AN ISOPERIMETRIC INEQUALITY FOR THE HAMMING CUBE AND SOME CONSEQUENCES

JEFF KAHN AND JINYOUNG PARK

ABSTRACT. Our basic result, an isoperimetric inequality for Hamming cube Qr, can be written:

[ W= 2u()1 ~ ()
Here p is uniform measure on V = {0,1}" (= V(Qn)); 8 = log,(3/2);and, for S C Vandz € V,
dy\s(z) ifz €S,
hs(@) =4 7
0 ifr ¢S
(where dp(z) is the number of neighbors of = in T').
This implies inequalities involving mixtures of edge and vertex boundaries, with related stability results, and
suggests some more general possibilities. One application, a stability result for the set of edges connecting two
disjoint subsets of V' of size roughly |V'|/2, is a key step in showing that the number of maximal independent

sets in Qy, is (1 + o(1))2n exp,[2”~2]. This asymptotic statement, whose proof will appear separately, was the

original motivation for the present work.

1. INTRODUCTION

We write @), for the n-dimensional Hamming cube and V for V(Q,,). For T C V let dy(z) be the number
of neighbors of x in T’ (v € V') and define hs : V' — N by

dns(z) ifzes,
0 ifr¢s.

1) hs(z) =

For f : V — N, a probability measure v on V and X C V, we set

[ tar =% fapia).

zeX
We also use [ for [{,.

Our main result is the following isoperimetric inequality. Throughout this paper we use 3 for log,(3/2) (=

.585) and p for uniform measure on V. (A few definitions are given in Section 1.1.)

Theorem 1.1. Forany ACV,
@ [ Hadu = 2400 - )
The form of Theorem 1.1 is inspired by the following inequality of Talagrand [12].

Theorem 1.2. Forany ACV,
/ Viadi > V2u(A)(1 - p(4)).
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Notice that Theorem 1.1 is tight in two ways: it holds with equality for subcubes of codimensions 1 and 2,
and for subcubes of codimension 2 it does not hold for any smaller value of 5. As far as we know the V2 in
Theorem 1.2 could be replaced by 2 when p1(A) = 1/2 (but of course not in general). The difference between
2 and v/2 wouldn’t have mattered in [12], but getting the right constant when 1(A) is close to 1/2 was crucial
for applications, particularly the one in [8] (Theorem 1.8 below) that was our original motivation—see the
”stability” result Theorem 1.9 that is the present work’s contribution to [§].

Before discussing applications we briefly recall a few basic notions.
1.1. Definitions. Asusual [n] = {1,...,n}, Pis the set of positive integersand z = a £ bmeansa—b < z <

a+b. Weuse A, B,C and W for subsets of V and E for E(Q,,). For z € V, x; is (as usual) the ith coordinate

of z, and ' is the vertex obtained from z by flipping z,. For any A4,
At ={z': 2 € A},
the vertex-boundary of A is
OA={x ¢ A:x~yforsomey € A},

and the edge-boundary of A is

VA= {(z,y): v €Ay A}.
We also use

V(A B) ={(z,y) : 2 € A,y € B},

ViA={(z,2"):x € Az’ ¢ A},
ViA=Uie/VA; (I C[n]),
and
Vi(A,B) = {(z,2%) : x € A 2" € B}.
We say C is a codimension k subcube if there are I C [n] of size k and z € {0, 1} such that
C={zxeV:x, =zforalliel}.
1.2. First application: separating the cube. Isoperimetric inequalities beginning with Harper [4] (and for
edge boundaries also Lindsey [9]) give lower bounds in terms of |A| on the sizes of 04 and VA4; e.g.
®) [VA[ = | Allogy(2"/]Al),

with equality iff A is a subcube. We are interested in hybrid versions of these. In what follows we assume
(A, B,W) is a partition of V, with W thought of as small. The next two conjectures are a simple illustration

of what we have in mind, followed by something general.

Conjecture 1.3. There is a fixed K such that if u(A) = 1/2, then

IV(A, B)| + Kv/n [W| > 2",

With 9(a) = min{|0A| : |A| = a} and V(a) defined similarly, our maximal guess in this direction is:

Conjecture 1.4. If |A| = a, then
IV(A, B)|/V(a) + [W|/0(a) = 1.
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Results of Margulis [10] and Talagrand [12] (motivated by [10]) imply tradeoffs between |V A| and |0A|, but
don’t seem to help here. Theorem 1.1 implies a weaker version of Conjecture 1.3:

Corollary 1.5. For A, B, W as in Conjecture 1.3, |V (A, B)| +nf|W| > 271,

1.3. Second application: stability for “almost” isoperimetric subsets. A simple (though now suboptimal)
"stability” statement for edge boundaries says:

Theorem 1.6. For a fixed k, if |A| = 2"~ and |VA| < (1 + €)|A|log,(2"/|A|), then there is a subcube C with
w(CAA) = O(e) (where the implied constant depends on k).

This was proved for k& = 1 by Friedgut, Kalai and Naor [3]; then for k& = 2,3 by Bollobés, Leader and
Riordan, who conjectured the general statement (see [1]); and finally in full by Ellis [1]. These all based on
Fourier analysis; e.g. at the heart of [1] is Talagrand’s extension [11] of [7]. Even stronger, very recent results

of Ellis, Keller and Lifshitz [2] are more elementary but rather involved.

Notice that if A is (sufficiently) close to a codimension k subcube then there is an I C [n] of size k with
VA = VA In fact the implication goes both ways; this follows (more or less) from Theorem 1.6, but is also

easy without that machine:

Proposition 1.7. Assume |A| = (1 £ €)2" % and
IVA\ VIA| < €Al

where I is a k-subset of [n]. Then there is a (codimension k) subcube C with |AAC| = O(€)|A| (where the implied
constant depends on k).

The original motivation for Theorem 1.1 arose in connection with our efforts to prove the following
statement, which had been conjectured in [6]. Here mis(G) is the number of maximal independent sets in
the graph G.

Theorem 1.8. mis(Q,,) ~ 2n exp,[2" 2.

The proof of this is completed in [8]. What it needed from isoperimetry (see [8] for the connection) was a

variant of Theorem 1.6—really, just of the original result of [3]—of the following type.
If (A, B,W) is a partition of V with p(A), p(B) =~ 1/2 (so W is “small”) and |V (A, B)| ~ 2"~ then
VA=~ V,;A forsomei.

Of course this depends on quantification; e.g. it can fail with (1) as small as ©(n~/2) (let W consist of
strings of weight |n/2]). Note also that here the full edge boundary of A need not be small, since there is
no restriction (beyond n|W|) on |V(A, W)|.

The following consequence of Theorem 1.1 is a (limited) statement of the desired type, the case k = 1 of
which suffices for [8]. (Recall 8 = log,(3/2).)

Theorem 1.9. For k € {1,2} the following holds. Suppose (A, B, W) is a partition of V with u(A) = (1 £ ¢€)27F,
w(W) < en=" and

4) |V(A,B)| < (1+e)k2"F,
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Then there is I C [n] of size k such that
(5) |ViA| = (1—-0(e)2" *Viel
Furthermore, there is a codimension k subcube C such that

(6) W(CAA) = O(e).

Conjecture 1.10. The statement in Theorem 1.9 holds for all k € P, even with n® replaced by 2" /0(] A|).

(The implied constant in (5) and (6) would necessarily depend on k.)
Note Theorem 1.9 implies an isoperimetric statement—similar to those in Section 1.2—of which it is a

stability version; namely:

Corollary 1.11. For k € {1,2}, the assumptions of Theorem 1.9 imply |V (A, B)| > (1 — O(e))k2"~F.

(And of course similarly for whatever one can establish in the direction of Conjecture 1.10.)

Finally, the next observation provides a general approach to proving something like the statement in
Theorem 1.9 for other values of k. (Its proof is similar to the derivation of Theorem 1.9 from Theorem 1.1

and is omitted.)

Theorem 1.12. Fix k € P and suppose thereare f, g : [0,1] — R+ such that (i) g is continuous with g(27%) = k2%
and (ii) f is increasing and strictly concave, with f(0) =0, f(k) = k and

/f(h,ndu > g(u(A) VA C V.

Then the conclusions of Theorem 1.9 hold (with implied constants depending on f and g) for A, B,W as in the
theorem, except with the bound on w replaced by w < €/ f(n).

(For the cases covered by Theorem 1.9, Theorem 1.1 gives the hypothesis of Theorem 1.12 with f(z) equal
to 2 when k = 1 and (4/3)2” when k = 2.)

Theorem 1.1 is proved in Section 2. Section 3 derives the case k = 1 of Theorem 1.9 and then indicates
the small changes needed for k£ = 2, and in passing derives Corollary 1.5 (see following Corollary 3.2). The
easy proof of Proposition 1.7 is given in Section 4.

2. PROOF OF THEOREM 1.1

Lemma 2.1. Let X C V and let f be a non-negative real-valued function on V. If

IS Y. S
) M(X)/Xf dp =17,
then
L 8 8
®) N(X)/x(erl) dp > (T + 1)°.
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Proof. Set g(z) = fP(x) for x € X. Then the Lh.s. of (7) is Eg and the Lh.s. of (8) is E(¢*/# + 1)#, where
E refers to uniform measure on X. But p(z) := (z'/# + 1)? is easily seen to be convex; so, by Jensen’s
inequality,

E(g"/? +1)? > ((Eg)"/? + 1),

which implies (8). |

The proof of Theorem 1.1 proceeds by induction on n. (This is also true of Theorem 1.2, but beyond this
the arguments seem to be different.) It is easy to see that the theorem holds for n = 1, so we suppose n > 2.

Given 4, fix an i € [n]. Let
VQZ{.%‘GV:l‘i:O},

Vlz{JZEVIl‘i:l},
AOZAm%a

and

A1:(Aﬂvl)iz{xi:$€A7$i:1}gV0.

Let 1/ be uniform measure on V;. For simplicity, write hg (h1, h, resp.) for ha, (ha,, ha, resp.), a function
on Vy (Vo, V, resp.).

Let 1/ (Ap) = ao, ' (A1) = a1, and p(A) = a = (ag + a1)/2. Then by induction hypothesis, for i = 0, 1,
) /hfdu’ > 2a;(1 — a;).

We may assume ag > a;. Note that

ho(l‘)+1 ifJUEAo\Al,

ho(x ifx e AgN Ay,
(10) ) = { " S

hl(x’) +1 ifzxte Ay \ Ap,

hl(l‘z) if 2 € Apg N Aq;
SO

/hﬁdu:/ hﬂd/wr/ m
Ao (Ap)?
:/ hﬁd/H—/ (h1+1)5du+/ e
Ao A1\Ao ApNA;

2/ hﬂd/ﬂr/ hydp
Ao Ay

> / RPdp+ ai(1 - ay)
Ao

(11

(the last inequality by (9)). Thus the theorem will follow if we show

(12) / RPdp > 2a(1 — a) — ar1(1 — a1) = ag + a2 — (ap + a1)?/2.
Ao
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The rest of this section is devoted to the proof of (12). Let Z = supp(ho) \ A1 and X = supp(hg) N A1 (see
Figure 1); thus

(13) 2/1sz/mmﬁﬂw+/hﬁw+/ 1dy’.
Ao V4 D'e Ao\ (A1UZ)

supp(ho)

FIGURE 1.
Observation 2.2. We may assume A, C Ay.
Proof. 1f thereis x € A; \ Ap then we can find y € Ay \ A; since ' (Ag) > 1/ (A1). Let By = (41 \ {=}) U{y},
B = AqU (B1)"and By = BNV, (= Ap). Notice that |A| = |B|, |A;| = |B;| fori € {0,1}, and

Wodu < | hPdu,
Bo A()

because: with Zp (resp. X p) for supp(hp,) \ B; (resp. supp(hp,) N Bi), the location of y changes either from
Z to Xp or from Ag \ (41 U Z) to (Bg N By) \ Xp. In either case its contribution to the r.h.s. of (13) shrinks.

Soif Ay Z Ay, then we can shift it to a “worse” set. O
Leto = |, hodu!, ~ = Ix hodu!', o0 = o + =/ hidu') and i/ (Z) = z. Since A; C Ay, the rh.s. of (13) is
/ (ho + 1)Pdp’ +~+ 1/ (Ao \ (A1 U Z)) > (6P 4280 4~y 4 (ag — ay — 2)
z

= ((a=NY+ 2P 54 (ag — a1 — 2)
(14) > (@Y 4 2P 4 (ap —ar — 2),
where the first inequality is given by Lemma 2.1 and the second holds because ((ov — )'/? + 21/8)% + v/is
increasing in .

So we are done if we show that the expression in (14) is at least

(15) 2ap + a2) — (a0 +a1)?,
where we are entitled to assume

(16) a= /hgdu' > 2aq(1 — ag).
(see (9)) and

17) z < min{a,ag — a1}

(where the second bound holds since Z C A \ A;). We consider two cases depending on which of ap — a1
and the r.h.s. of (16) is smaller.

Case 1. 2@0(1 — CL()) < ag — aq
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Equivalently,
(18) a1 < ag(2a9 — 1).
Also, since 0 < ag(2ag — 1), we have
(19) ap > 1/2.

Note that (14) is decreasing in z and z < a by (17), so recalling that 2° = 3/2 and using (16), we find that
(14) is at least
(20) a2+ ag —ay > ag(l —ag) +ag — ay.
Subtracting (15) from (20) gives

—a? + (2ap — 1)ay,
which is nonnegative since
flzy):=—y*+ 2z —1)y>0 forze [}, 1]andy € [0,2(2z — 1)].

(Because: for any y > 0, f(z,y) is nondecreasing in z, so it is enough to show the inequality holds when
y = x(2x — 1), in which case f(z,y) = z(1 — x)(2x — 1) > 0.)
Case 2. 2ap(1 — ag) > ag — a1

Equivalently,
(21) ap(2ap — 1) < a1 (< ap).

Again using the fact that (14) is decreasing in z, now with z < ag — a; by (17), we find that (14) is at least
(22) (P + (ap — ar)/%)7,
which, in view of (16) (and the fact that (22) is increasing in «), is at least
(23) ((2a0(1 — ao))Y? + (ag — ay)*/?)P.

Thus the proof that (14) is at least (15) in the present case is completed by the following proposition (applied

with z = ag and y = a1).

Proposition 2.3. Let
gla,y) = (a1 —2)? + (@ =) /") =2 +y?) + (2 +y)*.

Then g(x,y) > 0 for z,y € [0,1] withy € [z(2x — 1), z].

Proof. Observe that for z € [0, 1],

(24) g(z,z(22 — 1)) = 2(1 — z)(2z — 1)*> >0,
and
(25) g(z,z) =0.

Also, the partial derivative of g(z,y) with respect to y is

gy(z,y) = —(z — y)7 T ((22(L — )7 + (z — ) )P+ 2(z — y).
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Now, we claim that
(26) for given z € [0, 1], g, (z, y) is equal to zero for at most one y € [x(2z — 1), x).
Indeed, let A=2 —y (> 0) and B = 22(1 — z). Then

28—1

(27) gy(z,y) =0& A7 4+ BF =277 A1,

Notice that A% + B7 is increasing in A while 97T ABGD is decreasing in A (since % < 0). So we
conclude that for any B, (27) holds at most once, which is (26).

Finally, we claim that
(28) for each z € (0,1), there is ¢ = ¢(x) > 0 such that g(x,y) > Oforally € (z — ¢, z).

Note that Proposition 2.3 follows from the combination of (24), (25), (26), and (28).
Proof of (28). Given z € (0,1) and ¢ € (0,x),
glx,x —c) = ((22(1 — x))% + c%)ﬁ + 22?% — 22 — 2,

SO

1

(29) g,z —c)>0& ((2:0(171:))% +c

|
=
\%
Q
[V
+
)
=
il
\
&

Now,

1

1\ B
(22(1 — 2))% +¢P)P = 22(1 — x) <1+ (Mi@) ) :

and if ¢ = ¢(x) is small enough,

which implies (29). O

3. PROOF OF THEOREM 1.9

As noted at the end of Section 1.3, we prove Theorem 1.9 for £ = 1 and then indicate what changes for
k = 2. This seemed to us slightly clearer than proving them together, though the differences are minor.
Extending to Theorem 1.12 is straightforward, though the counterpart of Proposition 3.3 is slightly more
painful than the original.

As usual, A C V is increasing if v € A and y > = (with respect to the product order on V) imply y € A
(and A is decreasing is defined similarly). For z,y with z < y, we write z < y if v < z < y implies z € {z, y}.
We will need Harris” Inequality [5]:

Theorem 3.1. For any product measure v on Q,, and increasing A,B C 'V,

v(ANB) > v(A)v(B).
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Recall that hg was defined in (1) and, for disjoint A, B C V, set
dp(x) ifze A,
hAB(:Z?) =
0 ifx ¢ A
thus

/A s = [ hag du=27"[9(4,5)].
We need the following easy consequence of Theorem 1.1.
Corollary 3.2. If (R, S,U) is a partition of V with p(RUU) = «, then
@IVRS) = [ hoowdi>) [ Hyopdn > 2001 = 0) = n'u(0).
Proof. Theorem 1.1 gives
20(1 —a) < /hlﬁauUdﬂ = /Rh%uUdﬂ + /U TS /Rh%uUd,“ +nfu(U),
and the corollary follows. O

In particular, taking (R, S,U) = (B, A, W) gives Corollary 1.5. O

We now assume the situation of Theorem 1.9. Note that each of pu(A), u(B)is 1/2+ O(e). In what follows
we (abusively) use “a.e.” to mean “all but an O(¢)-fraction,” so for example write “a.e. x € A satisfies Q)”
for “@ holds for all but an O(e)-fraction of the members of A.”

Proposition 3.3. Fora.e. x € A, hap(xz) = 1.

Proof. Applying Corollary 3.2 with (R, S,U) = (A, B,W) (and using (4)) gives

(30) (1+e)/2> /hABdu = /AhAUWdu > /Ahﬁuwdu =1/2 - 0(e).

In particular, [(hap — h%p)du = O(e), which, since [(hap — h5)du = Q (u({z € A : hap(x) & {0,1})),

implies hap(z) € {0,1} for a.e. z € A. O

The next observation will allow us to assume that A is increasing and B is decreasing.
Proposition 3.4. For any partition (A, B,W) of V there is another partition (A', B', W') satisfying:

(1) w(X) = u(X') for X € {A, B,W};
(2) A’ is increasing and B’ is decreasing;
(3) |Vi(A,B)| > |Vi(A", B')| forall i € [n].

Proof. This is a typical “shifting” argument and we will be brief. For ¢ € [n], the i-shift of a partition
(A, B,W) is defined thus: let
Vo={zeV:ix; =0}, Vi={z eV :x =1},

and for each z € Vj with (z,2%) € (4, B), (A, W), or (W, B), switch the affiliations of z and z. This trivially
does not change |V;(A, B)|, and it’s easy to see that it does not increase |V (A, B)| for j € [n]\{i}. (Consider
the contribution to V (A, B) of any quadruple {z,z*, 27, (z*)7}.)
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It is also clear that no sequence of nontrivial shifts can cycle (e.g. since any such shift strictly increases
Y owealzl = > .cp |z); so there is a sequence that arrives at an (A’, B’, W) stable under i-shifts (for all 1),

and this meets the requirements of the proposition. O

Proof of Theorem 1.9. We first show there is an ¢ as in (5). By Proposition 3.4, we may assume A is increasing

and B is decreasing. For each i € [n],let A; = {x € A : 2' € B}, and notice that
(31) Aj; is a decreasing subset of A.
Indeed, given x € A;, consider any y € A satisfying y < z. Then y* € B since z° € B and B is decreasing, so
y € A;.

By proposition 3.3,
(32) a.e. z € Aisin exactly one 4;;
in particular, if we let Ag = {x € A : dg(x) = 0}, then p(Ap) = O(e).

Setting max (1(A;) = p(A) — 6, we just need to show that § = O(e).

Assume (w.l.o.g.) that max p(A4;) = u(A4;), and let A= Uiz14;, C1 = A\ A1, and C=A \ A. By (32),
(33) H(C) = n(A1) = Oe),
while C; N C = A, implies

u(CL N C) = Ofe).
Moreover, (31) and the fact that A is increasing imply that C; and C' are increasing (in V); so Theorem 3.1
gives
(34) O(e) = p(C1 N C) = p(C)u(C) = 5(u(A) — 5 — O(e),
whence
§=0(e) or p(A) =4 = 0O(e) = O(e).

But 6 = O(e) is what we want, so we may assume for a contradiction that ;(A) — 6 — O(e) = O(e); equiv-
alently, u(A41) = O(e). In this case, u(A4;) = O(e) for all 4, so there is a partition [n] = I U J such that each
of Ar (= U;er4;) and A; has measure ;i(A)/2 + O(e). But then, setting C; = A\ A;and Cy = A\ Ay, and

again using Theorem 3.1, we have
O(e) = w(CrN Cy) > u(Cru(Cy) > pu*(A)/4 — O(e),

which is impossible. U

For (6), let i be as above and for 7 € {0,1}, let C(i,7) = {v : v; = w}. If D is one of these subcubes
then with |A N D| = §2"~ !, Corollary 3.2 (applied in D with R = AN D and U = W N D) gives at least
[26(1 — ) — O(e)]2" ! edges in V(A, B) \ V; A, which with (4) and (5) forces § to be either O(¢) or 1 — O(e).
So exactly one, say C, has § = 1 — O(e), and this C satisfies (6). a
Changes for k = 2 (briefly). The only changes are to Proposition 3.3 and the final argument(s). For the former,

the statement is now:

forae.x € A, hap(z) = 2.
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Set f(z) = (4/3)x”. Theorem 1.1 gives [ f(hauw)du > 1/2 — O(e), leading to
/f(hAB)dM >1/2—0(e).

Now let X(z) = hap(z) for x € A and write E for expectation w.r.t. uniform measure on A. Our

assumptions on u(A) and |V (4, B)| give

1

EX = —/hABdﬂz

[V(A, B)|
o <24 0(e),

p(A)2r —

so, using the concavity of f, we have

[ Huam)dn = w(AEFCX) < (A FEX) < 1/2+0(0),

It’s then easy to see (if somewhat annoying to write) that concavity of f, with Ef(X) — f(EX) = O(e) and
Ff(EX)=2=£0(e) (and X € Z) implies, first, that there is a ¢ such that f(z) = cfor a.e. z € 4, and, second,
that ¢ = 2.

For the step leading to (5) we may as well think of a general k. Thus we assume A and B are increasing
and decreasing (resp.), with n u(W) < ¢, u(A) = (1+€)27%,|V(A, B)| < (1 + €)k2"*, and hap(z) = k for

a.e.z € A, and want to show
there is I C [n] of size k such that |[V;A| > (1 — O(e))2"* Vi € I.
Here for each k-subset I of [n] we set
Ar={reA:2x' € BVicI}.

Each A; is decreasing in A and a.e. » € A is in exactly one A;. We then assume max; (A7) = p(Ap) =

1#(A) — § and continue essentially as before.

The step yielding (6) again takes no extra effort for general k: here we have 2* subcubes corresponding
to the members of {0, 1}*, and Corollary 3.2 (with (4) and (5)) shows that all but one of these meet A in sets
of size O(€)2"~* (and the one that doesn’t is the promised C).

4. PROOF OF PROPOSITION 1.7

Let |A| =a.Forz € {0,1} letV, ={zx:2; =2 Vic I}, A, = ANV,,a, = |A.| and a, = a./a. Assume

(w.Lo.g.) that a, is maximum when z = 0. We have

ca > [VA\ VAl =D V(A V. \ A)| > ) a.logy (2" /ay)

z

=a[H(a, : 2 €{0,1}) +1logy(2" " /a)] = aH (e, : 2 € {0,1}) + O(e)a,

where H is binary entropy and the inequality is given by (3). It follows that each c; is either O(e/ log(1/e))
orl—O(e);soinfact ag =1 — O(e/log(1/¢)) and V} is the promised subcube.
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