (x,δ)

Φ̃n,q(λ|x − y|2,Q)g(y)dµ∗(y)

−
∫

Eδ

Φ̃n,q(λ|x − u|2,Q)G(u)du

⏐⏐⏐⏐⏐

=

⏐⏐⏐⏐⏐

∫

Eδ

Φ̃n,q(λ|x − Ex(u)|2,Q)G(u)dµ∗(Ex(u))

−
∫

Eδ

Φ̃n,q(λ|x − u|2,Q)G(u)du

⏐⏐⏐⏐⏐

≤
⏐⏐⏐⏐
∫

Eδ

(
Φ̃n,q(λ|x − Ex(u)|2,Q) − Φ̃n,q(λ|x − u|2,Q)

)
G(u)du

⏐⏐⏐⏐
+cnqδq+2

≤ cnq+1λδq+3 = cn−αγ λ−q. (8.19)

The localization estimate (6.37) shows (cf. (8.12)) that
⏐⏐⏐⏐
∫

Tx(X)\BT(x,ι∗/8)
Φ̃n,q(λ|x − u|2,Q)G(u)du

⏐⏐⏐⏐ ≤ cnq(nλ)−S

≤ cn−αγ−1λ−q. (8.20)

Invoking the localization estimate (6.37) and (8.11), (8.15)
again, we deduce that
⏐⏐⏐⏐
∫

BT(x,ι
∗/8)\Eδ

Φ̃n,q(λ|x − u|2,Q)G(u)du
⏐⏐⏐⏐ ≤ cnq(nλδ)−S

≤ cn−αγ−1λ−q. (8.21)

The estimates (8.16), (8.19), (8.20) and (8.21) lead to (8.10). ■

We are now in a position to prove Theorem 8.1.

Proof of Theorem 8.1. Let x ∈ X. Let φ ∈ C∞(X) be chosen so
that φ(y) = 1 if y ∈ B(x, ι∗/16), φ(y) = 0 if y ∈ X \ B(x, ι∗/8),
and 0 ≤ φ(y) ≤ 1 for y ∈ X. Then the function f φ is supported
on B(x, ι∗/8), and hence, the function F : Tx(X) → R defined by
F (u) := f (Ex(u))φ(Ex(u)) is in Wγ (Tx(X)). Clearly,

∥F∥Tx(X) ≤ ∥f ∥X, ∥F∥Wγ (Tx(X)) ≤ ∥f ∥Wγ (X).

We choose S > q+ (αγ +1)/(2−α), and write a = ι∗/(16C∗
1),

where C∗
1 is the constant defined in Corollary 8.1. Then, the

inclusion (8.5) and the localization property (6.37) show that

⏐⏐⏐⏐
∫

X

Φ̃n,q(λ|x − y|2,Q) (1 − φ(y))f (y)dµ∗(y)

⏐⏐⏐⏐

=
⏐⏐⏐⏐
∫

X\B(x,ι∗/16)
Φ̃n,q(λ|x − y|2,Q)(1 − φ(y))

× f (y)dµ∗(y)

⏐⏐⏐⏐

≤
∫

X\BQ (x,a)

⏐⏐Φ̃n,q(λ|x − y|2,Q)(1 − φ(y))

× f (y)
⏐⏐ dµ∗(y)

≤ cnq−Sn−(1−α)S∥f ∥X ≤ cn−αγ−1λ−q∥f ∥X.

(8.22)

H.N. Mhaskar / Neural Networks 132 (2020) 253–268 265

In view of Lemma 8.1,

⏐⏐⏐⏐
∫

X

Φ̃n,q(λ|x − y|2,Q)φ(y)f (y)dµ∗(y)

−
∫

Tx(X)

Φ̃n,q(λ|x − u|2,Q)F (u)du
⏐⏐⏐⏐ ≤ cn−αγ λ−q∥f ∥X, (8.23)

so that
⏐⏐⏐⏐
∫

X

Φ̃n,q(λ|x − y|2,Q)f (y)dµ∗(y) −
∫

Tx(X)

Φ̃n,q(λ|x − u|2,Q)F (u)du
⏐⏐⏐⏐

≤ cn−αγ λ−q∥f ∥X. (8.24)

Since F (x) = f (x), (7.7) in Theorem 7.1 now shows that

⏐⏐⏐⏐λq
∫

X

Φ̃n,q(λ|x − y|2,Q)f (y)dµ∗(y) − f (x)

⏐⏐⏐⏐
≤ c(n/λ)−γ ∥F∥Wγ (Tx(X)) ≤ cn−αγ ∥f ∥Wγ (X). (8.25)

This proves (8.9). ■

Our next objective in this section is to obtain the following
discretization of Theorem 8.1 based on noise-corrupted random
samples of f as in Theorem 3.1.

The proof of Theorem 3.1 is included in that of the following
theorem, together with Theorem 8.1 applied with f0f in place of f .

Theorem 8.2. We assume the setup as in Theorem 3.1. Then for

every n ≥ 1 and M ≥ nq(2−α)+2αγ log(n/δ) we have with λ = n1−α ,

Probτ

(̂Fn,α(Y ; ◦) − σn,λ(X; f0f)

RQ ≥ c

√
∥f0∥X∥F∥X×Ωn−αγ

)

≤ δ. (8.26)

The proof of Theorem 8.2 requires some preparation. We start
with the following concentration inequality (Boucheron, Lugosi,
& Massart, 2013, Section 2.7).

Proposition 8.2 (Bernstein Concentration Inequality). Let Z1, . . . , ZM
be independent real valued random variables such that for each

j = 1, . . . ,M, |Zj| ≤ R, and E(Z2
j) ≤ V . Then for any t > 0,

Prob

⎛
⎝
⏐⏐⏐⏐⏐⏐
1

M

M∑

j=1

(Zj − E(Zj))

⏐⏐⏐⏐⏐⏐
≥ t

⎞
⎠ ≤ 2 exp

(
−

Mt2

2(V + Rt/3)

)
.

(8.27)

In order to apply Proposition 8.2, we need to estimate the
second moment of F(y, ϵ)Φ̃n,q,Q (λ|x − y|2,Q) = F(y, ϵ)Φn,q,Q (0,

λ(x − y)) for every x ∈ R
Q . This is done in the following lemma.

Lemma 8.2. We have

λ2q sup
x∈RQ

∫

X×Ω
|F(y, ϵ)Φn,q,Q (0, λ(x − y))|2dτ (y, ϵ)

≤ c(nλ)q∥F∥2
X×Ω∥f0∥X. (8.28)

Proof. Let x ∈ R
Q . We need only to estimate

∫

X×Ω

⏐⏐F(y, ϵ)Φn,q,Q (0, λ(x − y))
⏐⏐2 dτ (y, ϵ)

≤ ∥F∥2
X×Ω∥f0∥X

∫

X

Φn,q,Q (0, λ(x − y))2dµ∗(y). (8.29)

Using Proposition 6.3 and (8.6), and keeping in mind that λ ≥ 1,
we deduce that∫

X

Φn,q,Q (0, λ(x − y))2dµ∗(y)

=
∫

X∩BQ (x,1/(nλ))

Φn,q,Q (0, λ(x − y))2dµ∗(y)

+
∞∑

k=0

∫

X∩(BQ (x,2k+1/(nλ))\BQ (x,2k/(nλ)))

Φn,q,Q (0, λ(x − y))2dµ∗(y)

≤ cn2q

{
µ∗(BQ (x, 1/(nλ))) +

∞∑

k=0

2−2kS

×µ∗(BQ (x, 2
k+1/(nλ)) \ BQ (x, 2

k/(nλ)))

}

≤ cnqλ−q

{
1 +

∞∑

k=0

2−k(2S−q)

}
≤ cnqλ−q. ■

The proof of Theorem 8.2 requires an estimation of a quantity
of the form

sup
y1,...,yM∈X


λq

M

M∑

j=1

F(yj, ϵj)Φn,q,Q (0, λ(◦ − yj)) − σn,λ(X; f0f)


RQ

in terms of the maximum of the function involved at finitely
many points. The following lemma accomplishes this by consid-
ering the difference between two measures on X: one that asso-
ciates the mass (1/M)F(yj, ϵj) with each yj, and other given by
f (y)dν∗(y) = f (y)f0(y)dµ

∗(y). We will denote the total variation
of a measure ν by |||ν|||TV . The total variation of the difference be-
tween the two measures mentioned above is clearly ≤ 2∥F∥X×Ω .

Lemma 8.3. Let S > Q + 2, λ be as in Theorem 8.1. There exist

c∗ = c∗(S) > 0 and a finite set D∗ ⊂ R
Q with |D∗| ∼ nc∗ such that

for any measure ν on X,λq
∫

X

Φn,q,Q (0, λ(◦ − y))dν(y)


RQ

≤ max
x∈D∗

⏐⏐⏐⏐λq
∫

X

Φn,q,Q (0, λ(x − y))dν(y)

⏐⏐⏐⏐+ cn−S |||ν|||TV . (8.30)

Proof. We assume n to be large enough so that X ⊂ [−
√
2n,√

2n]Q . Then Proposition 6.5 (used with 2S in place of S) shows
that

sup
x∈RQ \[−2n,2n]Q

⏐⏐⏐⏐
∫

X

Φn,q,Q (0, λ(x − y))dν(y)

⏐⏐⏐⏐ ≤ cnQ−2S |||ν|||TV

≤ cn−S |||ν|||TV . (8.31)

Therefore,
∫

X

Φn,q,Q (0, λ(◦ − y))dν(y)


RQ

≤ sup
x∈[−2n,2n]Q

⏐⏐⏐⏐
∫

X

Φn,q,Q (0, λ(x − y))dν(y)

⏐⏐⏐⏐+ cn−S |||ν|||TV . (8.32)

Next, we observe that for any y ∈ R
Q

∇x

(
Φn,q,Q (0, λ(x − y))

)
= λ

(
∇xΦn,q,Q (0, ◦)

)
(λ(x − y)).

Therefore, for any x ∈ R
Q ,⏐⏐⏐⏐∇x

(∫

X

Φn,q,Q (0, λ(x − y))dν(y)

)⏐⏐⏐⏐

≤ λ

∫

X

⏐⏐(∇xΦn,q,Q (0, ◦)
)
(λ(x − y))

⏐⏐ d|ν|(y).

266 H.N. Mhaskar / Neural Networks 132 (2020) 253–268

Using the Bernstein inequality Proposition 6.1(c), we conclude
that

sup
x∈RQ

⏐⏐⏐⏐∇x

(∫

X

Φn,q,Q (0, λ(x − y))dν(y)

)⏐⏐⏐⏐ ≤ cnq+1λ|||ν|||TV

= cnq+2−α|||ν|||TV .

and hence, for any x, z ∈ R
Q ,

⏐⏐⏐⏐λq
∫

X

Φn,q,Q (0, λ(x − y))dν(y) − λq
∫

X

Φn,q,Q (0, λ(z − y))dν(y)

⏐⏐⏐⏐
≤ cn(q+1)(2−α)|||ν|||TV |x − z|∞,Q . (8.33)

We now let D∗ be a finite subset of [−2n, 2n]Q such that

max
x∈[−2n,2n]Q

min
z∈D∗

|x − z|∞,Q ≤ n−(q+1)(2−α)−S, (8.34)

and observe that |D∗| ∼ nQ ((q+1)(2−α)+S). The estimate (8.30) is
easy to deduce using (8.32), (8.33), and (8.34). ■

With this preparation, we now prove Theorem 8.2, and hence,
Theorem 3.1.

Proof of Theorem 8.2 (and Theorem 3.1). Let x ∈ R
Q . We

consider the random variables

Zj(x) = λqF(yj, ϵj)Φn,q,Q (0, λ(x − yj)). (8.35)

It is easy to verify using Fubini’s theorem that if F is integrable
with respect to τ then for any x ∈ R

Q ,

Eτ (λ
q
F(y, ϵ)Φn(0, λ(x − y))) = σn,λ(X; f0f)(x). (8.36)

The estimate (6.35) implies that |Zj| ≤ c(nλ)q∥F∥X×Ω . Further,
Lemma 8.2 yields Eτ (Z

2
j) ≤ c(nλ)q∥F∥2

X×Ω∥f0∥X. Therefore, we
deduce using Proposition 8.2 that for any t ∈ (0, 1),

Probτ

⎛
⎝
⏐⏐⏐⏐⏐⏐
1

M

M∑

j=1

Zj(x) − σn,λ(X; f0f)(x)

⏐⏐⏐⏐⏐⏐
≥ t∥F∥X×Ω∥f0∥X/2

⎞
⎠

≤ 2 exp

(
−c

M∥f0∥Xt
2

(nλ)q

)
. (8.37)

In view of Lemma 8.3, we have for S ≥ Q + 2 + αγ ,

Probτ

⎛
⎝

1

M

M∑

j=1

Zj − σn,λ(X; f0f)


RQ

≥ t∥F∥X×Ω∥f0∥X

+c2n
−S∥F∥X×Ω

⎞
⎠ ≤ c1n

c∗
exp

(
−c

M∥f0∥Xt
2

(nλ)q

)
. (8.38)

We recall that nλ = n2−α and choose

t = c3

√
nq(2−α)

M∥f0∥X

log(n/δ)

for a suitable constant to make the right hand side of (8.38) to be
≤ δ, to obtain

Probτ

⎛
⎝

1

M

M∑

j=1

Zj − σn,λ(X; f0f)


RQ

≥ c2∥F∥X×Ω

(√
nq(2−α)∥f0∥X

M
log(n/δ) + n−S

))
≤ δ. (8.39)

We now observe that since 1 =
∫
X
f0dµ

∗, and µ∗(X) = 1,

∥f0∥X ≥ 1. Therefore, choosing M ≥ nq(2−α)+2αγ
√
log(n/δ), we

arrive at (8.26). ■

Theorem 3.2 is obtained immediately from Theorem 3.1 by
setting f0 ≡ 1. To obtain Theorem 3.3, we use Theorem 3.1 once
as stated and again with F(Y ; ◦) ≡ 1 to get an approximation
to f0.

9. Proof of the theorems in Section 5

Proof of Theorem 5.1. Theorem 5.1 follows easily from
Theorem 8.2 and Corollary 6.2.

Proof of Theorem 5.2. Let v ∈ V , and u1, . . . , ud(v) be the
children of v, and x1, . . . , xd(v) be the inputs seen by these in that
order. Let x be the corresponding input seen by v. Then using the
Lipschitz condition on fv and the property (5.7), we obtain

|fv(x) − gv(x)|=
⏐⏐fv
(
πv
(
(fu1 (xu1), . . . , fud(v) (xud(v)))

))

−gv
(
πv
(
(gu1 (xu1), . . . , gud(v) (xud(v)))

))⏐⏐
≤
⏐⏐fv
(
πv
(
(fu1 (xu1), . . . , fud(v) (xud(v)))

))

−fv
(
πv
(
(gu1 (xu1), . . . , gud(v) (xud(v)))

))⏐⏐
+
⏐⏐fv
(
πv
(
(gu1 (xu1), . . . , gud(v) (xud(v)))

))

−gv
(
πv
(
(gu1 (xu1), . . . , gud(v) (xud(v)))

))⏐⏐
≤ ∥fv∥Lip(Xv)

ρv
(
πv(fu1 (xu1), . . . , fud(v) (xud(v))),

πv(gu1 (xu1), . . . , gud(v) (xud(v)))
)

+ ∥fv − gv∥Xv

≤ c(v)L

d(v)∑

k=1

∥fuk − guk∥Xuk
+ ∥fv − gv∥Xv ≤ c(L, G)ε.

(9.1)

We now use induction on the level of v. Thus, if v∗ ∈ S, then the
‘‘shallow network’’ estimate implied in Theorem 5.1 is already the
one which we want. Suppose the theorem is proved for the DAGs
for which the sink node is at level ℓ ≥ 0. If v ∈ V , so that its
level ℓ ≥ 1, then its children are at level ℓ − 1 ≥ 0. For each of
the children, say u, we consider the subgraph Gu of G comprising
only those nodes and edges that culminate in u as the sink node.
We then apply the theorem to each of these subgraphs, and then
use (9.1) to conclude that the statement is true for the subgraph
Gv of G comprising only those nodes and edges that culminate in
v as the sink node. ■

Remark 9.1. Suppose we consider a shallow Gaussian net-
work acting on a 2s dimensional manifold of R

Q . The number
of samples required to obtain an accuracy of n−αγ predicted by
Theorem 5.1 is O(n2s(2−α)+2αγ log n). On the other hand, suppose
the target function has a compositional structure according to a
binary tree, but in addition, for any v ∈ V with children u1, u2,
the image of (fu1 , fu2) forms a curve in R

2. Then the number of
samples required to get the same accuracy with the correspond-
ing network is only O(n2−α+2αγ log n) at each level. In fact, it
seems likely that this is the number of samples in the original
submanifold of RQ itself, since the input variables external to the
machine are given only at the source nodes. ■

10. Conclusions

We have given a direct solution to the problem of function
approximation if the data is sampled from a compact, smooth,
connected Riemannian manifold, without knowing the mani-

fold itself, except for its dimension. Our construction avoids the
evaluation of an eigen-decomposition of a matrix or otherwise
the need to compute the local charts on the manifold. Also,
the construction avoids any optimization/training in the classical
paradigm.

H.N. Mhaskar / Neural Networks 132 (2020) 253–268 267

Our construction is universal; i.e., can be used for any target
function without any assumption on its prior. The approximation
error is estimated in the probabilistic sense, and of course, de-
pends upon the smoothness of the target function. In the case
when the data is taken from an affine space, our approximation
error does not suffer from any saturation, but can be as small as
the smoothness of the target function allows. In the general case,
the curvature of the manifold imposes some limitations on how
well we can estimate the degree of approximation, but there is
no saturation in the sense that if the degree of approximation is
better for a function, then it must be ‘‘trivial’’ in some sense.

We have extended our results to the case of deep Gaussian
networks. However, in this context, they are not completely
constructive unless the constituent functions in the DAG defining
the deep network are known.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Appendix. Saturation phenomenon

The notation in this section is not the same as that in the
rest of the paper, except that ∥ · ∥A will denote the supremum
norm on a set A. A detailed discussion of saturation phenomena in
approximation theory can be found in Butzer and Nessel (2011).
Intuitively, an approximation process on a metric space A is a
sequence of operators Un : C(A) → C(A) such that Un(f) → f

uniformly on A. The process is saturated with the rate {δn} if
∥Un(f) − f ∥A = o(δn) as n → ∞ implies that f is trivial in
some sense (classically Un(f) = f) and there exists a non-trivial
function f for which ∥Un(f) − f ∥A = O(δn). We are unable to
find in the literature a precise definition that covers the many
applications where this phenomenon holds. As remarked earlier,
Theorem 2.1 is one example. We give two other examples.

Example A.1. For f ∈ C([−1, 1]), the Bernstein polynomial is
defined by

Bn(f)(x) :=
n∑

k=0

(
n

k

)
f (k/n)xk(1 − x)n−k, x ∈ [−1, 1],

n = 0, 1,

The Voronovskaya theorem (Lorentz, 2013, Section 1.6.1) states
that if f ∈ C2([−1, 1]) then uniformly in x ∈ [−1, 1],

lim
n→∞

⏐⏐⏐⏐n (Bn(f)(x) − f (x))− f ′′(x)
x(1 − x)

2

⏐⏐⏐⏐ = 0.

Thus, f ∈ C2([−1, 1]), ∥Bn(f) − f ∥[−1,1] = O(1/n) and if ∥Bn(f) −
f ∥[−1,1] = o(1/n) then f ′′(x) = 0 for x ∈ (−1, 1), so that f is a
linear function. ■

Example A.2. A function S : [−1, 1] → R is called piecewise

constant with n break-points if there are points t0 = −1 <

t1 < · · · < tn+1 = 1 such that S is a constant on each (tj, tj+1),
j = 0, . . . , n. We denote the class of all piecewise constants with
n break-points by Sn, and define for f ∈ C([−1, 1]),

σn(f) := inf
S∈Sn

∥f − S∥[−1,1].

We note that the break-points of the approximating function
may depend upon the target function f . It is known (DeVore &
Lorentz, 1993, Chapter 12, Theorem 4.3, Corollary 4.4) that if f

has a bounded total variation on [−1, 1] then σn(f) = O(1/n).

Moreover, if f ∈ C([−1, 1]) and σn(f) = o(1/n) then f is a
constant. ■

List of Symbols

BQ (x, r), BT(x, r), B(x, r) Defined in (3.1)

∆
j

k,ℓ, Q
′
k,δ , ωr Section 6.4

ι∗ Inradius of X
λ Scaling factor, typically, n1−α

λk,m, λk,m Quadrature weights, Section 6.1

G
∗
n,q,Q , Gn,q,Q Special Gaussian network (5.1), (5.4)

P
d
n, Π

d
n Polynomial spaces Section 6.1

Ex Exponential map at x ∈ X, Ex : Tx(X) → X

G DAG for deep networks, Section 5.2

Pm,q, Φ̃n,q Univariate polynomials defined in (3.5), (3.6)

Gk,m,d, GQ Basic Gaussian networks (6.39), (6.41)

Projm,d, Projm,q,Q Projection kernels (6.14), (6.22)

Lip(X) Lipschitz functions on X

µ∗ Volume measure on X

Φn,d, Φn,q,Q Localized kernels (6.29), (6.33)

πv Pooling operation Section 5.2

ρ Metric on X

σn, σn,λ Approximation operators (6.51), (7.5), (8.8)

τ Probability distribution for the data

Tx(X) Tangent space to X at x

X Manifold
Y Affine space

d Generic dimension, Section 6
d(v) Ambient dimension at vertex v Section 5.2

En(A; f) Degree of approximation of f on A

f , F , F̂n,α Target function, observations, and estimator

f0 Density of the marginal distribution

H Low pass filter Section 3.1

hk, ψk, ψk Orthonormalized Hermite polynomial, Hermite func-
tion, tensor product Hermite function

n, α Parameters in approximation

Q Dimension of the ambient space

q Dimension of affine space or manifold

qv Dimension in Section 5.2

S Large integer controlling localization

V , S Non-source, source vertices Section 5.2
vv Constituent function at v Section 5.2
Wγ (A) Smoothness class on A

xk,m, xk,m Quadrature nodes Section 6.1

References

Andrews, G. E., Askey, R., & Roy, R. (1999). Special functions, Vol. 71. Cambridge

university press.

Askey, R., & Wainger, S. (1965). Mean convergence of expansions in Laguerre

and Hermite series. American Journal of Mathematics, 87(3), 695–708.

Bateman, H., Erdélyi, A., Magnus, W., Oberhettinger, F., & Tricomi, F. G. (1955).

Higher transcendental functions, Vol. 2. New York: McGraw-Hill.

Belkin, M., & Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction

and data representation. Neural Computation, 15(6), 1373–1396.

Belkin, M., & Niyogi, P. (2004). Semi-supervised learning on Riemannian

manifolds. Machine Learning, 56(1–3), 209–239.

Belkin, M., & Niyogi, P. (2008). Towards a theoretical foundation for Laplacian-

based manifold methods. Journal of Computer and System Sciences, 74(8),

1289–1308.

Boucheron, S., Lugosi, G., & Massart, P. (2013). Concentration inequalities: A

nonasymptotic theory of independence. Oxford university press.

Butzer, P. L., & Nessel, R. J. (2011). Fourier analysis and approximation, Vol. 40.

Academic Press.

Chen, M., Jiang, H., Liao, W., & Zhao, T. (2019). Efficient approximation of deep

ReLU networks for functions on low dimensional manifolds. arXiv preprint

arXiv:1908.01842.

http://refhub.elsevier.com/S0893-6080(20)30307-5/sb1
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb1
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb1
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb2
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb2
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb2
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb3
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb3
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb3
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb4
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb4
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb4
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb5
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb5
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb5
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb6
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb6
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb6
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb6
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb6
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb7
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb7
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb7
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb8
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb8
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb8
http://arxiv.org/abs/1908.01842

268 H.N. Mhaskar / Neural Networks 132 (2020) 253–268

Chui, C. K., & Donoho, D. L. (2006). Special issue: Diffusion maps and wavelets.

Applied and Computational Harmonic Analysis, 21(1).

Chui, C. K., & Mhaskar, H. N. (2018a). A Fourier-invariant method for locating

point-masses and computing their attributes. Applied and Computational

Harmonic Analysis, 45, 436–452.

Chui, C. K., & Mhaskar, H. N. (2018b). Deep nets for local manifold learning.

Frontiers in Applied Mathematics and Statistics, 4, 12.

Chui, C. K., & Mhaskar, H. N. (2019). A unified method for super-resolution

recovery and real exponential-sum separation. Applied and Computational

Harmonic Analysis, 46(2), 431–451.

Cloninger, A., Coifman, R. R., Downing, N., & Krumholz, H. M. (2015). Bigeometric

organization of deep nets. arXiv preprint arXiv:1507.00220.

Cucker, F., & Smale, S. (2002). On the mathematical foundations of learning.

American Mathematical Society. Bulletin, 39, 1–49.

Cucker, F., & Zhou, D. X. (2007). Learning theory: An approximation theory

viewpoint, Vol. 24. Cambridge University Press.

DeVore, R. A., & Lorentz, G. G. (1993). Constructive approximation, Vol. 303.

Springer Science & Business Media.

do Carmo Valero, M. P. (1992). Riemannian geometry. Birkhäuser.

Ehler, M., Filbir, F., & Mhaskar, H. N. (2012). Locally learning biomedical data

using diffusion frames. Journal of Computational Biology, 19(11), 1251–1264.

Filbir, F., & Mhaskar, H. N. (2011). Marcinkiewicz–Zygmund measures on

manifolds. Journal of Complexity, 27(6), 568–596.

Girosi, F., & Poggio, T. (1990). Networks and the best approximation property.

Biological Cybernetics, 63(3), 169–176.

Jones, P. W., Maggioni, M., & Schul, R. (2010). Universal local parametrizations

via heat kernels and eigenfunctions of the Laplacian. Annales Academiæ

Scientiarium Fenniæ. Mathematica, 35, 131–174.

Lafon, S. S. (2004). Diffusion maps and geometric harmonics (Ph.D. thesis), Yale:

Yale University.

Liao, W., & Maggioni, M. (2016). Adaptive geometric multiscale approximations

for intrinsically low-dimensional data. arXiv preprint arXiv:1611.01179.

Lorentz, G. G. (2013). Bernstein polynomials. American Mathematical Soc..

Maggioni, M., & Mhaskar, H. N. (2008). Diffusion polynomial frames on met-

ric measure spaces. Applied and Computational Harmonic Analysis, 24(3),

329–353.

Mhaskar, H. N. (1996). Introduction to the theory of weighted polynomial

approximation, Vol. 56. Singapore: World Scientific.

Mhaskar, H. N. (2003). On the degree of approximation in multivariate weighted

approximation. In Advanced problems in constructive approximation (pp.

129–141). Springer.

Mhaskar, H. N. (2004). When is approximation by Gaussian networks necessarily

a linear process? Neural Networks, 17(7), 989–1001.

Mhaskar, H. N. (2005). A Markov-Bernstein inequality for Gaussian networks. In

Trends and applications in constructive approximation (pp. 165–180). Springer.

Mhaskar, H. N. (2010). Eignets for function approximation on manifolds. Applied

and Computational Harmonic Analysis, 29(1), 63–87.

Mhaskar, H. N. (2011). A generalized diffusion frame for parsimonious repre-

sentation of functions on data defined manifolds. Neural Networks, 24(4),

345–359.

Mhaskar, H. N. (2017). Local approximation using Hermite functions. In Progress

in approximation theory and applicable complex analysis (pp. 341–362).

Springer.

Mhaskar, H. N. (2018). A unified framework for harmonic analysis of functions

on directed graphs and changing data. Applied and Computational Harmonic

Analysis, 44(3), 611–644.

Mhaskar, H. N., & Poggio, T. (2016). Deep vs. shallow networks: An

approximation theory perspective. Analysis and Applications, 14(06), 829–848.

Mhaskar, H. N., & Poggio, T. (2020). An analysis of training and generalization

errors in shallow and deep networks. Neural Networks, 121, 229–241.

Schmidt-Hieber, J. (2019). Deep ReLU network approximation of functions on a

manifold. arXiv preprint arXiv:1908.00695.

Singer, A. (2006). From graph to manifold Laplacian: The convergence rate.

Applied and Computational Harmonic Analysis, 21(1), 128–134.

Szegö, G. (1975). Colloquium publications: vol. 23, Orthogonal polynomials.

Providence: American mathematical society.

http://refhub.elsevier.com/S0893-6080(20)30307-5/sb10
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb10
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb10
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb11
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb11
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb11
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb11
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb11
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb12
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb12
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb12
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb13
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb13
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb13
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb13
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb13
http://arxiv.org/abs/1507.00220
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb15
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb15
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb15
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb16
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb16
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb16
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb17
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb17
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb17
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb18
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb19
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb19
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb19
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb20
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb20
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb20
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb21
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb21
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb21
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb22
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb22
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb22
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb22
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb22
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb23
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb23
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb23
http://arxiv.org/abs/1611.01179
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb25
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb26
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb26
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb26
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb26
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb26
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb27
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb27
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb27
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb28
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb28
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb28
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb28
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb28
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb29
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb29
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb29
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb30
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb30
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb30
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb31
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb31
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb31
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb32
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb32
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb32
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb32
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb32
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb33
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb33
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb33
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb33
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb33
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb34
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb34
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb34
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb34
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb34
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb35
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb35
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb35
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb36
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb36
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb36
http://arxiv.org/abs/1908.00695
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb38
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb38
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb38
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb39
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb39
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb39

	A direct approach for function approximation on data defined manifolds
	Introduction
	Technical introduction and outline
	Approximation on manifolds
	Definitions
	Approximation theorems

	Numerical example
	Gaussian networks
	Shallow networks
	Deep networks

	Background on weighted polynomials
	Weighted polynomials
	Applications of Mehler identity
	Rotation invariance
	Localized kernels

	From Hermite polynomials to Gaussian networks
	Function approximation

	Approximation on affine spaces
	Proofs of the theorems in Section 3
	Proof of the theorems in Section 5
	Conclusions
	Declaration of competing interest
	Appendix. Saturation phenomenon
	References

