Neural Networks 132 (2020) 253-268

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

L))

Check for
updates

A direct approach for function approximation on data defined
manifolds
H.N. Mhaskar'

Institute of Mathematical Sciences, Claremont Graduate University, Claremont, CA 91711, United States of America

ARTICLE INFO ABSTRACT

Article history:

Received 23 March 2020

Received in revised form 29 July 2020
Accepted 17 August 2020

Available online 25 August 2020

In much of the literature on function approximation by deep networks, the function is assumed to
be defined on some known domain, such as a cube or a sphere. In practice, the data might not
be dense on these domains, and therefore, the approximation theory results are observed to be too
conservative. In manifold learning, one assumes instead that the data is sampled from an unknown
manifold; i.e.,, the manifold is defined by the data itself. Function approximation on this unknown
manifold is then a two stage procedure: first, one approximates the Laplace-Beltrami operator (and
its eigen-decomposition) on this manifold using a graph Laplacian, and next, approximates the target
function using the eigen-functions. Alternatively, one estimates first some atlas on the manifold and
then uses local approximation techniques based on the local coordinate charts.

In this paper, we propose a more direct approach to function approximation on unknown, data
defined manifolds without computing the eigen-decomposition of some operator or an atlas for the
manifold, and without any kind of training in the classical sense. Our constructions are universal; i.e.,
do not require the knowledge of any prior on the target function other than continuity on the manifold.
We estimate the degree of approximation. For smooth functions, the estimates do not suffer from the
so-called saturation phenomenon. We demonstrate via a property called good propagation of errors
how the results can be lifted for function approximation using deep networks where each channel

Keywords:

Manifold learning

Deep networks

Gaussian networks

Weighted polynomial approximation

evaluates a Gaussian network on a possibly unknown manifold.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

One of the main problems of machine learning is the following.
Given data {(y;, f(yj)—l—ej)}j"il, where f is an unknown function, y;'s
are sampled randomly from a probability distribution u* defined
on a subset of R? for some typically high dimension Q, and €'s
are realizations of a mean zero random variable, find an approx-
imation P from a class V;, to f (Cucker & Smale, 2002; Cucker
& Zhou, 2007; Girosi & Poggio, 1990), where {V,} is a nested
sequence of subsets of L?(x*). In practice, this approximation is
found by empirical risk minimization, assuming some prior on
f, such as that it belongs to some reproducing kernel Hilbert
space with a known kernel, or that it has a certain number of
derivatives, or that it satisfies some conditions on its Fourier
transform. To set up the minimization problem, one needs to
know in advance the complexity of the model P, typically, the
number of parameters desired to be estimated. In theory, the
usual way of estimating this number is to estimate the so called
approximation error, infpey, E,«((f —P)?). Necessarily, this results

E-mail address: hrushikesh.mhaskar@cgu.edu.

1 The research is supported in part by National Science Foundation, United
States of America grant DMS 2012355.

https://doi.org/10.1016/j.neunet.2020.08.018
0893-6080/© 2020 Elsevier Ltd. All rights reserved.

in a fundamental gap in the theory, namely, that the minimizer
of the empirical risk may have no connection with the minimizer
of the approximation error.

Since the fundamental problem is one of function approxima-
tion, it is natural to wonder if appropriate tools in approximation
theory can be developed in order to close this gap. One of the
difficulties in doing so is that most of the results in classical
approximation theory assume that the approximation takes place
on a known domain, such as the cube, or Euclidean space, or
sphere or similar known manifold. In turn, this requires that the
data should be dense on this domain; i.e., the domain should be
the (exact) support of 1*. The problem is that x* being unknown,
it is not possible to ensure this requirement.

During this century, manifold learning has sought to ame-
liorate the situation, with many practical applications. An early
introduction to this topic is in the special issue (Chui & Donoho,
2006) of Applied and Computational Harmonic Analysis, edited by
Chui and Donoho. In this theory, one assumes that the support
of u* is an unknown smooth compact connected manifold; for
simplicity, even that u* is the Riemannian volume measure for
the manifold, normalized to be a probability measure. Following,
e.g., Belkin and Niyogi (2003, 2004, 2008), Lafon (2004) and
Singer (2006), one constructs first a “graph Laplacian” from the

https://doi.org/10.1016/j.neunet.2020.08.018
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2020.08.018&domain=pdf
mailto:hrushikesh.mhaskar@cgu.edu
https://doi.org/10.1016/j.neunet.2020.08.018

254 H.N. Mhaskar / Neural Networks 132 (2020) 253-268

data, and finds its eigen-decomposition. It is proved in the above
mentioned papers that as the size of the data tends to infinity, the
graph Laplacian converges to the Laplace-Beltrami operator on
the manifold and the eigen-values (respectively, eigen-vectors)
converge to the corresponding quantities on the manifold. A
great deal of work is devoted to studying the geometry of this
unknown manifold (e.g., Jones, Maggioni, & Schul, 2010; Liao &
Maggioni, 2016), based on the so called heat kernel. The theory of
function approximation on such manifolds is also well developed
(e.g., Ehler, Filbir, & Mhaskar, 2012; Filbir & Mhaskar, 2011;
Maggioni & Mhaskar, 2008; Mhaskar, 2010, 2011).

All this work depends upon a two stage procedure — finding
the eigen-decomposition of the graph Laplacian and then us-
ing approximation in terms of the eigen-vectors/eigen-functions.
Once more, this leads to errors not just from the approximation
of the target function but also from the approximation of the
eigen-decomposition of the Laplace-Beltrami operator itself. In
recent years, there are some efforts to explore alternative ap-
proaches using deep networks (e.g., Chen, Jiang, Liao, & Zhao,
2019; Chui & Mhaskar, 2018b; Cloninger, Coifman, Downing, &
Krumholz, 2015; Schmidt-Hieber, 2019). These papers also take a
two-step approach: developing an atlas on the manifold first, and
then using some local approximation schemes based on the local
coordinate charts.

Our objective in this paper is to develop a single-shot method
to solve the problem, knowing only the dimension of the mani-
fold. In particular, we aim not to find any eigen-decomposition
nor to learn any atlas on the manifold, but to give a direct
construction that starts with the data and constructs an approx-
imation without involving any optimization/training and with
guaranteed approximation error estimated in a probabilistic
sense. Our approximation can be implemented as a Gaussian net-
work; i.e., a function of the form x — >, a exp(—A|x — ykliq),
where |-, , denotes the ¢2 norm on R?. The size of the data
set required depends only on the dimension of the manifold and
the smoothness of the target function measured in a technical
manner as explained in this paper. We will extend our results to
approximation by deep Gaussian networks.

2. Technical introduction and outline

In this section, let us assume that the data y; is sampled from
some unknown manifold, uniformly with respect to the Rieman-
nian volume element of that manifold. One of the fundamental
results in manifold learning is the following theorem of Belkin
and Niyogi (2008).

Theorem 2.1. Let X be a smooth, compact, gq-dimensional sub-
manifold of R, u* be its Riemannian volume measure, normalized
by u*(X) = 1, and A denote the Laplace-Beltrami operator on X.
Then for a smooth function f : X — R,

. 1 Ix — Y|§,Q %
lim - [e (—t> ((¥) ~ SN (y)
— A(f)X) (2.1)

uniformly for x € X, where |-|,, denotes the ¢* norm on R<.
Equivalently, uniformly for x € X, we have

t

1 _vl?
(4mt)i2 /XEXP <—|Xy|2’Q> (F(y) — FO)du*(y) — tA(f)(x)

ast — 0+.

From an approximation theory point of view, the theorem is
more of a saturation theorem for approximating f on X, anal-
ogous to the Voronovskaya estimates for Bernstein polynomials
(Lorentz, 2013, Section 1.6.1, See Appendix). Thus, (2.2) states
that the rate of approximation of f cannot be better than O(t),
even if f is infinitely differentiable, unless f is in the null space
of the Laplace-Beltrami operator. This is to be expected because
the Gaussian kernel involved is a positive operator. In particular,
this phenomenon holds even if X is a Euclidean space rather
than a manifold. Moreover, the curvature of the manifold con-
tributes to the saturation as well. The Gaussian kernel has many
advantages, invariance under translations and rotations is one of
the them. This plays a major role in the proof of Theorem 2.1.
Nevertheless, it is natural to ask whether another kernel can
be found that leads directly to the approximation of the target
function f on the manifold from the data without knowing the
manifold itself and without having to go through an expensive
eigen-decomposition. The curvature of the manifold will still
affect the rate of convergence, but when applied to an affine
space rather than a manifold, such a construction should lead
to approximation without any saturation, without knowing what
the affine space is (Remark 3.3).

The main objective of this paper is to demonstrate such a
construction using certain localized kernels based on Hermite
polynomials (Theorem 3.1). This theorem gives an analogue of
Theorem 2.1 to obtain function approximation on an unknown
manifold based only on noise-corrupted samples on the manifold,
and give estimates on the degree of approximation. In the case
when the approximation is done on an affine space rather than a
manifold, our construction is free of any saturation, and does not
need to know what the affine space is (Theorem 7.1).

To recapture the advantage of the Gaussian kernel, we will
study approximation by Gaussian networks. A (shallow) Gaussian
network with n neurons has the form x +— ZZ:1 ai exp(—AX
x —Yk@,q). A deep Gaussian network is constructed following
a DAG structure, where each node (referred to as “channel” in
the literature on deep learning) evaluates a Gaussian network.
Using the close connection between Hermite polynomials and
Gaussian networks (cf. Chui & Mhaskar, 2019; Mhaskar, 1996,
2004), we can translate the result about approximation on the
manifold into a result on approximation by shallow Gaussian
networks, where the input is assumed to lie on an unknown low
dimensional manifold of the nominally high dimensional ambi-
ent space (Theorem 5.1). In turn, using a property called “good
propagation of errors” (Theorem 5.2), we will “lift” this theorem
to estimate the degree of approximation by deep Gaussian net-
works, where each channel evaluates a Gaussian network on a
similarly manifold-based data (Theorem 5.3). The networks them-
selves are constructed from certain pre-fabricated networks in
the ambient space to approximate the Hermite functions with a
correspondingly high number of neurons. However, we will give
an explicit formula for such networks (Proposition 6.6), so that
there is no training required here. The amount of information
used in the final synthesis of the network will depend only on
the dimension of the manifold on which the input lives. We
consider this to be a step in bringing approximation theory of
deep networks closer to the practice, so that the results are
proved in the setting of approximation on unknown manifolds
analogous to diffusion geometry rather than on known domains.

The statement of the main results in this paper mentioned
above require a good deal of background information on the
theory of weighted polynomial approximation, which we defer
to Section 6. We will state the main results about approximation
on a manifold in Section 3, and illustrate them using a simple nu-
merical example in Section 4. We explain our ideas about shallow
and deep networks in Section 5. To develop the details required

H.N. Mhaskar / Neural Networks 132 (2020) 253-268 255

in the constructions and proofs, we start by summarizing the
relevant facts from the theory of weighted polynomial approx-
imation in Section 6. Of particular interest is the approximation
of a weighted polynomial using pre-fabricated Gaussian networks
whose weights and centers do not depend upon the polynomial,
as described in Section 6.3. Our main theorem in the context of
approximation on unknown affine spaces is stated and proved in
Section 7. The proofs of the results in Sections 3 and 5 are given
in Sections 8 and 9 respectively.

3. Approximation on manifolds

In this section, we state our main results on approximation
on manifolds. The details and motivations for these constructions
will be clearer after reading Sections 6 and 7. The notation on the
manifolds is described in Section 3.1, the results themselves are
discussed in Section 3.2.

3.1. Definitions

Let Q > g > 1 be integers, X be a q dimensional, com-
pact, connected, sub-manifold of R? (without boundary), with
geodesic distance p and volume measure p*, normalized so that
©*(X) = 1. We will identify the tangent space at x € X with an
affine space Tx(X) in R¢ passing through x. For any X € X, we
need to consider in this section three kinds of balls.

Bo(x,1):={y € R®: [x —yl, o <1}, Bx(X,T)
= Tx(X)NBo(X,7), B(X,1):={yeX:px,y) <r}.
(3.1)

With this convention, the exponential map & at x € X (based
on the definition in (do Carmo Valero, 1992, Proposition 2.9)) is
a diffeomorphism of an open ball centered at x in Tx(X) onto its
image in X such that p(x, &(u)) = Ju — X|; 4. Since X is compact,
there exists (* > 0 such that for every x € X, & is defined on
Br(x, t*), and p(X, &(u)) = [u — X[, o for all u € Br(xX, ¢*).

We now define the smoothness class W, (X). If f,g : X — R,
the function fg X — R is defined as usual by (fg)(x) =
f(x)g(x) for x € X. The space C(X) is the space of all continuous
real-valued functions on X, equipped with the supremum norm
|| o |lx. The space C*°(X) is the subspace of C(X) comprising all
infinitely differentiable functions on X. Let f € C(X), y > 0.
We say that f € W, (X) if for every X € X, and ¢ € C*(X),
supported on B(x, t*/2), the function Fy 4 : Tx(X) — R defined by

Fx g(u) == f(&x(u))p(Ex(w)) is in W, (T(X)) in the sense described

in Section 7 (See (6.44), (7.3), and (7.4)). We define

Ifllw,co = sup [IFxgllw, (ry)- (32)
xeX, [¢llx=1

If y is an integer and f is y times differentiable on X then f €
W, (X). The space W, (X) can contain functions which are not
differentiable. For example, we say that f € Lip(X) if

B f(x) = f(y)l
I lLipeey = sup = <

We have Lip(X) C W;(X).
Next, we define the approximation operators. The orthonor-
malized Hermite polynomial h, of degree k is defined recursively

hi(x \/> xhy_1(x

(x) =74 hy(t) == v2r V4.

1
hy_2(x), k=2,3,...,

We write

Yk(t) = hi(t) exp(—t>/2), teR, keZ,.

The functions {y};2, are an orthonormal set with respect to the
Lebesgue measure (cf. (6.1)). In the sequel, we fix an infinitely
differentiable function H : [0, o) — [0, 1], such that H(t) = 1 if
0<t<1/2,andH(t)=0ift > 1. We defineforx e R,m € Z,:

A gijmw) ifq =1,
PnalX) =\ o= U/4F ((a—1)/2) 4 Z
- 1)/2 0) 20
Has R) ;wfwmw, ifq =2,
(3.5)
and the kernel 5,“, forxeR,neZy by
n2/2]
By4(X) Z H (F) 4(x). (3.6)

Constant convention:

In the sequel, c, cy, ... will denote generic positive constants
depending upon the dimension and other fixed quantities in the dis-
cussion, such as the norm. Their values may be different at different
occurrences, even within a single formula. The notation A ~ B means
1A < B < ;B |

3.2. Approximation theorems

The traditional machine learning paradigm is to consider data
of the form {(y;, f(y;) + €;)}, where y;’s are drawn randomly with
respect to u* and ¢’s are random, mean O samples from an
unknown distribution. More generally, we assume here a noisy
data of the form (y, €), with a joint probability distribution r and
assume further that the marginal distribution of y with respect to
T has the form dv* = fodu* for some fy € C(X). In place of f(y),
we consider a noisy variant F(y, €), and denote

fly) = E(F(y, €)ly).

Remark 3.1. In practice, the data may not lie on a manifold, but
it is reasonable to assume that it lies on a tubular neighborhood of
the manifold. Our notation accommodates this — if z is a point in
a neighborhood of X, we may view it as a perturbation of a point
y € X, so that the noisy value of the target function is F(y, €),
where ¢ encapsulates the noise in both the y variable and the
value of the target function. An example is given in Example 4.1.
|

(3.7)

Our approximation process is simple: given by

na-a) M

Fra(Y;X) = F(Yj,)@y g(n! X € R?,

j=1

X — il)

(3.8)

where 0 < o < 1.
Our main theorem is the following.

Theorem 3.1. Let y > 0, t be a probability distribution on
X x £2 for some sample space $2 such the marginal distribution of
T restricted to X is absolutely continuous with respect to u* with
density fo € W, (X). We assume that

*
B
W (B(x, 1)) <
xeX,r>0 rd

Let ¥ : X x £2 — R be a bounded function, f defined by (3.7)
be in W, (X), the probability density fy € W,(X). Let M > 1,

(3.9)

256 H.N. Mhaskar / Neural Networks 132 (2020) 253-268

Y = {(y1,€1), ..., (Ym, €m)} be a set of random samples chosen i.i.d.
from t. If
4
O<a< ——, a <1, (3.10)
2+y

then for everyn > 1,0 < 8 < 1 and M > ni?=+2v_/log(n/3§),
we have with t-probability > 1 —§:

Vol Fllxxe + lfof lw,)

nev

[FraY:0) = fof |, < €

We record two corollaries of Theorem 3.1 as separate theo-
rems. The first is the approximation of f itself, assuming that
fo=1.

(3.11)

Theorem 3.2. With the set-up as in Theorem 3.1, let fo = 1 (i.e., the
marginal distribution of y with respect to t is u*). Then we have with
t-probability > 1 —§:

1 Fllxxe + I llw,)

[Foa(Y;o)=f|, < (3.12)
nev

The second is a consequence analogous to Theorem 2.1.

Theorem 3.3. With the set-up as in Theorem 3.1, we have with
t-probability > 1 — §:

nai—o) M _ :
T 3 (P) = (6) Buan'lo — il o)
Jj=1 x
Fllxx
< o VTR F s + W -

nev

Remark 3.2. To compare the estimate (3.13) with (2.2), which is
applicable with y = 2, we are tempted to take any « € (0, 1), set
t = n~21-%), and obtain the upper bound t* with A = «/(1 — «).
Clearly, this bound tends to 0 arbitrarily fast with t. However, the
estimate (2.2) uses a fixed kernel, while the estimate (3.13) uses
a kernel depending upont. ®

Remark 3.3. Although the curvature of the manifold forces us
to put limitations on the rate of convergence in (3.12), this is
not a saturation phenomenon. Thus, it is not ruled out that the
rate can be much better than that given in (3.12) for non-trivial
functions. ®

Remark 3.4. If y < 2, we may choose o« = 1 without knowing
the value of y. The formula (3.8) itself does not require any prior
knowledge of the smoothness of f. ®

4. Numerical example

We illustrate the theory using the following simple example.
We let X C R3 to be the helix defined by

X(t) := (cos(mt), sin(mt), wt), 0<t<2m. (4.1)

This does not satisfy the conditions of the theorems in Section 3,
and we will see an “end point effect” in the errors, but we find it
easy to work with this example because of the ease in computing
the various quantities like the volume measure (arc-length) :
du* = (+/872)~1dt. The target function f is given by

f(x(t)) := cos(x1(t) — x2(t) + x3(t)/2) = cos(cos(rt)

—sin(xwt) — wt/2), 0<t<2m. (4.2)
Example 4.1. We consider data of the form
F(y, €) == f(y + €)exp(1.125), (4.3)

where ¢ is a random normal variable with mean 0 and standard
deviation 1.5. The factor exp(1.125) ensures that the expected
value of F is f. This example illustrates a multiplicative noise
as well as additive noise. We may also consider this to be an
example where every point y on the helix is perturbed by a
normal noise with mean 0 and standard deviation 1, although we
cannot deal directly with the perturbed points in the calculation
of Fy. We took M = 256, n = 64, o = 1. The results are
reported in Fig. 1 on one trial, as well as the average of F, , over
100 trials. =

Example 4.2. We consider data of the form

F(y.€) =f(y)+e, (4.4)

where € is a random normal variable with mean 0 and standard
deviation 0.3. We take M = 1024, and M samples of y distributed
uniformly according to u*. We take n = 64, « = 1, and compute
the quantity Fgs1(Y, X) for x = x(t), where t ranges over 2048
equidistant points on [0, 257]. The results are shown in Fig.2. &

5. Gaussian networks

In this section, we describe the consequences of Theorem 3.1
for Gaussian networks. In the case of shallow networks, we can
give an explicit construction and error bounds in Section 5.1. In
the case of deep networks (Section 5.2), we give only an existence
theorem, explaining when the theorem can be described more
constructively.

5.1. Shallow networks

Since Ppq and hence q~)n¢q are even polynomials of degree
< n? @y q(n'~|ol,0) € IT3. We will see in Remark 6.2 that
q)n,q(n1*°‘|o|2yq) = @pnq0(0, n'~%(o)) for a polynomial kernel
®@pq0 on RS We may then define a pre-fabricated Gaussian
network using (6.41)

Gh g0 = 6a(Png(0. (1" "*(0)20))). (5.1)

Using Corollary 6.2, we then deduce easily the following theorem
about Gaussian networks. We note again that there is no training
involved here. Even though the number of non-linearities in the
network in the following theorem is ©(Mn?2), this potentially
large number of non-linearities is not as much of a problem as
it would be if we were to use an optimization procedure to train
the network.

Theorem 5.1. Let (3.9) be satisfied, y > 0, t be a probability
distribution on X x £2 for some sample space §2 such the marginal
distribution of t restricted to X is v* with dv* = fodu™ for some
fo € W,(X). Let F : X x £ — R be a bounded function, and f
defined by (3.7) be in W, (X). Let 0 < § < 1, o satisfy (3.10). Let
M > 1Y = {(y1,€1), ..., (Ym, €m)} be a set of random samples
chosen i.i.d. from t. If

M > ni@=o+227 /log(n/8) (5.2)
we have with t-probability > 1 —§:

1 M

i O (5. 6) = f(0)) G g o0 — ¥y)

j=1 <
< ¢ N, ||f0||x||]:||X;j/+ ||fof||wy(X). (53)
In particular, let
1 M

GraalY; FYX) = 1 3 F), §)Chao(X-¥), X ER% (54)

j=1

H.N. Mhaskar / Neural Networks 132 (2020) 253-268 257

—— approximation
— = true function

Fig. 1. In all figures, black continuous line is the approximation, dashed line (red in color) is the target function (4.2). Left: Reconstruction without noise using
256 random training points, 2048 equidistant test points, Middle: Estimate in one trial, 256 random training points (dots, blue in color) according to (4.3), 2048
equidistant test points, Right: Average of the estimates in 100 trials, 256 random training points plus noise each, 2048 equidistant test points.

o
LXP

T T i
—— approximation
— = true function 5

2
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Percentage test data

Fig. 2. With f and F as in (4.2) and (4.4) respectively, M = 1024, n = 64, « = 1. On the x axis are 2048 equidistant samples on [0, 27r]. Left: The function f in
dashed line (red in color), the sampled values F in dots (blue in color) for one trial, Middle: The function f in dashed line (red in color), the reconstruction Fs
for one trial in black, Right: A cumulative histogram of errors over 50 trials, the point (p,y) signifies that the error is 0.3y at p% of the test data.

If fo = 1, we have with t-probability > 1 — §:

I Fllxxe + If llw,)
nev '

IGnaa(Y: F) = f, < (5.5)

5.2. Deep networks

The following discussion about the terminology about the
deep networks is based on (almost taken from) the discussion
in Mhaskar and Poggio (2016, 2020), and elaborates upon the
same. In particular, Fig. 3 is taken from the arxiv version of
Mhaskar and Poggio (2016).

A commonly used definition of a deep network is the follow-
ing. Let ¢ : R — R be an activation function; applied to a vector
X = (X1,...,%g), ¢(X) = (P(x1),...,0(xq)). Let L > 2 be an
integer, for ¢ = 0,...,L, let g¢ > 1 be an integer (qo = q),
T, : R% — R%+1 be an affine transform, where q;,1 = 1. A deep
network with L — 1 hidden layers is defined as the compositional
function

X+ TpT_1¢(Tp— - - - §(To(X)) - -). (5.6)

This definition has several shortcomings. First, it does not dis-
tinguish between a function and the network architecture. As
demonstrated in Mhaskar and Poggio (2020), a function may have
more than one compositional representation, so that the affine
transforms and L are not determined uniquely by the function it-
self. Second, this notion does not capture the connection between
the nature of the target function and its approximation. Third,
the affine transforms T, define a special directed acyclic graph
(DAG). It is cumbersome to describe notions of weight sharing,
convolutions, sparsity, skipping of layers, etc. in terms of these
transforms. Therefore, we have proposed in Mhaskar and Poggio
(2016) to separate the architecture from the function itself, and

describe a deep network more generally as a directed acyclic
graph (DAG) architecture.

Let G be a DAG, with the set of nodes V US, where S is the set
of source nodes, and V that of non-source nodes. For each node
v € V US, we denote its in-degree by d(v). Associated with each
v € VUS is a compact, connected, Riemannian submanifold X, of
R%") with dimension gq,, metric p, and volume element u*. We
assume further that (3.9) is satisfied with q, in place of q. Each
of the in-edges to each node in V U S represents an input real
variable. If v € V, u € V US, u is called the child of v if there is
an edge from u to v. The notion of the level of a node is defined
as follows. The level of a source node is 0. The level of v € V is
the length of the longest path from the nodes in S to v.

Each node v is supposed to evaluate a function f, on its input
variables, supplied via the in-edges for v. The value of this func-
tion is propagated along the out-edges of v. Each of the source
nodes obtains an input from some smooth manifold as described
in Section 3. Other nodes can also obtain such an input, but by
introducing dummy nodes, it is convenient to assume that only
the source nodes obtain an input from the manifold.

Intuitively, we wish to say that the DAG structure implies a
compositional structure for the functions involved; for example,
if uy, ..., u4y) are children of v, then the function evaluated
at v is fv(ful,...,fud(v)). To make this meaningful, we have to
assume some “pooling” operation on the input variables to make
sure that the output of the vector valued function (fy,, ..., fu dm)
belongs to X,. Thus, for example, if the domain of f, is the cube
[—1, 1)), some clipping operation is required; if the domain is
the torus in d(v) dimensions then some standard substitutions
need to be made (e.g., Mhaskar & Poggio, 2020). We do not
know how to specify the pooling operation in the general case
of an unknown manifold, but assume that this pooling operation
, : RU — X, has the following property: For any two sets of

258 H.N. Mhaskar / Neural Networks 132 (2020) 253-268

XE k} *0 XQ

Fig. 3. An example of a g-function (f* given in (5.8)). The vertices of the DAG ¢
are the channels of the network. The input to the various channels is indicated
by the in-edges of the nodes, and the output of the sink node hi9 indicates the
output value of the g-function, f* in this example.

functions {f, € C(X,)}vev, {8 € C(Xy)}vev,

IOU (nu(ful(xul)7 e ’fud(u)(x”d(u)))’ nv(glq(xu])’ LR) gud(v)(x“d(v))))
d(v)

<)Y My — 8ullzy. vEV. (5.7)
k=1

A G-function is defined to be a set of functions {f,},cyus such
that each f, € C(X,), and if v € V, uy, ..., Uqy) are children of
v, then the function evaluated at v is f,(7,(fy,, - .- ,fud(v))). The
individual functions f, will be called constituent functions.

For example, the DAG G in Fig. 3 (Mhaskar & Poggio, 2016)
represents the compositional function

f*(Xl,...

,X9) = hyg(h17(h13(h1o(X1, X2, X3, h1s(h12(Xe, X7, X3, X9))),
hi1(x4, X)),
h14(h1o, h11), hi6),
hig(his(h11, h12), hie))-

The G-function is {hqq, ..., hig = f*}.

We assume that there is only one sink node, v* (or v*(G))
whose output is denoted by f,+ (the target function). Technically,
there are two functions involved here: one is the final output
as a function of all the inputs to all source nodes, the other
is the final output as a function of the inputs to the node v*.
We will use the symbol f« to denote both with comments on
which meaning is intended when we feel that it may not be
clear from the context. A similar convention is followed with
respect to each of the constituent functions as well. For example,
in the DAG of Fig. 3, the function hys can be thought of both as
a function of two variables, namely the outputs of h;; and hy; as
well as a function of six variables x4, . .., Xg. In particular, if each
constituent function is a neural network, his is a shallow network
receiving two inputs.

We define the notion of the variables “seen” by a node. If
u € S, then these are the variables input to u. Let v € V, and
Uq, ..., Uqy) be the children of v. If Xy, ..., X4, are the inputs

(5.8)

seen by uy, ..., ugq.), then the inputs seen by v are (xy, ..., Xqw))
where the order is respected. For example, consider the function

F*(x1, X2, X3, X4) = f(fi(x1, X2), fo(Xa, X2), f3(X3, X1)).

The inputs seen by the leaves fi, f, f3 are (X1, x2), (X4, X2), (x3, X1)
respectively (not (x1, x2), (X2, X4), (x1, X3)). The inputs seen by f*
are (X1, X2, X3, X4).

The following theorem enables us to “lift” a theorem about
shallow networks to that about deep networks.

Theorem 5.2. Let G be a DAG as described above, {f,},cvus,
{gv}vevus be G-functions, and

”fu — & ”X,, <e, veVUS. (59)

Further assume that for each v € V, f, € Lip(X,), with L =
maXyevy |Ifull Lipes,)y Then for the target function, thought of as a
compositional function of all the input variables x to all the nodes in
S, we have

[for(x) — g+ (X)| < c(L, G)e.

Theorem 5.2 allows us to lift Theorem 5.1 to deep networks. In
general, we do not know the constituent functions. Also, for any
given function and a DAG structure, it may not be possible to de-
vise an algorithm to find the constituent functions uniquely. For
example, (cos? x)? and (1/4)(14-cos(2x))? both have the structures
g1(g2(x)) or fi(fo(x)), both representing the same DAG but with
different constituent functions. Thus, even if we may assume that
the noise occurs only in the approximation of the target function
at the sink node and not in the constituent functions, it seems
to be an extremely difficult problem to determine theoretically
for any target function what the optimal DAG structure and the
input/output for the constituent functions ought to be. Therefore,
we have to state our theorem for deep networks only as an
existence theorem, in the non-noisy case, not to complicate the
notations too much. We assume also that at each node v, the
input data is distributed according to the volume measure of X,.

(5.10)

Theorem 5.3. Let G be a DAG as described above, {f,} be a
G-function, and we assume that each of the constituent functions
fi € W,(X,) N Lip(X,) for some y > 0, o satisfies (3.10). Let
n > 1. Then there exists a G-function {g,} such that each g, is a
Gaussian network constructed using O(n®@=*)+22¥ |ogn) samples
of its inputs, such that for any x seen by v*,

[for(X) — g+ (X)| < (L, G)n™*7. (5.11)

6. Background on weighted polynomials
6.1. Weighted polynomials

A good preliminary source of many identities regarding Her-
mite polynomials is the book (Szeg6, 1975) of Szegd or the Bate-
man manuscript (Bateman, Erdélyi, Magnus, Oberhettinger, &
Tricomi, 1955).

We denote the class of all univariate algebraic polynomials
of degree < n by P,. The orthonormalized Hermite polynomial
hy of degree k is defined recursively by (3.3). With ¥ (x) =
hi(x) exp(—x%/2), one has the orthogonality relation for k,j € Z,

1, ifk=j
Vi(X)Yj(x)dx = { T ; (6.1)
/R s 0, ifk#j.
Using (3.3), it is easy to deduce by induction that
V2!
—1/4¢ _1\/2 g
(0= 17 (—-1) 272(02)" if £ is even, (62)

0, if £ is odd,

H.N. Mhaskar / Neural Networks 132 (2020) 253-268 259

The Hermite polynomial hp, has m real and simple zeros xy m.
Writing

-1
m—

)\k,m = Z hj(xk,m)2 5 (63)
it is well known (cf. Szeg6 (1975, Section 3.4)) that

m
> MemP(Xem) = / P(x)exp(—x*)dx, P € Pyy. (6.4)

=1 R
It is also known (cf. Mhaskar (1996, Theorem 8.2.7), applied with
p=2,b=0) that

m

> hemexp(at,,) < cm'2. (6.5)
k=1

The Mehler formula (Andrews, Askey, & Roy, 1999, Formula
(6.1.13)) states that
1 (2yzw — (y? +z2)w2)
———————exp >
(1 — w?) 1—w

yv.zeR, weClC, |w <l (6.6)

D Uy =

j=0
x exp(—(y* +2%)/2),

Next, we introduce and review the properties of Hermite poly-
nomials in the multivariate setting. We will need to use spaces
with many different dimensions. Therefore, in this section, we
will use the symbol d to denote a generic dimension, which will
be replaced later by ¢, Q, q,, etc.

If d > 2 is an integer, we define Hermite polynomials on R?
using tensor products. We adopt the notation X = (xq, ..., Xg).
The orthonormalized Hermite function is defined by

d
= v (6.7)
=1

In general, when univariate notation is used in multivariate con-
text, it is to be understood in the tensor product sense as above;
L k! =]_[1k, X< =]_[lexfj, etc. The notation ||, ; will
denote the E" norm on Rd
Forany setA C R?and f : A — RR, we denote by C(A) the space
of all uniformly continuous and bounded functions on A, with the
norm ||f |la = supyea If(X)]. The space Cy(A) is the subspace of all
f € C(A) vanishing at infinity.
We will often use (without mentioning it explicitly) the fact

deduced from the univariate bounds proved in Askey and Wainger

(1965) that

[Y(x)] < c. (6.8)

We will denote by I7¢ the span of {y : /|Kl; 4 < n} and by P!
the space of all algebraic polynomials of total degree < n. Thus,
if P € I74, then P(x) = R(x)exp(—|x|3 4/2) for some R € P%,. The
following proposition lists a few important properties of these
spaces (cf. Mhaskar, 1996, 2005, 2017).

Proposition 6.1. Letn > 0, P € IT¢.

(a) (Infinite-finite range inequality) For any § > O, there exists
¢ = ¢(8) such that

2
”P||Rd\[—ﬁn(1+5),ﬁn(1+5)]d < e o ||P||[7\/§n(1+5)yx/§n(1+,g)]d (69)

(b) (MRS identity) We have

IPllga = (6.10)

”P”[—«/in,«/ian'

(c) (Bernstein inequality) There is a positive constant B depending
only on d such that

11VPly,4] pa < BnlIP|lga-

(6.11)

Let m > 1. For a multi-integer j, 1 < _] < m, we write
Xjmd = (Xjjm» - Xj, m) and Ajmg =]—[[1 Aj,,m- We observe
further that if P, P, € 17 then P;(x)P,(x) = R(x) exp(—|x|?) for
some R € IP’gm Therefore (6.4) and (6.5) lead to the following
fact, which we formulate as a proposition.

Proposition 6.2. For m > 1, we have

Z Ajm2.d exp(|Xj,m2,d|§’d)Pl(xjemzﬁd)PZ(xjemZA,d)

1<j=m?

- / PORK, PPy TS, (6.12)
R
and
D Az €I 2 gl3) < cm®. (6.13)
1<j<m?

6.2. Applications of Mehler identity

The Mehler identity for multivariate Hermite polynomials is
expressed conveniently by writing

Z Wk wk

k| g=m

Projm (X, y) : (6.14)

Using the univariate Mehler identity (6.6), it is then easy to
deduce that for w € C, |w| < 1,

Z wk Wk(y id = Z w PrOJm d(x y)

kezd
. 1
= @ w)

(4wx-y—(1+w2
X exp

)IX13 4 + |y|%,d))

2(1 — w?)
B 1
l_wZ) d/2
1+w|x— YIZd 1T—wx+y5,
X exp
1w 1+w 4
1

(r(1 — w?))i2

x exp(
(s

X exp 20+ w |Y|2 d)

2w
1+ w2y

1+ w?
21—w2)

2
2.d

(6.15)

We note an identity (6.18) which follows immediately from (6.15)
by setting x = y = 0. For integer d (not necessarily positive), we
define the sequence Dg., by

Dd;r
gty _qyrn__ TU=d/2) if r is even, d < 0,
)2 (12— d/2 —r/2)r/2)
=1 a2 Fd/247/2) if r is even, d > 1,
rd/2)r/2)”’
0, if r is odd.

(6.16)

260 H.N. Mhaskar / Neural Networks 132 (2020) 253-268

This sequence is chosen so as to satisfy

ZDdrw

Using the Mehler 1dent1ty (6.15), we deduce that for any integer
d>1

Dow? Y y(0)f = (x(1— w) 2

r=0 ki1 g=2r

74201 — w2y 42 =

lw| < 1. (6.17)

Fdj2+47) o
r(d/2)r!

(6.18)

In this section, we point out the invariance and localization
properties of certain kernels using the Mehler identity.

6.2.1. Rotation invariance

An interesting consequence of the Mehler identity is that the
projection Projy, 4 is invariant under rotations. For d > 2 and any
X,y € RY we may therefore use an appropriate rotation to write

Projm,q(X, ¥) = ZPFOJJZ [X[2.4: 0), (1¥l2,4 €058, [yl 5in6))

<)

[Klq,g—2<m—j

[Yi(0)?, (6.19)

where cos9 = x-y/(|x] |y|), with obvious modifications if y = 0.
Hence, we obtain from (6.19) and (6.18) (used with d — 2 in place
of d),

Projm,4(X, ¥) = Z Projj 2(([Xl3,4, 0), (1¥l2,4 COS O, [yl 4 5in 6))

X Dd—2;m—j~ (620)
In the case when d = 1, (6.19) takes the form
Projm,1(%, ¥) = Ym(IX)¥m(ly| cos 8), (6.21)

where cos 8 = xy/(|x| |y|) = sgn(xy), (sgn(0) = 0).
Let Q > q > 1 be integers. We can extend the definition of
Proj;, q to X,y € R by

Projn, .4, Q(x y)
m
Z Projj »(([X[2,q, 0), (1¥12,q €0S 0, [y2,q 5in0))Dg-2:m j»
=0

= ifq=2,
Yin([X]2,0)¥m(l¥l2,q cOSO),
ifg=1.
(6.22)

The relationship between Proj,, , o and Proj, o, both defined
on R¢ is given by the following proposition.

Proposition 6.3. Let Q > q > 2 be integers. Let m > 0, and

X,y € R,
(a) We have
& @ -q2+e-1
Projy o (X, y) = w492 < q v)
=0

X Projm_zl,qiya(x, y). (6.23)

(b) We have
(@ a2

Projm g (X, y) = 7(Q-9/2 Z (—1)[(ﬁq)Projm,%Q(x, y). (6.24)
=0

Hence, Proj, 4 o(X, y) is a weighted polynomial in ndasa function
of xandy.

(c) Ifx is a scalar multiple of 'y, then (6.23) and (6.24) both hold also
when q = 1.

0),y = (lyly,q cos

g—2 times

0,yl2qsind, 0,...,0). In view of (6.19), we observe that
N e’

Proof. In this proof, let X' = (|x|,4.0, O,...,
———

q—2 times

Projm,q.o(X, ¥) = Proj, (X, ¥). (6.25)

Further, [X — Y|, o = X' —¥|o4 X+ ¥lq = X +¥|,, There-
fore, the Mehler identity (6.15) shows that

T+wlx—yb,

(o]
> wProjn o (X, y) = R —

m=0

1
(1 — w2y <_

T—wlx+y3,
1+w 4

1 - m . / /
= e 2 Proinate.Y)
m=0
1 [o]
— m H
T ((1 — w?))Q-a)/2 Z wProlngQ(,¥)-

m=0

(6.26)

We now recall the McClaurin expansion for (1 — w?)~(@¢=9/2 (cf,
(6.17)), multiply the two power series using the Cauchy-Leibnitz
formula, and compare the coefficients to arrive at (6.23). Part (b)
is proved similarly by observing that

[o]
Zw Projm.q.0(X, y) = 7@ 9/2(1 — 12)@-0/2 Zw
m=0
X Projp o(X, y). (6.27)
If x is a scalar multiple of y, then sinfd = 0, so that X =
(IXl2.0, 0,...,0), ¥ = (lylpqcosf, 0,...,0). Part (c) is then

q—1 times] g—1 times
proved using the same calculations as above. W

Remark 6.1. Clearly, for every X,y € R%, Projmo.o(X,y) =
Projm.q(X,¥), Projp q.0(X,¥) = Proj, qo(—X, —y) and the kernel
(X,y) = Projn q.o(0, X —y) is both rotation invariant and transla-
tion invariant. Using (6.19), (6.2), and (6.18) (used withd = q—1)
show that for all ¢ > 1 and m € Z, Projyp_1,4,0(0,X) = 0, and

Projam.q.0(0, X) = Projyy, (0, x')

2m
=Y UlxLW(0) Y. [yk(0)?
j=0 IKl1,g—1:<2m—j

6.2.2. Localized kernels
In this section, we recall the localization properties of certain
kernels. In the sequel, H : [0, c0) — [0, 1] is a fixed, infinitely

H.N. Mhaskar / Neural Networks 132 (2020) 253-268 261

differentiable function, with H(t) = 1if0 <t < 1/2, H(t) = 0 if
t > 1. All constants may depend upon H as well. We define

l
-3 H (I, ”) YAXWA(Y)

keZd

nd(H XY) —¢nde

n2
= ZH ({?) Projmd(X,y), X,y e€R’ (6.29)
m=0

Using Mehler identity and the Tauberian theorem in Mhaskar
(2018, Theorem 4.3), we proved in Chui and Mhaskar (2018a,
Lemma 4.1) the following proposition.

Proposition 6.4. Forn > 1, X,y € R% we have

[Dn,a(X, ¥)| < e’ . (6.30)
max(1, (n[x —yl,4))

In particular,

| @ a(x, y)| < cn’, (6.31)

and for 1 <p < oo,

sup [[Ppa(x.y)lPdy < cn®@D. (6.32)

xeRd JRE

We extend the definition of @, 4 as follows. Let Q > q > 1 be
integers. We define

o \/IT”I - .
DpgoX,y) = ZH e Projm,q.o(X, ¥), X,y € R-.
(6.33)

Remark 6.2. In vie~w of Remark 6.1, the kernel 5,“, de-
fined in (3.6) satisfies @y ¢(|X[5) = Pn,q,(0,X). In particular,
Prgllolrg) € 7. ™

Proposition 6.5. Let S > Q > q > 2 be integers. The kernel
Dy 00X, y) € g as a function of x and y. For x,y € R¢, n =
1,2,..,

cnd
[Png.o(X, ¥)| < . (6.34)
e max(1, (X — yl, o)
In particular,
|Pn.q.0(X, ¥)| < cnt. (6.35)

If x is a scalar multiple of y, then
cn

max(1, (n|x — Y|2,Q)S)7

[Pn,1,0(X,)| < [DPn1,0(X, ¥)| < cn.

(6.36)

Proof. Let X',y be as in the proof of Proposition 6.3. Since
Png0X,y) = @, q(X,y'), this proposition follows directly from
Proposition 6.4. ®

Corollary 6.1. The kernel 5,1,(, defined in (3.6) satisfies each of the
following properties.

cn?

&, (% <— . XxeRY 6.37
[P q(1X]5,0)I< max(1, (M, o)) (6.37)

| B q([X|2,0)l < cn,
|®Pn.q(1X|2.0) — Prg(lVl2.0)l < e |IX|2q — x,y € R%.
(6.38)

Proof. The estimate (6.37) and the first estimate in (6.38) follow
from Proposition 6.5 and the fact that @, ¢(|X]; ¢) = Pn.q.0(0, X).
The second estimate in (6.38) follows from the Bernstein in-
equality (6.11) applied with d = 1 to the univariate polynomial
Dpy H

6.3. From Hermite polynomials to Gaussian networks

We discuss in this section the close connection between Her-
mite polynomials and Gaussian networks.

Proposition 6.6. Let m > 1, k € Z¢, and for |k|; 4 < m* x € R,

d/2
3
6k,m,d(x) = (27_[) lkl] a/2 Z)\J 2m2.d

1<j<2m?
X exp(3|xj,2m2,d|§'d/4)wk(xj,2m2,d)

2
X exp | = X = —Xjom g (6.39)
2.d
Then
_ _m2
‘kr‘nax ¥k — Grmal|ga < cm*237"/2, (6.40)

Clearly, the number of neurons in the network ®y . g is O(m%).

Proof. This proof is the same as that in Chui and Mhaskar
(2019, Lemma 4.2) and Mhaskar (2004, Lemma 4.1). Using the
last expression in (6.15) with w = l/«/§, we obtain

a2
D X y()3 a2 = (%) exp | — V3

X——u
y 2
keZ

2.d
x exp(—|[ul?/4).

In this proof, we denote by vy , the measure that associates
the mass A; 52 4 exp(|xj’2mz,d|§’d) with the point X; 5,2 4 for 1 <

j1,...,ja < 2m?. Therefore, using Proposition 6.2 with m+/2 in
place of m, we obtain

d/2
3
Yi(X) = 3/kl1,4/2 (7) f exp | —
2 rd " d

x exp(—|ul?/4)dv}; ,(u)

> vu)yyx

R
lil1,q=2m?

x (w370 2dyr (u).

V3

X——u

5 Yi(u)

3/kl1,4/2

The first term on the right hand side above is & n 4. The second
term is estimated using (6.8) and (6.13) (applied with m+/2 in
place of m) exactly as in the proof of Chui and Mhaskar (2019,
Lemma 4.2). We omit the details. =

The following corollary is easy to deduce (cf. Mhaskar, 2004,
Proposition 4.1). If P = 3" .2 biync € [T}, we define

> biGrma (6.41)
Ik|1,g<m?
Corollary 6.2. Letm > 1, P € IT%. Then
IP — &4(P)llga < c1m 3™ /2 |[P||ga. (6.42)

262 H.N. Mhaskar / Neural Networks 132 (2020) 253-268

We note that the centers and the number of neurons in the network
Zlkh g<m? bk®xk m.q are independent of P. In particular, the number

of neurons is ©O(m?).
6.4. Function approximation

In this section, we describe some results on approximation of
functions on RY. If f € Co(R?), we define its degree of approxima-
tion by

Ei(R%f) = min I = Pls. (6.43)
€llp

For y > 0, the smoothness class W, (R?) comprises f € Co(R?)
for which

I llw, (eay = IIf llza + sup 2™ Epn(RY;) < oo. (6.44)
nx=

We need some results from Mhaskar (1996, 2003), reformulated
in the form stated in Theorem 6.1. To state this theorem, we need
some notation first. First, for § € (0,1], x € RY, 1 < k < d, we
write

Q 5(x) := min(8 ™", |x¢]).

For t > 0 and integer j > 0, the forward difference of a function
f:RY — R is defined by

J

Ajllc,r J(x) = Z(—l)i_l (é)f(xl, e X1, X+ O Xy, -, Xy)

=0

(6.45)

and for integers r > 1

d r
o(f,8):=) Y 87 sup I0QYs) ™ A (e (6.46)

k=1 j=0

Remark 6.3. If A > 0, fi(x) = f(x/A), then A’,;,t(f,\)(x) =

A],'(,t/k(f)(x/)\), and Q;;(x) = AQ,;(x/A). Using the fact that
8 +— 8Qys(x) is non-decreasing for every X, it is not difficult to
deduce that

d r
or(f,8) = Y 8" sup Q)7 A% (i) e
k=1 j=0 =9
d r)
=YD 877 sup Q) T A}, (llsa
k=1 j=0 lul<d/2
< w(f, max(x, 1/1)8). (6.47)
Theorem 6.1. Let f € Co(RY), r > 1,0 <y <r. Then
(a) Forn > 1,
En(R% f) < cax(f, 1/n). (6.48)

(b) The function f € Wy(Rd) if and only if w,(f,8) = O(8§) for
0 <§ < 1. In fact,

I lw, ey ~ If llpa + Sup 5 an(f, 8). (6.49)

Proof. The theorem is already contained in the results in Mhaskar
(2003), but we need to reconcile notation and explain why.
In Mhaskar (2003, Formulas (42),(43)) we have defined a uni-
variate K-functional and a pre-modulus of smoothness for g(x) =
exp(|x|§’d/2)f(x) applied to the kth componentofx, k=1, ...,d.
The K-functional obtained in this way is denoted in Mhaskar

(2003, Formula (21)) by K; k. Likewise, the quantity denoted by
w; in Mhaskar (2003) is the kth summand of the right hand
side of (6.46). Our definition of Q; is slightly different from
that in Mhaskar (2003) (where it is defined to be min(8~!, (1 +
x2)'/?)). However, our Q; ; as defined in (6.45) satisfies Q, ~
min(§~", (1 + x2)'/?), Therefore, Mhaskar (2003, Theorem 5.1,
Proposition 4.5) lead to the statement of this theorem. ®

Remark 64. If y = r 4+ B8, where r > 0 is an integer and
0 < B <1,f eCh(RY) and satisfies

sup 170 w) = o +8 min(s ™", ol e = 87,
Uz 4=

(6.50)
for every derivative f(of order r, then w,(f,8) = O(8") for

0 <8 <1andf e W, (RY.Iff € Cj(RY) is compactly supported,
and every derivative f(of order r satisfies

sup [If"(0 +u) — f|za < c(f)8”,

[uf ¢=<é

then f € Wy(Rd). In particular, if f is compactly supported and
satisfies a Lipschitz condition, then f € W;(R%), and therefore,
also f € W, (RY) for every y € (0,1). =

We define

(R () = / Gra(x, YY)y, f € Co(RY, n >0, x € B,
RY

(6.51)
The following proposition is routine to prove using Proposi-
tion 6.4:

Proposition 6.7. (a)Ifn > 0andP € 1% _, then o,(R%; P) = P.

n/NZ'
(b) Iff € Co(RY), n > 0, then

low(R Fllzd < cllf llpe,

En(RY: £) < If — 0w(R% f)llpa < CE, y5(RY:). (652)

7. Approximation on affine spaces

In the sequel, we fix integers Q > q > 1.

Let Y be a g-dimensional affine subspace of R?, passing
through a point X, € RC. Then there exists a rotation operator
R on R¢ depending only on Y such that any point X € Y can be
expressed in the form (with 0g_q = (0,...,0) € RC9)

X =!Xo + R(u, 0g_q) u = u(x) = (ui(x), ..., ug(x)). (7.1)

With an abuse of notation, we will write this as X = Xo + R(u).
In this section only, the function F : R? — R is defined by

F(u) := f (Xo + R(u)), (7.2)
we define
En(Y;f) = En(Rq; F). (7.3)

Similarly, if y > 0, then f € W, (Y)if F € W, (R?); i.e, f € W, (Y)
if f € Co(Y) and

If lw, vy = IFllw, (ra) < 00. (7.4)

In terms of the points X = Xo + R(u,0g_4) € Y, the class of
approximants of functions on Y have the form x — P(X)exp
(—|x —X0|?/2), where P € IP’HQZ. If we are interested only in
approximation on Y, we may decide to use some standard point,
such as the best approximation to 0 € R? from Y. This section

H.N. Mhaskar / Neural Networks 132 (2020) 253-268 263

is meant to be preparatory to Section 8 where the results in this
section will be used with Y replaced by the tangent space Ty, (X)
to a manifold X. With this goal in mind, our definition is more
natural. We note that if f is supported on a compact neighbor-
hood of X, then F is supported on a compact neighborhood of 0 €
RY. Therefore, for such functions, we may use Theorem 6.1 (and
Remark 6.4) with F and get the estimates where the constants do
not depend upon Xg, although the space of approximants does.

Our goal in this section is to study the analogue of
Proposition 6.7 in the context of approximation on Y.

We denote the volume measure of Y by vy, and for f € Cy(Y),
A > 0,X=Xg+ R(u),

ona (¥ FYX) = O (Ko, Y: £)(X)
_y / Brg.0 (MX — Xo0). MY — %) (¥ (y).
Y
(75)

Theorem 7.1. Let Q > q > 1 be integers, Y be a q-dimensional
affine subspace of R, passing through xo € R, f € Cy(Y), A > 0.
Then

lona(Y: £)=F|, < By yalYs f(Xo + R((0 — X0)/A))). (7.6)
In particular, if y > 0, f € W, (Y), A > 1, then
lona(Y:) = £ < cllf llw, e (A/n) . (7.7)

Here, all the constants are independent of A.

Proof. Since the kernel @, 4 is invariant under rotations, it is
easy to verify that forx =Xy + Ru € Y,

o (Vs F)) = f B g(hs, VIF(V/A)GV.
RA

Hence, (7.6) follows from Proposition 6.7. The estimate (7.7)
follows from Remark 6.3. ®

8. Proofs of the theorems in Section 3

For any x € X, we need to consider in this section three kinds
of balls, defined in (3.1):

Bo(x,7):={y e RY : [x — Vlaq <1}, Br(X, 1) == Tx(X) N Bo(x, 1),
B(x,r):={yeX: pxy) <r}.

Clearly, if r < (*, then B(X, r) = &(Br(X, 1)).

The following proposition is not difficult to prove using defi-
nitions and Taylor expansions (cf. Belkin & Niyogi, 2008). In this
section, we will simplify the notation to write du in place of

dimygo (W)

Proposition 8.1. There exists a constant C* > 0 depending only on
X such that each of the following statements holds for every x € X.
(a) We have

“x — &(u)l5q — o(x, 5x(“))| = “x — &)l — X — u|2,Q|
< C*p(x, &), &(u) € B(x, *).

(8.1)

(b) If § < (* then

lEx(u) —ul, o < C*8%, &(u) € B(x, 8), (8.2)

(€) If § < (* then

[ttt - dul < o (83)
B(x,5)

Proof. In this proof only, let r be any geodesic passing through
X, parametrized by the arclength s from X, and g be the metric
tensor of X. Then, using the fact that [r'(s)l,o = 1, and r'(s) -
r’(s) = 0, it is easy to deduce using Taylor expansions that for
Is| < 0%,

|I‘(S) - X@,Q 2

e, 1— ———= <cs".
s

2 2 4.
[Ir(s) — X3 o — 57| < cs™

Since 1 — [r(s) — X[, o/s < 1— |r(s) — X|3 5 /s*, this proves (8.1).

The estimate (8.2) follows from the fact that r(s) = &(x + sr’(0))

and a simple estimate using Taylor theorem. The estimate (8.3)

follows from the well known fact that in exponential coordinates
det(g) =1+ O(8%) in B(x,8)if§ <*. m

Corollary 8.1. There exists C{ > 0 depending only on X such that
forevery x,y € X,

X—=ylho < px,y) < Cilx— Vl20- (84)
In particular, for r > 0,
B(xv r) g BQ(X, r) g B(Xv CTr)s (8'5)
and (3.9) is equivalent to
*(Bo(x, T
W (Bo(x,))sc (86)

xeX,r>0 rd

Proof. In this proof only, let @ = min((2C*)~'/2, ¢*/2). Then for
o(X,y) < a, (8.1) shows that

[x — Y|2.Q
P(X,y)

0<1-

< C*p(x,y)* < 1/2.

Therefore,

X—=Vlo < pX,¥) <2]X—Yl0; if p(x,y) < a. (8.7)

In this proof only, let A = {(X,y) € X x X : p(X,y) > a}. Then A is
a compact set and the function (X, y) — [X —yl5 o/0(X, y), being
continuous on A, attains its (necessarily positive) minimum. Thus,
there exists ¢ such that

X—Vlo < p(Xy) <cIX—Y¥lho, ifpxy)>a
Together with (8.7), this leads to (8.4), and hence to (8.5). W

To motivate the construction of the operator for approxima-
tion, our idea is to transfer the target function locally at each
point to the tangent space at that point. Therefore, we use the
operator defined as in Section 7. In the present situation, at any
point x at which the approximation is desired, the affine space
passes through the point x itself, which plays the dual role of X, in
Section 7. While there is only one parameter t in Theorem 2.1, our
construction allows us to have two parameters to control localiza-
tion: the parameter n controlling the degree of the polynomials
involved and an additional parameter to control scaling. Recalling
that @, 4 o (X, y) = P q,0(—X, —y) we can define our operator as
a convolution as follows.

0 (X F)() 1= 27 f Braa(0. (Y — X)W ()
X

Y / Brg0 (11X — V.o VAL (W). (8.8)
X

Our first theorem is the analogue of Theorem 7.1 when X is a
manifold instead of an affine space.

Theorem 8.1. Lety >0,f e W, (X), 0 <a <1, a <4/(y +2)
Then forn > 1, A = n'~¢,

If = on (X5 Al < en™ [If lw, 0 (8.9)

264 H.N. Mhaskar / Neural Networks 132 (2020) 253-268

It is convenient to summarize some details of the proof of this
theorem in the form of the following lemma.

Lemma 8.1. letx € X, g € C(X) be supported on B(X, (*/8),
G(u) = g(&(u)), y > 0,0 < o <1, @ < 4/(y + 2). Then for
n>1xr=n!",

X / B (A% — Yo, 0) ¥)AI(Y)
X

Y / B g(Ax — uly o)CWNU| < o lgly. (8.10)
Tx(X)

where G is extended outside Br(X, t*/8) as a zero function.

Proof. First, we summarize our choices of various parameters. In
this proof only, let

§ = n—(@2—a)a+D+ay)/(q+3)

so that for sufficiently large n,
§ < min(1,:*/6), nitIAat150t3 = p=or

nis = nl4—ay—20)/(a+3) 1 0.

)

(8.11)

We choose

(@2 —a)+ay +1)(q+3)
4—ay —2a ’

S=>

(= nIAI(nrs)™S < n~@r~1h),
(8.12)

We now assume further that n is large enough so that with C* as
in Proposition 8.1, C*8% < /2.
Next, we summarize the implications of our choices on the
distances on the manifold, tangent space, and the ambient space.
Ify € B(x,t*/8) N By(X,8), u € Tx(X), y = &(u), then (8.2)
shows that
X —ulyq < [X — Vo + [&x(U) —ulq < § +C*8?

< (3/2)8, p(X,y) <38 < (/2. (8.13)
Thus,
Es = £, '(B(x, 1*/8) N By(x, 8)) Br(x, 36/2). (8.14)

If u € Br(x, t*/8) then &(u) is well defined. If u € By(x, ¢*/8)\ Es,
then (8.2), (8.1) show that

X —ulyq > X — &(U)lyq — [&(w) —uly g > 8 — C*8* > 8/2.
(8.15)

With this preparation, we are now ready to start with the main
estimates. Without loss of generality, we assume that ||g||x = 1.
Since g is supported on B(x, ¢*/8), we find that (cf. (8.12), (6.37))

/ (BagAX — V2.0 WAL Y)
X\Bg (X.6)

_ / (B g1 X — V12,0)WL)
B(X,L*/S)\BQ(X,S)

< cn(nas)™> < en~@r"Ia4, (8.16)

Using (6.38) and (8.1), we deduce that for y = &(u) €
B(x, t*/8) N By(X, 8),
|Brg(MX — Ex(W)]2.0) — Png(AlX — ul20)]

< ™| — &(w)l2.q — X —ulzq| < nTTTAS3. (8.17)

The estimates (8.13) and (3.9) lead further to

/ du(y) — / du
B(x,:*/8)NBq (x,4) Es

In view of (8.11), (8.17) and (8.18), we deduce that

< dp*(Ex(w)) — dul | < c87*2,

Es

(8.18)

f B g (11X — Y1y 0 2 W) (Y)
]B(X,t*/8)ﬂBQ(X,5)

- / @y q(hIX — ul5 5)G(w)du
Es

/ B g (X — Ex(W)]5.0)G(U)dp1* (Ex(u))
Es

- / By q(IX — ul5 0)G(u)du
Es

=

f (Brg(MIX — Ex(Wl.q) — Brg(hlx — ul. o)) Glu)du
Es

+cni89t?
< endtA893 = enmr).

(8.19)
The localization estimate (6.37) shows (cf. (8.12)) that

/ Bpqg(hlx — ul, o)G(u)du| < cni(nr)~®
Tx(X)\Br(x,:*/8)

<cn™1Z79 (8.20)

Invoking the localization estimate (6.37) and (8.11), (8.15)
again, we deduce that

< cnd(nas)=s

/ @y q(A1X — ul, o)G(u)du
Br(x,c*/8)\Es

<cnmrIaT (8.21)

The estimates (8.16), (8.19), (8.20) and (8.21) lead to (8.10). =

We are now in a position to prove Theorem 8.1.

Proof of Theorem 8.1. Let x € X. Let ¢ € C*®(X) be chosen so
that ¢(y) = 1ify € B(x, (*/16), ¢(y) = 0 ify € X\ B(x, ¢*/8),
and 0 < ¢(y) < 1 fory € X. Then the function f¢ is supported
on B(x, (*/8), and hence, the function F : Tx(X) — R defined by
F(u) := f(&(u))p(&(w)) is in W, (Tx(X)). Clearly,

IF ey < Nf Ml IFllw,) < IF w0

We choose S > q+(ay +1)/(2 —a), and write a = 1*/(16C}),
where Cf is the constant defined in Corollary 8.1. Then, the
inclusion (8.5) and the localization property (6.37) show that

/ Brg(AX — o) (1— ¢(Y))f(y)du*(Y)’
X

f B g(A1X — Yl5.0)(1 — ¢(y))
X\B(x,0*/16)
x f (y)du*(y)‘

< f | B g1 — V.o)(1 — $(¥))
X\Bq (x,a)

x f(y)| du*(y)
<en®Sn S flly < en T f |1k

(8.22)

H.N. Mhaskar / Neural Networks 132 (2020) 253-268 265

In view of Lemma 8.1,

/ g1 — V12,0)OO (V)AL (V)
X

- / B ghlX — uly o F(u)du| < T A, (823)
Tx(X)

so that

‘f B g(MIX = Yl (¥)d1*(y) —/ By g(A|X — 5o)F(u)du
X

Tx(X)
< en A7 f [1x. (8.24)
Since F(x) = f(X), (7.7) in Theorem 7.1 now shows that
M [Bnaix = V1o V¥ 9) ~ S0
X
< c(n/A) 7 IFllw, ey < en” 7 IIf lw, x)- (8.25)

This proves (8.9). ®

Our next objective in this section is to obtain the following
discretization of Theorem 8.1 based on noise-corrupted random
samples of f as in Theorem 3.1.

The proof of Theorem 3.1 is included in that of the following
theorem, together with Theorem 8.1 applied with fyf in place of f.

Theorem 8.2. We assume the setup as in Theorem 3.1. Then for
every n > 1and M > ni2=*)+2¢¥ Jog(n/8) we have with A = n'~¢,

Probe ([Fua(¥: 0) = ona(: fof)| se = v/ ol llxxan™)
<é. (8.26)
The proof of Theorem 8.2 requires some preparation. We start

with the following concentration inequality (Boucheron, Lugosi,
& Massart, 2013, Section 2.7).

Proposition 8.2 (Bernstein Concentration Inequality). Let Z1, . . ., Zy
be independent real valued random variables such that for each
j=1,...,M,|Z| <R, and E(Z?) < V. Then for any t > 0,

M

1 Mt?
Prob | |— Y (Z —EZ))|>t] <2exp["=].
"\ |m ;(i —E@) =) = Xp(2(V+Rt/3)>
(8.27)
In order to apply Proposition 8.2, we need to estimate the
second moment of F(y, €)@ qo(AX =Yl q) = F(Y, €)Pnq,0(0,
A(x —y)) for every x € RC. This is done in the following lemma.

Lemma 8.2. We have

A% sup / (Y, €)Pnq0(0, A(x — y)Pdr(y, €)
Xx 2

xeRQ

< (M) F 150 ol (8.28)
Proof. Let x € R2. We need only to estimate

2
[175 1na00.x -y ety
Xx 2
<171 g ol [Pngo(®. X~ Y)Pdy), (29)
X

Using Proposition 6.3 and (8.6), and keeping in mind that A > 1,
we deduce that

f Br0.0(0, A(X — Y)PA*(Y)
X

_ / Brg0(0, A(X —)P du*(y)
XNBq (x,1/(n1))

oo

+ P q.0(0, A(x — ¥)*du*(y)

s /Xmm@x,zkﬁ/(nx))\IBQ(x,zk/mxm

< o {M*(BQ(X, 1m)+ Y 274

k=0

x (B (x, 271 /(nA)) \ B (x, 2"/(nx)))}

[e]
< cnind {1 + ZZ_"(ZS_")} <cni 9. =
k=0
The proof of Theorem 8.2 requires an estimation of a quantity
of the form

M

A4
sup |1 Z F(Yj, €)Pn.q.0(0, A(0 — ¥;)) — 001 (X; fof)

j=1 RQ

in terms of the maximum of the function involved at finitely
many points. The following lemma accomplishes this by consid-
ering the difference between two measures on X: one that asso-
ciates the mass (1/M)F(y;, ¢;) with each y;, and other given by
fy)dv*(y) = f(¥)fo(y)du*(y). We will denote the total variation
of a measure v by ||v||7v. The total variation of the difference be-
tween the two measures mentioned above is clearly < 2||F||xxe-

Lemma 8.3. LetS > Q + 2, A be as in Theorem 8.1. There exist
c* = c*(§) > 0 and a finite set D* C R with |D*| ~ n°* such that
for any measure v on X,

3 / B g0(0, (0 — Y))dU(Y)
X

RQ

< max
xeD*

(8.30)

qu Pn.q.0(0, A(X — Y))dV(Y)‘ +en vl
X

Proof. We assume n to be large enough so that X C [—+/2n,
+/2n]. Then Proposition 6.5 (used with 2S in place of S) shows
that

sup < F iy
xeRQ\[—2n,2n]Q

/ Prg.0(0, 2(x — y)du(y)
X

< P|llv. (831)

Therefore,

/ Br0.0(0, (0 — y))AV(Y)
X

RrQ

= sup
xe[—2n,2n]Q

/ Pnq.(0, A(X — Y))dV(Y)’ +en vl (8:32)
X

Next, we observe that for any y € R¢
Vx (‘pn,q,Q(O, Alx — Y))) =2 (vx¢n.q.Q(0» O)) (AMx—y))

Therefore, for any x € R<,

Vx </ Pnq.0(0, A(x — Y))dv(Y)> ‘
X

=X / |(Vx®Pn,q.0(0, 0)) (A(x — y))| d[v|(y).
X

266 H.N. Mhaskar / Neural Networks 132 (2020) 253-268

Using the Bernstein inequality Proposition 6.1(c), we conclude
that
sup < cen®™ vy
xeRQ

v, (/ Prg0(0, (X — y))dv(y))
X
I

and hence, for any x, z € R,

2 / g0 A(X — Y))dv(y) — 17 / g0, Az — Y)V(Y)
X X

< en“TT Iyl X — 2] o (8.33)
We now let D* be a finite subset of [—2n, 2n]¢ such that
max min |x —z|, o < n @S (8.34)

xe[—2n,2n]Q ze€D*

and observe that |[D*| ~ nQ@+D2-)+S) The estimate (8.30) is
easy to deduce using (8.32), (8.33), and (8.34). =

With this preparation, we now prove Theorem 8.2, and hence,
Theorem 3.1.

Proof of Theorem 8.2 (and Theorem 3.1). Let x € R%. We

consider the random variables
Zi(x) = M1 F (), €)Prn.q.0(0, A(X —¥j)).

It is easy to verify using Fubini’s theorem that if F is integrable
with respect to t then for any x € R?,

E:(ATF(y, €)Pn(0, A(X — ¥))) = on 1 (X; fof J(X). (8.36)

The estimate (6.35) implies that |Zj| < c(nA)I||F|lxxge. Further,
Lemma 8.2 yields E,(ij) < c(nA)| FlZ, o Ifollx. Therefore, we
deduce using Proposition 8.2 that for any ¢t € (0, 1),

(8.35)

M

3400~ 05 D 0| = 1ol /2

j=1

Prob,

2
Mlfolxt) ©37)

(na)d
In view of Lemma 8.3, we have for S > Q + 2 + ay,

< 2exp (—c

=t Fllxxe follx

M
1
Prob, M E Zj - Un,A(X;fOf)
Jj=1 RQ

2
Mllfollxt) . (8.38)

+on S| F <cnfexp | —c
M| Fllxxe | £ p ()

We recall that nA = n*~* and choose
na2—a)
Milfollx

for a suitable constant to make the right hand side of (8.38) to be
< §, to obtain

t=c3

log(n/é)

M
1
Probe | |12 D 2 — on(X: fof)

j=1 RQ

> || Fllsxxe (\/W log(n/8) + n5>> <48, (8.39)

We now observe that since 1 = fxfodu*, and u*(X) = 1,
Ifollx = 1. Therefore, choosing M > ni-*)+2er /log(n/§), we
arrive at (8.26). ®

Theorem 3.2 is obtained immediately from Theorem 3.1 by
setting fo = 1. To obtain Theorem 3.3, we use Theorem 3.1 once
as stated and again with F(Y;0) = 1 to get an approximation
to fo.

9. Proof of the theorems in Section 5

Proof of Theorem 5.1. Theorem 5.1 follows easily from
Theorem 8.2 and Corollary 6.2.

Proof of Theorem 5.2. Let v € V, and uy, ..., uq,) be the
children of v, and X1, ..., X4 be the inputs seen by these in that
order. Let x be the corresponding input seen by v. Then using the
Lipschitz condition on f, and the property (5.7), we obtain

o) — gu)l= | (0 ((ay Ky - - -+ gy Kuigy)
—8u (70 (8 Ky -+ -+ By Ky)|
< [fu (o (Cr) - - -+ o) Ky)
—Fo (70 ((8uy Kuy): - - -+ Bugey Kugn))) |
1o (7 (g Ky -+ -+ Bugy Kugy)
—&0 (70 (8 Ky)s -+ gy (Kug))))| (9.1)
< WfollLipey®s (Tl (). -+ Fugy gy)
708y Xy - - - + By Kugy))
+1fy — &llx,
d(v)
< LY e — Bullzy, + Iy — &ollx, < (L. Ge.

k=1

We now use induction on the level of v. Thus, if v* € S, then the
“shallow network” estimate implied in Theorem 5.1 is already the
one which we want. Suppose the theorem is proved for the DAGs
for which the sink node is at level £ > 0. If v € V, so that its
level £ > 1, then its children are at level £ — 1 > 0. For each of
the children, say u, we consider the subgraph G, of G comprising
only those nodes and edges that culminate in u as the sink node.
We then apply the theorem to each of these subgraphs, and then
use (9.1) to conclude that the statement is true for the subgraph
G, of G comprising only those nodes and edges that culminate in
v as the sink node. &

Remark 9.1. Suppose we consider a shallow Gaussian net-
work acting on a 2° dimensional manifold of R?. The number
of samples required to obtain an accuracy of n=*" predicted by
Theorem 5.1 is O(n?@~*)1+22 Jog n). On the other hand, suppose
the target function has a compositional structure according to a
binary tree, but in addition, for any v € V with children uy, us,
the image of (f,,, fu,) forms a curve in R2. Then the number of
samples required to get the same accuracy with the correspond-
ing network is only ©O(n*~**2¥ Jogn) at each level. In fact, it
seems likely that this is the number of samples in the original
submanifold of R? itself, since the input variables external to the
machine are given only at the source nodes. ®

10. Conclusions

We have given a direct solution to the problem of function
approximation if the data is sampled from a compact, smooth,
connected Riemannian manifold, without knowing the mani-
fold itself, except for its dimension. Our construction avoids the
evaluation of an eigen-decomposition of a matrix or otherwise
the need to compute the local charts on the manifold. Also,
the construction avoids any optimization/training in the classical
paradigm.

H.N. Mhaskar / Neural Networks 132 (2020) 253-268 267

Our construction is universal; i.e., can be used for any target
function without any assumption on its prior. The approximation
error is estimated in the probabilistic sense, and of course, de-
pends upon the smoothness of the target function. In the case
when the data is taken from an affine space, our approximation
error does not suffer from any saturation, but can be as small as
the smoothness of the target function allows. In the general case,
the curvature of the manifold imposes some limitations on how
well we can estimate the degree of approximation, but there is
no saturation in the sense that if the degree of approximation is
better for a function, then it must be “trivial” in some sense.

We have extended our results to the case of deep Gaussian
networks. However, in this context, they are not completely
constructive unless the constituent functions in the DAG defining
the deep network are known.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Appendix. Saturation phenomenon

The notation in this section is not the same as that in the
rest of the paper, except that || - ||4 will denote the supremum
norm on a set A. A detailed discussion of saturation phenomena in
approximation theory can be found in Butzer and Nessel (2011).
Intuitively, an approximation process on a metric space A is a
sequence of operators U, : C(A) — C(A) such that U,(f) — f
uniformly on A. The process is saturated with the rate {§,} if
1Ux(f) — flla = o(8;) as n — oo implies that f is trivial in
some sense (classically U,(f) = f) and there exists a non-trivial
function f for which ||U,(f) — flla = O(8,). We are unable to
find in the literature a precise definition that covers the many
applications where this phenomenon holds. As remarked earlier,
Theorem 2.1 is one example. We give two other examples.

Example A.1.
defined by

For f € C([—1, 1]), the Bernstein polynomial is

Bamur=§:(zywmn%1_m"& xel-1,1],
k=0
n=0,1,....

The Voronovskaya theorem (Lorentz, 2013, Section 1.6.1) states
that if f € C>([—1, 1]) then uniformly in x € [—1, 1],

1—
n @00 00 02| <o
Thus, f € C*([—1, 11), |Bo(f) — fll—1.11 = ©(1/n) and if ||Ba(f) —
flli=1.1 = o(1/n) then f”(x) = 0 for x € (—1,1), so that f is a
linear function. M

lim

n—oo

Example A.2. A function S : [—1,1] — R is called piecewise

constant with n break-points if there are points tp = —1 <
t; < -+ < tpp1 = 1 such that S is a constant on each (tj, tjy1),
j=0,...,n. We denote the class of all piecewise constants with

n break-points by S, and define for f € C([—1, 1]),
on(f) = Inf |If — Sll—1.1.
SeSn

We note that the break-points of the approximating function
may depend upon the target function f. It is known (DeVore &
Lorentz, 1993, Chapter 12, Theorem 4.3, Corollary 4.4) that if f
has a bounded total variation on [—1, 1] then o,(f) = O(1/n).

Moreover, if f € C([—1,1]) and o,(f) = o(1/n) then f is a
constant. W

List of Symbols

Bo(x, 1), Br(X, 1), B(X, r) Defined in (3.1)

Al Q0 @p Section 6.4

t* Inradius of X

A Scaling factor, typically, n'~

Akm» Ak.m Quadrature weights, Section 6.1

(G;q.Q, Gn,q,0 Special Gaussian network (5.1), (5.4)

P4, I7¢ Polynomial spaces Section 6.1

& Exponential map at x € X, & : Tx(X) - X

G DAG for deep networks, Section 5.2

Pm.q» Pn,q Univariate polynomials defined in (3.5), (3.6)

Sk.m.d» B Basic Gaussian networks (6.39), (6.41)

Projm 4, Projm,q,q Projection kernels (6.14), (6.22)

Lip(X) Lipschitz functions on X

1 Volume measure on X

D 4, Pn g Localized kernels (6.29), (6.33)

m, Pooling operation Section 5.2

p Metric on X

on, on,, Approximation operators (6.51), (7.5), (8.8)

T Probability distribution for the data

Tx(X) Tangent space to X at X

X Manifold

Y Affine space

d Generic dimension, Section 6

d(v) Ambient dimension at vertex v Section 5.2

E.(A; f) Degree of approximation of f on A

f, 7 f-"\na Target function, observations, and estimator

fo Density of the marginal distribution

H Low pass filter Section 3.1

hg, Vi, Yk Orthonormalized Hermite polynomial, Hermite func-
tion, tensor product Hermite function

n, @ Parameters in approximation

Q Dimension of the ambient space

qg Dimension of affine space or manifold

q, Dimension in Section 5.2

S Large integer controlling localization

V, S Non-source, source vertices Section 5.2

v, Constituent function at v Section 5.2

W, (A) Smoothness class on A

Xk.m» Xk,m Quadrature nodes Section 6.1

References

Andrews, G. E., Askey, R.,, & Roy, R. (1999). Special functions, Vol. 71. Cambridge
university press.

Askey, R., & Wainger, S. (1965). Mean convergence of expansions in Laguerre
and Hermite series. American Journal of Mathematics, 87(3), 695-708.

Bateman, H., Erdélyi, A., Magnus, W., Oberhettinger, F., & Tricomi, F. G. (1955).
Higher transcendental functions, Vol. 2. New York: McGraw-Hill.

Belkin, M., & Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction
and data representation. Neural Computation, 15(6), 1373-1396.

Belkin, M. & Niyogi, P. (2004). Semi-supervised learning on Riemannian
manifolds. Machine Learning, 56(1-3), 209-239.

Belkin, M., & Niyogi, P. (2008). Towards a theoretical foundation for Laplacian-
based manifold methods. Journal of Computer and System Sciences, 74(8),
1289-1308.

Boucheron, S. Lugosi, G., & Massart, P. (2013). Concentration inequalities: A
nonasymptotic theory of independence. Oxford university press.

Butzer, P. L., & Nessel, R.]J. (2011). Fourier analysis and approximation, Vol. 40.
Academic Press.

Chen, M., Jiang, H., Liao, W., & Zhao, T. (2019). Efficient approximation of deep
ReLU networks for functions on low dimensional manifolds. arXiv preprint
arXiv:1908.01842.

http://refhub.elsevier.com/S0893-6080(20)30307-5/sb1
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb1
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb1
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb2
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb2
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb2
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb3
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb3
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb3
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb4
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb4
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb4
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb5
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb5
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb5
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb6
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb6
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb6
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb6
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb6
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb7
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb7
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb7
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb8
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb8
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb8
http://arxiv.org/abs/1908.01842

268 H.N. Mhaskar / Neural Networks 132 (2020) 253-268

Chui, C. K., & Donoho, D. L. (2006). Special issue: Diffusion maps and wavelets.
Applied and Computational Harmonic Analysis, 21(1).

Chui, C. K., & Mhaskar, H. N. (2018a). A Fourier-invariant method for locating
point-masses and computing their attributes. Applied and Computational
Harmonic Analysis, 45, 436-452.

Chui, C. K., & Mhaskar, H. N. (2018b). Deep nets for local manifold learning.
Frontiers in Applied Mathematics and Statistics, 4, 12.

Chui, C. K, & Mhaskar, H. N. (2019). A unified method for super-resolution
recovery and real exponential-sum separation. Applied and Computational
Harmonic Analysis, 46(2), 431-451.

Cloninger, A., Coifman, R. R., Downing, N., & Krumholz, H. M. (2015). Bigeometric
organization of deep nets. arXiv preprint arXiv:1507.00220.

Cucker, F., & Smale, S. (2002). On the mathematical foundations of learning.
American Mathematical Society. Bulletin, 39, 1-49.

Cucker, F., & Zhou, D. X. (2007). Learning theory: An approximation theory
viewpoint, Vol. 24. Cambridge University Press.

DeVore, R. A, & Lorentz, G. G. (1993). Constructive approximation, Vol. 303.
Springer Science & Business Media.

do Carmo Valero, M. P. (1992). Riemannian geometry. Birkhduser.

Ehler, M., Filbir, F., & Mhaskar, H. N. (2012). Locally learning biomedical data
using diffusion frames. Journal of Computational Biology, 19(11), 1251-1264.

Filbir, F., & Mhaskar, H. N. (2011). Marcinkiewicz-Zygmund measures on
manifolds. Journal of Complexity, 27(6), 568-596.

Girosi, F., & Poggio, T. (1990). Networks and the best approximation property.
Biological Cybernetics, 63(3), 169-176.

Jones, P. W., Maggioni, M., & Schul, R. (2010). Universal local parametrizations
via heat kernels and eigenfunctions of the Laplacian. Annales Academia
Scientiarium Fennise. Mathematica, 35, 131-174.

Lafon, S. S. (2004). Diffusion maps and geometric harmonics (Ph.D. thesis), Yale:
Yale University.

Liao, W., & Maggioni, M. (2016). Adaptive geometric multiscale approximations
for intrinsically low-dimensional data. arXiv preprint arXiv:1611.01179.

Lorentz, G. G. (2013). Bernstein polynomials. American Mathematical Soc..

Maggioni, M., & Mhaskar, H. N. (2008). Diffusion polynomial frames on met-
ric measure spaces. Applied and Computational Harmonic Analysis, 24(3),
329-353.

Mhaskar, H. N. (1996). Introduction to the theory of weighted polynomial
approximation, Vol. 56. Singapore: World Scientific.

Mhaskar, H. N. (2003). On the degree of approximation in multivariate weighted
approximation. In Advanced problems in constructive approximation (pp.
129-141). Springer.

Mhaskar, H. N. (2004). When is approximation by Gaussian networks necessarily
a linear process? Neural Networks, 17(7), 989-1001.

Mhaskar, H. N. (2005). A Markov-Bernstein inequality for Gaussian networks. In
Trends and applications in constructive approximation (pp. 165-180). Springer.

Mhaskar, H. N. (2010). Eignets for function approximation on manifolds. Applied
and Computational Harmonic Analysis, 29(1), 63-87.

Mhaskar, H. N. (2011). A generalized diffusion frame for parsimonious repre-
sentation of functions on data defined manifolds. Neural Networks, 24(4),
345-359.

Mhaskar, H. N. (2017). Local approximation using Hermite functions. In Progress
in approximation theory and applicable complex analysis (pp. 341-362).
Springer.

Mhaskar, H. N. (2018). A unified framework for harmonic analysis of functions
on directed graphs and changing data. Applied and Computational Harmonic
Analysis, 44(3), 611-644.

Mhaskar, H. N, & Poggio, T. (2016). Deep vs. shallow networks: An
approximation theory perspective. Analysis and Applications, 14(06), 829-848.

Mhaskar, H. N., & Poggio, T. (2020). An analysis of training and generalization
errors in shallow and deep networks. Neural Networks, 121, 229-241.

Schmidt-Hieber, J. (2019). Deep ReLU network approximation of functions on a
manifold. arXiv preprint arXiv:1908.00695.

Singer, A. (2006). From graph to manifold Laplacian: The convergence rate.
Applied and Computational Harmonic Analysis, 21(1), 128-134.

Szegd, G. (1975). Colloquium publications: vol. 23, Orthogonal polynomials.
Providence: American mathematical society.

http://refhub.elsevier.com/S0893-6080(20)30307-5/sb10
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb10
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb10
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb11
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb11
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb11
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb11
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb11
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb12
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb12
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb12
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb13
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb13
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb13
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb13
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb13
http://arxiv.org/abs/1507.00220
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb15
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb15
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb15
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb16
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb16
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb16
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb17
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb17
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb17
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb18
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb19
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb19
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb19
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb20
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb20
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb20
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb21
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb21
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb21
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb22
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb22
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb22
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb22
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb22
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb23
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb23
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb23
http://arxiv.org/abs/1611.01179
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb25
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb26
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb26
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb26
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb26
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb26
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb27
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb27
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb27
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb28
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb28
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb28
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb28
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb28
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb29
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb29
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb29
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb30
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb30
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb30
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb31
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb31
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb31
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb32
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb32
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb32
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb32
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb32
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb33
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb33
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb33
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb33
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb33
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb34
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb34
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb34
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb34
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb34
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb35
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb35
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb35
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb36
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb36
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb36
http://arxiv.org/abs/1908.00695
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb38
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb38
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb38
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb39
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb39
http://refhub.elsevier.com/S0893-6080(20)30307-5/sb39

	A direct approach for function approximation on data defined manifolds
	Introduction
	Technical introduction and outline
	Approximation on manifolds
	Definitions
	Approximation theorems

	Numerical example
	Gaussian networks
	Shallow networks
	Deep networks

	Background on weighted polynomials
	Weighted polynomials
	Applications of Mehler identity
	Rotation invariance
	Localized kernels

	From Hermite polynomials to Gaussian networks
	Function approximation

	Approximation on affine spaces
	Proofs of the theorems in Section 3
	Proof of the theorems in Section 5
	Conclusions
	Declaration of competing interest
	Appendix. Saturation phenomenon
	References

