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This paper is a continuation and a partial summary of our analysis of the pairing at a quantum-critical
point (QCP) in a metal for a set of quantum-critical systems, whose low-energy physics is described by an
effective model with dynamical electron-electron interaction V(£2,,) = (§/|2,|)” (the y model). Examples
include pairing at the onset of various spin and charge-density-wave and nematic orders and pairing in SYK-type
models. In previous papers, we analyzed the physics for y < 2. We have shown that the onset temperature for
the pairing 7, is finite, of order g, yet the gap equation at 7 = 0 has an infinite set of solutions within the
same spatial symmetry. As the consequence, the condensation energy E. has an infinite number of minima. The
spectrum of E, is discrete, but becomes more dense as y increases. Here we consider the case y = 2. The y =2
model attracted special interest in the past as it describes the pairing by an Einstein phonon in the limit when the
dressed phonon mass wp vanishes. We show that for y = 2, the spectrum of E,. becomes continuous. We argue
that the associated gapless “longitudinal” fluctuations destroy superconducting phase coherence at a finite 7,
such thatat 0 < T < T,,, the system displays pseudogap behavior of preformed pairs. We show that for each gap
function from the continuum spectrum, there is an infinite array of dynamical vortices in the upper half-plane of
frequency. For the electron-phonon case, our results show that 7, = 0.1827g, obtained in earlier studies, marks

the onset of the pseudogap behavior, while the actual superconducting 7, vanishes at wp — 0.

DOI: 10.1103/PhysRevB.103.184508

I. INTRODUCTION

This work presents a continuation and a partial summary
of our analysis of the interplay between non-Fermi liquid
(NFL) physics and superconductivity for a set of quantum-
critical (QC) itinerant systems, whose low-energy dynamics
can be described by an effective model of spin-full electrons
with dynamical interaction on the Matsubara axis V (£2,,) =
(8/192m1)¥ (the y model). Examples include pairing near
spin-density-wave, charge-density-wave, and Ising-nematic
instabilities in isotropic and anisotropic 3D and 2D systems,
pairing of fermions at a half-filled Landau level, pairing
of dispersion-less fermions randomly coupled to phonons,
and so on. We listed the examples in the first paper in the
series, Ref. [1], and discussed earlier works. In that and
subsequent papers [1-4], hereafter called papers I-IV, we
analyzed the y model with exponents 0 < y < 2. We rational-
ized Eliashberg-type approach, solved generalized Eliashberg
equations, and found that the solution with a nonzero pairing
gap develops below a finite 7, which for a generic y = O(1)
is of order g. The corresponding gap function A(k, w,,) can
be roughly approximated as A(w,,)f(k), where a normal-
ized f(k) has a particular spatial symmetry (d— wave, s,
etc.), and A(wy,) is a sign-preserving function of Matsubara
frequency, whose amplitude increases with decreasing 7. At
T =0, A(0)is of order T, (the ratio A(0)/7}, is a y-dependent
number [5,6]). In this respect, the pairing at a QCP is similar

2469-9950/2021/103(18)/184508(27)

184508-1

to pairing away from a QCP, when V (£2,,) saturates at a finite
value at €2,, = 0. However, on a more careful look, we found
qualitative difference between the two cases. Namely, away
from a QCP, Eliashberg gap equation at 7 = 0 has at most a
finite number of solutions with a given spatial symmetry. At
a QCP, it has an infinite number of solutions for A(w), i.e.,
the condensation energy, E., has an infinite number of local
minima. The solutions A, (w,,), labeled by an integer n, are
topologically distinct in the sense that A, (w,,) changes sign n
times along the positive Matsubara axis, and each such point
is a vortex in the upper half-plane of frequency.

The ultimate goal of our studies of the y model is to
understand how the existence of an infinite set of solutions
affects the interplay between pairing [i.e., the appearance of
a nonzero A(w)] and a true superconductivity. In a conven-
tional Eliashberg theory (ET) of SC out of a noncritical Fermi
liquid, phase fluctuations are small in the same parameter
that allows one to neglect vertex corrections. In this situa-
tion, the onset temperature for the pairing, 7, and the actual
superconducting 7. nearly coincide. To address a possible
reduction of superconducting 7. by phase fluctuations, one
then has to include the effects not incorporated into ET, e.g.,
a localization of electrons when the interaction exceeds the
fermionic bandwidth. We analyze whether the emergence of
an infinite number of solutions for the gap at a QCP gives
rise to a substantial reduction of 7;/7, ratio already when
the interaction is smaller than the fermionic bandwidth. For
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y < 2, which we analyzed in papers I-1V, the spectrum of the
condensation energies E, , is discrete, and E, g is the largest.
In this situation, the physics at small 7 is determined by
a single solution Ag(w,,), and phase fluctuations are weak.
We showed, however, that the set becomes more dense at
y increases: the ratios (E. 41 — Ecn)/E., get progressively
smaller.

In this paper, we analyze the case y = 2. We argue that
for this y, the set of the gap functions and the spectrum of
the condensation energies become continuous. Specifically, at
y =2 —94,and § = 0+, A,(w,,) with n < 1/5 become equal
to Ag(wy) for all w, > 0, and E., become equal to E.,
while A, (w,,) and E, , with infinite n > 1/§ form a contin-
uous, one-parameter gapless spectra, Ag(w,,) and E, ;. Here
&, is a continuous variable, that runs between zero and infinity
and depends on how the double limit n — oo and § — O is
taken (we define & such that the minimum of E. ¢ isat§ =0,
and E. o, = 0). We argue that fluctuation corrections to su-
perconducting order parameter from E. ¢ destroy long-range
superconducting order at any finite 7. We emphasize that this
holds for itinerant fermions, in the limit when the interaction is
smaller than the bandwidth, and the ET is rigorously justified.

We present a corroborative evidence that the y = 2 model
is critical. It comes from the analysis of the gap equation
on the real frequency axis and in the upper half-plane of
frequency, z = o' + i®”, ®” > 0. The gap function A(z) gen-
erally cannot be obtained from A(w,,) by just replacing iw,,
by z as such gap function is not guaranteed to be analytic.
To obtain an analytic function, one has to perform a more
sophisticated analysis [7-10]. As a consequence, A(w) on the
real axis can be quite different from A(w,,). For the y model,
some difference is expected on general grounds, particularly
for y > 1, because while the interaction V(£2,,) on the Mat-
subara axis is positive (attractive) for all y, the one on the real
axis is complex, V(Q) = ¢™7/258"2 /|Q|7, and its real part
V/(R2) = (g/|2])Y cos y /2 becomes repulsive for y > 1.

In paper IV, we compared the forms of A,(w,,) and A, (w)
for 1 < y < 2. We found that at small w, w,, < g and at large
w, 0y > 8(1In (2 = )|/(2 —y)'/?, the two gap functions
transfer into each other under a rotation iw,, — w. How-
ever, at intermediate g<w, w,<(|In (2 —y)|/2 —y)'/?,
Ay(wp) = ay/|oy|¥ is a sign-preserving function of fre-
quency, while A, (w) = |A,(w)|e™ ) oscillates, and its phase
nu(w) winds up by 2mk,, where k, is an integer, which
depends on y, but not on n. We extended the analysis to
complex z in the upper frequency half-plane and showed that
there exists an array of k dynamical vortices, centered at some
complex z;.

Here we show that for y = 2, the gap functions on the real
axis form a continuous set, each Ag (w) oscillates up to an infi-
nite frequency, and its phase winds up by an infinite number of
2m. Accordingly, the number of vortices at z; becomes infinite,
and the array of z; extends up to an infinite frequency, where,
we argue, each Ag(w) develops an essential singularity. We
show that for each gap function from the set, the density of
states (DoS) Ng(w + i0) has an infinite number of maxima
and minima, and does not recover the normal state form up
to w = o0o. For the solution with & = 0, which was studied
before [7-9,11,12], N(w + i0) reduces to a set of § functions
at some w;.

We combine the results for y =2 and earlier results for
y < 2 (papers I-IV) and present the phase diagram of the
y model for y < 2, Fig. 16. For all y, the ground state is
a superconductor with a finite superfluid stiffness p;, and
the onset temperature for the pairing, 7}, is finite. How-
ever, superconducting 7, decreases with y and vanishes for
y = 2. Inbetween T, and T, the system displays a pseudogap
(preformed pairs) behavior. One feature of this phase is “gap
filling” behavior, as T increases towards 7),. In the next paper
we consider the case y > 2. We show that the behavior at a
finite 7 remains largely the same as for y = 2, however new
physics emerges at 7 = 0 and gives rise to a reduction and
eventual vanishing of p, even in the ground state.

The model with the pairing interaction V(R2,) =
(8/|2|)? attracted a substantial attention on its own as it
describes the pairing, mediated by an Einstein boson, in the
limit where the effective (dressed) Debye frequency wp van-
ishes.! Electron-phonon model at wp — 0 has been studied
before by a large number of authors [7-9,13-16]. We use the
results of these studies, particularly the works by Karakozov,
Maksimov, and Mikhailovsky [7], Marsiglio and Carbotte [8],
and Combescot [9] as the input for some of our calculations.
This limit is often termed strong coupling as the dimensionless
coupling constant A = (g/wp)?> diverges at wp — 0. How-
ever, the interaction g is still assumed to be smaller than
the Fermi energy Er. Indeed, ET includes contributions to
all orders in A within the ladder approximation, but neglects
vertex corrections to ladder series. The latter hold in powers
of Migdal-Eliashberg parameter A = ZNo/wp = A(Nowp),
where Ny ~ 1/EF in the DoS per unit volume. For small
enough g/Ep, Ap remains small even when X is large. From
this perspective, the strong coupling limit of the ET is the dou-
ble limit in which wp and g/Ef tend to zero simultaneously,
such that Ar remains small. In physical terms, the smallness
of A < A comes about because in a process that gives rise to
a vertex correction, fermions are forced to vibrate at a phonon
frequency, far away from their own resonance, while in the
processes, which form series in A, fermions are vibrating near
their resonance frequencies. The smallness of Ar also allows
one to neglect the renormalization of the bosonic propagator
by fermions, both in the normal and in the superconducting
state.

Previous studies have found that a nonzero gap function
emerges at T, ~0.25wpe~/* at weak coupling (Refs. [17-23])
and at 7, = 0.1827g at strong coupling [8,9,14,24].2 To un-
derstand the interplay between the onset of pairing and 7., one
has to also compute superfluid stiffness, p;. At weak coupling,
os ~ Er > T, [25-30]. In this situation, 7, and T, almost co-
incide. At strong coupling, the situation is more complex. At
T =0, the p; ~ T,/ L (see below). Within the validity of ET,
this stiffness exceeds 7),. If we were to neglect the continuum

'The model also describes strong coupling limit of the interac-
tion between dispersion-less fermions and phonons (SYK-Yukawa
model), Refs. [10-12,24].

2This formula was originally obtained semi-analytically by Allen
and Dynes [14]. They expressed it as T, ~ wpv/A to emphasize
that at strong coupling 7, becomes larger than wp. Given that A =
(§/wp)?, their formula reduces to 7, ~ g.
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spectrum of the condensation energy, we would obtain that
T, and T. again also coincide, as thermal corrections to SC
order parameter are of order 7 /p, and hence remain small
for all T < T),. Including the additional corrections from the
continuum of E. ¢, we find that thermal corrections actually
hold in powers of T'/(wpAg) and become of order one at T ~
wphg, which we identify with the actual 7,. At small wp/3,
this 7, is much smaller than 7}, even if we set Ap = O(1).
In between T = T, and T, the system displays a preformed
pairs behavior. When wp increases and becomes of order g, the
pseudogap region shrinks and the system gradually recovers
BCS-like behavior (Fig. 15).

The structure of the paper is the following. In Sec. 1I, we
present the Eliashberg gap equations that we use in this paper.
In Sec. III, we discuss the solution of the gap equation along
the Matsubara axis at T = 0 and y — 2. We first obtain, in
Secs. Il A and III B, the exact solution of the linearized gap
equation, A (wy,), which changes sign an infinite number
of times between w,, = 0 and w,, ~ g, and sign-preserving
solution Ay(w,,), which tends to a finite value at w,, — 0. At
larger w,, > g, both Ay (wy,) and Ag(w,,) scale as 1/|w,, 2. In
Sec. III C, we obtain the solutions of the nonlinear gap equa-
tion in the order-by-order expansion in the gap magnitude and
show that they form a one-parameter continuum set Az (w),
for which Ay (w,,) and Ag(w,,) are the two limiting cases. In
Sec. IV, we analyze the properties of the gap function A(w)
along the real frequency axis. We first obtain, in Sec. IV A, the

J

exact solution of the linearized gap equation on the real axis,
A (w), and show that it oscillates not only at w < g, but also
at w > g, with a different period. In Sec. IV B, we consider the
real-frequency form of Ag(w), which does not change sign on
the Matsubara axis. We use as an input the results from earlier
works [7-9], which demonstrated that Ag(w) = |Ag(w)|e™®
oscillates at w > g, and argue that the phase n(w) winds up
by an infinite number of 27 between w = O(g) and w = oco.
In Sec. IVC we present a one-parameter continuum set of
Ag(w), which in the two limits reduces to Ay (w) and Ag(w).
In Sec. V, we extend Ag(w) into the upper frequency half-
plane (w — z) and show that for each &, there is an infinite
array of vortices in the upper frequency half-plane and an
essential singularity at |z| = co. In Sec. VI, we consider the
gap equation at a finite wp. We argue that the number of
vortices becomes finite and the high-frequency behavior of the
gap function becomes regular; however, this holds only above
a frequency, which scales inversely with wp. In Sec. VII,
we consider fluctuation corrections to superconducting order
parameter A(e") We argue that the ground state is a super-
conductor, however corrections to (¢/7) become O(1) already
at T < wp. We identify this scale with the actual supercon-
ducting 7. and discus pseudogap behavior in between 7, ~ g
and 7. In Sec. VIII, we combine the results for y = 2 and for
y < 2 from papers [-IV and obtain the full phase diagram of
the y model for y < 2. We present our conclusions in Sec. IX.
Some technical aspects are discussed in Appendices.

II. ELIASHBERG EQUATIONS

The Eliashberg gap equation for the ¥ model is obtained by combining the equations for the pairing vertex ® and the
self-energy X. The two equations are obtained in a standard way, by summing up ladder series and neglecting vertex corrections
(see paper I and the text below for justification). On the Matsubara axis, we have (® = ®(w,,), X = Z(wy)):

- (D(a)m’) 1
d(wy) =g"'nT ,
; V(@ + Z(@w)? + @) (jon — owl? + o)
- Wpy + Z(wyy) 1
S(wm) =g'7T Y —— ; - (1
o V(@ + (@) + P2 0n) (|0m — o2 + D)

Introducing A(w,,) = ®(wy,)wm/ (0, + Z(w,,)) and substituting into (1), we obtain after a simple algebra the equation that

contains only A(wy,):

Alwn) =8'7T Y

For y = 2, this reduces to

A(wy) — A(wm) i 1 2)
@ P & 2w ) (lom — o2 + w3)"*
A(ww) A(a)m)M 1
(3

Alwp) = gznT Z

(@0w)? + A (@)

| — O |> + 0d

This is the same equation as for the interaction with an Einstein phonon [7-9,11-16,24,31-33]. As we said, we consider the limit
wp — 0. The self-action term with m’ = m in the right-hand side (r.h.s.) of (3) can be safely eliminated because the numerator
vanishes at m = m’'. Setting then wp = 0, we obtain the gap equation at a QCP:

Alwy) = &nT Z

Alwpy)

— Ao - 1

m'#m vV (Wn )2 + Az(wm (Om — O )2

AT =0,2T Y, — (1/2) [ dw),.

m'#m

“
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The gap equation on the real axis is more conveniently expressed in terms of

D(w) = Alw)/w. &)
The equation has the form [9]
D(w)wB(w) = A(w) + C(w), (©)
where
Z[°, . D)
Alw) = —= do/R—————A
2 Jo J1-DXw)
A = tanh ;"—T + tanh 5% tanh é”—T — tanh 3% 3 1 o'
(0" + w)? (0 — w)? T cosh” 2 (') — w?’
B =145 [T [sn ! }B @)
w) = - O | N—777 ,
2w Jo N
By — tanh % + tanh 5% B tanh ;’—T — tanh 5% 1 w
(w/ + w)z (w/ _ w)z TCOSh2 % (w/)z — w?’
g dD dD? dD(w)\* D
=i B [0y &y () ()b )
21 — D%(w) dw 2T dw? dw 1 — D*(w)
where the integrals are principal values. At T = 0, the expressions simplify to
N do’ D()
A@) = —g S0 ,
o (ol+e)* /1 DY)
g (> do’ 1
Bw)=1+ >— / n ; (®)
lwl Jo  (lol +@) /T = D)
Clw) . T3 dD(w) -
W) = —i w,
2,/1—-D*(w) do
and the gap equation becomes
— dD(w) = 00 / o) / /
g 7] z dw 1 dw D(w")
—l——‘“snsz(a))a)<l+—/ R +/ N . 9
2 T-D) © ol Jo ol +0? JT-D2@))  Jo (ol +w P J1— D)

The functions A(w) and B(w) can be equivalently expressed in terms of the solution of the gap equation on the Matsubara

axis [8,9,33]:

Awp,) a),zn —?

A(w) = 27T i

o VS + A% (@) (w2 + wz)z’

B(w) = 1+47tTZ

1 a),zn
=Vt A 0n) (w2, + @)

(10)

This simplifies numerical calculations: the recipe is to first solve for the gap at the Matsubata points w,, = 77 (2m + 1) and then
use Eqgs. (10) as an input for the calculation of D(w) on the real axis.

III. GAP EQUATION ALONG THE MATSUBARA
AXISATT =0

In papers I-1V, we analyzed the gap equation for y < 2
and found that at 7 = 0 it has an infinite, discrete set of solu-
tions at A(w,) = Ap(w,). A gap function A,(w,,) changes
sign n times between w, =0 and w, = O(g) and decays
as 1/|w,|7 at larger frequencies. The two end points of the
set are the sign-preserving solution Agp(w,,) and the solu-
tion of the linearized gap equation Ay (w,,), which changes
sign an infinite number of times. The existence of this in-

(

finite set is a distinct feature of the pairing at a QCP.
Away from a QCP, the number of solutions becomes finite
(n=0,1..., nnx), and far away from a QCP only the n =
0 solution remains, like in a conventional BCS/Eliashberg
theory.

Here we extend this analysis to y = 2. We show that for
this y, the set of gap functions becomes Ag(w,,), where 0 <
& < oo is a continuous variable. We first analyze the two end
points, A (w,,) and Ag(w,,), and then obtain the gap function
for arbitrary &.
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A. Linearized gap equation

The linearized gap equation at 7 = 0 is obtained from (4)
by assuming that the gap function is infinitesimally small,
A(wy) = Aso(@p). In terms of Do (W) = Aco (@) /@m, We
have

g Doo(@'.) — Doo (@, ,
Do () = i/dw;n (@) E"’ )sgnwm. (11
2w, (W — wpy)

One can verify that the leading term in Dy (w,,) at small
w, K g is obtained by neglecting the Lh.s. of (11), i.e., by
solving

foo , |:Doo(w;n) — Do (wp,) Doo(w,,n) + Doo(wm):|
dow =0.
0 " (wm — wm’)z (wm + W )2

(12)
This approximation is equivalent to neglecting the bare w
in the fermionic propagator in comparison with the NFL
fermionic self-energy without the self-action term, X(w,,) =
_gZ / W
The solution of (12) is

. wm| \2
Deoo(wp) = 2¢Re[e? in (1) ) sgnw

2
= 2€ cos (,3 In (%) + qb) sgnw, (13)

where € is an infinitesimally small real overall factor, ¢ is a
phase factor, which is arbitrary at this stage, and g = 0.38187
satisfies 77 B tanh(r 8) = 1 and is the solution of

oo 2i __
|x| sgnx
dx—— =0, 14
/_oo o1y (1

The function Dy, (w,,) is scale-invariant (an arbitrary phase
factor ¢ can be absorbed into the prefactor for @ under the
logarithm). This is the consequence of the fact that g falls off
from the gap equation (11), once we neglect Do, (w,) in the
Lh.s.

We now analyze the full gap equation. By power counting,
the r.h.s of (11) is of order Doo(w,,;)(g/|wn|). This justifies
neglecting D (wy,) in the Lh.s. for |w,,| < O(g), but for larger
frequencies it must be kept.

We obtained the exact solution of Eq. (11). The derivation
parallels the one for smaller y in papers I and I'V. We skip the
details and present the final result:

= o0
Doo(p) = L / dkbye~ kI (@n/3? (15)
Dy J 0o
where
e—ilk
by = 7 (16)
[cosh(m (k — B)) cosh(m (k + B))]
and

1 o0
I = Ef dk'In|ey — 1|tanh w (k' — k +i8),  (17)

o0

€r = k' tanh(z k). (18)

Here B ~ 0.38187 is the same as in Eq. (13).

A
RTRTAY a

10‘—15

Doo(wm)
o

10710 107% 10° 10 20 30

wm/g

FIG. 1. Do (w,,) as a function of w,,/g. The scale is logarithmic
for w,, < g and linear at w,, > g.

At w,, K g, the exact Dy, (w,,) has the form of Eq. (13)
with some particular ¢. At w,, > & Doo(w,) does not
oscillate and decreases as 1/(a)m)3 (A (w,,) decreases
as 1/(wn)?). We plot the exact Do (w,) in Fig. 1. The
crossover between the two forms occurs at w, ~ g, as
expected.

The corrections to Eq. (13) at small w, hold in pow-
ers of |w,|/g; the leading correction scales as (|w,|/8)*5.
The corrections to 1/(w,,)’ at large w,, hold in powers of
g/|wm|; the leading correction scales as (3/|wy,|)° In(|w,,|/2).
We present the details of the analysis in Appendix B.
There, we also show that at w,, >> g there exists an ex-
ponentially small, oscillating component Dy, (w,,) in the
form

72 —2) (|| 2+n
27 2 4

19)

Doou(wp) o 24/ 2ee~1onl/®? cog [(

This term is the contribution to D, from large k and & in
Egs. (16) and (17), It is completely irrelevant on the Matsub-
ara axis, but we will see that it gives the dominant contribution
to Dy (w) on the real axis.

B. Nonlinear gap equation. Sign-preserving solution

We now analyze the full nonlinear gap equation, Eq. (4).
We first search for a “conventional” sign-preserving solution
Ao(@m)

The analytical analysis uses the same computational
steps as in paper IV and we will be brief. We use the
identity

00 1] — ==
/ dw;”—‘“"j =0, (20)
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valid for y > 1, and re-express Eq. (4) as

@

— Im 1

Ag(w),) — Ao(wy)

_ 00 1
Ao(wm) 1- g_Z/ dwlln =
2 J |

! = g_Z /00 dow!
12 - 'm .
O\ Jad@)) + (@), Bolen) 2 S ay, — w2 A2@),) + (@),

2

Both integrals in (21) are infra-red convergent and are determined by ), < A(w),,). In the limit w,, — 0, Eq. (21) reduces to

A (@) + (@),)* — Ag(0)

o0
Ao(0)| 1 — & / do,

0 Ao(0),/ AG(@},) + (@),)* |y, |2

We assume and then verify that Ag(w),) & Ay(0) for w), <
Ao(w),), relevant for both integrals in (22). Substituting into
(22), we find

o0 VA30) + (w),)? — Ap(0)
1~ g2/ dw), .
0 Ao(0)y/ AF(O0) + (@},)? |, |2

The integral can be evaluated analytically and yields Ay(0) =
. Substituting further Ag(w),) = g into the r.h.s. of (21), we
find that Ag(w,,) varies quadratically with w,, at small w,, and
for w,, < gremains comparable to Ay(0). In the opposite limit
of large w,,, the prefactor for Ag(w) in the Lh.s. of (21) is
approximately 1, and in the r.h.s. of this equation 1/|w,,|? can
be pulled out from the integral. This yields

(23)

- 2
Ao(ay) ~ Q(i) , (24)

||
where
dw,, Ao(w,,)

o= [ .
0 Ad@) + (@

The integral is determined by ), ~ g and is of order g. Then
Ao(wp) ~ & /|wn,|? at high frequencies. The full gap function
is sign-preserving. We show the numerical result for Ag(w;,)
in Fig. 2. At small w,, we find Ag(0) ~ 0.75g. This fully
agrees with the earlier result, Ref. [8]. We note in passing that
the first numerical evidence that Ay(0) scales with g has been
obtained in Ref. [34].

(25)

C. Continuous set of solutions. Expansion in the gap magnitude

The solutions A (w,) and Ag(w,,) (or, equivalently,
Do (w,,) and Dy(w,,)) also exist for y < 2. For such y, these
two solutions are the end points of a discrete set of topolog-
ically distinct solutions A,(w). We argue below that the set
becomes continuous for y = 2. For a continuous set, there is
no one-to-one correspondence between a particular member
of the set and integer n, and we will show how this correspon-
dence gets lostat y =2 — 0.

Comparing Do (w;,) and Do(w,,), we see that they have
the same form 1/(w,)* for w, > g, but are very different
for w,, < g. We therefore focus on the range w,, < g and use
to our advantage the fact that we know the analytic form of
Dy (wy,) in this range, Eq. (13). We use this Dy (w;,) as an
input and expand it in powers of D*(w/,) in the rh.s. of the

_ 2 /°° dw,, (Ag(w,,) — Ao(0)) 22)
0

VA5 @,) + (@),)* ), ?
(

gap equation (4). Specifically, we will be searching for the
solution of (4) in the form

D(wy) = i D (), (26)
j=0
where
DY(w,) = Doo(wp) = 2€ cos f(wy)sgnw,  (27)
with

2
f(wm)=p1n (%) + ¢. (28)

We will see that DZ/+D ~ 21
Substituting D(w,,) from (26) into (4) and expanding in
Dz(a),/n) in the r.h.s. of (4), we obtain the set of equations,
which express D?/*D for a given j in terms of D*/*1) with
smaller j. For j = 1, we have
=2
DO @p)on — 5 / dw,(DP(@],) = DP(w))

sgnw’,

m = Kz(wn), (29)
m
10%¢ 1
180
-
S 102} 3
=
4
107F *
107" 10° 10" 102

wlg

FIG. 2. Sign-preserving solution Ag(w,,) of the nonlinear gap
equation along the Matsubara axis. We obtained Ay(w,,) by solving
the nonlinear gap equation numerically and taking the limit 7 — 0.
At w, < g, A¢(w,,) remains comparable to g; at larger frequencies it
decays as 1/w?.
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where the source term is

K(wn) = —%2 / de, (D (@,) — DD (@)

sgnw,,

x [DD(w),)]? (30)

(wm — w;n)z .
The source term is of order €3, hence D® « €3 (D® « €’ and
so on). Substituting D" (w,,) from Eq. (27) and evaluating the
integrals, we find the source term for D as the sum of the
two terms, K3 = K3, + K3, where

K (wy) = —€° 3 cos Bf ()27 B coth(2m B)

— 3w Btanh(37 B))sgnwy, 31

and

g 1 + sinh?(7 B)

Kap(wn) = —€> == cos (f(w)) —————~
35 (Wm) o (f(@)) S (2 f)

Solving for D® we find that the first term gives rise to

€3 cos (3f(w)), while the second term accounts for the renor-

malization of the prefactor for ln(a),zn) in f(w,) in (28) To

order €2, the dressed f(wn), which we label f,(w,,), becomes

sgnw,,. (32)

2
fo(wm) = BeIn (%) b, (33)

where
e =Pl =€/~ p(1l — )2, (34)

The full D(w,,) to order €3 is
D(wp) = 2(€ c08 fe(wn) + Q3€° €08 3 f (wy))sgnwy,, (35)

where
2x B coth 2w B) — 3w B tanh B B)

Qs = 2(1 — 37 B tanh (37 8))
_S5—(@p?
= T~ 0222, (36)

Expanding to next order, we find (i) € cos 5f(w,,) term with
the prefactor Qs = 0.043, (ii) O(e*) corrections to f. in (34)
[Be =1 —0.5¢2 4+ 0.806€*)], and (iii) O(e?) corrections to
03 (O3 — 03,) and to the argument of cos3f(w,,) in (35).
We verified that the last correction changes cos3f(w,,) to
cos 3 f.(w,,) with the same f, as in (33). This is the strong
indication that the series contain the same fully renormalized
fe(wy,) in each term. Combining the results, we obtain, for
on K §, D(a)m) = D (a)m)’

D (wy,) = 2€(cos fo(wp) + O3 c€” c0s 3 f(wp)
+ 05..€7co8 5f(wp) + -+ )sgnw,. (37

We emphasize that a continuous set of solutions exists only for
y = 2. Applying the same perturbative analysis for y < 2, we
find that the expansion holds in €2(g/|w,,|)>~" and breaks at
a finite wpi, ~ ge>/>~7) (see Appendix A for more detail).
At smaller w,,, A(w,,) saturates, and D(w,,) «x 1/w,,. The
forms of D(w,,) at w,, < @Wnix and w,, > @i, match only for
a discrete set of € = ¢,, which implies that for y < 2 the

A (w,,)

s\
A \/

A/\AK
AT

E=0 E>0

> Wy
V\Az(w )

FIG. 3. The gap function A, (w,,) for y<2 and y=2. For y < 2,
A, (w,,) changes sign n times. As y gets close to 2, the frequency
region where these n sign changes happen, shrinks to progressively
smaller w,, = 0,and aty = 2 — 0, A, (w,,) with finite n collapse into
Ag(wy,) at all @, > 0. The continuum set of Ag(w,) aty =2 -0
emerges from A,(w,,) with n — o0, and the continuous parameter &
is determined by how the double limit n — oo and y — 2 is taken.
As the consequence, all Ag(w,) with & > 0 change sign infinite
number of times between w,, = 0 and w,, ~ g. The solution of the
linearized gap equation is the £ — oo limit of this set.

solutions of the full nonlinear gap equation form a discrete
set.

Because f.(w,) contains In a)m, each D.(w,,) from (37)
changes sign an infinite number of times down to w,, =0,
i.e., in our original classification the gap functions from the set
are different realizations of n = co. At w,, = 0, each D.(w,,)
has an essential singularity as neither lim,, .o D¢(®,,) nor
lim,,, 0 1/Dec () exist.

For a generic €, Eq. (37) is valid for w,, < g. At larger w,,,
D (wy) = D./|wn|?. We expect that for every ¢, the crossover
to proper high-frequency behavior can be achieved by fixing
the phase factor ¢, in (33) (see paper I for a similar analysis
for the linearized gap equation for y < 1).

Next, we see from Eq. (34) that ,33 decreases with in-
creasing €. It is natural to expect that it vanishes at some
€ = O(1). The expansion in (37) holds only as long as f. is
real, as there is no solution of the non-linear gap equation for
imaginary B, (see paper I for detailed discussion on this). For
€ < €, B 1s small, and the range, where D(w,,) oscillates,
is confined to small w,, < ge "/P. By properly taking the
double limit € — ¢, and w,, — 0, one can obtain an infinite
set of gap functions, which change sign a given number of
times in the immediate vicinity of w,, = 0. At € = ¢ all
these gap functions coincide with Ay(w,,) at any w,, > 0. This
agrees with the observation in paper IV that as y increases
towards 2, the region, where A, (w,,) with finite n change sign,
gets confined to progressively smaller w,,, while at larger w,,,
all Ay(wy) withn =0, 1,2... nearly coincide. We illustrate
this in Fig. 3. For consistency with the notations in previous
sections, it is convenient to introduce & = (e, — €)/e and
label the continuum set of the gap functions by A¢(w,,). Then
the end point solutions € — 0 and € = € are Ay (w,,) and
Ao(@p)-
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It is beyond the ability of the order-by-order expansion
to determine the form of Ag(w,,) near £ = 0. On general
grounds, we expect that corrections to fe(wy,) — f:(wy) in
(33) become relevant starting already from small frequencies,
and that at £ = 0, the gap function coincides with Ay(w,,),
which we found in the previous section. A way to reproduce
this behavior is to assume that at £ — 0, the series for D(w,,)
in (37) become geometrical [Q2n+1€c2r”+l ~ (—1)"]. In this
case,

cos fr(wm)

s ms 38
o? + cos? f; (wm)sgna) (38)

Dé(a)m) ~

where o ~ £2 and Je(wm) ~ Jalng/|wy| + f*(wy), where
f*(wy,) is a regular function of w,,, which at low frequen-
cies reduces to 7 /2 + O(wy,/§). For any & > 0, this D¢ (wy,)
changes sign an infinite number of times, but at & =0,
Dg—o(wm) ~ §/wm, as we expect. We also note that between
the nodes (the vortex points), Dg(w,,) from (38) is large,
of order 1/£. Extending this D(w,,) to complex frequencies,
7= +iw”, we find that there exist antivortices at small
z in the lower frequency half-plane. At & = 0, vortices and
antivortices annihilate at z = 0, leaving a regular gap function
AO(Ci)m)-

In Appendix C, we consider the extended y — model with
nonequal interactions in the particle-particle and particle-hole
channels and introduce M # 1 as a measure of the difference
of the two interactions. For the extended model, there is a
critical My,.x, below which the ground state is a non-Fermi
liquid with A = 0. For y = 2, M,.x = 0. We obtain the set
of A¢(wy) at small w,, at M =04 and show that all gap
functions from the continuous set appear simultaneously with
the overall magnitude M'/2.

We next analyze the condensation energy E.. We define E,
as the difference between the actual ground state energy Ea
at a finite A(w,,) and the would be ground state energy of the
normal state, Ex—g. The expression for E, for y = 2 has been
obtained before [32,35-37] and we just copy it here:

E.=—

N /ood (V 1 +D2(wm) - 1)2
Wy W,
*Jo V1 + D*(wy,)
[e'e] 2 _ 2(y V)2
_NOgZ/ d(,l)md(,()’/n (\/1 +D (wm) \/1 +D (wm))
0 V1 + DX (w,)y/1+ DX (w],)

/
Wy W),

X —(a)%l _ (w;n)z)z . (39)

This formula has been derived with the use of (4) and is
therefore valid only for the solutions of the gap equation. Both
terms in (39) are negative, i.e., any solution of the gap equa-
tion lowers the ground state energy compared to the normal
state.

Substituting (37) into (39), we find that E. = E ¢ is a
continuous function of £. At & > 1,

g
E.¢ = —aNy & (40)

a b
E,., (@) Ec,z: (b)
n ¢
.
o..
o® N E>0,n=00
n=1 o
N
[ ® >l=2
t t
n=0 & = 0, all solutions with finite n
y<2 y=2

FIG. 4. (a) The condensation energy E. the solutions of the
Eliashberg gap equation for y < 2. E. = E., is a discrete function
of a number of a solution, n. The largest condensation energy is
for n = 0. (b) The condensation energy E . for y =2. E.; is a
continuous function of the parameter £. The condensation energy at
& =0 is the accumulation point of all E., from y < 2 with finite
n =20, 1, ... Every other point on the curve E, ; comes from the limit
n — 00, and different £ correspond to different ways how the double
limit n — oo and y — 2 is taken. In the limit £ — oo, E, is the
condensation energy for infinitesimally small gap function A (w,,).

where a = O(1). It is natural to expect that |E. ¢| increases
with decreasing & and reaches a maximum at & =0, see
Fig. 4.}

In the next two sections, we present corroborative evidence
for the special, critical behavior of the y model with y = 2
from the analysis of the gap function on the real frequency
axis and in the upper half-plane of frequency.

IV. GAP EQUATION ALONG THE REAL
FREQUENCY AXIS

As we said in Introduction, the analysis of the gap equation
for the y model along real frequency axis should generally
be more revealing than the analysis along the Matsubara
axis, because the pairing interaction on the real axis V(2) =
(cos(my/2) + isgn(2) sin(wry /2))(g/|€2])" is complex. The
real part of the interaction becomes repulsive for y > 1, and
the imaginary part vanishes at y = 2 for any nonzero 2. This
makes the y = 2 case special.

We present the results for A(w) on the real axis in the
same order as in previous section: we first obtain the solution
of the linearized gap equation, which we label A (w), then
analyze the solution Ag(w), and then show that there is a
one-parameter continuous set of solutions A.(w) in between
A (w) and Ap(w).

A. Linearized gap equation in real frequencies

The linearized gap equation in real frequencies is obtained
by taking the limit A(w) — 0 in (9). We again introduce

3The second term in (39) diverges logarithmically at & = 0 if we
use Dy(w) =~ A(0)/w at small frequencies. This divergence comes
from the putative normal state energy Ea—o while the ground state
energy £, remains finite. For £ > 0, both Eo—y and E, have loga-
rithmic singularities, which cancel out in E. = Ex — Eao.
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Do (w) = Ax(w)/w and re-write the gap equation as

Do(w) = —%z[iz Dos(@)

Do ()
2 dw + w

+ /oo 9 Do /)] 1)
- o) |,

o (ol +wP

where 9 stands for the real part. The Do (w) term in the
Lh.s. of (41) is the analog of Dy (wy) in the Lh.s. of the
gap equation (11) on the Matsubara axis, and, like there, it
originates from the bare w term in the fermionic Green’s
function. Neglecting this term, we find that the solution
of (41) is

2
Doo(w) = —2ie cos [,3 <1n <9> — in’sgn(w)) + ¢], (42)
8
where 8 = 0.38187 the same as in (13), and ¢ is infinitesi-
mally small. We note that this Dy, (w) can be obtained from

Do (wn), Eq. (13), by rotating from iw,, to @ + 0. In explicit
form,

2
D (») = 2¢sin <,B In (g) + ¢) sinh(z B )sgno,

2
Dgo(a)) = —2€cos (ﬂ In (%) + d)) cosh(wfB). (43)

Observe that D, _(—w) = —D_(w) and D (—w) = D} (w),
as it should be. The relation

/ o X% 27 B
dx = - = — ; (44)
0 (x+1)2  sinh2xB)  sinh*(7pB)

is useful for the verification that Dy (w) satisfies Eq. (41)
without Do, (w) in the L.h.s. Using another relation

[ee) xiﬂ
/ dx = i coth(w B), 45)
0

X —
one can verify that D/ and D] satisfy KK relations:
2 D_(x)x 2w D’ (x)

22—
(46)

where the integrals are principle values.

We next consider |w| > g. To obtain Dy (®) in this region,
we take as an input the exact solution on the Matsubara axis
and analytically continue it to the real axis. By construction,
this can be done by replacing w,, by (—iz)—the function
A (z) is guaranteed to be analytic in the upper half-plane
of frequency. However, because we don’t have the exact an-
alytical expression for Do, (w,,) for an arbitrary w,,, we have
to replace w,, by —i(w + i0) in Eq. (15) and obtain Ay (w)
by integrating over k. For small w < g, we find, after this
integration, series of corrections to (42) in powers of w/3.
For large w > g, the largest contribution to Ay (w) comes
from the continuation of the universal oscillating term A,
Eq. (19). Upon rotation to the real axis, this term splits into
two. One remains exponentially small, but in the other the
exponential factor cancels out. As a result, on the real axis
we have (see Appendix B for details)

Dooyu(@) ~ \/zeeﬁ[(%)zﬂn(%)z]' 47)

¢ D00 /0
SRV

2 4 6 8 10 12 14
wlg

FIG. 5. Real and imaginary parts (a) and the phase 7y (w)
(b) of Dy (w). The periodicity of oscillation is set by [(w/8)> +
In(w/3)*1/m.

Other contributions contain powers of g/|w| and are smaller.
Neglecting them, we obtain Dy (@) = Dooyu(®@) at w > .

Comparing this form with (42), we see that both
D/ (w) and D (w) continue oscillating at w > g, but with
the period set predominantly by (w/g)> rather than by
In(w/g)*>. In Fig. 5, we plot real and imaginary parts
of Dy (w) and the phase of the gap, no(w), defined
via Do (@) = | Do (@)|e™=), or, equivalently, via e (@) =
ImIn Dy (w) = ImIn Ay (w). We see that the phase winds up
an infinite number of times between w = 0 and O(g) and be-
tween O(g) and oco. Oscillations at w < g are directly related
to oscillations of A, (w,,) on the Matsubara axis, and there
is one-to-one correspondence between each phase winding by
27 on a real axis and a vortex on the Matsubara axis. Os-
cillations and phase winding at w > g are present on the real
axis, but not on the Matsubara axis. It is natural to relate this
discrepancy to the fact that the pairing interaction is attractive
on the Matsubara axis, but on the real axis, V’'(2) is repulsive,
and a nonzero Dy (w) comes from V" (2) x §($2) (see more
on this below).

B. The function Dy(w)

We now consider the opposite limit of the real-axis partner
of sign-preserving Do(wy,). At w,, < g, Do(w,) =~ Ag(0)/wp,
and Dy(w) on the real axis must also be close to Dy(0)/w at
w < g. At larger w,, > g, we will see that Dy(w,,) and Dy(w)
are very different: Dy(w,,) decays as 1/ w;, while Dy(w) does
not decay and oscillates in sign.
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AN

-------- Bo"(w)

FIG. 6. Ag(w) = w/ sin ¢g(w) for ¢o(w) given by (49). The real
part of the gap Aj(w) diverges at the set of points where ¢o(w) = pr,
p=1,2... The imaginary part Aj(w) is a set of § functions at these
points. The behavior of Aj(w) has been obtained in Refs. [7-9,11].

The solution of the gap equation along the real axis for w >
g has been found by Combescot [9], who build his analysis on
earlier results by Karakozov, Maksimov, and Mikhailovsky
[7] and by Marsiglio and Carbotte [8]. We follow Ref. [9]
below.

It is convenient to introduce ¢o(w) via Dy(w) =
1/ sin ¢g(w) and re-express the gap equation (9) at 7 = 0 as
the equation on ¢(w). The equation is

490@) _ 2 | B(w) — A(w)sin gy, (48)
dw ng

where A(w) and B(w) are given by Eq. (8). The initial con-
dition for ¢g is ¢o(g) ~ g/Ao(0) = O(1), consistent with
$o(w) ® w/Ao(0) atw < 2.

At w235 Bl=~1+g/w® and A(w)~ —ag /w?,
where o &~ 1.27 (Ref. [9]). The A(w) term can then be ne-
glected if ¢g(w) is real, as we will assume and then verify.
Without this term, Eq. (48) can be solved easily, and the

result is
1 w\? o\’
¢o<w>w—(1n (—) +<T> +c), (49)
T 8 8

where C = g/Aog(0) — 1/m. We see that ¢g(w) is real, as
we anticipated. We note that this ¢o(w) coincides with the
argument of the exponent for Dy, (w) in (47)

The function

1
Dole) = G o+ 10) 0
is a sign-changing function of w, whose real part almost
diverges at a set of frequencies where ¢o(w) = pm, and p =
1, 2... is aninteger. The imaginary component Djj(w) is a set
of § functions at these frequencies. We plot the gap function
Ag(w) = wDy(w) in Fig. 6.

To analyze the phase winding, we again introduce the
phase factor via Dy(w) = |Do(w)|e™® and consider how
no(w) varies at @ > g. The imaginary component Djj(w) in
(50) is infinitesimally small, except in the vicinity of w,,
where ¢o(w,) = pr. We use Eq. (49) for ¢o(w) and express

FIG. 7. Variation of the phase of the gap no(w) (A¢(w) =
[Ag(w)]eM@)). We restrict ng(w) to (—m, 7). Phase slips of no(w)
continue up to infinite frequency.

Dy(w) near each such point as

Doy~ BV 1)
2 a)%+g2a)—a)p+i8‘

Then
w—w, —id

Vo —wp)? + 82
We plot no(w) in Fig. 7. We see that the phase rapidly changes
by 7 around each w,. If we restrict no(w) to (—m, ), we
find that the phase jumps by 27 in between w, and w,. The
number of w),, is infinite, hence the number 27 jumps is also
infinite. We reiterate that behavior has no analog the Matsub-

ara axis, where Dy (iw,,) is real and positive for w,, > 0, hence
4
Nno = 0.

eirm(w) — (—l)p (52)

C. The one-parameter set of gap functions

We follow the same strategy as in the analysis on the
Matsubara axis and expand the nonlinear gap equation (9) in
powers of D?. We search for the solution in the form

D) =Y D D(w), (53)

j=0

where D! (w) = Dy (w) and higher-order terms are obtained
by solving Eq. (9) iteratively. For o < g, we use Eq. (42) for
D (w). The computational steps are the same as in Sec. III C,
and we obtain

D (w) = —2ie(cos fo(w) + €203, cos 3 f.(w)
+€*Qs.ccos5f(w)+...), (54)

‘For a generic y, Ag(w,) and Aj(w) are related by Cauchy
formula: Ag(w,) = 2/7) fooo da)Ag(a))a)/(w2 + a),zn). For y < 2,
typical w are of order w,,, and to reproduce Ay(w,,)  1/|w,,|” one
needs Aj(w) = sin(my/2) sgnw/|w|”. The case y = 2 is an excep-
tion here because 1/w?, dependence of Ag(w,,) is obtained by pulling
1/@? out of the denominator in the Cauchy formula. The remaining
integral is determined by w = O(g) rather than O(w,,). Because of
this, the fact that Ag(w,,) o« 1/w? at large frequencies does not imply
that A”(w) must behave as 1/w?.
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where Q; . are the same as in (37) and

2
Fw)=B. (m (g) — insgnw) t b (55)

This D.(w) could also be obtained directly from (37) by
replacing In w2 by In @? — ixr in each term in (37).

We recall that the continuous set exists for € < €. For
any € < €, D(w) oscillates an infinite number of times down
to w = 0. As € approaches €., log-oscillations shift to pro-
gressively smaller frequencies. At € = €., B vanishes and
log-oscillations disappear. The behavior of D(w) at w — 0 at
€ — € depends on how the double limit w — 0 and € — €,
is taken.

Like we did in Sec. IIIC, we introduce & = (¢, — €)/€
and re-express A.(w) as Ag(w). The two limits € = 0 and
€ = €, now correspond to & = oo and & = 0, respectively.
This brings the notations in line with the ones we used in
Secs. IV A and IV B.

On the Matsubara frequency, all Ag(w,,) behave in the
same way at @,, > g Ag o< 1 /wi. On the real axis, the depen-
dence on & is more complex. To see this, we use the solution of
the linearized gap equation DV oc ie’®@) with ¢y(w), given
by (49), and evaluate D>"*!) in order-by-order expansion of
the nonliner gap equation in D?. Collecting the series, we
obtain the closed form expression

_Djeito(®)

[+§— @ /(1+8)

_ L . (56)
sin[¢o(w) + iIn(1 + &)]

De(w) =

This expression can be equivalently obtained by solving
Eq. (48) for ¢(w) with the initial condition ¢(g) = g/Ay(0) +
iln(l+§&).

The parameter £ runs between 0 and oco. For & =0,
Eq. (56) yields Dy(w) = 1/ sin ¢pg(w), which agrees with (50)
(one should add i0 to w in this case). At & — oo, we recover,
by construction, the solution of the linearized gap equation.
For any &, including § = 0, D¢ (w) oscillates up to an infinite
frequency, and its phase n¢ (w) winds up by an infinite number
of 27 between w ~ g and w = oo.

We see therefore that in both limits w « g and w > g, the
solutions of the nonlinear gap equation form a continuous one-
parameter set, Eqgs. (54) and (56). We conjecture that for any
value of &, one can use a free phase factor ¢ in (55) to merge
small-w and large-w expressions into a single D¢ (w).

D. Density of states

The fermionic DoS is defined as N (w)=(—Ny /7 )ImG;(w),
where N, is the DoS in the normal state and

] 1
Gl(a))z—m TZ(Q)) (57)

is a retarded Green’s function, integrated over the dispersion.

In a BCS superconductor, N(w) x Rew/~/w? — A? van-
ishes at w < A, has an integrable singularity at @ = A + 0,
and is nonzero for all ® > A because quasiparticle

states in a BCS superconductor form a continuum o =

A? + (¢, — w)?. In our case, the form of N(w) = Nt (w)
strongly depends on &. At small w < g, N:(w) remains finite
down to w = 0 for all £ > 0. In this respect, all such solutions
describe gapless superconductivity. The gap function Ag(w)
tends to a finite Ag(0) at small w, and the corresponding
No(w) vanishes, like in BCS superconductor. We show this
in Fig. 8(a).

At w >3, Ag(w) is given by (56), and Ni(w)=
NoStan[¢p(w) +iln (1 +&)]. For & > 0, N:(w) oscillates
around Ny up to w =oo. The amplitude of the oscil-
lations increases with decreasing &£. For £ =0, Ny(w) =
Nob/(cos? ¢o(w) + 8%), where § = 04. This DoS consists of
a set of & functions at the points wy, for which ¢g(wy) =
/2 + km (k is an integer) (Refs. [9,11,12]). We show this
in Fig. 8(b). In Fig. 8(c) we show N¢ (w) in the whole range of
frequencies.

The function Ny(w) is the true DoS at 7 = 0, asthe £ =0
solution has the lowest condensation energy. It is different
from the DoS in a BCS-type superconductor, which is nonzero
at all w > A and approaches Ny at w — 0o. We emphasize
that a qualitative distinction holds only for y = 2. For smaller
y, the DoS for the n = 0 solution evolves as a function of fre-
quency, but still remains nonzero at all @ > A and approaches
Ny at infinite w (see paper IV).

In a BCS superconductor, a continuous N(w) at w > A
is the consequence of the fact that fermionic energy Ej is a
continuous function of the normal state dispersion ¢, E; =
Vei + A%. The form of Ny(w) as a set of §-functional peaks
raises the issue whether fermionic energies get quantized at
y = 2. To address this issue, we compute the total weight
of each level: N, = (1/2x) f No(w)/Ny, where the integration
is confined to the vicinity of wy. Using ¢p(w) =~ w? /7, we
obtain N, = 1/4/8(1 + 2k). We see that N, < 1 for all k. Be-
cause of this, wy cannot be viewed as true quantized fermionic
energy levels, as a fermion is necessary distributed between wy
with different k.

V. GAP FUNCTION IN THE UPPER
FREQUENCY HALF-PLANE

Comparing D¢ (w) and D¢ (w,,), we see that they are similar
at small frequencies, but very different at w, w,, > g. Indeed,
on the real axis, the phase n:(w) winds up by an infinite
number of 27 between w = O(g) and w = oo, while near
the Matsubara axis, ng (w,,) = 0 in this frequency range. The
discrepancy implies that phase winding must end somewhere
between the real and the Matsubara axis. We now argue that
there is a set of vortices in the upper frequency half-plane, at
|z| > g and the phase winding drops by 27 each time the axes
of z passes through a vortex upon rotation away from the real
axis.

We use the Cauchy relation

2 [ xA(x)
A(z) = —/ dx (58)
0

T x2_Z2

to extend the gap function A(x) =xD(x) from the real
axis to complex z =o' +iw” with ®” >0. We use
Eq. (56) for the gap function as we expect vortices to
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FIG. 8. DoS N¢(w) for (a) @ < g and (b) @ > g and for different &. For all £ > 0, N:(w) remains finite down to w =0 (a gapless
superconductivity). For £ = 0, the DoS Ny(w) vanishes at small w and has a set of -functional peaks at w > g. In (c), we present the schematic

plot of the DoS at all frequencies.

be present at |z| > g. Like before, we first consider the
cases £ =0 and £ — oo, and then extend the analysis to
arbitrary £.

A. Case (=0
Using the expansion near ¢(w,) = pm, Eq. (51), we ap-
proximate Afj(w) as

(_1)p+1w2
pra Ls(w—wp).  (59)
p

: 7’8 o
Aj@) ~ ==
p=1

Substituting into (58), we obtain

N

Ao@) =7 )
p=1

g -z O
Here w), is a solution of ¢g(w,) = 7 p, where ¢o(w) is given
by (49). We verified numerically that KK relations on the real
axis are satisfied, i.e., if we use (59), we reproduce with high
accuracy A’(w). On the Matsubara axis, z = iw,,, Eq. (60)
yields, at w,, > 3,
Ao(@n) = a% (61)
wm
where a = 7 Z;’;l [(—1)”1(1)13,/((&)127 + 2°)2)]. Approximat-
ing w, by gm./p, we find a = 2.56. The number is somewhat
larger than 1.27, obtained by solving the gap equation on the
Matsubara axis (Ref. [9] and Sec. III B). The difference likely
comes from subleading terms in ¢(w).

We plot Ag(z) for a generic z in the upper half-plane in
Fig. 9 We clearly see that there is a set of points, where
Ay(z) = Aj(z) = 0. These points are the centra of dynamical
vortices with anticlockwise circulation 2. The vortices are
located along a particular line in the complex plane. The set
extends to an infinite frequency, i.e., the number of vortices
is infinite. This is consistent with an infinite phase winding
along the real axis. We verified that if we use a more accurate

form of w,, the positions of the vortices shift a bit, but their
number remains infinite.

To see how the winding number changes once we rotate
from the real to the Matsubara axis, we introduce z = |z|e/?
(¥ =0 along the positive real semi-axis and 7 /2 along
the Matsubara axis) and check the winding of the phase of
Ao(z) = |Ag(z)]e@ between |z| ~ gand |z| — oo along the
directions in the upper frequency half-plane, specified by .
We show the results in Fig. 10.

We see that for any ¢ > 0, the phase ny(z) winds for |z|
below a certain value, and then saturates. At larger |z|, both
Aj(z) and Aj(z) scale as 1/ |z)? with no oscillations. Counting
the total phase winding 87 between |z| = O(g) and |z] = oo,
we see that 619 = 2ms, where s is an integer. It decreases by
one every time the direction set by ¥ passes through a vortex.
The winding vanishes at some ¢ < 7 /4.

2.0 ‘ ‘ '5 0
log|A¢() | 1

3 ! 25

2 4 6 8 10 12 14 .
2.0 ; ; — : : : : L
770(2)
15 2
o
:3 1.0 0
0.5 "'-m
0.0 - . : . =l -
2 4 6 8 10 12 14
w'lg

FIG. 9. A¢(z) in the upper half-plane. (Top) In|Ay(z)|. Blue
spots mark the locations of dynamical vortices, where |Ay(z)|=0.
(Bottom) The phase of the gap no(z) defined via Ay(z) =
|Ag(2)|e™@, The phase slips by 27 upon crossing a white line in
the direction from near-white to dark-blue. The white lines are the
locations of points where Ag(z) = 0 and Aj(z) < 0.
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|zlig

|zl/g

|zlig

/A

FIG. 10. Phase variation no(|z|, ¥) along different paths spec-
ified by v, defined via z = |z|e/V. Along real axis, ¥ = 0; along
Matsubara axis, ¥ = /2. Along the real axis the phase 1y(®) winds
up an infinite number of times, i.e., the winding number (the number
of 27 phase slips) is infinite. For a finite v, phase winding ends at
some finite |z|, and the winding number becomes finite.

B. Case £ = 00

We next consider the opposite limit £ = co. The form of
Ax(z) can be obtained starting from (15) and replacing w?
by |z|?e/®~™)_ This gives

AOO(Z) x fwdk(bkefikln|Z\2/[:’2+(2l/f771)k
0

bR R-CU=Tky  (goy

where by, is defined in (16). We obtain Ay (z) by numerical
integration. We plot its phase 7,(z) in Fig. 11. We again see
that there is an infinite array of vortices. The array extends
to an infinite frequency, where it approaches the real axis.
The vortex arrangement in Fig. 11 is remarkable similar to
that in Fig. 9 for £ = 0. Moreover, if we approximate ¢(w)
by the leading term (w/g)?/m, we find that the positions of
the vortices are at the same z; in both cases. We can see this
by comparing Fig. 12(a) where & — oo and Fig. 12(c) where
& — 0. The gap function A¢(z) are very similar in these two
cases, despite that the overall factors are different. The vortex
positions for these two cases are almost identical, as can be
seen from Fig. 12(d).

C. Arbitrary &

The same infinite array of vortices exists for all 0<£& <oo.
As an example, in Fig. 12(b) we show the gap function for

| ' J [

FIG. 11. The phase 1.(z) of Ay (z) in the first quarter of the
complex plane of frequency (o' > 0, ®” > 0).

& = 1. We clearly see that there is an infinite array of vortices,
similar to the ones for £ = oo and & = 0, and the positions of
vortices are almost indistinguishable, see Fig. 12(d). Analyti-
cally, if we use Eqgs. (56) and (58), we find that the positions
of vortices are independent on &.

D. Essential singularity

There is another consequence of the existence of an infinite
array of vortices — each gap function Ag(z) has an essen-
tial singularity at |z| = oco. Indeed, one can reach |z| = oo
from the set of vortex points, where Az(z) =0, or from
the real axis, where Ag(w) oscillates, and the amplitude of
the oscillations does not vanish at w — oo, hence neither
lim;— oo Ag(|z]) nor lim;_, o 1/Ag(|z]) exist. We emphasize
that an essential singularity is only present for y = 2. For
smaller y, phase winding and associated vortices exist only
at |z| smaller than a certain, y — dependent value. At larger
|z|, A(z) scales as 1/|z|" and vanishes at |z] = co no matter
how this limit is reached.

Further, for y = 2, the very existence of a nonzero Ag(z)
for a generic z away from vortex points, is ultimately related to
an essential singularity at |z] = oco. The argument is that the
set of vortex points is complete, hence one can analytically
continue the gap function from this set to the upper half-plane
of frequency in the same way as A(z) is obtained from a dis-
crete set of Matsubara points w,, = 77 (2m + 1) in standard
diagrammatic calculations for interacting fermions. If this an-
alytical continuation was unique, we would obtain A(z) = 0,
because A(z) = 0 at the vortex points. For a nonzero Ag(z),
the extension must be multi-valued. A rigorous mathematical
argument is that this is the case when the end point of the
set, |z| = oo, goes outside the domain of analyticity. This is
exactly what we have because of an essential singularity at
|z] = oo.

We conjecture that the multi-value nature of the extension
is the reason why the set of A(w) is a continuous one at y = 2.
This is plausible, particularly if the vortices are at the same z;
for all £, as Fig. 12 seems to indicate. However, at the moment,
we cannot prove this.
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FIG. 12. [(a)~(c)] Gap functions A defined in (56) for different & in the frequency upper half-plane. Here we take ¢(w) ~ (w/8)*/7.
(d) Comparison of the vortex positions for different & obtained by approximating ¢(w) by (w/g)*/. The results suggest that the positions of

the vortices almost do not depend on the value of &.

VI. FINITE wp
A. Gap equation at a finite wp

We now consider the case when the bosonic mass is small
but finite. By analogy with the phonon case we call this mass
wp. On the Matsubara axis, Ag(w,,) changes little compared
to the case wp = 0. The set of A,(w,,) still exists at small
wp, but becomes discrete and holds up to a finite np,,. In
particular, there is no solution of the linearized gap equation at
T = 0 for any nonzero wp. The value of ny,x can be estimated
by noticing that if we, e.g., depart from the solution on the
Matsubara axis at wp = 0 and compute corrections due to
finite wp, these corrections increase at small w,, and become
O(1) at w,, ~ wp. A simple experimentation shows that this
Sets Mmax at

(63)

Nmax ~ —-
)

On the real axis, the gap equation still has the form
D(w)wB(w) = A(w) + C(w), and A(w) and B(w) remain the
same as in (8), up to irrelevant small corrections. However,
C(w) changes to

78" D(w — wp) — D(w)

Clw)=—i—
V1 —D*w — wp)

2a)D
Expanding to first order in wp and introducing, as before,
D(w) = 1/ sin ¢p(w), we obtain after straightforward algebra

sgnw. (64)

that the gap equation reduces to
. wp " ..
¢ — 7((¢) tan ¢(w) + @)
2
= —[wB(®) —A(w)sing(w)] +---,  (65)
g

where dots stand for the terms with higher powers of wp. A
similar equation at a finite 7 instead of finite wp has been
obtained by Combescot [9].

For definiteness, let’s consider the case £ = 0. At w > g,
B(w) and A(w) from (8) can be approximated by B(w) =
1 + 2%/’ and A(w) ~ —1.278° /w?. To understand the effect
of wp we use as an input the solution at wp = 0, ¢(w) =~
w?/(wg?) + i8. Substituting this input into (65), expanding
near w = ng/ﬁ, where ¢(w) = /2, expressing ¢(w) =
¢’ (w) + i¢” (w), and solving for ¢”(w), we find that it jumps
to O(wp) once w exceeds wg/+/2. The same happens at
all w, = 73/~/2(2n + 1)'/2, where tan¢’(w) = 0. After n
jumps, ¢”(w) becomes

. TOp — 2rwp 53, 20p @
(w) = V2m+1~ ==~ 2 —.
¢ V2z mZI 3g 32 g
(66)

A more accurate, nonperturbative analysis of (65) shows
that ¢”(w) appears slightly before ¢'(w) reaches 7 /2. This
smoothes up the jumps, but the functional form of ¢”(w) in
(66) remains intact. When both ¢’ and ¢” are non-zero, D(w)
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FIG. 13. The gap function A(w) (a) and the variation of its phase
n(w) at wp = 0.02g. From (69).

is a complex function of frequency:

sin ¢’ (w) cosh ¢” (w)
“sin? ¢/ (@) + sinh® ¢" (@)

Dy(w) = sgnw 67)

and

y _ cos ¢'(w) sinh ¢” (w)
Do) == @) + s @)

P(w) (@)
120}

100}
8ol

60 -

20

At o > 37%5*/Qwp), ¢"(w) becomes larger than one. At
such frequencies, both D'(w) and D”(w) oscillate with pro-
gressively decreasing magnitudes, approximately as the real
and the imaginary parts of

.o 5y _20p 5)3
— 2T T35 @/ (69)

and the phase n9(w) gradually winds up as @ increases. We
show this in Fig. 13. This behavior holds as long as |A(w)| <
w,1.e., w < Wmax, Where

g z\”
wmax~g<— In —) . (70)

wp wp

Ateven larger frequencies, the A(w) term cannot be neglected,
and the forms of ¢’(w) and ¢”(w) change. We show the full
numerical solution of Eq. (65) in Fig. 14. We see that at >
®max, @” (w) keeps increasing, while ¢’(w) saturates. A simple
analysis shows that Eq. (65) is satisfied, up to corrections of
order wp, if

¢ (w) = 3ln§ 1045, ¢ (0)= —% +omm, (71

where m is an integer. Substituting this complex ¢(w) into
Ao(w) = w/ sin p(w) ~ —2iwe® @, we see that at w > Wpay,
the real part of the gap function gradually decreases as

1.27g°
Ab(w) = w—zg. (72)
To obtain Afj(w) at these frequencies, we need to keep the
wp term in the Lh.s. gf (65) and obtain the correctiop to (71),
which we label as ¢. Solving perturbatively for ¢(w), we

obtain

(@) = f<

@ )eiwz/(ﬂg’z)’ (73)

max

wlg

20 25 30 35

FIG. 14. (a) Numerical solution of Eq. (65) for a complex ¢(w) at wp = 0.02g. [(b) and (c)] Asymptotic forms of ¢'(w) and ¢”(w). At
® < Wmax, @' (@) increases as w?, while ¢ (w) first displays a step-like behavior and then increases as ®?, with wp in the prefactor. At ® > Wmax,
¢'(w) saturates at (2m — 1/2)m, where m = 19 for our chosen wp, and ¢”(w) increases logarithmically. The corrections to asymptotic values
oscillate with the period set by w? /7. In the numerical solution, we neglected ¢ term in (65) compared to (¢)* and verified that this is a valid

approximation.
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where f(...)is a decreasing function of the argument. The ?
oscillations of ¢(w) are clearly visible in the numerical results
for ¢’ and ¢” in Fig. 14. Substituting (73) into (68), we obtain

5 2
Al(w) ~ %f( @ )cos < (74)
w (Wmax g

One can verify that an integer m in (71) determines the number
of 27 variations of ny(w) on the real axis and, equivalently, the
number of vortices at complex z;. The value of m decreases
one-by-one as wp increases and wp,x decreases. That m is
finite implies that there is no essential singularity at |z| = co.
Indeed, at the largest frequencies, A(w) o 1/w”.

For completeness, we verified that higher-order terms in
wp, which we neglected in the L.h.s. of (65), become important
at frequencies w ~ §°/wp, which well exceed Wy, and are
therefore irrelevant to our purposes.

VII. DRESSED SUPERFLUID STIFFNESS

In this section, we analyze superfluid stiffness and thermal
corrections to a superconducting order parameter. As we dis-
cussed in Introduction, we consider the y = 2-model as the
double limit wp — 0, Er — o0, such that Migdal-Eliashberg
parameter Ap = & Ny/wp remains small (Ny ~ 1/Ep is the
DoS per unit volume in the normal state). Accordingly, in the
analysis below we keep wp small, but finite.

A. Bare stiffness

A superfluid stiffness is the ratio of the excess energy E,
due to inhomogeneous variation of the phase of a supercon-
ducting order parameter A(r) = Ae"™ and [ dr(Vn(r))*:
E, = py fdr(Vn(r))z. In the momentum space,

Ey=ps ) ;. (75)
q

A way to compute ps is to choose 1, = 8,4, and extract
ps as the prefactor for q(z) term in the particle-particle bubble
(the sum of GG and FF terms) at zero frequency and finite g
(see Refs. [28,30,38]).

At wp/g > 1, the system is in a weak coupling limit, and
superfluid stiffness at 7 = 0 is a fraction of the Fermi energy,
ps(T = 0) = Er/(4m) (Refs. [28,30]). This stiffness is much
larger than 7, [39]. At T > 0, p,(T) drops and vanishes at T,
but at weak coupling a drop of p; occurs only in the immediate
vicinity of 7.

At small wp/g, strong mass renormalization m*/m = 1 +
/w3, changes the stiffness to

wpA©) T,

ps(T = 0) ~ Ep— =
F z g

(76)

where T, ~ A(0) is the onset temperature of the pairing. As
longas Ap < 1, o(T =0) > T),.

We now relate the stiffness to the strength of thermal phase
fluctuations of A(r) = Ae™. For this, consider the correla-
tor

—ps [dr(Vn(r)?/T
(n(Fn(0)) = fD[n]n(r)n(O)e o 2"
fD[n]e—Psfdr(Vn(r)) /T

(77)

We assume that in equilibrium 7(r) = 0 and expand (e} as
1 — (n*(r) /2. Transforming (77) to the momentum space, we
obtain (A(r)) = A(1 — (?)), where

— 0P /T
)=~ [, [ dngmy e ™"/
N " Hq’ fdﬂq/ e—psqzrzj,/T
where N is the number of particles in the system. Evaluating
the integrals, we obtain the conventional result [40]
T 1 1

2 —_—— —
=y 3t (79)

; (78)

We assume for simplicity that spatial dimension D is larger
than 2, in which case the sum converges. By order of magni-
tude we then have

T
ps(T)

As long as pg(T) > T, fluctuation corrections to the order
parameter are small. This does not hold in the immediate
vicinity of the onset temperature of the pairing, 7}, but as long
as ps(0) > T, the T range, where fluctuations are strong and
destroy phase coherence, is quite narrow, i.e., superconducting
1. remains close to T,. We see that this holds even when wp
is small and the reduction of p; by mass renormalization is
strong.

(n?) ~ (80)

B. Dressing of p; by soft longitudinal fluctuations

We now argue that in our case the expression for (5?) is dif-
ferent due to the presence of a continuum gapless spectrum of
condensation energy, E. ¢, where, we remind, £ runs between
0 and oo, and the bottom of the spectrum is at £ = 0. We will
need states near the bottom of the continuum, at £ < 1. For
such states, we assume

E.¢ = E.o+ biNoNZE?, (81)

where by = O(1) and N is the total number of particles. We
will also need superfluid stiffness p;¢ for the states near
the bottom of the continuum. Evaluating the particle-particle
susceptibility for a generic Ag(w,,) and extracting the q* term,
we obtain

D2 (Cl) )
wp £ 'm
1% ~ Ep vy d e — 82
s, & ) / Wy, 1 D§ ((1) ) ( )

For £ = 0, the integral is determined by w,, ~ g, where
Do(wy) ~ 1. This yields p50 ~ Erwp/g ~ T,/AE, as in (76).
For states with £ > 0, the magnitude of A¢(w,,) is reduced,
and the stiffness gets smaller. We assume that for the states
near the bottom of the continuum, the stiffness is obtained by
expanding to first order in &:

Pse = pso(l — br§), (83)

where b, = O(1) is positive. The extra energy of a given state
& due to phase variation is

Eye=poc Y 402 (84)
q

We assume (see reasoning below) that all states near the
bottom of a continuum contribute to the variation of the phase,
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i.e., the averaging in ((nq)z) is over both n, and & with the
weight factor e %/ where

E: =E.¢ +E,: = Ey+ E; (85)
and

Ey = EC,O + 05,0 Z 42773,
q

SEc = biNog*8” — bapsof Y 1. (86)
q

If we neglected §E;, we would obtain the same result as
before:

oy =Ly (87)
LAY —~q*

Keeping $E; we find that (n*) has an additional overall fac-
tor, which we label as Ir. Dropping for simplicity numerical
prefactors by and b,, we obtain after integrating over 7,

f d%—e—Nf(S)ﬁ

=g 9
where
_Nng 2 E
f(E)—Ts — 5 (89)

We assume that the measure of the integration over & is non-
singular. The linear in £ term in f(&) comes from integration
over 1y with ¢’ # q [see Eq. (78)]. Each integration over ¢’
yields 1/4/1 — &, and the product of the integrals over all ¢’
yields 1/(1 — EWI? = =W/ In(1=8) y o(N/2E

At small T, the function f(£) in (89) has a minimum at
§=T/(4Nog*) ~ T/(4wphg). Then Ir=1/(1 — T /(4wphg))
and

s 1
) ~ TE—T 90)
p 1= dwpig

We see that the renormalizations coming from the low-energy
states of the continuum spectrum of the condensation energy
hold in powers of T /wp. With these renormalizations, the
fully dressed stiffness is

T, T
ps(T) = —(1 - ) ©on

)LE 4a)D)LE

We see from that the value of py(T) at T — 0 and wp — 0O
depends on the order of limits. At T =0, p,(0) = T,/Ag is
finite and exceeds 7,,. At wp — 0, the corrections to stiffness
rapidly increase with T, and p,(T) becomes comparable to
T at T ~ wphg. For the largest Ag ~ 1, at which our theory
is valid, this holds at 7 ~ wp. It is tempting to associate this
temperature with the actual 7, above which the system looses
long-range phase coherence.

Further, there is an analogy between finite wp and finite
2 — y, as the two have similar effect on the gap function (see
paper IV). Replacing wp by g(2 — y), we find that at wp = 0
and y < 2, superconducting T, ~ g(2 — y).

Before concluding this Section, we elaborate on our as-
sumption that the averaging over phase fluctuations should
include low-energy states from the continuum spectra of the

r=2

Normal State

>

a’ng

FIG. 15. The phase diagram of the y model for y =2 in vari-
ables (T /g, wp/g), where wp is the mass of a pairing boson. 7}, is the
onset temperature of the pairing, and T.. is the actual superconducting
transition temperature, below which the system establishes phase
coherence. In between the system displays pseudogap behavior, in
which fermionic pairs are formed, but there is no macroscopic phase
coherence. The dashed line separates the two regimes within the
pseudogap phase — the one at higher 7', where the system behavior
is chiefly determined by fermions with the two lowest Matsubara
frequencies £x T, and the one at lower T, when fermions with all
Matsubara frequencies contribute to the pairing. In these two regimes
the system displays gap filling and gap closing behavior, respectively.

condensation energy. Consider the case y < 2, when the spec-
trum is still discrete and the n = 0 solution has the lowest
condensation energy E.o. The energies E.,>; are close to
E. o, yet the solutions with different n are topologically dis-
tinct as A, (w,,) has n vortices. These other states contribute
to the renormalization of the phase of Ag(w,,) only if the
tunneling amplitude between the states n =0 and n > 0 is
nonzero, which requires the barrier between E.o and E.,
to be small. The height of the barrier depends on the path
along which a state without a vortex transforms into a state
with a vortex at some small w,,. A vortex can either come
from w,, = oo, in which case the barrier is high, or via a
creation of a vortex-antivortex pair at w, = 0, in which case
it is low. For a generic y < 2, A,(z) are regular at small z in
the complex plane, hence one should not expect an antivortex
nearby. However, for y — 2, our candidate A(z), Eq. (38),
possess antivortices at small z in the lower frequency half-
plane. In this situation, it is natural to expect that, the barriers
between E, o and E, , with n > 0 are low, hence our reasoning
is justified.

VIII. PHASE DIAGRAM OF THE y MODEL
A. y =2, finite p

In Fig. 15, we present the phase diagram for y = 2 for
nonzero wp and T'. At wp = 0, the true transition temperature
into a SC state is zero, although the onset temperature for
the pairing, 7), is finite. At finite wp, T, is finite but much
smaller than T, at least for small wp. In between T, and
T,, the system displays pseudogap behavior: The spectral
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FIG. 16. The phase diagram of the ¥ model for a generic y < 2
at a finite 7' and vanishing wp. For any y < 2, the true SC transition
temperature 7, is finite, but is smaller than the onset temperature for
the paring, 7,,. In between T, and T, the system displays a pseudogap
behavior. There are two distinct behaviors in the pseudogap regime,
like in Fig. 15: close to T, the spectral function and the DoS display
gap filling behavior, while close to 7, the behavior becomes more
conventional and the gap frequency shifts to a smaller value as T
increases.

function and the DoS display a peak at a finite frequency, but
the spectral weight below the peak remains finite. Close to
T,, the pairing is mainly induced by fermions with the two
lowest Matsubara frequencies =7 7 (Refs. [43,44,49]). In this
situation, the position of the peak in the spectral function and
the DoS increases linearly with 7', and the gap fills in as T
approaches T),. In the T range near T, fermions with all Mat-
subara frequencies contribute to the pairing, and the positions
of the maxima in the spectral function and the DoS move to
smaller frequencies as T increases (gap closing behavior). We
show the DoS in the two regimes in Fig. 18 below.

B.wp=0,0<y<2

In Fig. 16, we show the phase diagram for the y model
with 0 < y < 2, at wp = 0 and finite 7'. This phase diagram
is based on the results of this work and previous works (papers
I-1V). For y < 2, we found earlier the largest condensation
energy is for sign-preserving solution of the gap equation
(n = 0 in our classification). Still, for any y > 0, there exists
an infinite set of topologically distinct solutions for the gap
(all with the same symmetry), labeled by integer n. This gener-
ates a discrete spectrum of the condensation energy E. ,. The
spectrum is sparse near the bottom at small y, but becomes
dense and flattens up at the bottom as y approaches 2. At
y < 2, the corrections to superconducting order parameter
from the states with n # 0 are small at low 7T, but rapidly
increase with increasing 7' and destroy phase coherence at
T. ~ 82 —y)/rg. For y <2, T. < T,, and there exists a
wide intermediate temperature range where the system dis-
plays a pseudogap behavior. By continuity, we expect that the
pseudogap region to exist for all y > 0 albeit with a smaller
width.

C. Properties of the pseudogap phase
1. toy model for y =2

Let’s start with ¥y =2. At T =0 the DoS is the set
of & functions [Fig. 17(a)]. At a finite 7, two new fea-
tures appear. First, Ag(w) decreases with increasing
and displays no oscillations above @max, similar to the
case with finite wp discussed in Sec. VI. As a result,
d-functional peaks in the DoS at larger frequencies get
broadened and eventually disappear. Second, other D:(w)
from the continuum spectrum of condensation energies
contribute to the DoS with Boltzmann factors. For all
these solutions, ImAg(w) remains finite down to w = 0.
As a result, the DoS also becomes nonzero at the smallest w
(this phenomenon is often called a gapless superconductivity
[31,32,41,42]) We model both effects by introducing a phe-
nomenological A(w) = w/ sin(ia + (w/g)*(1 + ib)), where a
and b increase with 7. We show the corresponding DoS in
Figs. 17(b) and 17(c).

2. Gap filling versus gap closing

We argue, based on earlier works [43,44], that there are two
different regimes of system behavior within the pseudogap
phase. At low T, the position of the peak in the DoS scales
with Ag(0) and decreases as T increases (the gap “closes”
with increasing T'). At higher T, the peak in the DOS shifts
to higher frequencies and the spectral weight below the peak
increases (gap “fills in” with increasing 7). We illustrate this
in Fig. 18. This last behavior is at least partly related to the fact
that in some finite range of T below T}, the gap function on
the Matsubara axis is strongly peaked at the first Matsubara
frequencies £ 7T (Refs. [43,44]). On the real axis, the cor-
responding A(w) displays w/T scaling. For such A(w), the
peak frequency in the DoS increases linearly with 7.

At a finite wp and/or 2 — y, the “gap filling” behavior
holds in some range between the onset temperature of the
pairing 7}, and a finite superconducting 7, (Fig. 18). To esti-
mate the crossover temperature between the two regimes, we
compare the actual 7, with the one obtained by neglecting the
contributions from fermions with w,, = £ T. We show the
results in Fig. 19. We see that for y = 2 the onset temperature
without 7T fermions is strongly reduced — it is about 1/7
of the actual 7, ~ 0.18g. This implies that the “gap filling”
behavior holds in a wide range below 7, and crosses over to
“gap closing” behavior only near 7.

IX. CONCLUSIONS

In this paper, we extended our earlier analysis of the y
model to y = 2. The y =2 model describes, among other
cases, the pairing, mediated by an Einstein boson, in the
limit when the bosonic mass wp tends to zero. On the real
axis, the effective interaction in this limit V(Q) = —g*/Q?
is repulsive, and, at a first glance, should not give rise to
pairing. However, the same interaction on the Matsubara
axis, V(Q,) = g/Q2, is attractive, and earlier calculations
on the Matsubara axis found that the onset temperature of the
pairing, 7}, tends to a finite value 7, = 0.1827g at wp — 0

T, = 0.1827wp+/A in terminology of Ref. [14], which is the
same expression because A = g*/w?). The issue we discussed
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FIG. 17. The density of states, N(w), at different temperatures, for a toy model with Ag(w) = w/ sin(ia + w*(1 + ib)), where a and b are
two parameters, which increase with 7. (a) The T = 0 limit, a = b = 10~*. The DoS has a set of §-functional peaks. (b) A finite but small T,
a = b = 0.05. The first few peaks are well defined, but the peaks at large frequencies get overdamped and disappear. (c) A higher temperature,
a = b = 0.25. The peak at the smallest frequency is still present, at about the same frequency as at 7 = 0, but other peaks are washed out, and
the spectral weight below the peak increases, i.e., the DoS at low frequencies fulls in.

in this paper is whether this 7, is close to the actual supercon-
ducting T, or T, is smaller, and there is a range of pseudogap
behavior between 7. and T,. We argued that the actual T,
scales with wp and is much smaller than 7, when wp/g is
small.

To prove this, we solved the nonlinear gap equation at 7 =
0 and wp = 0 and found a continuum of solutions, governed
by a single parameter & (0 < & < 00). This in turn gives rise
to a continuum spectrum of condensation energy, E. ¢, which
can be viewed as a continuum gapless spectrum of “longitudi-
nal” gap fluctuations. An infinite set of the gap functions and
the condensation energies exists already for y < 2, but is a
discrete one. For y = 2, this spectrum becomes continuous in
a manner similar to how a discrete set of energy levels in a
finite size crystal becomes a continuous vibration spectrum
when system size becomes infinite. In our case, 1/(2 —y)
plays the role of a system size.

Without the contribution from the gapless longitudinal
branch, superfluid stiffness o, (T = 0) is larger than T, and
thermal corrections to superconducting order parameter scale
approximately as 7/p;(0) and remain small at all T < 7,.
However, upon including contributions from the longitudinal
branch, we found that thermal corrections become of order
one already at much smaller 7 ~ wp. We identified this tem-
perature with the actual superconducting 7,.. We emphasize
that 7, vanishes at wp = 0, and the behavior of the stiffness
depends on the order in which the double limit wp — 0 and
T — 0 is taken. This strongly suggests that the y = 2 model
is critical at T = 0. At smaller y, the ground state is not
critical at wp = 0,and T, ~ 2(2 — y). Itis finite but at y < 2
is still much smaller than 7, ~ g.

We presented collaborative evidence that the y = 2 model
is critical, from the analysis of the continuum set of gap func-
tions along real frequency axis and in the upper half-plane of
frequency. We found that for each solution, there is an infinite
array of 2w vortices in the upper frequency half-plane. The
array of vortices stretches up to an infinite frequency, where
each gap function from the continuous set has an essential
singularity. We speculated that different gap functions from

the continuous set are different extensions from the array of
vortices, onto the upper half-plane of frequency.

At a finite wp, the set of gap functions becomes discrete
and contains only a finite number of solutions, all of which
behave regularly in the high-frequency limit. The number of
vortices also becomes finite. Still, at small wp/g, the system
behavior over a wide frequency range mimics that at wp = 0.

We showed the phase diagram of the y =2 model in
variables T and wp in Fig. 15 and the phase diagram of the
y model at wp = 0 in in variables T and y in Fig. 16. In
both cases, there is range of pseudogap behavior between the
onset temperature of the pairing 7}, and the actual 7. In the
pseudogap region, the bound pairs are formed, but there is
no macroscopic phase coherence. We argued that in most of
the pseudogap regime, the DoS and other observables display
“gap filling” behavior, in which the peak position remains at
a finite frequency up to 7,, while the states below the peak
gradually fill in.

In the next (last) paper in the series, we consider the behav-
ior of the ¥ model for y > 2 and show that the new physics
emerges at T = 0, which gives rise to a reduction and eventual
vanishing of the superfluid stiffness in the ground state.
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FIG. 18. The temperature evolution of the DoS N(w). For y < 2 (top), there is a SC order at T < T.. In this regime and in the pseudogap
state at T > T, the temperature variation of N(w) resembles that in a conventional BCS superconductor, i.e. when 7T increases, the position
of the maximum in N (w) moves to a smaller frequency. At larger T within the pseudogap phase, N(w) displays gap filling behavior when the
peak position increases with increasing T and N(w = 0) increases towards its normal state value. For y = 2 (lower panel), 7. = 0, but the two

different regimes of pseudogap behavior are present.
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APPENDIX A: EXPANSION IN D?(w,,)
FORy=2ANDy <2

In this Appendix, we present some details of the analysis
of the nonlinear gap equation for y = 2 and elaborate on the
claim in the main text that a continuous set of gap func-
tions exists only for y = 2, while for smaller y, the set is a
discrete one.

1l.y=2

We begin with y = 2. Consider first the limit of small
frequencies w,, < g. For such w,,, A(w,,) in the L.h.s. of the
gap equation (4) can be neglected, as its inclusion leads to
terms with extra (w,,/g)*>. This approximation is equivalent
to neglecting w,, compared to the self-energy ¥(w,,) and is
similar to the “no w,” approximation, used in the studies
of SYK-type models [45—47]. The nonlinear gap equation at
T = 0 without A(w,,) in the 1.h.s reduces to

D(wm’ ) - D(wm) sgnw,/n
dwyy

" V14 D%w,) lwm — wpr|?

where, we recall, D(w,,) = A(wy)/wmn.
The linearized gap equation is obtained from (A1) by ne-
glecting D*(w,, ) in the denominator. The exact solution of the

=0 (A1)
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FIG. 19. The onset temperature of the pairing, obtained without
including Matsubara frequencies w,, = £xT. For y = 2, this tem-
perature is roughly 1/7 of the actual 7, .

linearized gap equation is Eq. (13):

||

2
D(w,,) = 2€ cos (,B In <?> + ¢>€>sgna), (A2)

where € is an arbitrary overall factor, ¢, is yet undetermined
constant, and 8 = 0.38187 satisfies 78 tanh(7 8) = 1.

We now expand Eq. (A1) in powers of D>. We will be
searching for the solution in the form

o0
Dc(w,) =2 Z 62n+1QZn+1

n=0

2
X cos ((2n+ 1)<ﬂ€ 1n(|";"|> >+¢e>. (A3)

Substituting into (A1) and collecting contributions at each
order in €**!, we find that D, (w,,) given by (A3) does satisfy
Eq. (Al), and that all integrals are ultraviolet convergent,
i.e., there is no need for regularization. The calculations are
lengthy, but straightforward. We checked explicitly that B, is
the same in all terms in (A3) and is related to the original g
by

2
ﬁe=ﬂ<1_%+0.80664+--~>, (Ad)

The numerical coefficients are Q3 = 0.222 + O(€?), Qs =
0.043 4+ O(€?). We cited this result and Eqgs. (A3) and (A4)
in Sec. III C.

At larger frequencies, we need to keep A(w,,) in the Lh.s.
of (4). In the opposite limit w,, > g, the leading term in
D¢ (w,,) is obtained by pulling 1 /wfn from the integrand in the
r.h.s.. Then we obtain

a
De(wn) = =, (AS)
where
_ D(w,y
a. = g_Z / da)mr#sgnwm (A6)
2 1 4+ D*(w,r)

ﬂN ﬁe

NFL NFL
ground state Nonzero gap \ ground state
— >N —t 2 > €
Ncr \ €Cr

@ - (o)

Nonzero gap

FIG. 20. The comparison between the behavior of B, in the
y = 2 model and By in the model with y < 1, extended to N > 1.

Substituting this form of D(w,,) into the integrand in the r.h.s,
we find that the integral is ultra-violet convergent, i.e., the
solution (A6) is self-consistent.

The two solutions have to merge at w,, ~ g. For the lin-
earized gap equation (the limit ¢ — 0), we verified that this
does happen for a certain value of ¢, in (A3). We conjecture
that the same holds for other e, i.e., for a certain ¢, D¢ (w,y,)
smoothly evolves between (A3) and (A6). We did similar
analysis in paper 1. There, we demonstrated that for arbitrary
¢, De(w) of Eq. (A3) approaches the constant at w,, — 00,
while the desired term (D¢ (w,,) o 1/ |w, |71 for a generic y)
is the subleading one. For a particular ¢, a constant vanishes,
and the high-frequency behavior becomes the expected one.

We see from (A4) that B, decreases with increasing e,
while the overall magnitude of A(w,,) increases. It is natural
to expect that 8. = 0 at some critical € = ¢,,. We explored
this in the main text.

Another way to argue for the existence of € is to depart
from the opposite limit € >> 1, where D(w,,) is supposed to
be large. In this case, we introduce E(wy,) = 1/D(w,,) and
re-express the gap equation as

E(a)m’) - E(wm) 1
Wy >
V1 + B2(wp) |om — ol

Note the absence of sgnw), in the integrand. At small E,
we neglect the E2(w,y) in the denominator and search for
the solution in the form E(w,,) = sgnw,,|w,,/2|’. Substituting

into (A7) we find b = *1, i.e.,

d =0 (A7)

E(wnm) = (Ali +A2%). (A8)

||

The first term does not satisfy the normalization condition
and has to be discarded (see paper I for the details on this).
This leaves no parameter to adjust in order to match with
the behavior at high frequencies. This implies that there is no
solution for the gap at large €.

There is a similarity between this analysis and the analysis
in paper I, where we considered the y model for y < 1 and
extended it using a continuous variable N to make interactions
in the particle-hole and particle-particle channels nonequiva-
lent. There, we found that there exists N, which separates
oscillating and nonoscillating solutions, and only oscillating
solutions are compatible with high-frequency behavior. Here,
€ plays the same role as N. We illustrate this in Fig. 20.
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FIG. 21. Determination of the temperature 7, at which the
n = 1 solution develops in the y = 2 model. M. ~ 107 is the largest
value of the Matsubara number, used in this numerical calculation.
Extrapolating M, to oo yields a finite value 7,,; =~ 3.6827 x 10732.

2.y <2

We now extend this approach to y < 2. The gap equation
for D(w,) at w,, < g has the same form as in (Al), only
|wm — wu|? in the denominator is replaced by |w,, — wu|?.
The solution of the linearized equation for D(w,,) is

5 \1=v/2 Y
g ||
D(wy,) = 2e| — cos{ByIn|{ — ) + ¢ |sgno,
|om| g

where g, is some regular function of y. As before, we search
for the solutions in the form

o z 1-y/2
a2 () )
; |a)ﬂl|

|| v
X COS |:(2n + 1)(;3],,5 In <?) + ¢e>i|-

(A10)

2n+1

Q2n+ 1

Substituting into (A9), we find that the integrals that deter-
mine Q5,1 now contain infra-red divergencies. The only way
to eliminate the divergencies is to assume that A, tends to a
finite value at w,, — 0. But this is only possible for a discrete
set of finite €. We also note in passing that because the actual
expansion parameter is €(g/|w,,|)' =/, the expansion of By.e
in powers of € yields B, = B, (1 + a(e(g/|wn|)' 77/*)*). For
a # 0, this gives rise to additional terms, which are not
matched by the terms in Eq. (A10). The only option then is
toseta =0, i.e,, leave B, . equal to its bare value B, .

The outcome is that the continuous set of gap functions
exists only for y = 2. For smaller y, this set is discrete. We
also emphasize that the distinction between y =2 and y < 2
holds only at 7 = 0. At any finite T, the set of gap functions
is a discrete one for all y < 2, and the solutions with different
n from the set vanish at different temperatures 7}, ,. In Fig. 21,
we show the results of high-accuracy numerical calculation of
T, for y = 2. We see that 7), | ~ 3.6827x 1073 is finite.

APPENDIX B: THE GAP FUNCTION A,

The exact solution of the linearized gap equation at zero
temperature has been derived for 0 < y < 1 in paper I and
1 < y < 2 in paper IV. Here we extend the analysis of paper
IVtoy =2.

We first solve for the gap function Ay (w,) along the
Matsubara axis. Following the same computational steps as
in the analysis for y < 2, we obtain Deo (@) = Aco(@Wm)/Wm
in the form

o0
Do) = €2 | dkbye*n@n/a? (B1)
Wm J—o00
where € is an infinitesimal number
o—ilk

P = Tcosh(r (k — B)) cosh (e (k + BT

(B2)
and

I, = %/ dk'In|ey — 1|tanh w (k' — k + i8), (B3)
—0oQ0

Here € = 7wk’ tanh(7rk’) and B =~ 0.38187 is the solution of

B tanh (7 B) = 1. We cited these results in Egs. (15)—(17) in

the main text.

The integrals (B3) and (B1) can be computed numerically.
We showed the result for Do (w,,) in Fig. 1 in the main text.
The function Do (w,,) oscillates at w, < g and decays as
1/|wm|? at w, > 3.

1. Series expansion

The integral in Eq. (B3) can be evaluated by closing the
integration contour along an infinite arc in the complex plane
of frequency. For |w,,| < g, the arc must be in the upper half-
plane, and for |w,,| > g, in the lower half-plane. The integral
is equal to the sum of the contributions from each pole of the
function by in the upper or lower half-plane. The position of
these poles are obtained from the representation of b; as an
infinite product of the Gamma functions (see papers I and IV
for details on this):

b_r‘(l—ik)rl k F1 i
= (5 o) (5 - )

ﬁ I(3 +itk —ipn))T (1 +m — ik)
I(3—itk+iBn)T(1+m+ik)

(B4)

m=1

Here B,, > 0 are the solutions of 8, tan(z 8,,) = —1. There
is an infinite set of such B,, specified by an integer m =
0, 1, 2, ... Each B, is located within the interval 1/2 +m <
Bm < 3/2+ m. Viewed as a function of complex k, by has
poles from individual I'" functions in the upper half-plane
at k=xp+i(n+1/2) and k =iB, +in+1/2), n,m =
0,1,2,..., and in the lower half-plane, at k = —i(n+ 1)
and k = —i(l14+m+n), where n=0, 1, 2,... and m =
1, 2,....

2. |owl <8

For |w,,| < g, the relevant poles are at k= 4 f+i(n + 1/2)
and at k=iB, +i(n+1/2), n=0,1,2,.... This yields
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series expansion for Do (y) with y = (|w,,|/2)? in the form

0 00
Dy (y) :Rez BTN C=y 4 Z D;my(n+ﬁ,”)' (B5)

n=0 n,m=0

The leading term in (BS) at small w,, comes from the contri-
bution of the poles at k = =8 + i/2

Dy(y) = Cj cos (BIny + ¢). (B6)

The first subleading term comes from the contribution of the
pole at k = i(1/2 + By) and scales as y*, where By >~ 0.89.

In the direct perturbation expansion in y, the series in y”
[the first term in (B5)] come from fermions with internal
y' ~y and form the “local” series. The second term in (BS5)
is the sum of contributions from fermions with y = O(1),
which for y <« 1 can we regarded as “nonlocal”. The total
Do (y) = Do, 1.(¥) + Doonr(¥)-

The coefficients C,; in (B5) can be obtained analytically, as
we already found in papers I and III for y < 1 and paper IV
for 1 <y < 2. Aty = 2, the result takes a very simple form

l‘f’l

prn!’
Substituting this into Eq. (BS), we find that the first term (the
local contribution) becomes

Doo,r(y) o cos [B(Iny — y) + ¢]. (B8)

It oscillates with the periodicity set by Slny for y < 1, i.e.,
|wnm| < g, which is the right behavior of the gap function at
small frequencies, see (B6).

We note, however, that the first subleading term in (B8)
scales as y sin(f Iny). This contribution is smaller than the
actual subleading term, which scales as y*%° and does not
oscillate. This implies that, besides the leading term, the form
of A (y) is determined by nonlocal corrections.

C;=Cy

B7)

3. |@n| > g and logarithmic correction

For y > 1, i.e., |w,| > g, relevant poles are in the lower
half-plane. According to Eq. (B4), a pole at k = —i(n+ 1)
(n=0,1,2,...) is of order n + 1, namely a simple pole at
n =0, a double pole at n = 1, etc. The leading term in the
limit of |w,| — oo is the contribution from a simple pole at
k = —i (n = 0), This contribution accounts for 1/y behavior
of Ay (y) at large y. However, the subleading terms from the
rest poles contain extra logarithms on top of powers of 1/y:

oo
Awy) =Y C7 y 2 (ny)", (BY)
n=0

To demonstrate the presence of the logs, consider as an
example the contribution from the double pole at k = —2i.
We shift y to 2 — §, § > 0 and then take the limit § — 0. The
expression for by for y < 2 is presented in paper IV. Using it,
we find that a double pole splits into two simple poles at z; =
—2i and 7 = —(2 4 §/2)i. In the neighborhood of the two
poles, the function b; takes the form ~1/(z — z1)/(z — 22).
The contribution from these two poles is obtained by circling
out a loop C enclosing z; and z,. Evaluating the integral and

taking the limit 6 — 0, we obtain

. g 1 —izIn(y!=3/2)
lim = @ dz iy
vy fim 2 ¢ (420 + 2+ 68/2)i)
Iny
— 2. (B10)
y

Similarly, the triple pole at k = —3i gives rise to (Iny)?/y>,
etc. Collecting the contributions from every pole on the lower
half-plane, we obtain (B9).

4. The universal oscillating term at large y

We now show that the high-frequency form of Dy (wy,)
contains an additional oscillating contribution. This contri-
bution is exponentially small on the Matsubara axis, but, as
we will see, it becomes the dominant one on the real axis.
To extract this contribution, we note that for large |w,,|/g, the
argument of the cosine function, I; + kIny, passes through
extremum at k ~ k, = y/m. Expanding around this point and
evaluating the Gaussian integral, we obtain the universal piece
Do () in the form

(72 =2) b4
w St a)

We see that D, () is exponentially small, yet this oscillating
term is present. The total Dy, (y) is the sum of (B9) and (B11).

Do (y) = 2+/2€€7 cos [ (B11)

5. D, (y) along real axis

Let’s now transform from Matsubara to real axis. We use
instead of y for better transparency. By construction, the gap
function along the real axis is obtained by replacing iw,, —
 ~+ 0% in the integrand in the r.h.s. of Eq. (B1). Under this
transformation, In(|w,,|/g)* transforms into In(|w|/g)> — ir.
The integral in Eq. (B1) splits into two parts:

g o0
Dyo(w) = e—/ dk
w Jo
g—nke—ilk—ikln(\wvg)z + Tk gl tik In(|w|/3)?

J/cosh(z (k — B)) cosh(mr (k + B))
(B12)

Evaluating each integral by expanding near the point where
I + kIn(Jw|/8)? passes through extremum and approximat-
ing the denominator in (B12) by its form at large k, we find
that the first term is small in e=27*, while in the second term
the exponential factor cancels out. Ignoring the first term, we
obtain

Doou(@) ~ v/2eex(F G, (B13)

Other contributions to Dy, (@) contain powers of g/w and are
smaller. As a result, on the real axis, Doo(®) & Dooy(w) at
w > g

The same calculation can be carried out for an arbi-
trary complex frequency z = o’ + i@” in the upper frequency
plane. For this, one has to replace iw,, by z = |z]e’¥ (0 <
Y < m) in the integrand in the r.h.s. of (B1). This changes
In(lou|/8)* to In(|z/8)* + iRy — ) and gives An(2),
which we presented in Eq. (62) in the main text.

184508-23



WU, ZHANG, ABANOV, AND CHUBUKOV

PHYSICAL REVIEW B 103, 184508 (2021)

APPENDIX C: EXTENDED y MODEL

In papers I-III and other works [43,44,48-54], we and
others extended the y model to in-equal interactions in the
particle-particle and particle-hole channels. This was done by
adding a factor 1/N to the interaction in the particle-particle
channel and leaving the interaction in the particle-hole chan-
nel intact. The advantage of extending the model to N # 1
is that superconducting order in the ground state exists for
N < N, while for larger N the ground state is a non-Fermi
liquid. By analyzing the gap equation near this point, one
can obtain useful information about how a discrete set of
solutions emerges. In paper III, we argued that the extension

J

to N # 1 makes sense for y < 1, while for y > 1, the model
with N # 1 possesses singularities, not present in the original
y model. We proposed another way to extend the model with
y > 1, which is free from singularities. The idea is to first
explicitly cancel out singularities in the original y model
with y > 1, and only then extend the model to M # 1 by
making interactions in the particle-particle and particle-hole
channel in-equivalent. The extended model is then free from
singularities, and one can obtain critical M., where super-
conducting order disappears at 7 = 0 (by our construction, it
exists at M > M,,). In this Appendix, we analyze the extended
y model for y = 2. We show that a continuous set of solutions
for the gap equation emerges at M, + 0.

We first briefly describe the extension procedure. The two coupled Eliashberg equations are for the pairing vertex ®(w,,) and

the self-energy X(w,,). For y = 2, the equations are

D(wyy) 1

D(wp) = g27_[T Z

m'#m \/iz(wm’) + ©2(wm/) |wm — a)m’|2 ’

i:((Um) = Wy +g27TT Z

5 (0w) 1

(ChH

m'#m \/iz(a)m’) + (I)Z(wm,) |wm — @ |2 ’

where 2 (wp) = o + Z(wy). At T =0, the r.h.s. of each of the two equations contains a divergent integral f dx/x*. To
regularize the divergencies, we keep the temperature small but finite and set 7 = 0 at the end of calculations. At a finite 7',
the sum over m’ is nonsingular as singular self-action term with m’ = m cancels out by the same reason as the contributions from
nonmagnetic impurities.

We then introduce

] e ! )
Q(wp) = Plwn)| 1 - > 7
(wm) = P( >< g @rT) \/52(w) + P2 (wn)

(wm) = i(wm)(l—gz (@ 1 ) (C2)
@rT) £ (wn) + PHwn)

where ¢(2) = n2/6 = Z;L 1/n2. Because CIJ(a)m)/f)(wm) = @(wm)/i(wm), Egs. (C1) can be re-expressed solely in terms of
D(w,,) and E(wy,):

P () P (@m) 1

S(wn) =T Y

m'#m \/iz(a)m,) + d_>2(a)m/) \/i2(a)m) + éz(wm) fon

_wm,|2’

m'#m \/iz(a)m/) + &)Z(wm,) \/iz(a)m) + cI>2(C0m) [

(C3)

_wm’lz.

These equations are now free from singularities at 7 = 0, when the summation over Matsubara numbers is replaced by the
integration over .

We now extend the modified Eliashberg equations (C3) by multiplying the interaction in the particle-particle channel by a
factor 1/M:

d(w},) D (wn) 1

D (w,) = %/dw’

| = - = (C4)
VE @+ 820 VE ) + 320

|a)m - (1);”|2 .

The gap function A(wy,) is expressed via ®(w,,) and Ezi(a)m) in the same way as via the original ®(w,,) and (w,,): A(w,) =
Wn®(wy)/E(w,,). The equation on A(w,,) is

Ay = £ / doj, (D) —MZ20,  A@n)( - M) )
Om) = —— — .
M Non = @2\ VA @)+ (@, A on) o

184508-24



INTERPLAY BETWEEN SUPERCONDUCTIVITY AND ... PHYSICAL REVIEW B 103, 184508 (2021)

Absorbing 1/M into gﬁ,, = g?/M, introducing a dimensionless @,, = wu/&gy, D(@y) = A(@y,)/@®, and re-arranging, we obtain
from (C5)

D@ )<_+ 1-M / dw,, < SNy, sgna,, )) 1 do, D@),,)— D(a)m)S _, (C6)
om)| @ — = - == — na,,.
2 |Om — @,1* \ \/14+D* (@) +/1+ D*(@],) 2 ) Non—a,* 1+ D%(@),) g
Both integrals in (C6) are free from singularities and infra-red convergent.
For infinitesimally small D(&,,), Eq. (C6) becomes

1-M 1 D(@',) — D(@p,
D)o+ 1) = 1 / daf, 2 =D oy )
m 2 | — @y, 2
At small @,,, the solution of the gap equation is
D(@,,) = 2€ cos (B In @}, + ¢)sgnawy, (C8)

It has the same form as Eq. (13), but now 8% = M/x?. This form implies that M., = 0.
We now assume that M is small and solve the nonlinear gap equation. Our key intension is to check whether we still have a
continuum of solutions. For this purpose, it is sufficient to focus on small @,,, when we can neglect bare @,, in the L.h.s. of (C6).
As in Sec. ITI C, we search for the solution of (C6) in the series in €2 for both D(@,,) and B. To leading order in M, we obtain

2
D(@,,) = ;EMI/Z &2 (1 — 3¢ +---)12, (C9)

where dots stand for €* and higher order terms. The M'/? dependence (same as (M — M,,)'/? as M, = 0) is an expected one. The
logarithmic dependence on frequency is consistent with the result in paper I, where we obtained In @}, dependence at N = N,;.
However, there such dependence exists only for N = N, while here we have an infinite set of solutions with the same frequency
dependence, but different amplitudes, parametrized by €. All solutions appear simultaneously at M = 0+.

A complimentary piece of evidence for multiple solutions comes about if we simplify the L.h.s. of (C6) by dropping D? terms
in the denominator of the (1 — M) term. The gap equation then reduces to

1—M\ 1 da,  D(@.) — D(ay,
D(d)m)<d)+—_)=—/ _On__ (@,) — D@ )sgna);n. (C10)
2w 2 ) |ow — @), 1+ D%(@,)

m

The full gap equation for the original y model is reproduced if we set M = 1, so Eq. (C10) can be viewed as another extension
of the original model. The solution of the linearized gap equation is the same as before, with 8 = M/, hence M., = 0. At
M — 0, the expansion in €2 now yields, to leading order in M = M — M.,

2
D(w,,) = 2¢ <cos Ju(@0m) — oM cos 3 fyr(wm) + - - ~), (C1D)
where
Su(@n) = Buc n @y + (C12)
and
2 ) 3e?
,BM&:,BM(I—W—F-n). (C13)

We see that the expansion holds in powers of €2/M and is valid up to € ~ (M)'/2, at which g}, . vanishes. At larger €, B},
becomes negative, and the solution disappears (there is no normalized solution of the linearized gap equation). We see that there
is again an infinite set of solutions, specified by €, which runs between 0 and €, = O(v/M).
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