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highly localized kernel constructed from Hermite polynomials, in order to create 
a hierarchical estimate of the supports of the constituent probability measures. 
We do not need to make any assumptions on the nature of any of the probability 
measures nor know in advance the number of classes involved. We give theoretical 
guarantees measured by the F -score for our classification scheme. Examples include 
classification in hyper-spectral images and MNIST classification.
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1. Introduction

The main purpose of this paper is to study a classification problem in the theory of machine learning, 

which we have called cautious active learning, by modifying certain ideas originating in our previous work 

on blind source signal separation. In Section 1.1, we describe the classification problem in the theory of 

machine learning which we are interested in. In Section 1.2, we describe briefly our work on blind source 

signal separation that motivates our current paper, and provides a prototype for the results in this paper. 

Section 1.3 explains the difficulties involved in adapting the approach in Section 1.2 and gives a preview of 

the kind of results expected with our solution presented in this paper. In Section 1.4, we discuss connections 

with a few other works related to the problem and our solution to the same. The outline of the paper is 

given in Section 1.5. For the convenience of exposition, the notation used in this section is not the same as 

the one used in the rest of this paper after Section 2.
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1.1. Cautious active learning

An important task of machine learning is to classify various objects into a finite number of classes. 

Typically, this task is formulated as follows (e.g., [5,1]). We are given data of the form {(xi, yi)}M
i=1 where 

xi’s are in some Euclidean space Rq, and yi ∈ {1, · · · , K} for some integer K ≥ 1. In supervised learning, 

we have to a build a model P such that for any vector x ∈ R
q (or a compact subset thereof), P (x) gives 

reliably the class to which x belongs. In semi-supervised learning, the labels yi are known only for a small 

number of xi’s, and the problem is to extend this labeling to the rest of the data set. It is assumed that the 

data set is known in advance; it is not expected to build a model for points not in the original data set. In 

unsupervised learning, no information is known about the labels, and the best that can be done is to find 

the right clusters in the dataset.

Active learning is a relatively recent area of machine learning that combines aspects of all of three 

paradigms above. We do not know any labels to begin with, but are allowed to seek labels on judiciously 

chosen points xi, as few as needed to construct a model P as in the case of supervised learning. Clearly, 

this must be done in the beginning using clustering as in unsupervised learning, based on some model. We 

then “purify” this clustering using a small number of queries for the label. In the end, we have started 

in the unsupervised regime, and then collected a small number of labeled data as in the semi-supervised 

regime, and finally built a model as in the supervised regime. However, in semi-supervised learning, we 

cannot control the set of points at which the label is known, and we do not expect a model for the points 

not in the original data set. In contrast, in active learning, we get to choose which points to query the label 

at, and a model is expected as the end-product.

It is customary to assume that the data is drawn from an unknown probability distribution. Obviously,

Prob(x, k) = Prob(k|x)Prob(x) = Prob(x|k)Prob(k). (1.1)

The first equation leads us to discriminative models. The class k of a given point x is

arg max
k=1,··· ,K

Prob(k|x)Prob(x).

In [37], we have explored this approach in further detail, giving theoretically well founded criteria to deter-

mine how to estimate the class reliably.

In this paper, we take a closer look at the second equation in (1.1); i.e., use the fact that

Prob(x) =

K∑

k=1

Prob(x|k)Prob(k). (1.2)

In measure theoretic notation, one can write

μ∗ =
K∑

k=1

μk, (1.3)

where μ∗ is the marginal distribution from which the points x are chosen, and μk represents the k-th term 

in (1.2); i.e., some positive measure. (It is understood that μ∗ is a probability measure, and it is not claimed 

that each μk is a probability measure; indeed, it represents k-th summand in (1.2), which accounts for the 

proportion of samples in class k.) The task is to separate the supports of the unknown component measures 

μk given random samples taken from the unknown probability distribution μ∗. The intuition is that once 

the supports of each μk are known, we just need one sample from each to complete the task of classification 

using only the smallest number of samples.
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Because of overlapping class boundaries, it is not reasonable to assume that the classes; i.e., the supports of 

the constituent measures, are well separated. In this paper, we propose a hierarchical classification scheme, 

where the minimal separation among the supports of μk’s is decreased step by step. The accuracy of 

our hierarchical clustering schemes is proved using the classical F -score as the measurement of quality of 

clustering. We focus on the transductive learning case, in which we are generalizing from the small labeled 

examples to the specific unlabeled data that is available [46].

We note that in the absence of minimal separation among the supports of the measures μk, the decom-

position (1.3) is not uniquely defined; e.g., we may group the K measures in many different ways, resulting 

in < K components. In an unsupervised setting, this is only natural. For example, a data base of images 

can be classified at different levels as that of an animate or non-animate object, as that of a human, or 

animal, or movable or unmovable object, etc.; ultimately viewing each image as its own class. Accordingly, 

our definitions and theorems will not assume a prior knowledge of the number of classes (equivalently, the 

measures μk). The role of active learning is to reconcile this with a given classification problem with increas-

ing confidence. Thus, having separated the clusters at different levels of minimal separation, we seek labels 

from each of them, and combine or further subdivide them so as to achieve the known number of classes.

1.2. Motivation for our approach

Let q ≥ 1 be an integer, T
q = R

q/(2πZ
q). For x, y ∈ T

q, we define (in this section only) |x − y| =

max1≤k≤q |(xk − yk) mod 2π|. One formulation of the problem of blind source signal separation is the 

following. Let μ∗ =
∑K

k=1 akδxk
be a (signed) measure supported at points xk ∈ T

q, where δx is the Dirac 

delta measure supported at x. The goal is to recuperate the number K of components, the point sources 

xk and the (signed, complex) amplitudes ak, given the Fourier moments μ̂∗(j) =
∑K

k=1 ak exp(−ij · xk) for 

|j|∞ < N for some N . Our solution to this problem described in [8,32,38] is the following. We consider a 

filter H : R → [0, 1] that is an infinitely differentiable, even function, with H(t) = 0 for |t| ≥ 1. For integer 

n ≥ 1, we then consider an operator

Tn(f)(x) = �n

∑

j∈Zq

H

( |j|
n

)
f(j) exp(ij · x), x ∈ T

q,

where

�n =

⎛
⎝∑

j∈Zq

H

( |j|
n

)⎞
⎠

−1

.

With

ΦT
n (x − y) =

∑

j∈Zq

H

( |j|
n

)
exp(ij · (x − y)),

it is not difficult to verify that

Tn(f)(x) =
�n

(2π)q

∫

Tq

ΦT
n (x − y)dμ∗(y). (1.4)

The following theorem from [8] serves as a precursor of our research described in this paper, where we use 

the notation η to denote the minimal separation among the points xk (i.e., η = min1≤k<j≤K |xk − xj |), and 

m to denote the minimum of the |ak|’s. Applications of theorems of this sort to direction finding in phased 

array antennas are discussed in [38].
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Theorem 1.1. For sufficiently large n (depending upon η), the set of x ∈ T
q at which |Tn(f)(x)| ≥ m/2

is a disjoint union of exactly K sets Gk, 1 ≤ k ≤ K, each containing exactly one point xk, and each 

with diameter ≤ c/n for some positive constant c with each of the following properties. (i) The minimal 

separation among the sets Gk is at least c/n, (ii) If x̂k is the highest peak of the power spectrum |Tn(f)| in 

Gk, then (clearly) |x̂k − xk| ≤ c/n, and (iii) |Tn(f)(x̂k) − ak| ≤ c1/n.

The key ingredient in the proof of Theorem 1.1 is the localization estimate

|ΦT
n (x − y)| ≤ c(H, S)

max(1, (n|x − y|)S)
, x, y ∈ T

q, (1.5)

where c(H, S) > 0 is a constant independent of n, x, y. We note that n is the degree (order) of the trigono-

metric polynomial ΦT
n . In contrast to the kernel estimators in statistics, the localization here is achieved by 

letting n → ∞.

1.3. Separation of measures

The basic idea in our paper is to use an analogous localized kernel Φn to be defined in (2.12) below (cf. 

[36,9]) based on Hermite polynomials. It is not difficult to verify using known results about these kernels 

that 
∫

Rq Φn(x, y)dμ∗(y) → dμ∗(x) in a weak-star sense, and the rate of approximation is optimal in the 

case when μ∗ is absolutely continuous with respect to the Lebesgue measure on Rq with a smooth density. 

Therefore, it is reasonable to expect that

∫

Rq

Φn(x, y)dμ∗(y) =

K∑

k=1

∫

Rq

Φn(x, y)dμk(y)

will split into clusters of x belonging to the supports of the measures μk.

This optimality of approximation of measures however requires that the kernel Φn is not a positive kernel. 

When μ∗ is discretely supported, then the localization properties of the kernel ensure that near any one 

point of the support, the contribution to the integral from other points is negligible. This is not the case 

when the measure is supported on a continuum. Therefore, the problem of finding the support of μ∗ is 

different from the problem of finding μ∗ itself. In our paper, we are interested only finding the supports, 

not the measures themselves. So, we will use the kernel Φ2
n instead.

Apart from this technicality, there are many inherent barriers which makes the problem in our set-

ting similar, yet very different, from the problem of super-resolution as described. We illustrate with two 

examples.

Example 1.1. We consider a mixture of two distributions, 2/3-rd part a uniform distribution on a 2D ball, 

and 1/3-rd part a uniform distribution on a 1D line, with minimal separation δ ∈ {0, 0.1, 0.2} between the 

distributions. In Fig. 1, we show the results of our method based on a total of 1000 points, with the value 

of the parameter n = 7. Our method estimates the relative supports of the two distributions, and is able 

to maintain the separation between the two distributions even for small minimal separation, and at low 

degree given by n2. This is of note because there is no assumption on the dimension of the support of the 

distributions, and similarly no assumption on the nature of the constituent distributions.

We compare our support detection algorithm to a standard Gaussian kernel density estimate with the 

same kernel bandwidth in Fig. 1. As a comparison, we display an indicator function of whether the density 

estimate is greater than 1
4 the maximum peak of the density estimate,
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Fig. 1. (Column 1) Data points, (Column 2) Φ2
n density approximation for n = 7, (Column 3) Indicator of whether Exi

[Φ2
n(x, xi)] >

0.25 · max(Exi
[Φ2

n(x, xi)]), (Column 4) Gaussian kernel density estimate, (Column 5) Indicator of whether KDE(x) > 0.25 ·
max(KDE(x)). (Top) No gap between different clusters, (Middle) Small gap between different clusters, (Bottom) Large gap 
between different clusters. For all kernels, the bandwidth σ = 0.25 was chosen to be half the median distance between points.

1

M

M∑

i=1

Φ2
n(x, xi) > 0.25 · max

x

(
1

M

M∑

i=1

Φ2
n(x, xi)

)
. (1.6)

This is a proxy for the estimate of the support of the clusters. It is clear from the figures that our Φ2
n kernel 

defines a sharper boundary for the indicator function, detecting all points regions within the support of 

the density while still maintaining a separation between the clusters. Similarly, the support estimate from 

our kernel provides a tighter estimate normal to the 1D line than a Gaussian KDE, and captures a better 

estimate of the minimal separation. �

Example 1.2. We consider a mixture of two distributions in the so-called two moons data set. These are 

point clouds concentrated near one-dimensional manifolds and the clouds are not linearly separable. In 

Fig. 2 we show the results of our method with 1000 points, with the value of the parameter n = 6. Our 

method estimates the relative supports of the two distributions, and demonstrates a minimal separation 

between the distributions. On top of this, we show the selection of only two well chosen labeled points leads 

to perfect classification of the entire data set using our algorithm. �

To summarize, we are interested in extending the theory summarized in Section 1.2 to overcome the 

following problems in particular.

1. Instead of having a linear combination of Dirac deltas, we have a linear combination of arbitrary probabil-

ity measures, whose supports may be continua. In turn, this requires the coefficients of these constituent 

distributions to be positive.

2. Instead of having values of f(j), we have random samples chosen from the distribution μ∗. In some sense, 

this simplifies matters, since we could then discretize the integral in (1.4) directly using the samples.



A. Cloninger, H.N. Mhaskar / Appl. Comput. Harmon. Anal. 54 (2021) 44–74 49

Fig. 2. (Left) Data points, (Center) Density Approximation for n = 6, (Right) Class prediction using our method with two labeled 
points. Labeled points are highlighted in green. (For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)

3. There is no minimal separation anymore. We will replace it by a multiscale notion where we consider the 

supports of the constituent measures to be separated by η for different values of η, with the remainder 

having a smaller and smaller probability.

4. The problem is inherently ill-posed; the number of constituent measures may be different at different 

levels of minimal separation.

5. There is no analogue of minimal magnitude m here. Although one could pose the problem as the 

separation of a convex combination of probability measures, and assume a minimum on the coefficients 

involved, the probability measures themselves may be close to 0 on continua.

1.4. Relation to prior work

A main difficulty in the theory of unsupervised learning is to define what one should understand by a 

cluster. For example, the correct number of clusters is sometimes defined in terms of graph cuts [25,28]. 

This definition of clustering is not necessarily intuitive and leads to arbitrary bifurcations in the geometric 

structure of the data. It is pointed out in [17] that the notion of a cluster (in an unsupervised setting) needs 

be defined hierarchically. We follow the philosophy in [17] by defining a hierarchical clustering that is tied 

to the order of our localized kernel Φn, with the benefit that Φn provides a smooth decay with known decay 

rates.

Our paper also ties into the general field of active learning and machine teaching, which has grown rapidly 

in recent years with a large number of applications. For the sake of relevance, we will focus on the subset 

of papers with mathematical guarantees for the proposed algorithm and that focus on assumptions on the 

data geometry [31,45] rather than low-complexity classifiers [22,23]. Many of these results either establish 

lower bounds on the number of labels needed, or establish very conservative criteria of where to query labels 

in order to avoid sampling bias. A general overview can be found in [43,47,29].

A number of works by Dasgupta and his collaborators [14,4,15,16] have examined active learning over 

a class of hypotheses (i.e. classifiers) for minimax bounds on the generalization error, with probabilistic 

methods of choosing the points to sample. The errors are in terms of the VC-dimension of the hypothesis 

class. The closest connection to our work is the paper [15], which assumes that there exists a hierarchical 

tree on the data structure and samples randomly from various bins.

Our paper also examines active learning problems in the context of hierarchical clusters. The major tool 

in this research is localized kernels [33], which have been applied in a variety of contexts [38,35,34,30,9,7,12]. 

Localized kernels also play a central role in the determination of components of a blind source signal, whether 

stationary or time-variant [8,11,10,9]. The super-resolution problem has been considered in a hierarchical 

context [27]. Our paper uses the super-resolution aspect of this theory with the harmonic analysis aspects 

in the context of active learning.
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Our paper also connects to the analysis considered in two sample testing [6,37], where we used the theory 

of localized kernels and quadrature formulas on Euclidean spaces to determine where two probability distri-

butions deviate from one another. The theory in [37] is used in this paper to determine which distribution 

is dominant at each point, as well as a measure of uncertainty in the classification. The approach in [37]

also helps to extend the theory of the witness function to multi-class classification. Our paper builds on the 

witness function approach by constructing an indicator of where each cluster dominates while knowing only 

a few label samples. We also use the witness function to determine the classification of uncertain points (see 

Section 4.2).

We wish to note in particular [31], which studies the active clustering framework for diffusion distance 

between points. This establishes conditions under which the clusters are “well-enough” separated that each 

cluster will have a smaller in-radius for diffusion distance than the inter-cluster distance. Unlike [31], which 

constructs a single density estimate for the data, our algorithm constructs a hierarchical density estimate 

and, at each scale, throws away low-density points in order to guarantee well separated clusters. We will 

compare to [31], and to the hyperspectral imaging variant [40], in Section 5.

1.5. Outline

We introduce the notation to be used in this paper in Section 2. The main theorems are given in Section 3, 

and proved in Section 6. We describe our algorithm to implement the main theorem in Section 4 (together 

with Appendix A) and illustrate the same using several examples in Section 5.

2. Notation and definitions

In this paper, q ≥ 1 is a fixed integer. For x = (x1, · · · , xq) ∈ R
q, we denote by | · |p the �p norm of x. 

For x ∈ R
q, r > 0, we denote

B(x, r) = {y ∈ R
q : |x − y|∞ ≤ r}. (2.1)

If A, B ⊆ R
q, x ∈ R

q, r > 0, then

dist(x, A) = inf
y∈A

|x − y|∞, B(A, r) = {x ∈ R
q : dist(x, A) ≤ r}, dist(A, B) = inf

x∈A
dist(x, B). (2.2)

In Section 2.1, we describe the measure theoretic notions used in this paper. In Section 2.2, we develop a 

measurement to test the accuracy our classification algorithms. The bare minimum definition of our localized 

kernel is developed in Section 2.3; the details of the properties of this kernel will be developed in Section 6.

2.1. Measures

The term measure will mean a positive, Borel measure on Rq. The support of a measure μ, denoted by 

supp(μ) is the set of all x ∈ R
q for which μ(B(x, r)) > 0 for all r > 0. We will fix a probability measure μ∗

on Rq.

We will use the following convention regarding generic positive constants.

Constant convention

In this paper, the symbols c, c1, · · · will denote generic constants depending only on the fixed quantities 

under consideration, such as q, μ∗, and parameters H, S to be introduced later. Their values may be different 

at different occurrences, even within a single formula. There are occasions when we need to retain the values 
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of some constants. Those constants whose value depends only on q and H will be denoted by κ, κ1, · · · , those 

whose value depends upon the measure as well will be denoted by C, C∗, C1, · · · .

Definition 2.1. Let μ∗ be a probability measure on Rq.

(a) The measure μ∗ is called detectable if each of the following conditions is satisfied.

1. (Compact support condition) The support of μ∗ is compact; in particular,

supp(μ∗) ⊆ {x ∈ R
q : |x|∞ ≤ C}.

2. (Ball measure condition) There exist C2 and α ≥ 0 such that

μ∗(B(x, r)) ≤ C2rα. (2.3)

3. (Density condition) There exist C1 > 0, r0 > 0 such that (with α as in (2.3),

μ∗ (B(x, r)) ≥ C1rα, x ∈ supp (μ∗), 0 < r ≤ r0. (2.4)

(b) The measure μ∗ is said to have fine structure if it is detectable, and there exists η0 > 0 with the 

property that for every η ∈ (0, η0], there is in integer Kη ≥ 1 and a partition Sk,η, k = 1, · · · , Kη + 1 of 

supp(μ∗) such that each of the following conditions is satisfied.

1. (Cluster minimal separation condition)

dist(Sk,η, Sj,η) ≥ 2η, k �= j, k, j = 1, · · · , Kη. (2.5)

2. (Exhaustion condition)

lim
η↓0

μ∗(SKη+1,η) = 0.

(c) The μ∗ is said to have fine structure in the classical sense if it has a fine structure with Kη = K

for all η ≤ η0, and there are measures μk such that μ∗ =
∑K

k=1 μk such that each Sk,η ⊆ supp (μk), 

k = 1, · · · , K.

Remark 2.1. Necessarily, a non-atomic, detectable probability measure μ∗ has fine structure. The qualifica-

tion of measures having fine structure in the classical sense is not an intrinsic property of such measures, 

but depends upon how the points in supp (μ∗) are labeled. In the unsupervised setting in the absence of 

minimal separation among various clusters, the notion of fine structure still enables us to construct reliable 

labels for various clusters by assigning at each level η, the label k with Sk,η, k = 1, · · · , Kη. The exhaustion 

condition requires that the μ∗-measure of the support of the “left-over” part of supp (μ∗) tends to 0 as 

η → 0. �

Example 2.1. Let μ∗ =
∑K

k=1 akδxk
, where ak’s are positive, 

∑
k ak = 1, and xk ∈ R

q. Then μ∗ is compactly 

supported, and the ball measure condition is satisfied with C2 = 1 and α = 0. The density condition is 

satisfied with C1 = mink ak. It is easy to verify that μ∗ has fine structure in the classical setting, with 

η0 = (1/2) minj �=k |xj − xk|∞. �

Example 2.2. With the setting as in Section 1.2, we let q = 1, write T = T
1, for x ∈ T , r > 0. For x ∈ T , 

k ≥ 1, we let gk(x) = (2/π)χB(π/2k,π/2k+1], and define μ∗ by dμ∗(x) =

(
∞∑

k=1

gk(x)

)
dx. If x ∈ supp (μ∗), 
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it is not hard to verify that for any r ∈ (0, π/8], cr ≤ μ∗(B(x, r)) ≤ 2r for a suitable constant c > 0. 

So, μ∗ is detectable. If L ≥ 1 is an integer, and η = π/2L+2, we may write Kη = L, and consider the 

partition of the support of μ∗ given by B(π/2k, π/2k+1], k = 1, · · · , L, with SKη+1 equal to the remainder 

of the support. Clearly μ∗ has a fine structure. Since the number of elements in the partition depends upon 

η, this is the unsupervised setting. On the other hand, we may view this also as a classical setting with 

K = 2 as follows. Let μ1, μ2 be defined by dμ1(x) =

(
∞∑

k=1

g2k(x)

)
dx, dμ2(x) =

(
∞∑

k=1

g2k−1(x)

)
dx. For 

integer L ≥ 2, let μ1,L, μ2,L be defined by dμ1,L(x) =

(
L∑

k=1

g2k(x)

)
dx, dμ2,L(x) =

(
L∑

k=1

g2k−1(x)

)
dx. 

Then dist(supp (μ1,L), supp (μ2,L)) = π/22L+1, and

lim
L→∞

μ∗ (T \ (supp (μ1,L) ∪ supp (μ2,L))) = 0.

Thus, only queries about labels on points can decide whether to interpret a measure with fine structure in 

the unsupervised or classical setting. �

Example 2.3. With the setting as in Example 2.2, let μ∗ =
∑∞

k=1 2−kδπ/2k . Then μ∗ satisfies the compact 

support condition as well as the ball measure condition with α = 0, but not with any α > 0. The density 

condition is also not satisfied with α = 0. Thus, μ∗ is not detectable. �

Example 2.4. Let K ≥ 2, Xk, k = 1, · · · , K be mutually disjoint, compact, smooth, sub-manifolds (without 

boundary) of Rq each having the dimension d. Let μk be the volume measure of Xk, and μ∗ =
∑K

k=1 μk

normalized to be a probability measure. For a large class of manifolds Xk, it is known that there exist 

constants c1, c2 > 0 such that for any point x ∈ Xk and r > 0, c1rd ≤ μk(B(x, r)) = μ∗(B(x, r)) ≤ c2rd. 

Therefore, μ∗ is detectable. It is trivial to see that μ∗ has a fine structure in the classical setting. �

2.2. F -score

Our goal in this paper is to detect the support of μ∗, and in the case when μ∗ has a fine structure, 

to separate the components Sk,η. If we attach the label k with every data point in Sk,η, then we need to 

discuss a measurement to assess the quality of our algorithms as classification tools. We recall the F -score 

described for a finite data set in [42]. If {C1, · · · , CN } are the obtained clusters from a certain clustering 

algorithm, and {L1, · · · , LK} is a partition of the data according to the (ground-truth) class labels (i.e., Lk

is the set of all points in the data set with the class label k), then one defines

FD(Cj) = 2 max
1≤k≤K

|Cj ∩ Lk|
|Cj | + |Lk| , j = 1, · · · , N.

The (micro-averaged) F -score is then defined by

FD =

∑
j |Cj |FD(Cj)∑

j |Cj | . (2.6)

We interpret the cardinalities above as probabilities. In this paper, the total data is supp(μ∗); the labeled 

sets (corresponding to Lk’s above) at separation level η is {Sk,η}Kη

k=1. Therefore, the F -score for the clusters 

{Cj}N
j=1 can be defined as follows: The analogue of FD(Cj) above is:

Fη(Cj) = 2 max
1≤k≤K

μ∗(Cj ∩ Sk,η)

μ∗(Cj) + μ∗(Sk,η)
. (2.7)
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Then

Fη

(
{Cj}N

j=1

)
=

∑N
j=1 μ∗(Cj)F (Cj)

μ∗
(⋃N

j=1 Cj

) . (2.8)

Clearly, Fη

(
{Cj}N

k=1

)
≤ 1. If N = K, and Ck = Sk,η for each k, then Fη

(
{Cj}N

j=1

)
= 1. Thus, the closer 

the quantity Fη is to 1, the better the quality of clustering with respect to the labels.

2.3. Localized kernel

Our main tool in this paper are Hermite polynomials. In the univariate case, it is convenient to define 

the orthonormalized Hermite polynomial hk of degree k recursively by

xhj−1(x) =

√
j

2
hj(x) +

√
j − 1

2
hj−2(x), j = 2, 3, · · · ,

h0(x) = π−1/4, h1(x) =
√

2π−1/4x. (2.9)

Writing ψk(x) = hk(x) exp(−x2/2), one has the orthogonality relation for k, j ∈ Z+,

∫

R

ψk(x)ψj(x)dx =

{
1, if k = j,

0, if k �= j.
(2.10)

In multivariate case, we adopt the notation x = (x1, · · · , xq). The orthonormalized Hermite function is 

defined by

ψk(x) =

q∏

j=1

ψkj
(xj). (2.11)

In general, when univariate notation is used in multivariate context, it is to be understood in the tensor 

product sense as above; e.g., k! =
∏q

j=1 kj !, xk =
∏q

j=1 x
kj

j , etc.

Let H : [0, ∞) → [0, 1] be a C∞ function, H(t) = 1 if t ∈ [0, 1/2], H(t) = 0 if t ≥ 1. We define the 

localized kernel by

Φn(H; x, y) = Φn(x, y) =
∑

k∈Z
q
+

H

(√
|k|1
n

)
ψk(x)ψk(y). (2.12)

The localization property is made precise in (6.3) below.

3. Main theorems

In Section 1.2, the quantity m played several roles: the minimum value of the measure on arbitrarily 

small balls around points of its support and the threshold in Theorem 1.1. Here, the first role is played by 

the density condition. We will take a multiscale approach by varying the minimal separation η as defined 

in Definition 2.1 and the threshold Θ to be used to determine sets of significant probabilities.

The first theorem describes the determination of the support of μ∗. For the sake of interpretability, we 

briefly discuss the important parameters associated with this theorem. We fix n, which corresponds to the 

localization parameter for Φn, and leads to an eventual clustering of all points as n → ∞. We set a threshold 
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Θ to determine the level that a density estimate at x must attain for the fixed n to be considered in the 

subsequent clustering. The parameter α corresponds to the effective dimension of the support of μ∗, and 

determines how n relates to the number of points M , the detectable minimal separation between clusters, 

and algorithmically determines how slowly we increase the localization of Φn and the number of points 

retained for that level of clustering. These are the main parameters that appear in Algorithm 1, though we 

use ηn rather than α as a parameter by utilizing Eq. (3.4).

Theorem 3.1. Let μ∗ be detectable, S > α, 0 < Θ ≤ c1, n ≥ c2 be large enough, so that

supp (μ∗) ⊆ B(0, κn). (3.1)

With M ≥ c3n2α log n, let C = {x1, · · · , xM } be independently sampled from the probability distribution μ∗. 

We define

Gn(Θ, C) =

⎧
⎨
⎩x ∈ R

q :

M∑

j=1

Φn(x, xj)2 ≥ Θ max
1≤k≤M

M∑

j=1

Φn(xk, xj)2

⎫
⎬
⎭ . (3.2)

Then with probability at least 1 − c4/M c5 ,

supp (μ∗) ⊆ Gn(Θ, C) ⊆
{

x ∈ R
q : dist(x, supp (μ∗)) ≤ c6

Θ1/(S−α)n

}
. (3.3)

Theorem 3.2. We assume the set-up as in Theorem 3.1. In addition, we assume that μ∗ has a fine structure, 

and that

n ≥ c(ηΘ)−1, nαμ∗(SKη+1,η) ≤ c1Θ. (3.4)

Let

Gk,η,n(Θ, C) = Gn(θ, C) ∩
{

x ∈ R
q : dist(x, Sk,η) ≤ c2

nΘ1/(S−α)

}
. (3.5)

Then with probability exceeding 1 − c3M−c4 , the set Gn(Θ, C) is a disjoint union of sets Gk,η,n(Θ, C), k =

1, · · · , Kη such that

dist(Gk,η,n(Θ, C), Gj,η,n(Θ, C)) ≥ η, k �= j, k, j = 1, · · · , Kη, (3.6)

and for k = 1, · · · , Kη,

supp (μ∗) ∩
{

x ∈ R
q : dist(x, Sk,η) ≤ c2

nΘ1/(S−α)

}
⊆ Gk,η,n(Θ, C) ⊆

{
x ∈ R

q : dist(x, Sk,η) ≤ c2

nΘ1/(S−α)

}
.

(3.7)

Theorems 3.1 and 3.2 combine to guarantee that, for a fixed n, the training data kept at a given threshold 

will be contained in a small tube around the true partitions Sk,η. Similarly, points belonging to different 

clusters will have a minimal separation of at least η (half the minimal separation of the true partitions). 

This is a critical aspect to our algorithm, as we use a simple distance parameter to build a kNN network 

between training points, and use connected components to define the clusters. Theorem 3.2 guarantees that 

if we correctly choose this distance parameter, no connected component will span multiple true partitions.



A. Cloninger, H.N. Mhaskar / Appl. Comput. Harmon. Anal. 54 (2021) 44–74 55

Example 3.1. We continue the set-up as in Example 2.4. Then for η ≤ η0 = min1≤k �=j≤K dist(Xk, Xj), the 

second condition in (3.4) is satisfied trivially and both the conditions in (3.1) are satisfied for sufficiently 

large n. In particular, Kη and the sets Gk,η,n(Θ) do not depend upon η if η ≤ η0. The parameter n controls 

how close one can get to the supports of the measures μk. �

Example 3.2. The same remarks as in Example 3.1 apply also in the set-up of Example 2.1. In this case, 

the definition of Gk,η,n(Θ) shows that the diameter of each of these sets is ≤ 2Θ/n. In particular, if

x̂k = arg max
x∈Gk,η,n(Θ)

K∑

k=1

akΦn(x, xk)

satisfies |x̂k − xk|∞ ≤ 2Θ/n. We note finally that the sum expression in the above expression can be 

computed using the Hermite moments of μ∗; the precise location of xk’s or the values of ak need not be 

known. More impressively, the value of K is found automatically rather than being required at the outset. 

This is consistent with the results in [9]. �

Remark 3.1. In a broad sense, we may view (1/M) 
∑M

j=1 Φn(x, xj)2 as a probability density estimator with 

kernel Φn(x, y)2 that localizes as n → ∞. However, there are a number of important differences. First, 

the measure μ∗ is allowed to be singular with respect to the Lebesgue measure on Rq, so that there is no 

density to estimate. Second, we have demonstrated in [37] that in the case when μ∗ is absolutely continuous, 

the use of the special kernel Φn leads to a better estimation of the density than the customary Gaussian 

kernel, with sharper boundaries and faster empirical convergence in terms of the number of points. Indeed, 

in applying this theorem, we may use both the bandwidth parameter as in the Gaussian kernel as well as 

the degree parameter n to have a superior localization property. Third, in this paper we are not interested in 

approximating the measures themselves, just in finding their support. For the purpose of approximation, the 

oscillatory behavior of Φn leads to provably optimal approximation results. However, this very ability may 

lead to certain points in the support having zero values for the estimator. Therefore, to find the support 

accurately, we need to use a positive kernel. We use Φn(x, y)2 because of the ease of evaluating certain 

integrals. �

Theorem 3.3. We assume the set-up as in Theorem 3.2. In addition, we assume that

lim
η↓0

μ∗(SKη+1,η)

min1≤k≤Kη
μ∗(Sk,η)

= 0. (3.8)

With probability ≥ 1 − cM−c1 , the clusters Gk,η,n(Θ, C) satisfy

lim
η→0

Fη

(
{Gk,η,n(Θ, C)}Kη

k=1

)
= 1. (3.9)

Remark 3.2. In the classical setting (Remark 2.1), Kη = K for all η, and Sk,η ⊆ supp (μk). The exhaustion 

condition implies that μ∗(supp (μk) \ Sk,η) → 0 as η → 0. In particular, the condition (3.8) holds trivially. 

Moreover, in the definition (2.7), we may replace Sk,η by supp (μk). Thus, Theorem 3.3 guarantees that 

with high probability, the clusters of the high-density regions from each n will grow to contain the entire 

supp(μk) for all k and attain a perfect F -score (Eq. (2.8)). �

Remark 3.3. In Theorem 3.3, it is understood implicitly that the quantities M and η (and also Θ) change 

with n so as to satisfy the various conditions of Theorem 3.2.
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Remark 3.4. The statement of Theorem 3.3 is valid in a deterministic sense if the set-up of Theorem 6.3 is 

assumed. In this case, we have, instead of (3.9),

lim
n→∞

F
(

{Sk,η,n(θ)}Kη

k=1

)
= 1. (3.10)

4. Algorithmic considerations

In order to apply the theory in Section 3 to classification problems in practice, one needs to develop 

several further details. The theorems do not give a clear algorithm to find the clusters Gk,η,n, and the choice 

of the parameters n, η, Θ need to be fixed experimentally in each application. We develop these details in 

this section.

We will describe the algorithm assuming that the data distribution μ∗ has a fine structure in the classical 

sense defined in Definition 2.1(c); i.e., we assume that there is a fixed set of labels involved, that does not 

change as the various parameters n, η, Θ change. We also note that although the theory in Section 3 (and 

Section 6) allows one to decide what label if any should be given to any point in the Euclidean space, it 

is convenient to assume in this section that all the points at which we wish to assign labels are already 

collected in a data set C, analogous to the semi-supervised setting.

In Section 4.1 we discuss how to decide which points lie in a single cluster Gk,η,n, and which of these one 

should query a label for. The theory suggests that we then assign the same label to every point in Gk,η,n. 

In Section 4.2, we explain how to extend the known labels to the remaining points in the data set using the 

witness function approach in [37]. To take advantage of the multiscale nature of the theory, we describe in 

Section 4.3 how to transfer sampled labels at a coarse level to inform the clustering and label propagation at 

finer and finer levels. This discussion is summarized in an outline form in Algorithm 1. Finally, in Section 4.4

we discuss the computational complexity of the algorithm.

4.1. Connecting points in Gk,η,n

In the classical setting, we may assume that there exists some unknown label function f : R
q → R. 

Further, we assume it corresponds to a consistent clustering scheme such that, for small enough η and 

x ∈ Sk,η, we have that f(x) = k for 1 ≤ k ≤ K. The problem of active learning boils down to learning an 

estimate f̂(x) of f(x) for all x ∈
⋃K

k=1 Sk,η given only a small set of points A ⊂ C at which f is actually 

known. The key difference between this and semi-supervised learning is that, in our case, A can be chosen 

in a data-dependent fashion prior to querying the function. We note that the choice of label function f

may be any layer of some hierarchical tree of labels [18], but we assume that f is fixed at the start of the 

algorithm.

Theorem 3.2 guarantees the existence of sets Gk,η,n(Θ, C) that satisfy a minimal separation condition 

(3.6). However, in order to use this result to propagate learned cluster labels effectively, it is important to 

determine which data points x ∈ C are in a particular cluster, x ∈ C ∩ Gk,η,n(Θ, C). This is necessary both 

to:

1. decide the set A of points x ∈ C we wish to query for a label f , and

2. propagate the labels from A to the rest of Gn(Θ, C) in a way that guarantees the estimate f̂(x) agrees 

with f(x) itself on points x ∈ Gn(Θ, C).

The insight for constructing the clusters Gk,η,n comes from three observations: (1) μ∗ has a fine structure 

of minimal separation of 2η for some η, (2) the theoretical guarantee that the clusters Gk,η,n satisfy (3.6) for 

a finite n, and (3) we can decrease η by increasing n as in (3.4). For this reason, we will fix Θ and consider a 

minimal separation ηn that depends on n in a way that satisfies (3.4). Given this separation, we construct a 
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nearest neighbor graph G on Gn(Θ, C) with edge set E = {(x, y)} ∈ Gn(Θ, C) : |x−y|2 < ηn/2}. In this way, 

we are guaranteed that each connected component C�,ηn,n ⊂ C actually satisfies C�,ηn,n ⊂ Gk,ηn,n(Θ, C)

for some k. This implies that if we query and obtain a label f(x) at some point x ∈ C�,ηn,n, then we 

are guaranteed that all other points in C�,ηn,n also have label f(x). Note that the number of connected 

components, which we’ll call K̃n, satisfies K̃n ≥ K. This is because a single class can consist of multiple 

connected components of G at separation ηn.

The only other problem to address in this framework is to select the points A at which to query a label. 

While theoretically any point in the connected component would be sufficient, the most reliable point to 

choose is the mode of the cluster, i.e.,

x∗ = arg max
x∈C�,ηn,n

M∑

j=1

Φ2
n(x, xj). (4.1)

The argument for this choice is a heuristic one; if there do exist points in C�,ηn,n with the incorrect label 

(i.e., some cluster couldn’t be fully resolved at level ηn) then they are more likely to lie at the boundary of 

the connected component, and thus have a lower empirical density.

4.2. Classification of the remaining points

For any η there may exist low density points that lie outside Gn(Θ, C) that may not be classified at 

level n. While this is not an issue in the continuum limit due to Theorem 3.3, we are constrained in most 

applications to finite budget of labels to be sampled. This implies that we must use a finite n, as we cannot 

realistically split C into M different clusters and sample each point’s label separately; defeating thereby the 

purpose of the exercise. Because of this, we must have a trade-off between scaling n until we’ve classified 

all points accurately, and stopping at a finite n to make our best predictions of labels for points in SK+1.

We propose to classify these additional points through the witness function approach developed in [37]. 

To summarize in this context, we define each class estimate to be Ŝk,ηn
= {xi ∈ C : f̂(xi) = k}. Then we 

construct a witness function for each class

F̂k(x) =
1

|Ŝk,ηn
|

∑

xj∈Ŝk,ηn

Φn(x, xj), for x ∈ C \ Gn(Θ, C). (4.2)

The proposed algorithm assigns a label to x given by

f̂(x) = arg max
1≤k≤K

F̂k(x), (4.3)

and determines the certainty of classification through a permutation test as in [37]. Note that we will refer 

to the points assigned in Gn(Θ, C) and labeled according to Section 4.1 as confident points, and the points 

assigned by the witness function, C \ Gn(Θ, C), as uncertain points. These uncertain points fall outside our 

guarantees in Theorem 3.2, other than the fact that the set becomes empty as n → ∞.

4.3. Learning across layers

As described to this point, the algorithm for learning f̂ is computed independently at each n. However, 

this is not efficient from a label sampling perspective, as there may be significant information already learned 

at n0 for n > n0. We consider an increasing hierarchy of the parameter n, {ni}∞
i=1. This similarly determines 

a hierarchy of decreasing η, {ηi}∞
i=1 such that ηj < ηi if j > i.
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Algorithm 1 Cautious active clustering.
Input: C ⊂ R

q, nmax, Θ, τ
Output: f̂ , Gnmax(Θ, C)

A ← ∅ � Set of points at which label is queried, together with the corresponding labels.
while n ≤ nmax do

Cn,Θ ← Gn(Θ, C) ∩ C using (3.2).
E ← {(xi, xj) : xi, xj ∈ Cn,Θ and |xi − xj |2 < ηn/2} for ηn as a function of n as in (3.4)
Construct graph G = (Cn,Θ, E)

{Cn,�}K̃n

�=1 ←connectedComponents(G) (See Section 4.1)
Set flag(�) = 0 for all � � When we are done with this n, flag(�) = 1 for all �.

for � ≤ K̃n do

if Cn,� ∩ A = ∅ then

xi ← arg max
xi∈Cn,�

M∑
j=1

Φn(xi, xj)2 � Point at which label is sought

A ← A ∪ (xi, f(xi)) � Update A; this set does not lose points.

f̂(xj) ← f(xi) ∀xj ∈ Cn,� � Extend label to the whole component
flag(�) = 1 � Done for this value of �.

else

if ∀xi ∈ Cn,� ∩ A, f(xi) = c� then

f̂(xj) ← c� ∀xj ∈ Cn,� � Extend label to the whole component
flag(�) = 1 � Done for this value of �.

end if

end if

end for

if flag(�) = 1 for all �, then

n ← n + step � Done for this pass, go to next level
� to ensure that we captured all points that could be captured.

else

Increase threshold Θ ← τΘ, (See Section 4.3). � Prune the graph.
end if

end while

C
K̃nmax+1

← C \ Gnmax(Θnmax, C) using (3.2) � Uncertain points

Ŝk,ηnmax
← {xi : f̂(xi) = k}

f̂(xj) ← arg maxk
1

|Ŝk,ηnmax
|

∑
xi∈Ŝk,ηnmax

Φnmax(xj , xi) for xj ∈ C
K̃nmax+1

� Extend labels to uncertain points using witness function (See Section 4.2).

Let Ai ⊂
⋃K̃ni

�=1 C�,ηi,ni
be the small collection of points at which f was sampled. By definition of μ∗

being detectable, Ai ⊂
⋃K̃nj

�=1 C�,ηj ,nj
as well for j > i. This means that many of the connected components 

{C�,ηj ,nj
}K̃nj

�=1 already have a member x ∈ C�,ηj ,nj
such that x ∈ Ai. Thus, we must only sample the 

K̃nj
− K̃ni

clusters that do not already contain a sample.

We also wish to comment on the stability of the connected component separation across levels. While 

we are examining a minimal separation of ηj, this is not a known value a priori. Even when estimated, it is 

possible that two clusters have separation just greater than ηj, and that removing low-density points with 

threshold Θ does not help increase the separation of clusters in Gnj
(Θ, C) sufficiently. Fortunately, this can 

be easily detected in the situation that subsets were disconnected at ni for j > i. In this situation, Ai will 

contain two points x, y with different labels from level ni such that x, y ∈ C�,ηj ,nj
. When this occurs, it is a 

simple fix to slightly increase Θ until x and y fall in different clusters. This can be done with a parameter 

τ > 1 that is described in Algorithm 1, basically increasing the thresholding of low density points before 

redefining the clusters. This disagreement can thus be easily fixed at level nj and allows for a more robust 

clustering that must remain consistent across levels. Similarly, one could decrease the estimate of ηj and 

rerun the algorithm.

As a final note, it’s possible to increase Θ or decrease η only for points in C�,ηj ,nj
rather than on all C. 

This will lead to a different Θ, η in different regions of space, but the set of points and neighborhoods will 

be a proper subset of Gn(Θ, C).
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4.4. Computational complexity

The computational complexity of this algorithm depends mostly on construction of the kernel Φn at mul-

tiple n. The recurrence formula (2.9) enables us to compute ψn for any n, keeping in storage only the values 

of ψn−2 and ψn−1. This means the computation depends only on the largest n, and depends quadratically in 

the number of points M , as do most kernel methods. This leads to a complexity of O(n2M2q). This can be 

precomputed, and is followed by Equation (A.3), which is complexity O(n4M2) per projection, resulting in 

a final computation for the kernel with O(qn6M2) flops. We note that Φn is a q-variate weighted polynomial 

of total degree n2 in each variable. Therefore, one expects a complexity of O(n2qM2) in the computation, as 

it would be if a monomial or tensor product Chebyshev polynomial basis was used to construct the kernel. 

However, the special property of Hermite polynomials given in Equation (A.3) enables us to evaluate the 

kernel with complexity linear in q. In practice and in Section 5, the n can remain quite small while still 

resulting in significantly improved performance. As with most kernel methods, this can be improved below a 

quadratic dependence on M using nearest neighbor or ε-ball algorithms to estimate where contribution will 

be negligible. Beyond this computation, the most expensive aspect is the connected components computa-

tion after thresholding Cn,Θ, which is O(M + M2) for most connected component algorithms because the 

number of edges is proportional to M2. All other aspects depend linearly only on the number of connected 

components K̃n, which is at most M and in practical terms significantly smaller.

5. Applications

In this section, we consider a number of applications to both synthetic and real data sets. For the 

synthetic data, we consider problems that either do not have a minimal separation, or has a very small 

separation relative to the inter-cluster radius (Section 5.1). This is a particularly difficult set of examples 

for clustering and active learning problems because many algorithms, such as k-means, expect clusters to be 

somewhat isotropic (i.e., similar variance in all directions). We also consider the latent space of a variational 

autoencoder that embedded the MNIST data set into a 2D latent space (Section 5.2). This problem again 

poses difficulty for traditional clustering algorithms, as we have purposefully chosen a latent space dimension 

that leads to no minimal separation between some label clusters, and even partial overlap of different labels. 

Even in this setting, we demonstrate strong classification accuracy based on a small number of samples.

As our main set of applications, we consider our active clustering framework on hyperspectral image 

pixel classification (Section 5.3). Traditionally, this is an application that requires non-Euclidean clustering 

methods, and a very large number of pixel labels. Similarly, there is rarely a minimal separation between 

clusters, made worse by the fact that pixels can even be a mix of multiple labels. We compare our algorithms 

to the current state-of-the-art active clustering algorithm on HSI, the LAND algorithm [31], which uses a 

Gaussian kernel density estimate and diffusion geometry to define the cluster centers and boundaries.

5.1. Synthetic examples without minimal separation

We examine the problem of learning with few labels on synthetic data that violates traditional clustering 

assumptions. In the first example in Fig. 3, we use the data that does not have a minimal separation between 

clusters. This is a setting in which filtering by density significantly benefits the clustering algorithm, as the 

clusters in Fig. 3 have long tails of low density.

In a second example in Fig. 4, we consider data that has a very small minimal separation, but the density 

remains relatively constant between the middle of the clusters and their tails. In this setting, it is critical 

to have a highly localized kernel for density estimation and defining similarity between points. Because the 

origin is close to all three of the clusters, using a kernel with poor localization would lead to points near 
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Fig. 3. (Left) Clustered data with no minimal separation. Color corresponds to label. (Center) Example of cautious clustering 
approach with 4 labels queried and n = 4. Dark blue labels are uncertain points, i.e., points below the density threshold. (Right) 
Different measures of error after witness function propagation from confident points (our algorithm cautious active clustering), and 
comparison to LAND [31]. Note that LAND performs similarly by the time 5 labels have been queried, and plateaus at a similar 
overall accuracy to our algorithm.

Fig. 4. (Top Left) Clustered data with small minimal separation and no density peaks. Color corresponds to label. (Top Right) 
Example of cautious clustering approach with 3 labels queried and n = 4. Dark blue labels are uncertain points, i.e., points below 
the density threshold. (Bottom Left) Different measures of error for our cautious active clustering algorithm, and comparison to 
LAND [31]. Note that LAND requires 9 labels to attain perfect classification, as opposed to 3 for our algorithm. (Bottom Right) 
Accuracy of our algorithm on same data with varying levels of Gaussian noise added to the points. Different curves correspond to 
the allowed budget of sampled points, and curves are averaged over 25 realizations.

the origin having a higher estimated density than any of the points sampled from the actual distributions. 

This would lead to sampling points far away from the centers of the clusters.

In a final example in Fig. 5, we consider data that has a very small minimal separation compared to 

their internal maximum radius. In this setting, it is important to have a flexible method for connecting 

points within cluster, like connected components, that allows for connecting far apart points as long as 
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Fig. 5. (Left) Clustered data with small minimal separation compared to inner radius. Color corresponds to label. (Center) Example 
of cautious clustering approach with 2 labels queried and n = 4. Dark blue labels are uncertain points, i.e., points below the 
density threshold. (Right) Different measures of error after witness function propagation from confident points (our algorithm 
cautious active clustering), and comparison to LAND [31]. Note that LAND performs significantly worse than our algorithm in 
this case, mostly due to the small minimal separation between clusters that leads to false edges between the two clusters without 
first performing thresholding.

there exists a path between them. Without this, one requires a large number of points with queried labels 

spaced throughout the cluster in order to propagate the labels effectively.

5.2. MNIST generative models

The next set of experiments revolves around estimating regions of space corresponding to given classes, 

and determining which regions of the latent space correspond to which class labels. This problem has been of 

great interest in recent years with the growth of generative networks, namely various variants of generative 

adversarial networks (GANs) [20] and variational autoencoders (VAEs) [24]. Each has a low-dimensional 

latent space in which new points are sampled, and mapped to Rq through a neural network. While GANs 

have been more popular in literature in recent years, we focus on VAEs in this paper because it is possible 

to query the locations of training points in the latent space. A good tutorial on VAEs can be found in [19].

We examine this problem with the well known MNIST data set [26]. This is a set of handwritten digits 

0 · · · 9, each scanned as a 28 × 28 pixel image. There are 50000 images in the training data set, and 10000

in the test data.

In order to select the latent space for this data set, we construct a three layer VAE with encoder E(x)

with architecture 784 − 500 − 500 − 2 and a decoder/generator G(z) with architecture 2 − 500 − 500 − 784, 

and for clarity consider the latent space to be the 2D middle layer. We have purposely chosen a 2D latent 

space because this leads to varying levels of separation between label clusters, including overlapping clusters 

of commonly confused digits (e.g., mixing 4’s and 9’s, and mixing 3’s, 5’s, and 8’s). For this reason, we look 

at both a fine grained and coarse grained label set. In fine grained, we have the traditional 10 labels, in 

coarse grained we create 7 labels by merging the 4’s and 9’s and merging 3’s, 5’s, and 8’s. This creates an 

example of the hierarchical label structure as described in the paper, as well as clusters with no minimal 

separation (Fig. 6).

5.3. Hyperspectral imagery

Hyperspectral imagery (HSI) is an imaging modality that captures radiation reflected from a surface 

across a number of different wavelengths (also called bands). This results in each pixel in an image being 

represented by its energy in q different bands, where q is sometimes in the hundreds, as the bands can range 

from long wavelength infrared (≈ 2500 nm wavelength) to ultraviolet (≈ 400 nm wavelength). Each pixel 

can cover a significant area of the surface, usually several square meters. Because of this, it is not always 
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Fig. 6. (Left) Density estimate of 2-dimensional VAE latent space, colored by each MNIST label. (Middle) Comparison of cautious 
clustering approach using coarse MNIST labels (merging overlapping clusters as described in Section 5.2). (Right) F -score as a 
function of number of queries for cautious clustering approach for both coarse MNIST labels and for fine MNIST labels.

advantageous to use spatial similarity to aid in classification and clustering, since neighboring pixels could 

easily have different labels [2]. Instead, we will consider only the spectral similarity among the pixels [2,13].

Hyperspectral pixels are difficult to collect labels for, as it requires physically inspecting the surface 

to determine its label. Because of this, active learning has become very popular in the remote sensing 

community [44,40].

Another issue with labeling pixels is that clusters are inherently hierarchical in nature. For example, in 

agricultural settings, one not only has to distinguish stone from trees (large separation between classes), 

but also distinguish a particular crop after 4 weeks of growth from crops after 5 or 6 weeks of growth (small 

separation between classes). Because of this, there exists a hierarchical relationship to the labels, and the 

level of specificity desired can change the number of clusters and queried labels that are necessary.

Mathematically, each pixel can be thought of as being a data point in R
q, so that an image with M

pixels can be organized as q × M matrix, where the j-th column represents the q-band spectral observation 

on the j-th pixel. For all of the examples below, we begin by taking the top principal components of this 

matrix resulting in a choice of dimension that captures 80% of the variance of the data in place of q.

We also note that for these experiments, we only plan to use spectral similarity between HSI pixels. In 

certain HSI algorithms, the spatial relationship between the pixels is also incorporated. This could be done 

using Φn by considering data x = (xspec, xspat) for spectral information xspec and spatial information xspat, 

and taking a product kernel Φn(xspec, yspec) · Φm(xspat, yspat). Such spectral-spatial product kernels have 

been considered on HSI [13,3], and spatial-spectral kernels have been considered in the context of HSI active 

learning [39,41].

We demonstrate this hierarchical relationship in an example using the Salinas-A data set of hyperspectral 

imagery.3

Salinas-A is an 83 × 86 image of three different agricultural crops being grown (broccoli, corn, lettuce). 

Beyond this, there is a sub-classification of which week of growth the lettuce is in (4 weeks, 5 weeks, 6 weeks, 

7 weeks). Each pixel collects 204 bands, and we initially reduce the dimension to 10 using PCA. Thus, there 

are 7138 points in R204, which are projected to 7138 points in R10. We run our cautious clustering algorithm 

on this data in two settings, and display summary results in Fig. 7. We plot the classification accuracy on 

the worst class as a function of n. We can see that running our cautious hierarchical clustering algorithm 

on the coarse labeling (broccoli, corn, lettuce) begins to yield correct classification on all classes for much 

smaller degree n than for the same data with fine clustering (broccoli, corn, lettuce4, lettuce5, lettuce6, 

lettuce7). This establishes that the effective minimal separation between all clusters is not constant, but 

varies depending on the desired level of specificity for the labels.

3 http://www .ehu .eus /ccwintco /index .php /Hyperspectral _Remote _Sensing _Scenes.
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Fig. 7. Salinas-A HSI data. (Top Left) Ground Truth of pixels with color corresponding to one of six labels (fine labels). (Top 
middle) Same scene with all lettuce labels placed in single class (coarse labels). (Top right) Worst classification accuracy on a 
class using our algorithm as a function of n. Note that we clearly separate all classes much faster under coarse labeling. (Bottom) 
Examples of pixels in R204, colored by label, the x-axis denotes the band number and the y-axis denotes the corresponding spectral 
radiance in that band.

The main purpose of this data set is to examine the HSI active learning problem, and determine the 

maximum classification accuracy given a budget of only sampling k labels. We wish to emphasize that our 

algorithm returns an additional advantage over most active learning algorithms, namely the set Gnmax(Θ, C)

on which we are confident in our classification. This means we can attain near perfect accuracy on these 

points, as well as use them to estimate the class on C\Gnmax(Θ, C) using the witness function. We display the 

accuracy on Gnmax(Θ, C) in Fig. 8, as well as the classification accuracy on the full data set after propagating 

labels to C \ Gnmax(Θ, C) with the witness function. We note that there is a slight dip in the accuracy and 

F -score for approximately 6 queries. This is due to the fact that the newest labels added begin to repeat 

classes (multiple samples from one label) prior to adding a first sample of the final class of points missing. 

Similarly, when the minimal separation is still large (small n), it is possible that one cluster still contains 

multiple classes and thus has an artificially low classification accuracy that rebounds as n increases. Finally, 

in Fig. 8 we display the classification accuracy with a varied PCA dimension for pre-processing the data. 

Reducing the dimension corresponds to removing in additional directions of variance from the HSI pixels, 

some of which may contain signal in determining a separation between clusters. Despite this, our algorithm 

still performs well in this reduced dimension.
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Fig. 8. Salinas-A HSI data. (Top Left) Comparison of our algorithm of cautious active clustering to LAND and random sampling 
of labels. (Top Right) Classification accuracy on Gnmax(Θ, C) only, and fraction of points in Gnmax(Θ, C). (Bottom Left) F score 
for Gnmax(Θ, C), and for all points C. (Bottom Right) The classification accuracy of our algorithm when varying the dimension of 
the PCA pre-processing.

Fig. 9. Indian Pines HSI (Left) Ground truth of the small segment of Indian Pines image. (Center) Comparison of our cautious 
active clustering algorithm to LAND and random sampling of labels. (Right) F score for Gnmax(Θ, C) and for all points C.

We also examine a second data set, which is a 57 × 41 subset of the Indian Pines hyperspectral data set.4

Each pixel has 220 features, and we initially reduce the dimension to 20 using PCA. The subset we 

focus on contains three general materials; tilled corn, stone-steel, and soybeans. Furthermore, soybeans 

are subdivided into tilled, no till, and clean sublabels. This leads to five labels at the finest level of label 

resolution. We compare the active learning classification accuracy for our algorithm in Fig. 9. While this 

is clearly a more difficult data set than Salinas-A as evidenced by the lower classification accuracy as a 

function of the number of labels queried, our algorithm still compares favorably to LAND.

4 http://www .ehu .eus /ccwintco /index .php /Hyperspectral _Remote _Sensing _Scenes.
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6. Proofs

In this section, we prove all the theorems in Section 3. The required background is given in Section 6.1. 

Section 6.2 develops some preparatory results. In Section 6.3, we prove first the deterministic analogues 

of Theorems 3.1 and Theorems 3.2 in Theorems 6.2 and Theorem 6.3 respectively, and then complete the 

proofs of the theorems presented in Section 3.

6.1. Background

We recall various properties of the kernel Φn defined in (2.12) (cf. [9]).

Proposition 6.1. There exist κ, κ1, · · · , κ4 > 0 depending only on q and H such that

κ1n2q ≤ Φn(x, x)2 ≤ κ2n2q, |x|∞, |y|∞ ≤ κn, (6.1)

|Φn(x, y)2 − Φn(x, x)2| < (1/2)Φn(x, x)2, |x − y|∞ ≤ κ3/n, |x|∞ ≤ κn, (6.2)

and

|Φn(x, y)|2 ≤ κ4n2q

max(1, (n|x − y|∞)S)
, x, y ∈ R

q. (6.3)

For n > 0 (not necessarily an integer), let Πq
n,a = {x �→ P (x) exp(−a|x|22) : P polynomial of total

degree < n2}. We will omit the mention of a when a = 1. Members of Πq
n will be called (q-variate) 

weighted polynomials. The symbol ‖ · ‖ will denote the supremum norm on the space C0(Rq). The following 

proposition states two important facts about weighted polynomials, obtained by applying corresponding 

univariate results in [33,36] one variable at a time to the multi-variate case.

Proposition 6.2. Let n ≥ 1, P ∈ Πq
n,a.

(a) (MRS identity) We have

‖P‖ = max
x∈[−n/a,n/a]q

|P (x)|. (6.4)

(b) (Bernstein inequality) There is a positive constant κ5 depending only on q such that

‖|∇P |‖ ≤ κ5
n

a
‖P‖. (6.5)

The following corollary is easy to prove:

Corollary 6.1. Let n > 0, C ⊂ [−n/a, n/a]q be a finite set satisfying

max
x∈[−n/a,n/a]q

min
y∈C

|x − y|∞ ≤ a/(2κ5n). (6.6)

Then for any P ∈ Πq
n,a,

max
y∈C

|P (y)| ≤ ‖P‖ ≤ 2 max
y∈C

|P (y)|. (6.7)

There exists a set C as above with |C| ∼ n2q.
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We will need the following facts from probability theory. Theorem 6.1 is proved as [37, Theorem 6.1].

Theorem 6.1. Let X be a topological space, W be a linear subspace of C0(X). We assume that there is a 

finite set C (norming set) satisfying

sup
x∈X

|f(x)| ≤ n(W, C) sup
y∈C

|f(y)|, f ∈ W. (6.8)

Let (Ω, B, μ) be a probability space, and Z : Ω → W . We assume further that for any x ∈ X, ω ∈ Ω, 

|Z(ω)(x)| ≤ R for some R > 0. Then for any δ > 0, integer M ≥ 1, and independent sample ω1, · · · , ωM , 

we have

Probμ

⎛
⎝sup

x∈X

∣∣∣∣∣∣
1

M

M∑

j=1

Z(ωj)(x) − Eμ(Z(◦)(x))

∣∣∣∣∣∣
≥ 4n(W, C)R

√
log(2|C|/δ)

M

⎞
⎠ ≤ δ. (6.9)

The following proposition summarizes the multiplicative Chernoff bounds in the form we need them (cf., 

e.g., [21, Eqn. (7)] for an elementary proof).

Proposition 6.3. Let M ≥ 1, 0 ≤ p ≤ 1, and X1, · · · , XM be random variables taking values in {0, 1}, with 

Prob(Xk = 1) = p. Then for ε ∈ (0, 1],

Prob

(
M∑

k=1

Xk ≤ (1 − ε)Mp

)
≤ exp(−ε2Mp/2). (6.10)

6.2. Preparatory results

In this section and the next, we will assume that μ∗ is a detectable measure with parameters as described 

in Definition 2.1. We denote

In = sup
z∈supp (μ∗)

∫

Rq

Φn(z, y)2dμ∗(y). (6.11)

Lemma 6.1. Let d > 0, n ≥ 1, x ∈ R
q, and supp (μ∗) ⊆ B(0, κn). Then there exist C3, C4 such that

∫

Rq\B(x,d)

Φn(x, y)2dμ∗(x) ≤ C3n2q−α min
(
1, (nd)α−S

)
, (6.12)

and

n2q−α/C4 ≤ inf
x∈supp (μ∗)

∫

Rq

Φn(x, y)2dμ∗(y) ≤ max
x∈Rq

∫

Rq

Φn(x, y)2dμ∗(y) ≤ C3n2q−α. (6.13)

In particular,

In = sup
z∈supp (μ∗)

∫

Rq

Φn(z, y)2dμ∗(y) ∼ sup
z∈Rq

∫

Rq

Φn(z, y)2dμ∗(y) ∼ n2q−α. (6.14)

Proof. First, let d ≥ 1/n, and for k ∈ Z+, Ak = {y : 2kd < |x − y|∞ ≤ 2k+1d}. Then (2.3) shows that 

μ∗(Ak) ≤ 2αC2(2kd)α. Hence, (6.3) leads to
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∫

Rq\B(x,d)

Φn(x, y)2dμ∗(y) ≤ κ4n2q−S

∫

Rq\B(x,d)

dμ∗(y)

|x − y|S∞
= κ4n2q−S

∞∑

k=0

∫

Ak

dμ∗(y)

|x − y|S∞

≤ κ4n2q−Sd−S
∞∑

k=0

2−kSμ∗(Ak) ≤ 2αC2κ4n2q−α(nd)α−S
∞∑

k=0

2k(α−S)

=
2α

1 − 2S−α
C2κ4n2q−α(nd)α−S . (6.15)

Using this estimate with d = 1/n, and using (6.3) and (2.3) again, we obtain that

∫

Rq

Φn(x, y)2dμ∗(y) =

∫

B(x,1/n)

Φn(x, y)2dμ∗(y) +

∫

Rq\B(x,d)

Φn(x, y)2dμ∗(y) ≤ C2κ4n2q−α

+
2α

1 − 2S−α
C2κ4n2q−α.

This shows both the third inequality in (6.13), and together with (6.15), also (6.12) (with the same C3).

Let x0 ∈ supp (μ∗). Then μ∗(B(x0, κ3/n)) ≥ C1κα
3 n−α. In view of (6.1) and (6.2), we have Φn(x0, y)2 ≥

(κ1/2)n2q for all y ∈ B(x0, κ3/n). Therefore,

∫

B(x0,κ3/n)

Φn(x0, y)2dμ∗(y) ≥ (C1κ1/2)κα
3 n2q−α.

This leads to the first inequality in (6.13). �

Lemma 6.2. Let n ≥ 1 be large enough so that supp (μ∗) ⊆ B(0, κn), {xj}M
j=1 be independent samples with 

μ∗ as the probability distribution. Then

Prob

⎛
⎝ sup

x∈Rq

∣∣∣∣∣∣
1

M

M∑

j=1

Φn(x, xj)2 −
∫

Rq

Φn(x, y)2dμ∗(y)

∣∣∣∣∣∣
≥ cnα

√
log n

M
In

⎞
⎠ ≤ 1

2n
. (6.16)

In particular, if β > 0, and with c as in (6.16),

M ≥ (c2/β2)n2α log n, (6.17)

then with probability ≥ 1 − 1/(2n), for x ∈ R
q,

∫

Rq

Φn(x, y)2dμ∗(y) − βIn ≤ 1

M

M∑

j=1

Φn(x, xj)2 ≤
∫

Rq

Φn(x, y)2dμ∗(y) + βIn, (6.18)

(1 − β)In ≤ max
x∈Rq

1

M

M∑

j=1

Φn(x, xj)2 ≤ (1 + β)In. (6.19)

Proof. We use Theorem 6.1 with the following choices: μ∗ in place of μ, xj in place of ωj , δ = 1/(2n), 

Z(◦)(x) = Φn(x, ◦)2 (so that W = Πq
2n, and with C as in Corollary 6.1, n(W, C) = 2, |C| ∼ n2q). This yields

Prob

⎛
⎝ sup

x∈Rq

∣∣∣∣∣∣
1

M

M∑

j=1

Φn(x, xj)2 −
∫

Rq

Φn(x, y)2dμ∗(y)

∣∣∣∣∣∣
≥ cn2q

√
log n

M

⎞
⎠ ≤ 1

2n
.
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The proof is completed using (6.13). �

Lemma 6.3. There exist C∗, c1, c2 > 0 with the following property. Let n ≥ c1, 0 < β < 1, supp (μ∗) ⊆
B(0, κn), M ≥ c2β−2n2α log n. If {xj}M

j=1 is a random sample with μ∗ as the probability distribution, then

Prob

⎛
⎝ max

1≤k≤M

1

M

M∑

j=1

Φn(xk, xj)2 ≤ C∗In

⎞
⎠ ≤ 1/(2n); (6.20)

i.e., with probability ≥ 1 − 1/n, (cf. (6.19))

C∗In ≤ max
1≤k≤M

1

M

M∑

j=1

Φn(xk, xj)2 ≤ (1 + β)In. (6.21)

Proof. In this proof, let P ∈ Πq
2n be defined by

P (x) =

∫

Rq

Φn(x, y)2dμ∗(y).

Let n be large enough so that supp (μ∗) ⊂ B(0, κn). Then (6.13) shows that

sup
x∈supp (μ∗)

|P (x)| = P (x∗) ≥ cIn (6.22)

for some x∗ ∈ supp (μ∗). Therefore, using the Bernstein inequality (6.5), we obtain for x ∈ R
q,

|P (x∗) − P (x)| ≤ cn|x∗ − x|∞In ≤ cn|x∗ − x|∞ sup
x∈supp (μ∗)

|P (x)| = cn|x∗ − x|∞P (x∗);

i.e.,

P (x) ≥ (1 − cn|x∗ − x|∞) P (x∗) ≥ c3 (1 − cn|x∗ − x|∞) In, x ∈ B(x∗, (cn)−1). (6.23)

Now we consider the following random variables: for k = 1, · · · , M , we take Xk = 1 if xk ∈ B(x∗, κ3/n2), 

and 0 otherwise, so that the probability p that Xk = 1 is given by p = μ∗(B(x∗, κ3/n2)) ≥ cn−2α. We then 

use multiplicative Chernoff bound (6.10) with ε = 1 to obtain for M ≥ cn2α log n,

Prob

(
M∑

k=1

Xk ≤ 0

)
≤ exp(−Mp/2) ≤ 1/(2n).

Thus, with probability exceeding 1 −1/(2n), there exists x� ∈ B(x∗, κ3/n2). Together with (6.23) this shows 

that with probability exceeding 1 − 1/(2n),

max
1≤k≤M

P (xk) ≥ P (x�) ≥ 2C∗In. (6.24)

Using the first estimate in (6.18) with C∗/2 in place of β, we see that if M ≥ cn2α log n, then with C∗ as 

in (6.24), and probability exceeding 1 − 1/(2n),

max
1≤k≤M

1

M

M∑

j=1

Φn(xk, xj)2 ≥ max
1≤k≤M

P (xk) − (C∗/2)In ≥ C∗In.
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This proves the first inequality in (6.21). The second inequality is immediate from the second inequality in 

(6.19). �

6.3. Proofs of the main theorems

We first state and prove some theorems in the non-noisy case.

Theorem 6.2. Let μ∗ be detectable, S > α, θ > 0, and for n ≥ 1,

S = Sn(θ) =

⎧
⎨
⎩

∫

Rq

Φn(x, y)2dμ∗(y) ≥ 4θ sup
z∈supp (μ∗)

∫

Rq

Φn(z, y)2dμ∗(y)

⎫
⎬
⎭ . (6.25)

We assume (3.1) and

0 < θ ≤ min
(
(4C3C4)−1, C3C4

)
. (6.26)

Then with

d(θ) =

(
C3C4

θ

)1/(S−α)

(6.27)

supp (μ∗) ⊆ S ⊆
{

x ∈ R
q : dist(x, supp (μ∗)) ≤ d(θ)

n

}
. (6.28)

Proof. The estimate (6.13) shows that for x ∈ supp (μ∗),

∫

Rq

Φn(x, y)2dμ∗(y) ≥ In

C3C4
.

Since θ ≤ (4C3C4)−1, this shows the first inclusion in (6.28).

Let dist(x, supp (μ∗)) ≥ d(θ)/n. The condition (6.26) shows that d(θ) ≥ 1. So, (6.12) leads to

∫

Rq

Φn(x, y)2dμ∗(y) =

∫

supp (μ∗)

Φn(x, y)2dμ∗(y)

≤
∫

Rq\B(x,d(θ)/n)

Φn(x, y)2dμ∗(x) ≤ C3nq−2αd(θ)α−S

≤ C3C4d(θ)α−SIn = θIn. (6.29)

This proves the second inclusion in (6.28). �

The next theorem shows the detection of the supports Sk,η of the components μk of μ∗.

Theorem 6.3. We assume the set-up as in Theorem 6.2. In addition, we assume that μ∗ has a fine structure, 

and that

n ≥ 2d(θ)/η, κ1C4nαμ∗(SKη+1,η) ≤ θ. (6.30)

Let
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Sk,η,n(θ) = Sn(θ) ∩ {x ∈ R
q : dist(x, Sk,η) ≤ d(θ)/n}. (6.31)

Then the set Sn(θ) is a disjoint union of sets Sk,η,n(θ), k = 1, · · · , Kη such that

dist(Sk,η,n(θ), Sj,η,n(θ)) ≥ η, k �= j, k, j = 1, · · · , Kη, (6.32)

and for k = 1, · · · , Kη,

supp (μ∗) ∩ {x : dist(x, Sk,η) ≤ d(θ)/n} ⊆ Sk,η,n(θ) ⊆ {x ∈ R
q : dist(x, Sk,η) ≤ d(θ)/n}. (6.33)

Proof. The minimal separation condition and the first condition in (6.30) implies that the sets Sk,η,n are 

disjoint, and in fact, satisfy (6.32). Also, (6.28) implies the first inclusion in (6.33).

Let x ∈ Sn(θ). Then we deduce using (6.1) (6.13), and (6.30) that

∫

SKη+1

Φn(x, y)2dμ∗(y) ≤ κ1n2qμ∗(SKη+1) ≤ κ1C4nαμ∗(SKη+1)In ≤ θIn. (6.34)

In this proof, we will denote

S =

Kη⋃

k=1

Sk,η.

If dist(x, S) ≥ d(θ)/n then we obtain as in the proof of Theorem 6.2, that

∫

S

Φn(x, y)2dμ∗(y) ≤
∫

Rq\B(x,d(θ)/n)

Φn(x, y)2dμ∗(x) ≤ C3nq−2αd(θ)α−S ≤ C3C4d(θ)α−SIn = θIn.

Together with (6.34), this implies that Sn(θ) ⊆ {x : dist(x, S) ≤ d(θ)/n}. Since d(θ)/n ≤ η/2, the minimal 

separation condition shows that for any x with dist(x, S) ≤ d(θ)/n, there exists a unique k, k = 1, · · · , K, 

such that dist(x, Sk,η) ≤ d(θ)/n. Thus, Sn(θ) =
⋃K

k=1 Sk,η,n(θ), and the second inclusion of (6.33) is 

proved. �

The following lemma helps us to connect Theorems 6.2 and 6.3 with Theorems 3.1 and 3.2.

Lemma 6.4. Let 0 < Θ ≤ 1, M, n ≥ 2 be integers, M ≥ 2 and C = {x1, · · · , xM } be independently sampled 

from the probability distribution μ∗. Let Gn(Θ, C) be defined by (3.2). There exist constants c, c1, c2 such that 

if M ≥ cn2α
√

log n then with probability ≥ 1 − c1M−c2 ,

Sn

(
(1 + C∗)Θ

4

)
⊆ Gn(Θ, C) ⊆ Sn(C∗Θ/8). (6.35)

Proof. All statements below hold with probability ≥ 1 − c1M−c2 , although the values of c1, c2 might be 

different at different occurrences as usual. In applying Lemma 6.2, we use β = C∗Θ/2,

t1 =
2Θ + C∗Θ(1 + Θ)

8
=

(1 + β)Θ + β

4
.

Let x ∈ Sn(t1). Using (6.18) and (6.21), we deduce that



A. Cloninger, H.N. Mhaskar / Appl. Comput. Harmon. Anal. 54 (2021) 44–74 71

1

M

M∑

j=1

Φn(x, xj)2 ≥
∫

Rq

Φn(x, y)2dμ∗(y) − βIn ≥ 4t1In − βIn = (4t1 − β)In

≥ 4t1 − β

1 + β
max

1≤k≤M

1

M

M∑

j=1

Φn(xk, xj)2 = Θ max
1≤k≤M

1

M

M∑

j=1

Φn(xk, xj)2.

Thus,

Sn

(
2Θ + C∗Θ(1 + Θ)

8

)
⊆ Gn(Θ, C).

Since

(1 + C∗)Θ/2 ≥ 2Θ + C∗Θ(1 + Θ)

8
,

this proves the first inclusion in (6.35).

Next, let x ∈ Gn(Θ, C). Using (6.18) and (6.21), we deduce that

∫

Rq

Φn(x, y)2dμ∗(y) ≥ 1

M

M∑

j=1

Φn(x, xj)2 − βIn ≥ Θ max
1≤k≤M

1

M

M∑

j=1

Φn(xk, xj)2

≥ (C∗Θ − β)In = 4(C∗Θ/8)In.

This proves the second inclusion in (6.35). �

Proofs of Theorems 3.1 and 3.2. Theorems 3.1 and 3.2 follow immediately from Theorems 6.2 and 6.3 re-

spectively using Lemma 6.4. �

Proof of Theorem 3.3. In this proof, we write Gk,η,n in place of Gk,η,n(Θ, C). In view of (3.7), we have for 

k = 1, · · · , Kη, supp (μ∗) ∩ Sk,η ⊂ Gk,η,n. Hence,

μ∗(Gk,η,n) ≥ μ∗(Sk,η), k = 1, · · · , Kη. (6.36)

With c1, c2 as in Theorem 3.2, let

dn = c2/(nΘ1/(S−α)).

Then The estimate (3.7) implies again that

μ∗ ({x ∈ R
q : dist(x, Sk,η) ≤ dn})

= μ∗ (supp(μ∗) ∩ {x ∈ R
q : dist(x, Sk,η) ≤ dn}) = μ∗(Sk,η ∪ SKη+1,η) ≤ μ∗(Sk,η) + μ∗(SKη+1,η).

Hence, the second inclusion in (3.7) implies that for k = 1, · · · , Kη,

μ∗(Gk,η,n) ≤ μ∗(Sk,η) + μ∗(SKη+1,η). (6.37)

In view of (6.36) and (6.37), for each k = 1, · · · , K,

Fη(Gk,η,n) ≥ 2
μ∗(Sk,η)

2μ∗(Sk,η) + μ∗(SKη+1,η)
≥ 1 − μ∗(SKη+1,η)

2μ∗(Sk,η) + μ∗(SKη+1,η)
. (6.38)
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Since {Gk,η,n} is a partition of Gn(Θ, C) ⊇ supp (μ∗),

Kη∑

k=1

μ∗(Gk,η,n) = 1.

Therefore, (6.38) and (6.37) imply that

Kη∑

k=1

μ∗(Gk,η,n)Fη(Gk,η,n) ≥ 1 − μ∗(SKη+1,η)

Kη∑

k=1

μ∗(Gk,η,n)

2μ∗(Sk,η) + μ∗(SKη+1,η)
. (6.39)

Therefore,

1 ≥ Fη

(
{Gk,η,n}K

k=1

)
≥ 1 − μ∗(SKη+1,η)

2 min1≤k≤Kη
μ∗(Sk,η)

.

In view of (3.8), this completes the proof. �

7. Conclusions

We have introduced the concept that the machine learning problem of classification can be considered in 

a manner analogous to the problem in signal processing of separating point sources. We have pointed out 

the various similarities and differences which makes the problem much harder than that of separation of 

point sources, in particular, because of overlapping class boundaries. We have introduced a localized kernel 

based on Hermite polynomials, and demonstrated its use in separating supports of the components of the 

data distribution corresponding to different classes. We have constructed a multiscale in which the number 

of classes can be defined hierarchically, and shown that the F -score for our classification scheme converges 

to the optimal value of 1. Having separated the supports of the components, one sample per component 

leads in theory to a complete classification based on a minimal number of label queries. We have given an 

algorithm to determine which points in the data set should be queried for labels in an optimal and reliable 

manner. The algorithm is demonstrated in several synthetic examples as well as the MNIST data set and 

some hyperspectral image data sets.

Appendix A. Constructing localized kernel Φn

With

Projm(x, y) =
∑

|k|1=m

ψk(x)ψk(y), (A.1)

we observe that

Φn(H; x, y) =
∑

k∈Z
q
+

H

(√
|k|1
n

)
ψk(x)ψk(y) =

∞∑

m=0

H

(√
m

n

)
Projm(x, y). (A.2)

In [37], we have observed using the so-called Mehler identity that

Projm(x, y) =
m∑

j=0

ψj(|x|)ψj(|y| cos θ)

m−j∑

�=0

ψ�(0)ψ�(|y| sin θ)Dq−2;m−j−�, (A.3)
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where θ is the acute angle between x and y, and

ψ�(0) =

⎧
⎨
⎩

π−1/4(−1)�/2

√
�!

2�/2(�/2)!
, if � is even,

0, if � is odd,

(A.4)

and

Dq−2;r =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

π1−q/2 Γ(q/2 + r/2 − 1)

Γ(q/2 − 1)(r/2)!
, if r is even, q ≥ 3,

0, if r is odd, q ≥ 3,

1, if q ≤ 2.

(A.5)

Therefore, the procedure to compute the kernel Φn(H; x, y) is simple. We use the recurrence relations (2.9)

to compute the univariate Hermite functions ψj, use these together with (A.3) to compute Projm(x, y) for 

|m|1 ≤ n2, and finally compute Φn(H; x, y) using (A.2).
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