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ABSTRACT. Our basic result, an isoperimetric inequality for Hamming cube Qn, can be written:∫
hβAdµ ≥ 2µ(A)(1− µ(A)).

Here µ is uniform measure on V = {0, 1}n (= V (Qn)); β = log2(3/2); and, for S ⊆ V and x ∈ V ,

hS(x) =

dV \S(x) if x ∈ S,

0 if x /∈ S

(where dT (x) is the number of neighbors of x in T ).

This implies inequalities involving mixtures of edge and vertex boundaries, with related stability results, and

suggests some more general possibilities. One application, a stability result for the set of edges connecting two

disjoint subsets of V of size roughly |V |/2, is a key step in showing that the number of maximal independent

sets in Qn is (1 + o(1))2n exp2[2
n−2]. This asymptotic statement, whose proof will appear separately, was the

original motivation for the present work.

1. INTRODUCTION

We write Qn for the n-dimensional Hamming cube and V for V (Qn). For T ⊆ V let dT (x) be the number

of neighbors of x in T (x ∈ V ) and define hS : V → N by

(1) hS(x) =

dV \S(x) if x ∈ S,

0 if x /∈ S.

For f : V → N, a probability measure ν on V and X ⊆ V , we set∫
X

fdν =
∑
x∈X

f(x)ν(x).

We also use
∫

for
∫
V

.

Our main result is the following isoperimetric inequality. Throughout this paper we use β for log2(3/2) (≈
.585) and µ for uniform measure on V . (A few definitions are given in Section 1.1.)

Theorem 1.1. For any A ⊆ V ,

(2)
∫
hβAdµ ≥ 2µ(A)(1− µ(A)).

The form of Theorem 1.1 is inspired by the following inequality of Talagrand [12].

Theorem 1.2. For any A ⊆ V , ∫ √
hAdµ ≥

√
2µ(A)(1− µ(A)).
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Notice that Theorem 1.1 is tight in two ways: it holds with equality for subcubes of codimensions 1 and 2,

and for subcubes of codimension 2 it does not hold for any smaller value of β. As far as we know the
√

2 in

Theorem 1.2 could be replaced by 2 when µ(A) = 1/2 (but of course not in general). The difference between

2 and
√

2 wouldn’t have mattered in [12], but getting the right constant when µ(A) is close to 1/2 was crucial

for applications, particularly the one in [8] (Theorem 1.8 below) that was our original motivation—see the

”stability” result Theorem 1.9 that is the present work’s contribution to [8].

Before discussing applications we briefly recall a few basic notions.

1.1. Definitions. As usual [n] = {1, . . . , n}, P is the set of positive integers and x = a± b means a− b ≤ x ≤
a+ b. We use A,B,C and W for subsets of V and E for E(Qn). For x ∈ V , xi is (as usual) the ith coordinate

of x, and xi is the vertex obtained from x by flipping xi. For any A,

Ai = {xi : x ∈ A},

the vertex-boundary of A is

∂A = {x /∈ A : x ∼ y for some y ∈ A},

and the edge-boundary of A is

∇A = {(x, y) : x ∈ A, y /∈ A}.

We also use

∇(A,B) = {(x, y) : x ∈ A, y ∈ B},

∇iA = {(x, xi) : x ∈ A, xi /∈ A},

∇IA = ∪i∈I∇Ai (I ⊆ [n]),

and

∇i(A,B) = {(x, xi) : x ∈ A, xi ∈ B}.

We say C is a codimension k subcube if there are I ⊆ [n] of size k and z ∈ {0, 1}I such that

C = {x ∈ V : xi = zi for all i ∈ I}.

1.2. First application: separating the cube. Isoperimetric inequalities beginning with Harper [4] (and for

edge boundaries also Lindsey [9]) give lower bounds in terms of |A| on the sizes of ∂A and∇A; e.g.

(3) |∇A| ≥ |A| log2(2n/|A|),

with equality iff A is a subcube. We are interested in hybrid versions of these. In what follows we assume

(A,B,W ) is a partition of V , with W thought of as small. The next two conjectures are a simple illustration

of what we have in mind, followed by something general.

Conjecture 1.3. There is a fixed K such that if µ(A) = 1/2, then

|∇(A,B)|+K
√
n |W | ≥ 2n−1.

With ∂(a) = min{|∂A| : |A| = a} and∇(a) defined similarly, our maximal guess in this direction is:

Conjecture 1.4. If |A| = a, then

|∇(A,B)|/∇(a) + |W |/∂(a) ≥ 1.
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Results of Margulis [10] and Talagrand [12] (motivated by [10]) imply tradeoffs between |∇A| and |∂A|, but

don’t seem to help here. Theorem 1.1 implies a weaker version of Conjecture 1.3:

Corollary 1.5. For A,B,W as in Conjecture 1.3, |∇(A,B)|+ nβ |W | ≥ 2n−1.

1.3. Second application: stability for “almost” isoperimetric subsets. A simple (though now suboptimal)

”stability” statement for edge boundaries says:

Theorem 1.6. For a fixed k, if |A| = 2n−k and |∇A| < (1 + ε)|A| log2(2n/|A|), then there is a subcube C with

µ(C∆A) = O(ε) (where the implied constant depends on k).

This was proved for k = 1 by Friedgut, Kalai and Naor [3]; then for k = 2, 3 by Bollobás, Leader and

Riordan, who conjectured the general statement (see [1]); and finally in full by Ellis [1]. These all based on

Fourier analysis; e.g. at the heart of [1] is Talagrand’s extension [11] of [7]. Even stronger, very recent results

of Ellis, Keller and Lifshitz [2] are more elementary but rather involved.

Notice that if A is (sufficiently) close to a codimension k subcube then there is an I ⊆ [n] of size k with

∇A ≈ ∇IA. In fact the implication goes both ways; this follows (more or less) from Theorem 1.6, but is also

easy without that machine:

Proposition 1.7. Assume |A| = (1± ε)2n−k and

|∇A \ ∇IA| ≤ ε|A|,

where I is a k-subset of [n]. Then there is a (codimension k) subcube C with |A∆C| = O(ε)|A| (where the implied

constant depends on k).

The original motivation for Theorem 1.1 arose in connection with our efforts to prove the following

statement, which had been conjectured in [6]. Here mis(G) is the number of maximal independent sets in

the graph G.

Theorem 1.8. mis(Qn) ∼ 2n exp2[2n−2].

The proof of this is completed in [8]. What it needed from isoperimetry (see [8] for the connection) was a

variant of Theorem 1.6—really, just of the original result of [3]—of the following type.

If (A,B,W ) is a partition of V with µ(A), µ(B) ≈ 1/2 (so W is “small”) and |∇(A,B)| ≈ 2n−1, then

∇A ≈ ∇iA for some i.

Of course this depends on quantification; e.g. it can fail with µ(W ) as small as Θ(n−1/2) (let W consist of

strings of weight bn/2c). Note also that here the full edge boundary of A need not be small, since there is

no restriction (beyond n|W |) on |∇(A,W )|.

The following consequence of Theorem 1.1 is a (limited) statement of the desired type, the case k = 1 of

which suffices for [8]. (Recall β = log2(3/2).)

Theorem 1.9. For k ∈ {1, 2} the following holds. Suppose (A,B,W ) is a partition of V with µ(A) = (1 ± ε)2−k,

µ(W ) ≤ εn−β and

(4) |∇(A,B)| < (1 + ε)k2n−k.
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Then there is I ⊆ [n] of size k such that

(5) |∇iA| = (1−O(ε))2n−k ∀i ∈ I.

Furthermore, there is a codimension k subcube C such that

(6) µ(C∆A) = O(ε).

Conjecture 1.10. The statement in Theorem 1.9 holds for all k ∈ P, even with nβ replaced by 2n/∂(|A|).

(The implied constant in (5) and (6) would necessarily depend on k.)

Note Theorem 1.9 implies an isoperimetric statement—similar to those in Section 1.2—of which it is a

stability version; namely:

Corollary 1.11. For k ∈ {1, 2}, the assumptions of Theorem 1.9 imply |∇(A,B)| > (1−O(ε))k2n−k.

(And of course similarly for whatever one can establish in the direction of Conjecture 1.10.)

Finally, the next observation provides a general approach to proving something like the statement in

Theorem 1.9 for other values of k. (Its proof is similar to the derivation of Theorem 1.9 from Theorem 1.1

and is omitted.)

Theorem 1.12. Fix k ∈ P and suppose there are f, g : [0, 1]→ <+ such that (i) g is continuous with g(2−k) = k2−k

and (ii) f is increasing and strictly concave, with f(0) = 0, f(k) = k and∫
f(hA)dµ ≥ g(µ(A)) ∀A ⊆ V.

Then the conclusions of Theorem 1.9 hold (with implied constants depending on f and g) for A,B,W as in the

theorem, except with the bound on w replaced by w ≤ ε/f(n).

(For the cases covered by Theorem 1.9, Theorem 1.1 gives the hypothesis of Theorem 1.12 with f(x) equal

to xβ when k = 1 and (4/3)xβ when k = 2.)

Theorem 1.1 is proved in Section 2. Section 3 derives the case k = 1 of Theorem 1.9 and then indicates

the small changes needed for k = 2, and in passing derives Corollary 1.5 (see following Corollary 3.2). The

easy proof of Proposition 1.7 is given in Section 4.

2. PROOF OF THEOREM 1.1

Lemma 2.1. Let X ⊆ V and let f be a non-negative real-valued function on V . If

(7)
1

µ(X)

∫
X

fβdµ = T β ,

then

(8)
1

µ(X)

∫
X

(f + 1)βdµ ≥ (T + 1)β .
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Proof. Set g(x) = fβ(x) for x ∈ X . Then the l.h.s. of (7) is Eg and the l.h.s. of (8) is E(g1/β + 1)β , where

E refers to uniform measure on X . But p(x) := (x1/β + 1)β is easily seen to be convex; so, by Jensen’s

inequality,

E(g1/β + 1)β ≥ ((Eg)1/β + 1)β ,

which implies (8). �

The proof of Theorem 1.1 proceeds by induction on n. (This is also true of Theorem 1.2, but beyond this

the arguments seem to be different.) It is easy to see that the theorem holds for n = 1, so we suppose n ≥ 2.

Given A, fix an i ∈ [n]. Let

V0 = {x ∈ V : xi = 0},

V1 = {x ∈ V : xi = 1},

A0 = A ∩ V0,

and

A1 = (A ∩ V1)i = {xi : x ∈ A, xi = 1} ⊆ V0.

Let µ′ be uniform measure on V0. For simplicity, write h0 (h1, h, resp.) for hA0
(hA1

, hA, resp.), a function

on V0 (V0, V , resp.).

Let µ′(A0) = a0, µ′(A1) = a1, and µ(A) = a = (a0 + a1)/2. Then by induction hypothesis, for i = 0, 1,

(9)
∫
hβi dµ

′ ≥ 2ai(1− ai).

We may assume a0 ≥ a1. Note that

(10) h(x) =



h0(x) + 1 if x ∈ A0 \A1,

h0(x) if x ∈ A0 ∩A1,

h1(xi) + 1 if xi ∈ A1 \A0,

h1(xi) if xi ∈ A0 ∩A1;

so ∫
hβdµ =

∫
A0

hβdµ+

∫
(A1)i

hβdµ

=

∫
A0

hβdµ+

∫
A1\A0

(h1 + 1)βdµ+

∫
A0∩A1

hβ1dµ

≥
∫
A0

hβdµ+

∫
A1

hβ1dµ

≥
∫
A0

hβdµ+ a1(1− a1)

(11)

(the last inequality by (9)). Thus the theorem will follow if we show

(12)
∫
A0

hβdµ ≥ 2a(1− a)− a1(1− a1) = a0 + a21 − (a0 + a1)2/2.
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The rest of this section is devoted to the proof of (12). Let Z = supp(h0) \A1 and X = supp(h0)∩A1 (see

Figure 1); thus

(13) 2

∫
A0

hβdµ =

∫
Z

(h0 + 1)βdµ′ +

∫
X

hβ0dµ
′ +

∫
A0\(A1∪Z)

1dµ′.

A0

Z X

A1

supp(h0)

FIGURE 1.

Observation 2.2. We may assume A1 ⊆ A0.

Proof. If there is x ∈ A1 \A0 then we can find y ∈ A0 \A1 since µ′(A0) ≥ µ′(A1). Let B1 = (A1 \ {x})∪ {y},
B = A0 ∪ (B1)i and B0 = B ∩ V0 (= A0). Notice that |A| = |B|, |Ai| = |Bi| for i ∈ {0, 1}, and∫

B0

hβBdµ <

∫
A0

hβdµ,

because: with ZB (resp. XB) for supp(hB0
)\B1 (resp. supp(hB0

)∩B1), the location of y changes either from

Z to XB or from A0 \ (A1 ∪ Z) to (B0 ∩B1) \XB . In either case its contribution to the r.h.s. of (13) shrinks.

So if A1 6⊆ A0, then we can shift it to a “worse” set. �

Let σ =
∫
Z
hβ0dµ

′, γ =
∫
X
hβ0dµ

′, α = σ + γ (=
∫
hβ0dµ

′) and µ′(Z) = z. Since A1 ⊆ A0, the r.h.s. of (13) is∫
Z

(h0 + 1)βdµ′ + γ + µ′(A0 \ (A1 ∪ Z)) ≥ (σ1/β + z1/β)β + γ + (a0 − a1 − z)

= ((α− γ)1/β + z1/β)β + γ + (a0 − a1 − z)

≥ (α1/β + z1/β)β + (a0 − a1 − z),(14)

where the first inequality is given by Lemma 2.1 and the second holds because ((α − γ)1/β + z1/β)β + γ is

increasing in γ.

So we are done if we show that the expression in (14) is at least

(15) 2(a0 + a21)− (a0 + a1)2,

where we are entitled to assume

(16) α =

∫
hβ0dµ

′ ≥ 2a0(1− a0).

(see (9)) and

(17) z ≤ min{α, a0 − a1}

(where the second bound holds since Z ⊆ A0 \ A1). We consider two cases depending on which of a0 − a1
and the r.h.s. of (16) is smaller.

Case 1. 2a0(1− a0) ≤ a0 − a1
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Equivalently,

(18) a1 ≤ a0(2a0 − 1).

Also, since 0 ≤ a0(2a0 − 1), we have

(19) a0 ≥ 1/2.

Note that (14) is decreasing in z and z ≤ α by (17), so recalling that 2β = 3/2 and using (16), we find that

(14) is at least

(20) α/2 + a0 − a1 ≥ a0(1− a0) + a0 − a1.

Subtracting (15) from (20) gives

−a21 + (2a0 − 1)a1,

which is nonnegative since

f(x, y) := −y2 + (2x− 1)y ≥ 0 for x ∈ [ 12 , 1] and y ∈ [0, x(2x− 1)].

(Because: for any y ≥ 0, f(x, y) is nondecreasing in x, so it is enough to show the inequality holds when

y = x(2x− 1), in which case f(x, y) = x(1− x)(2x− 1)2 ≥ 0.)

Case 2. 2a0(1− a0) ≥ a0 − a1

Equivalently,

(21) a0(2a0 − 1) ≤ a1 (≤ a0).

Again using the fact that (14) is decreasing in z, now with z ≤ a0 − a1 by (17), we find that (14) is at least

(22) (α1/β + (a0 − a1)1/β)β ,

which, in view of (16) (and the fact that (22) is increasing in α), is at least

(23) ((2a0(1− a0))1/β + (a0 − a1)1/β)β .

Thus the proof that (14) is at least (15) in the present case is completed by the following proposition (applied

with x = a0 and y = a1).

Proposition 2.3. Let

g(x, y) = ((2x(1− x))1/β + (x− y)1/β)β − 2(x+ y2) + (x+ y)2.

Then g(x, y) ≥ 0 for x, y ∈ [0, 1] with y ∈ [x(2x− 1), x].

Proof. Observe that for x ∈ [0, 1],

(24) g(x, x(2x− 1)) = x(1− x)(2x− 1)2 ≥ 0,

and

(25) g(x, x) = 0.

Also, the partial derivative of g(x, y) with respect to y is

gy(x, y) = −(x− y)
1
β−1((2x(1− x))

1
β + (x− y)

1
β )β−1 + 2(x− y).
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Now, we claim that

(26) for given x ∈ [0, 1], gy(x, y) is equal to zero for at most one y ∈ [x(2x− 1), x).

Indeed, let A = x− y (> 0) and B = 2x(1− x). Then

(27) gy(x, y) = 0⇔ A
1
β +B

1
β = 2

1
β−1A

2β−1
β(β−1) .

Notice that A
1
β + B

1
β is increasing in A while 2

1
β−1A

2β−1
β(β−1) is decreasing in A (since 2β−1

β(β−1) < 0). So we

conclude that for any B, (27) holds at most once, which is (26).

Finally, we claim that

(28) for each x ∈ (0, 1), there is c = c(x) > 0 such that g(x, y) > 0 for all y ∈ (x− c, x).

Note that Proposition 2.3 follows from the combination of (24), (25), (26), and (28).

Proof of (28). Given x ∈ (0, 1) and c ∈ (0, x),

g(x, x− c) = ((2x(1− x))
1
β + c

1
β )β + 2x2 − 2x− c2,

so

(29) g(x, x− c) > 0⇔ ((2x(1− x))
1
β + c

1
β )β > c2 + 2x(1− x).

Now,

((2x(1− x))
1
β + c

1
β )β = 2x(1− x)

(
1 +

(
c

2x(1− x)

) 1
β

)β
,

and if c = c(x) is small enough, (
1 +

(
c

2x(1− x)

) 1
β

)β
= exp[Θ(c1/β)β]

= 1 + Θ(c1/β),

which implies (29). �

3. PROOF OF THEOREM 1.9

As noted at the end of Section 1.3, we prove Theorem 1.9 for k = 1 and then indicate what changes for

k = 2. This seemed to us slightly clearer than proving them together, though the differences are minor.

Extending to Theorem 1.12 is straightforward, though the counterpart of Proposition 3.3 is slightly more

painful than the original.

As usual, A ⊆ V is increasing if x ∈ A and y ≥ x (with respect to the product order on V ) imply y ∈ A
(and A is decreasing is defined similarly). For x, y with x < y, we write xl y if x ≤ z ≤ y implies z ∈ {x, y}.
We will need Harris’ Inequality [5]:

Theorem 3.1. For any product measure ν on Qn and increasing A,B ⊆ V ,

ν(A ∩B) ≥ ν(A)ν(B).
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Recall that hS was defined in (1) and, for disjoint A,B ⊆ V , set

hAB(x) =

dB(x) if x ∈ A,

0 if x /∈ A;

thus ∫
A

hV \Bdµ =

∫
hAB dµ = 2−n|∇(A,B)|.

We need the following easy consequence of Theorem 1.1.

Corollary 3.2. If (R,S, U) is a partition of V with µ(R ∪ U) = α, then

(2−n|∇(R,S)| =
∫
R

hR∪Udµ ≥)

∫
R

hβR∪Udµ ≥ 2α(1− α)− nβµ(U).

Proof. Theorem 1.1 gives

2α(1− α) ≤
∫
hβR∪Udµ =

∫
R

hβR∪Udµ+

∫
U

hβR∪Udµ ≤
∫
R

hβR∪Udµ+ nβµ(U),

and the corollary follows. �

In particular, taking (R,S, U) = (B,A,W ) gives Corollary 1.5. �

We now assume the situation of Theorem 1.9. Note that each of µ(A), µ(B) is 1/2±O(ε). In what follows

we (abusively) use “a.e.” to mean “all but an O(ε)-fraction,” so for example write “a.e. x ∈ A satisfies Q”

for “Q holds for all but an O(ε)-fraction of the members of A.”

Proposition 3.3. For a.e. x ∈ A, hAB(x) = 1.

Proof. Applying Corollary 3.2 with (R,S, U) = (A,B,W ) (and using (4)) gives

(30) (1 + ε)/2 ≥
∫
hABdµ =

∫
A

hA∪W dµ ≥
∫
A

hβA∪W dµ = 1/2−O(ε).

In particular,
∫

(hAB − hβAB)dµ = O(ε), which, since
∫

(hAB − hβAB)dµ = Ω (µ({x ∈ A : hAB(x) 6∈ {0, 1})),

implies hAB(x) ∈ {0, 1} for a.e. x ∈ A. �

The next observation will allow us to assume that A is increasing and B is decreasing.

Proposition 3.4. For any partition (A,B,W ) of V there is another partition (A′, B′,W ′) satisfying:

(1) µ(X) = µ(X ′) for X ∈ {A,B,W};
(2) A′ is increasing and B′ is decreasing;

(3) |∇i(A,B)| ≥ |∇i(A′, B′)| for all i ∈ [n].

Proof. This is a typical “shifting” argument and we will be brief. For i ∈ [n], the i-shift of a partition

(A,B,W ) is defined thus: let

V0 = {x ∈ V : xi = 0}, V1 = {x ∈ V : xi = 1},

and for each x ∈ V0 with (x, xi) ∈ (A,B), (A,W ), or (W,B), switch the affiliations of x and xi. This trivially

does not change |∇i(A,B)|, and it’s easy to see that it does not increase |∇j(A,B)| for j ∈ [n]\{i}. (Consider

the contribution to∇j(A,B) of any quadruple {x, xi, xj , (xi)j}.)
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It is also clear that no sequence of nontrivial shifts can cycle (e.g. since any such shift strictly increases∑
x∈A |x| −

∑
x∈B |x|); so there is a sequence that arrives at an (A′, B′,W ′) stable under i-shifts (for all i),

and this meets the requirements of the proposition. �

Proof of Theorem 1.9. We first show there is an i as in (5). By Proposition 3.4, we may assume A is increasing

and B is decreasing. For each i ∈ [n], let Ai = {x ∈ A : xi ∈ B}, and notice that

(31) Ai is a decreasing subset of A.

Indeed, given x ∈ Ai, consider any y ∈ A satisfying yl x. Then yi ∈ B since xi ∈ B and B is decreasing, so

y ∈ Ai.

By proposition 3.3,

(32) a.e. x ∈ A is in exactly one Ai;

in particular, if we let A0 = {x ∈ A : dB(x) = 0}, then µ(A0) = O(ε).

Setting maxµ(Ai) = µ(A)− δ, we just need to show that δ = O(ε).

Assume (w.l.o.g.) that maxµ(Ai) = µ(A1), and let Ã = ∪i6=1Ai, C1 = A \A1, and C̃ = A \ Ã. By (32),

(33) µ(C̃) ≥ µ(A1)−O(ε),

while C1 ∩ C̃ = A0 implies

µ(C1 ∩ C̃) = O(ε).

Moreover, (31) and the fact that A is increasing imply that C1 and C̃ are increasing (in V ); so Theorem 3.1

gives

(34) O(ε) = µ(C1 ∩ C̃) ≥ µ(C1)µ(C̃) ≥ δ(µ(A)− δ −O(ε)),

whence

δ = O(ε) or µ(A)− δ −O(ε) = O(ε).

But δ = O(ε) is what we want, so we may assume for a contradiction that µ(A) − δ − O(ε) = O(ε); equiv-

alently, µ(A1) = O(ε). In this case, µ(Ai) = O(ε) for all i, so there is a partition [n] = I ∪ J such that each

of AI (:= ∪i∈IAi) and AJ has measure µ(A)/2 +O(ε). But then, setting CI = A \AI and CJ = A \AJ , and

again using Theorem 3.1, we have

O(ε) = µ(CI ∩ CJ) ≥ µ(CI)µ(CJ) ≥ µ2(A)/4−O(ε),

which is impossible. �

For (6), let i be as above and for π ∈ {0, 1}, let C(i, π) = {v : vi = π}. If D is one of these subcubes

then with |A ∩ D| = δ2n−1, Corollary 3.2 (applied in D with R = A ∩ D and U = W ∩ D) gives at least

[2δ(1− δ)−O(ε)]2n−1 edges in∇(A,B) \ ∇iA, which with (4) and (5) forces δ to be either O(ε) or 1−O(ε).

So exactly one, say C, has δ = 1−O(ε), and this C satisfies (6). �

Changes for k = 2 (briefly). The only changes are to Proposition 3.3 and the final argument(s). For the former,

the statement is now:

for a.e. x ∈ A, hAB(x) = 2.
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Set f(x) = (4/3)xβ . Theorem 1.1 gives
∫
f(hA∪W )dµ ≥ 1/2−O(ε), leading to∫
f(hAB)dµ ≥ 1/2−O(ε).

Now let X(x) = hAB(x) for x ∈ A and write E for expectation w.r.t. uniform measure on A. Our

assumptions on µ(A) and |∇(A,B)| give

EX =
1

µ(A)

∫
hABdµ =

|∇(A,B)|
µ(A)2n

≤ 2 +O(ε),

so, using the concavity of f , we have∫
f(hAB)dµ = µ(A)Ef(X) ≤ µ(A)f(EX) ≤ 1/2 +O(ε).

It’s then easy to see (if somewhat annoying to write) that concavity of f , with Ef(X) − f(EX) = O(ε) and

f(EX) = 2±O(ε) (and X ∈ Z) implies, first, that there is a c such that f(x) = c for a.e. x ∈ A, and, second,

that c = 2.

For the step leading to (5) we may as well think of a general k. Thus we assume A and B are increasing

and decreasing (resp.), with nβµ(W ) ≤ ε, µ(A) = (1± ε)2−k, |∇(A,B)| < (1 + ε)k2n−k, and hAB(x) = k for

a.e. x ∈ A, and want to show

there is I ⊆ [n] of size k such that |∇iA| ≥ (1−O(ε))2n−k ∀i ∈ I.

Here for each k-subset I of [n] we set

AI = {x ∈ A : xi ∈ B ∀i ∈ I}.

Each AI is decreasing in A and a.e. x ∈ A is in exactly one AI . We then assume maxI µ(AI) = µ(A[k]) =

µ(A)− δ and continue essentially as before.

The step yielding (6) again takes no extra effort for general k: here we have 2k subcubes corresponding

to the members of {0, 1}k, and Corollary 3.2 (with (4) and (5)) shows that all but one of these meet A in sets

of size O(ε)2n−k (and the one that doesn’t is the promised C).

4. PROOF OF PROPOSITION 1.7

Let |A| = a. For z ∈ {0, 1}I let Vz = {x : xi = zi ∀i ∈ I}, Az = A ∩ Vz , az = |Az| and αz = az/a. Assume

(w.l.o.g.) that az is maximum when z = 0. We have

εa ≥ |∇A \ ∇IA| =
∑
z

|∇(Az, Vz \Az)| ≥
∑
z

az log2(2n−k/az)

= a
[
H(αz : z ∈ {0, 1}I) + log2(2n−k/a)

]
= aH(αz : z ∈ {0, 1}I) +O(ε)a,

where H is binary entropy and the inequality is given by (3). It follows that each αz is either O(ε/ log(1/ε))

or 1−O(ε) ; so in fact α0 = 1−O(ε/ log(1/ε)) and V0 is the promised subcube.
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