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Abstract

Understanding how adult humans learn non-native speech categories such as
tone information has shed novel insights into the mechanisms underlying experience-
dependent brain plasticity. Scientists have traditionally examined these questions
using longitudinal learning experiments under a multi-category decision making
paradigm. Drift-diffusion processes are popular in such contexts for their ability
to mimic underlying neural mechanisms. Motivated by these problems, we develop a
novel Bayesian semiparametric inverse Gaussian drift-diffusion mixed model for multi-
alternative decision making in longitudinal settings. We design a Markov chain Monte
Carlo algorithm for posterior computation. We evaluate the method’s empirical per-
formances through synthetic experiments. Applied to our motivating longitudinal
tone learning study, the method provides novel insights into how the biologically
interpretable model parameters evolve with learning, differ between input-response
tone combinations, and differ between well and poorly performing adults.
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1 Introduction

Understanding the cognitive and biological mechanisms underlying our ability to learn

new speech categories in adulthood constitute important questions in auditory neuro-

science. Recent studies have demonstrated that adults are capable of learning features

of a second language to a high degree of efficiency, demonstrating that age need not

always constrain language learning abilities. The inherent dynamic complexities un-

derlying learning in adulthood are not yet well understood but are being studied

through extensive ongoing research.

The research reported here is motivated particularly by experiments on the ac-

quisition of Mandarin tones by native speakers of English. Native speech categories

are acquired during the first year of life, within a so-called phonetic sensitivity pe-

riod. There is a greater neural commitment to native-language speech sounds, and

this commitment may preclude the learning of novel speech categories in adulthood

(Johnson and Newport, 1989; Iverson et al., 2003). In Mandarin Chinese, there

are four tone categories that systematically change word meaning, similar to conso-

nants and vowels in English. These tones are, however, linguistically irrelevant in

English. English native speakers thus struggle to distinguish the four tones and gen-

eralize their differences (Wang et al., 1999; Chandrasekaran et al., 2010; Maddox and

Chandrasekaran, 2014). In laboratory settings, combining exposure to perceptually

variable tones with trial-by-trial corrective feedback can improve tone categorization

skills within a few hundred trials. Reaching a native like proficiency, however, may

take several sessions of training (Xie et al., 2017; Reetzke et al., 2018). The percep-

tual and sensory representation of Mandarin tones gets fundamentally refined over

the course of this learning period (Feng et al., 2019). Understanding this longitudinal

evolution is critical to assess the cognitive dynamics of speech category learning. The

statistical challenge is to make this assessment indirectly from behavioral data on

tone categorization responses and response times.

To this end, we identify the Mandarin tone categorization problem with the

broader class of problems of multi-category decision making under perceptual stim-

uli (Smith and Ratcliff, 2004; Heekeren et al., 2004; Gold and Shadlen, 2007; Schall,

2001; Purcell, 2013; Glimcher and Fehr, 2013). In such contexts, drift-diffusion pro-

cesses are popular models for behavioral accuracies and response times as they mimic

the accumulation of sensory evidence in favor of different decision alternatives in the

human brain (Ratcliff, 1978; Ratcliff et al., 2016). The existing literature on drift-

diffusion models is substantive (Smith and Vickers, 1988; Ratcliff and Rouder, 1998;

Ratcliff and McKoon, 2008). These classical methods, as well as their recent adapta-

tions using reinforcement learning based ideas (Fontanesi et al., 2019; Pedersen et al.,

2017; Peters and D’Esposito, 2020), are, however, heavily focused on the two category

case with a single latent diffusion process and two boundaries, one for each of the

two decision alternatives. This is despite the fact that humans often are required
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to learn more than two categories at once. For example, English has 14 vowels and

24 consonant phonemes; Mandarin has four tone categories, etc. The joint likeli-

hood of accuracies and response times under models with a single diffusion process

is mathematically complex and computationally expensive (Navarro and Fuss, 2009;

Tuerlinckx, 2004; Tuerlinckx et al., 2001). Inference in such models is thus often

based on approximations of the likelihood (Vandekerckhove and Tuerlinckx, 2007),

or on the conditional likelihood of the response times, conditioned on the decisions

(Vandekerckhove et al., 2008). Multi-category drift-diffusion models with separate

latent processes, one for each decision category and simultaneously at play, have been

developed to address some of the limitations (Usher and McClelland, 2001; Brown

and Heathcote, 2008; Leite and Ratcliff, 2010; Dufau et al., 2012; Kim et al., 2017),

but the relevant literature remains sparse and focused only on simple static designs.

Learning to distinguish Mandarin tones or, more generally, to make categoriza-

tion decisions is, however, a dynamic process, driven by continuous and nuanced

perceptual adjustments in our brain and behavior over time. The existing simple

static models are thus severely limited in their ability to capture the true inherent

complexities, including assessing the biologically relevant changes that take place

over the learning period. Principled statistical approaches to multi-category dynamic

drift-diffusion mixed effects models, that appropriately accommodate fixed effects of

experimental factors as well as random effects due to subjects, are therefore highly

needed but present daunting methodological and computational challenges.

In this article, we address these challenges by developing a novel biologically in-

terpretable flexible Bayesian semiparametric inverse Gaussian drift-diffusion mixed

model for studying multi-alternative perceptual decision making processes in longi-

tudinal settings.

Our construction proceeds by characterizing the accumulation of evidence for dif-

ferent input-response tone combinations by associated independent Wiener diffusion

processes, resulting in an inverse Gaussian distribution based joint probability model

for the final response tone and the associated response time. To adapt this to a

longitudinal mixed model setting, we then assume the model parameters to comprise

input-response tone specific fixed effects and subject specific random effects, model-

ing them both by mixtures of locally supported B-spline bases (de Boor, 1978; Eilers

and Marx, 1996) spanning the length of the longitudinal experiment. Both these ef-

fects are thus allowed to evolve flexibly as smooth functions over the training period

(Ramsay and Silverman, 2007; Morris, 2015; Wang et al., 2016) as the participants

get more experience and training in their assigned decision tasks.

Dependence in the fixed effects model spline coefficients across adjacent temporal

regions is induced via hidden Markov models (HMMs) (McDonald and Zucchini, 1997;

Rabiner, 1989; Frühwirth-Schnatter, 2006; Cappé et al., 2005), one for each input-

response tone combination but all sharing a common state space, as well as a novel
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smoothness inducing Markovian prior on the core spline coefficients. The HMMs,

adapted in such novel ways, induce a local clustering of the fixed effects spline coeffi-

cients associated with different input-response tone combinations, in effect, allowing

us to assess local similarities and differences between the corresponding parameter

trajectories in different learning phases.

This ability to infer local similarities and differences in the cognitive dynamics is

theoretically and practically relevant for tone learning applications. The underlying

mechanisms are expected to be very similar when the participants are first introduced

to the tones; differences may appear as they get better at identifying the tones as

some tones may be easier to identify than others in this stage; these differences may

start to disappear again in later stages of the experiment as the participants become

highly proficient in identifying all the different tones. As for individual heterogeneity,

neural measures of sensory encoding information collected prior to the learning task

show no clear individual differences, even though the process of learning itself results

in good and poor learners (Reetzke et al., 2018).

The literature on longitudinal data analysis models is enormous. See, for example,

books by Diggle et al. (2002); Singer et al. (2003); Fitzmaurice et al. (2008) and the

references therein. Bayesian methods for longitudinal data have also been extensively

developed (Daniels and Pourahmadi, 2002; Chib and Hamilton, 2002; Li et al., 2010;

Müller et al., 2013; Quintana et al., 2016, etc.). The problem of modeling locally

clustered effects has, however, not garnered much attention. We can only mention

Petrone et al. (2009); Nguyen and Gelfand (2011, 2014), all of which were designed

primarily for normally distributed functional data with continuous covariates. It is

not clear how these approaches can be adapted to our problem.

Overall, our proposed method takes the existing state-of-the-art many significant

steps forward, including (a) introducing a novel biologically interpretable class of

multi-category inverse Gaussian drift-diffusion models for decision making, (b) ac-

commodating fixed effects of perceptual stimuli and random effects due to subject

specific heterogeneity in such models in a statistically principled manner, (c) adapt-

ing these models to longitudinal study designs, studying the temporal evolution of the

underlying process parameters as the subjects get trained and experienced in their

assigned decision tasks, (d) allowing the process parameters to be locally clustered,

enabling the assessment of their similarities and differences in various learning stages.

Applied to our motivating tone learning data set, the proposed method provides

many novel insights into the cognitive dynamics, allowing us to answer important

scientific questions completely outside the scope of the previously existing literature.

These include a detailed understanding of how biologically significant model parame-

ters, that systematically relate to the underlying neural processes, evolve and interplay

to enable gradual longitudinal learning in the participants, how similar or different

these parameters are across different input and output tone combinations in different
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learning phases, how these processes differ between a good and a bad learner, etc.

The rest of this article is organized as follows. Section 2 provides additional back-

ground on tone learning and drift-diffusion models. Section 3 details our novel locally

varying longitudinal drift-diffusion mixed model. Section 4 outlines computational

challenges and solution strategies. Section 5 presents the results of the proposed

method applied to tone learning data. Section 6 contains concluding remarks. Sub-

stantive additional details, including a Markov chain Monte Carlo (MCMC) based

posterior inference algorithm and results of simulation experiments, are presented in

the supplementary materials.

2 Behavioral Data and Scientific Background

The behavioral data set that motivated our research comes from an intensive multi-

day longitudinal speech category training study reported previously in Reetzke et al.

(2018). In this study, n = 20 native English-speaking adults were trained to categorize

Mandarin Chinese syllables into lexical tone categories as a function of their pitch

contour. Mandarin Chinese has four syllabic pitch contours or tones that are used

to convey different lexical meanings. For example, in Mandarin Chinese, the syllable

‘ma’ can be interpreted as ‘mother’, ‘hemp’, ‘horse’, or ‘scold’ depending on whether is

pronounced with a high-level (T1), low-rising (T2), low-dipping (T3), or high-falling

(T4) tone, respectively. The stimuli consisted of these tones pronounced by four native

Mandarin speakers. The trials were administered in homogeneous blocks. Each block

comprised 40 categorization trials for 40 different speech exemplars, corresponding

to different combinations of speakers, syllables, and input tones. Participants were

trained across several days, with five blocks on each day. On each categorization trial,

participants indicated the tone category they heard via a button press on a computer

keyboard. Following the button press, the participants were given corrective feedback

(‘Correct/Incorrect’) on a computer screen which was previously shown to be more

effective in enhancing learning compared to full feedback (for example, ‘Incorrect,

that was a category 2’) (Chandrasekaran et al., 2014). Individual categorization

performance was monitored across training sessions until each participant achieved

and maintained accuracy levels comparable to that of native speakers of Mandarin.

The data consist of the tone responses and the associated response times for

different input tones for the 20 participants. We focus here on the first two days of

training (10 blocks in total) as they exhibited the steepest improvement in learning

as well as the most striking individual differences relative to any other collection of

blocks (Figure 1). In that sense, they provide an optimal longitudinal frame to assess

the effects of learning on decision making variables.

Tone learning can be viewed from a broader perspective of multi-category decision

making tasks, and hence can be studied using computational models developed for
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Figure 1: Left panel: Proportions of times an input tone was classified into different
tone categories by different subjects. The thick line represents the average perfor-
mance across subjects. Right panel: Associated response times averaged across sub-
jects for clarity. In both panels, high-level tone responses are shown in red; low-rising
in blue; low-dipping in green; and high-falling in purple.

such tasks. We present here a brief nontechnical overview of how these models relate

to the underlying neurobiology. Mathematical details and developments are deferred

to Section 3.

In a typical multi-category decision task, the brain accumulates sensory evidence

in order to make a categorical decision. This accumulation process is reflected in

increasing firing rate at local neural populations associated with alternative decisions.

A decision is taken when neural activity in one of these populations crosses a particular

threshold level. The decision category that is finally chosen is the one whose decision

threshold is crossed first (Gold and Shadlen, 2007; Brody and Hanks, 2016).

Changes in evidence accumulation rates and decision thresholds can be induced by

task difficulty, neurostimulation, and/or individual differences in cognitive function

(Cavanagh et al., 2011; Ding and Gold, 2013). Decision-making is also regulated

by demands on both speed and accuracy as a function of the task (Bogacz et al.,

2010; Milosavljevic et al., 2010). The overall learning accuracies (‘Correct/Incorrect’

response proportions) in our data set were previously analyzed in Paulon et al. (2019)

using a binary logistic longitudinal mixed model. In a different context, Craigmile

et al. (2010) had developed a model for response times. Separate models for accuracies

and response times cannot, however, provide a meaningful interpretation of the speed-

accuracy trade-off.

An excellent basis for jointly modeling accuracies and response times is obtained

by imitating the underlying neural evidence accumulation mechanisms via latent drift-

diffusion processes racing toward their respective boundaries, the process reaching its

boundary first producing the final observed decision and the time taken to reach

this boundary giving the associated response time (Figure 2) (Usher and McClelland,

2001). The drift and the boundary parameters jointly explain the dynamics of choice,

including the speed-accuracy trade-off. Broadly speaking, decision thresholds remain-
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Figure 2: Drift-diffusion model for perceptual decision making. After an initial δs
amount of time required to encode an input signal s, the evidence in favor of a
response category d accumulates according to a Wiener diffusion process with drift
µd,s. The decision d is eventually taken if the underlying process is the first to reach
its decision boundary bd,s. Here we illustrate a tone learning trial with input tone
T1 (s = 1) that was eventually correctly identified. Section 2 provides additional
neurobiological background. Section 3 provides additional mathematical details.

ing fixed, higher drift rates lead to faster and more accurate responses; for fixed drift

rates, higher decision thresholds, on the other hand, increase response times as well

as inaccuracies.

In our motivating tone learning experiment, we are interested in understanding the

evolution and interplay of the drift and the boundary parameters behind the improved

tone identification performances over training. Importantly, as was also discussed in

the introduction, we are not just interested in estimating the overall trajectories of

these parameters but also how they might differ between different input-response tone

combinations locally in different longitudinal stages of the experiment. Additional

interest lies in assessing subject level heterogeneity in these parameter trajectories,

including particularly how they differ between good versus bad learners.

3 Longitudinal Drift-Diffusion Mixed Models

The basic Wiener diffusion process can be specified asW (τ) = µτ+σB(τ), whereB(τ)

is the standard Brownian motion, µ is the drift rate, and σ is the diffusion coefficient
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(Cox and Miller, 1965; Ross et al., 1996). The process has independent normally dis-

tributed increments, that is, ∆W (τ) = {W (τ + ∆τ)−W (τ)} ∼ Normal(µ∆τ, σ2∆τ),

independently from W (τ). The first passage time of crossing a threshold b, τ =

inf{τ ′ : W (0) = 0,W (τ ′) ≥ b}, is then distributed according to an inverse Gaussian

distribution (Whitmore and Seshadri, 1987; Chhikara, 1988; Lu, 1995) with density

f(τ | µ, σ2, b) = b√
2πσ2

τ−3/2 exp
{
− (b−µτ)2

2σ2τ

}
, b > 0, µ > 0, σ2 > 0.

With θ = (µ, σ, b)T, we have E(τ | θ) = b/µ and var(τ | θ) = bσ2/µ3.

Given perceptual stimuli and a set of decision choices, the neurons in the brain

accumulate evidence in favor of the different alternatives. Modeling this behavior

using Wiener processes with unit variances, assuming that a response is given when

the decision threshold for one of the options is crossed, a probability model for the

time τd to reach the threshold for the dth decision category under the influence of the

sth stimulus is obtained as

f(τd | δs, µd,s, 1, bd,s) =
bd,s√
2π

(τd − δs)−3/2 exp
[
−{bd,s−µd,s(τd−δs)}2

2(τd−δs)

]
, (1)

where µd,s denotes the rate of accumulation of evidence, bd,s the decision boundaries,

and δs an offset representing the collective time required to encode the sth signal

before evidence accumulation begins, the time to press a computer key to record a re-

sponse after a decision is reached, etc. (Figure 2). We now let θd,s = (δs, µd,s, bd,s)
T.

Since a decision d is reached at response time τ if the corresponding threshold is

crossed first, that is when {τ = τd} ∩d′ 6=d {τd′ > τd}, we have d = arg min τd′ . As-

suming simultaneous accumulation of evidence for all decision categories, modeled by

independent Wiener processes, and termination when the threshold for the observed

decision category d is reached, the joint distribution of (d, τ) is thus given by

f(d, τ | s,θ) = g(τ | θd,s)
∏

d′ 6=d{1−G(τ | θd′,s)}. (2)

where, to distinguish from the generic notation f , we now use g(· | θ) and G(· | θ)

to denote, respectively, the probability density function (pdf) and the cumulative

distribution function (cdf) of an inverse Gaussian distribution, as defined in (1). We

refer to model (2) as the inverse Gaussian drift-diffusion model.

The marginal distribution of the response times τ under the influence of stimulus

s is then obtained as

f(τ | s,θ) =
∑

d g(τ | θd,s)
∏

d′ 6=d {1−G(τ | θd′,s)} . (3)

The marginal probability of taking decision d under the influence of stimulus s is

likewise obtained as
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f(d | s,θ) =
∫∞
δs
g(τ | θd,s)

∏
d′ 6=d {1−G(τ | θd′,s)} dτ. (4)

Interestingly, model (4) is similar to traditional multinomial probit/logit regression

models (Borooah, 2002; Agresti, 2018) except that the latent variables are now in-

verse Gaussian distributed as opposed to being normal or extreme-value distributed,

and the observed category is associated with the minimum of the latent variables in

contrast to being identified with the maximum of the latent variables.

In an interesting recent work, Kunkel et al. (2019) have also used an inverse

Gaussian distribution based hierarchical Bayesian model for decision making, albeit

in a simpler binary category case, focusing primarily on individual level models with

no mechanism to assess population level effects or their dynamic complexities.

For our motivating longitudinal tone learning experiment described in Section 2,

for i ∈ {1, . . . , n = 20}, ` ∈ {1, . . . , L = 40}, t ∈ {1, . . . , T = 10}, let si,`,t denote

the input tone for the ith individual in the `th trial in block t. Likewise, let di,`,t and

τi,`,t denote, respectively, the selected Mandarin tone and the time taken to reach the

corresponding threshold by the ith individual in the `th trial in block t. We now have

g{τi,`,t | si,`,t = s,θ
(i)
d,s(t)} =

b
(i)
d,s(t)√

2π(τi,`,t−δ
(i)
s )3/2

exp

[
−{b

(i)
d,s(t)−µ

(i)
d,s(t)(τi,`,t−δ

(i)
s )}2

2(τi,`,t−δ
(i)
s )

]
. (5)

The drift rates µ
(i)
d,s(t) and the decision boundaries b

(i)
d,s(t) now also vary with the blocks

t. In addition, we accommodate random effects by allowing δ
(i)
s , µ

(i)
d,s(t) and b

(i)
d,s(t) to

also depend on the subject index i. We let yi,`,t = (di,`,t, τi,`,t), y = {yi,`,t}i,`,t, and

d0 = 4 be the number of possible decision categories (T1, T2, T3, T4). The likelihood

function of our longitudinal drift-diffusion mixed model thus takes the form

L(y | s,θ) =

d0∏
d=1

d0∏
s=1

T∏
t=1

n∏
i=1

L∏
`=1

(
g{τi,`,t | θ(i)

d,s(t)}
∏
d′ 6=d

[1−G{τi,`,t | θ(i)
d′,s(t)}]

)1{di,`,t=d,si,`,t=s}

.

3.1 Modeling the Offsets

The offset parameters δ
(i)
s , we recall, signify the times spent on encoding the different

input tones, the time to press computer keys to record the responses, etc., and hence

are not directly relevant to the actual decision making processes. These parameters

are thus biologically not very interesting but may still vary between individuals and

have an important effect on the estimates of drift rates and boundaries (Teichert

et al., 2016). We thus let them vary between input stimuli and participants but

assume them to remain stable across blocks as in (5).
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We assign uniform priors on δ
(i)
s ∼ Unif(0, δs,i,max), where δs,i,max is the min-

imum of all response times under stimulus s for individual i, that is, δs,i,max =

min{(`,t):si,`,t=s} τi,`,t.

3.2 Modeling the Drifts and the Boundaries

Our modeling efforts concentrate henceforth on flexibly characterizing the longitu-

dinal evolution of the mixed effects parameters µ
(i)
d,s(t), b

(i)
d,s(t). Variations in these

parameters over training blocks explain perceptual learning in the participants. Vari-

ations across participants, on the other hand, explain their performance heterogeneity.

Following the discussion in the introduction, of particular interest are the local sim-

ilarities and differences between these parameters for different input-response tone

combinations (d, s) in different learning phases.

To this end, we propose essentially identical modeling strategies for µ
(i)
d,s(t) and

b
(i)
d,s(t). For ease of exposition avoiding unnecessary repetition, we describe below only

these common strategies using simplified generic notations. With x = (d, s) ∈ X =

{(1, 1), (1, 2), . . . , (4, 4)} ≡ {1, 2, . . . , xmax}, xmax = 4× 4, succinctly representing the

input-response tone combinations and, with some abuse, θ
(i)
x (t) being a generic for

µ
(i)
d,s(t) and b

(i)
d,s(t), we let

θ(i)x (t) = exp{fx(t) + u(i)x (t)}, u(i)x (t) ∼ fu{u(i)x (t)}. (6)

The exponentiation in (6) enforces positivity constraints; fx(t) and u
(i)
x (t) denote,

respectively, additive fixed and random effects components in the exponential scale;

fu denotes the underlying random effects distribution. When needed, the fixed and

random effects components for the drifts and the boundaries, as well as associated

parameters and hyper-parameters, will be distinguished by reintroducing the sub-

scripts as fµ,x(t), fb,x(t), u
(i)
µ,x(t), u

(i)
b,x(t) etc. To further simplify notation, generic data

recording experimental blocks in {1, . . . , T} as well as other generic time points in

[1, T ] will both be denoted by t. Likewise, generic input-response tone combinations

as well as their particular values will both be denoted by x and so forth.

We model the components fx(t) and u
(i)
x (t), and hence θ

(i)
x (t), to all be smoothly

varying functions over t ∈ [1, T ]. A functional approach is not strictly necessary

if inference is restricted only to the T data recording blocks blocks t ∈ {1, . . . , T}.
Learning may, however, be viewed as a continuous process - the brain synthesizes

information from relevant past experiences even when not being actively engaged in

actual decision making. A functional approach to modeling fx(t) and u
(i)
x (t) for any

t ∈ [1, T ], not just the experimental blocks t ∈ {1, . . . , T}, thus facilitates parameter

interpretability. A functional approach is also practically convenient in characterizing

smoothly varying longitudinal parameter trajectories.
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In modeling the fixed effects components fx(t), we are not only interested in

characterizing their overall trajectories over time t for different input-response com-

binations x = (d, s) but also how they might vary locally between different values of

x in different learning stages. Compared to the fixed effects, we have to, however,

rely on much less data to estimate the random effects u
(i)
x (t) for different x = (d, s)

and different participant i, especially for d 6= s toward later stages of the experiment

when most participants identify the input tones with high accuracies. Our models

and inferential goals for the random effects u
(i)
x (t) will therefore be relatively modest.

3.2.1 Locally Varying Functional Fixed Effects

We now propose a novel approach to modeling the latent functions fx(t) using basis

decomposition methods that allow them to smoothly vary with the blocks t while also

depending locally on the indexing variable x. To begin with, we let

fx(t) =
∑K

k=1 β
(x)
k Bk(t), (7)

where B(t) = {B1(t), . . . , BK(t)}T are a set of known locally supported basis func-

tions spanning [1, T ], β(x) = (β
(x)
1 , . . . , β

(x)
K )T are associated unknown coefficients to

be estimated from the data. In this article, we use quadratic B-spline bases with

knot points coinciding with the block locations. B-splines are non-negative, contin-

uous and have desirable local supports (Figure 3). Mixtures of B-splines are highly

flexible (de Boor, 1978). Allowing the β
(x)
k ’s to flexibly vary with x, the model can

accommodate widely different shapes for different input-response tone combinations.

0.00

0.25

0.50

0.75

1.00

1 = t1 = t2 = t3 t4 t5 t6 t7 t8 t9 = t10 = t11 = T

Figure 3: Plot of 8 quadratic B-splines on an interval [1, T ] defined by 11 knot points
that divide [1, T ] into K = 6 equal subintervals.

It is difficult to assess how similar or different these functions are using such

unstructured models. One potential solution is to cluster the spline coefficients β(x)

associated with different input-response tone combinations x. If, for example, β(x1) =

β(x2) for two combinations x1 and x2, then we have fx1(t) = fx2(t) for all t.

Such global clustering of all elements of β(x) together does not, however, allow us to

straightforwardly assess the local similarities and differences between these functions
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in different learning phases. To induce a desirable local cluster inducing mechanism,

we introduce a set of latent variables z
(x)
k for each input-response tone combination x

with a shared state space X , and associated core coefficients β?k,z and let

(β
(x)
k | z

(x)
k = zk) = β?k,zk , implying {fx(t) | z(x)k = zk, k = 1, . . . , K} =

∑K
k=1 β

?
k,zk

Bk(t). (8)

The set of B-spline coefficients to be estimated at the kth location now comprises the

β?k,zk ’s that are indexed by z
(x)
k = zk at that location k. When z

(x1)
k = z

(x2)
k for two

different levels x1 and x2 of x, we have β
(x1)
k = β

(x2)
k and the implied functions fx1(t)

and fx2(t) will tend to be similar at location k. Indeed, for quadratic B-splines with

knots at the blocks {1, . . . , T}, fx1(t) and fx2(t) will be exactly equal at block t when

z
(x1)
t = z

(x2)
t and z

(x1)
t+1 = z

(x2)
t+1 .

In theory, we could use B-splines of other small degrees as they all enjoy local

support properties. With linear splines, however, smoothness becomes harder to

control, and with cubic splines, three latent variables would be needed to determine

the cluster configuration at each block t. We found quadratic B-splines to be a

good compromise between the two for modeling smoothly varying curves while also

maintaining easy interpretability of the latent variables.

Letting Zk = {zk : z
(x)
k = zk for some x ∈ X}, the case |Zk| = 1 then characterizes

the scenario when the the spline coefficients for all input-response tone combinations

x are the same at location k. On the other end, when |Zk| = xmax = 4 × 4, the

spline coefficients are all different for different x at location k. In our tone learning

application, |Zk| tend to be much smaller than xmax uniformly for all k and the

restricted support z
(x)
k ∈ {1, . . . , zmax} ⊂ X with zmax = 8 < xmax = 16 will suffice.

z1 z2 . . . zT

y1 y2 . . . yT

z
(x)
1 z

(x)
2

. . . z
(x)
K−1 z

(x)
K

β
(x)
1 β

(x)
2

. . . β
(x)
K−1 β

(x)
K

y
(x)
1 y

(x)
2

. . . y
(x)
K−2 y

(x)
K−1

Figure 4: Left panel: Graph of a conventional HMM. Right panel: Graph of our
proposed functional HMM model (8) with quadratic B-splines (Figure 3) with knots
points coinciding with the data recording time blocks (T = K − 1).

We model the temporal evolution of the latent local cluster indicators z
(x)
k , k =

1, . . . , K, using hidden Markov models (HMMs) (Figure 4). We consider two types

of dynamics for the latent states corresponding to correct (C) and incorrect (I) iden-

tification of the tones. That is,
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(z
(d,s)
k | z(d,s)k−1 = zk−1) ∼ Mult(π

(C)
zk−1,1

, . . . , π(C)
zk−1,zmax

) when d = s,

(z
(d,s)
k | z(d,s)k−1 = zk−1) ∼ Mult(π

(I)
zk−1,1

, . . . , π(I)
zk−1,zmax

) when d 6= s.

The latent cluster inducing variables z
(x)
k ’s are shared between fµ,x(t) and fb,x(t), re-

ducing computational complexities while also facilitating model interpretability. We

assign Dirichlet priors on the transition probabilities

π
(C)
z = (π

(C)
z,1 , . . . , π

(C)
z,zmax)T ∼ Dir(α(C)/zmax, . . . , α

(C)/zmax) with α(C) ∼ Ga(aα, bα),

π
(I)
z = (π

(I)
z,1, . . . , π

(I)
z,zmax)T ∼ Dir(α(I)/zmax, . . . , α

(I)/zmax) with α(I) ∼ Ga(aα, bα).

We next consider priors for the atoms β?k,zk . Conditional on the z
(x)
k ’s and the

coefficients at the previous locations, for k = 2, . . . , K, we construct the priors se-

quentially as

β?k,zk ∼


∏

{z(x)k−1: x∈X
(zk)

k }

Normal

(
β?
k−1,z(x)k−1

, σ2
β,1

)
if |X(zk)

k | > 0,

Normal(µβ,0, σ
2
β,0) otherwise,

(9)

where X
(zk)
k = {x : z

(x)
k = zk} is the set of values of x that, at the location k, are

assigned the label zk. In constructing the prior in this manner, we center the core

coefficients around the ones that are ‘expressed’ at the previous location (Figure

5), penalizing their first order differences. The coefficients that are not associated

with any levels of x are assigned a normal prior with a large variance σ2
β,0. The

initial coefficients are assigned non-informative flat priors as β?1,zk ∼ 1. Additional

illustrations on these smoothness inducing priors on the core coefficients can be found

in Section S.2 of the supplementary materials.

The smoothness of the curves is controlled by the parameter σ2
β,1 and is assigned

a prior, allowing it to be informed by the data. We let

σ2
β,1 ∼ C+(0, 1),

where C+(a, b) denotes a half-Cauchy distribution (Gelman, 2006; Polson and Scott,

2012) with location parameter a and scale parameter b. The half-Cauchy distribution,

which attains its mode at zero, is capable of capturing strong smoothness, while also

having heavy tails, thus being capable of capturing wiggly functions. The choice of the

scale hyper-parameter is discussed in Section S.5.1 in the supplementary materials.

Importantly, although our basic building blocks for the fixed effects compo-

nents comprise conventional HMMs, one for each input-response tone combination
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Figure 5: An illustration of the prior on the spline core coefficients β?k,zk at location k
(marked by the dashed vertical lines) in the fixed effects model developed in Section
3.2.1 for a synthetic scenario with x ∈ {1, 2, 3}, where the curves corresponding to
the three levels of x are initially equal, the curves for x = 1, 3 (in red) and x = 2 (in
blue) then diverge at t = 6, merging back again at t = 15.

x = (d, s), for any input tone s, all four latent variables z
(1,s)
k , z

(2,s)
k , z

(3,s)
k , z

(4,s)
k si-

multaneously appear in equation (2). For each input tone, the graph for our tone

learning model (Figure 6 and Figure S.6 in the supplementary materials) thus re-

sembles a factorial HMM (Ghahramani and Jordan, 1997, fHMM) with four hidden

layers. In the posterior, a latent state z
(d,s)
k is thus informed by all responses generated

under the tone s, not just the subset corresponding to x = (d, s). This has important

consequences for posterior inference, as we discuss in Section 4.

3.2.2 Locally Varying Functional Random Effects

We now focus on flexibly modeling the functional random effects components. For

reasons outlined before Section 3.2.1, estimating u
(i)
x (t) for each different x is a chal-

lenging task. For any participant, the random effects for correct and incorrect iden-

tification of the tones may, however, be expected to be on the opposite sides of the

corresponding population level curves. Taking a middle path, we thus allow different

random effects u
(i)
C (t) and u

(i)
I (t) for correct (C) and incorrect (I) identifications, re-

spectively, as

u
(i)
d,s(t) = u

(i)
C (t) when d = s, u

(i)
d,s(t) = u

(i)
I (t) when d 6= s.

We adopt a common strategy to model both u
(i)
C (t) and u

(i)
I (t). Suppressing the

subscripts to simplify notation and avoid repetition, we model the time-varying ran-

dom effects components u(i)(t) as
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Figure 6: Graph of the proposed fixed effects model for tone learning.

u(i)(t) =
∑K

k=1 β
(i)
k,uBk(t),

β(i)
u ∼ MVNK{0, (σ−2u,aIK + σ−2u,sPu)

−1},
(10)

where β(i)
u = (β

(i)
1,u, . . . , β

(i)
K,u)

T are subject-specific spline coefficients, MVNK(µ,Σ)

denotes a K dimensional multivariate normal distribution with mean µ and co-

variance Σ. We choose Pu = DT
uDu, where the (K − 1) × K matrix Du is such

that Duβ
(i)
u computes the first order differences in β(i)

u . The model thus penalizes∑K
k=1(∇β

(i)
k,u)

2 = β(i)T
u Puβ

(i)
u , the sum of squares of first order differences in β(i)

u

(Eilers and Marx, 1996). The random effects variance parameter σ2
u,s models the

smoothness of the random effects curves, smaller σ2
u,s inducing smoother u(i)(t)’s.

Additional variations from the constant zero curve are explained by σ2
u,a (Figure 7).

The absence of random effects is signified by the limiting case σ2
u,s = σ2

u,a = 0. We

assign half-Cauchy priors on the variance parameters as

σ2
u,s ∼ C+(0, 1), σ2

u,a ∼ C+(0, 1).
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Figure 7: An illustration of the functional random effects model proposed in Section
3.2.2. Each panel shows a collection of 10 random draws from the random effects
distribution for a combination of values of (σ2

u,s, σ
2
u,a).

Modeled in the same space of quadratic B-splines, the fixed and the random

effects curves thus share similar smoothness properties. Having different smoothness

controlling parameters, they are, however, allowed to have different smoothness levels.

A similar approach, but with additional assumptions on the covariance matrix of the

random effects, has previously been developed in Guo (2002). To our knowledge,

model (10) for the random effects is thus also novel to the literature.

Integrating out the random effects, the corresponding population level parameters

θx(t) are obtained as

θx(t) =
∫

exp{fx(t) + u
(i)
x (t)}fu{u(i)x (t)}du(i)x (t) = exp

[
fx(t) + var{u(i)x (t)}

2

]
.

4 Posterior Inference

Posterior inference for conventional HMMs can generally be based on samples drawn

from the posterior using dynamic message passing MCMC algorithms (Rabiner, 1989;

Scott, 2002). The nonstandard inverse Gaussian likelihood and the fHMM type model

structure of our proposed longitudinal drift-diffusion mixed model, however, bring

in significant additional complexities. We adapt recent advances in MCMC algo-

rithms for discrete spaces (Neal, 2003; Van Gael et al., 2008; Titsias and Yau, 2014;

Zanella, 2019) in novel non-trivial ways, designing locally informative slice sampling

moves that carefully exploits the conditional independence relationships encoded in
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the model to overcome the computational challenges. Due to space constraints, the

details are deferred to Section S.5 in the supplementary materials.

5 Application to Tone Categorization Data

In this section, we discuss the results produced by our method applied to the tone

category learning data described in Section 2. Our primary inference goals, we recall,

include understanding systematic longitudinal variations in perceptual categorization

decision as the participants get better at identifying the four Mandarin tones with

there being some additional interests in assessing individual specific trajectories, es-

pecially how they differ between good and bad learners.

Figure 8 shows the posterior mean trajectories and associated 90% credible inter-

vals for the boundaries bd,s(t) and the drift rates µd,s(t) estimated by our method for

different combinations of (d, s). Figure 9 reports the estimated posterior probabilities

of each of the
(
4
2

)
= 6 pairs of success (d = s) parameters to cluster together in dif-

ferent blocks. Figure S.16 in the supplementary materials additionally presents the

drift curves for successful identifications (d = s) superimposed on each other. These

results suggest that after an initial learning phase, where the underlying processes

are all similar across all input tones, there are two main learning groups. Two of the

tones {T1, T3} seem to be easier to learn, as the corresponding drift parameters are

larger, and tones {T2, T4} are more challenging. These findings are corroborated by

empirical evidence and have significant biological relevance. The similarity groups of

the mandarin tones are in fact {T1, T3}, which are characterized by the height of

the pitch, and tones {T2, T4}, which are characterized by the direction of the pitch

and are more challenging to learn. Tone T3, in particular, has a unique ’dipping’

pitch pattern that is rarely encountered in English (Song et al., 2008), and therefore

is easier to categorize. Our proposed method allows similar inferential questions to be

answered for the drift parameters corresponding to misclassifications, as well as for

all the boundary parameters. The misclassification drift curves are mostly similar to

each other, although some minor local differences can be found. Notable exceptions

are µ1,3(t) and µ3,1(t) which are significantly smaller than all other drifts after the

third block. As the participants get trained and experienced, for input tone T1, evi-

dence in favor of tone T3 is thus collected more slowly compared to evidence in favor

of T2 and T4, and vice versa. Likewise, while the boundary curve estimates mostly

remain constant over the training blocks and similar to each other, b1,3(t) and b3,1(t)

again differ from the rest and actually increase over the blocks. As the participants

get trained and experienced, more evidence in favor of tone T3 is thus needed to mis-

classify tone T1 as tone T3 and vice versa. These suggest that, as the participants

get trained and experienced, tones T1 and T3 become harder to misclassify for one

another.
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Figure 8: Results for tone learning data: Estimated posterior mean trajectories of
the population level drifts µd,s(t) (left panel) and boundaries bd,s(t) (right panel) for
the proposed longitudinal inverse Gaussian drift-diffusion mixed model. The shaded
areas represent the corresponding 90% point wise credible intervals. Parameters for
the high-level tone response category T1 are shown in red; low-rising T2 in blue;
low-dipping T3 in green; and high-falling T4 in purple.
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Figure 9: Results for tone learning data: Pairwise posterior co-clustering probabilities
of the parameter trajectories for successful identification (d = s) of different input
tones in different learning phases. The estimated posterior probability of (µ2,2, b2,2)
and (µ3,3, b3,3) being clustered together, and hence being equal, in the 3th block is
thus 0.74, as shown in row (2, 3) and column 3. Equivalently, the estimated posterior
probability of (µ2,2, b2,2) and (µ3,3, b3,3) being different in the 3th block is 0.26.

Importantly, our proposed drift-diffusion mixed model not only allows population

level inference about the underlying processes but also allows us to assess individ-

ual specific parameter trajectories. Figure 10 shows the posterior mean trajectories

and associated 90% credible intervals for the drift rates µ
(i)
s,d and the boundaries b

(i)
s,d

estimated by our method for the different success combinations of (d, s) for two par-
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ticipants - the one with the best accuracy averaged across all blocks, and the one

with the worst accuracy averaged across all blocks. These results suggest significant

individual specific heterogeneity. Importantly, the differences in the performances

can again be explained mostly by differences in the drift trajectories. For the well

performing participant, the drift trajectories increase rapidly with the training blocks

before plateauing down around block 6 at which stage the participant has already

attained native-like proficiency. For the poorly performing candidate on the other

hand, the drift trajectories remain approximately constant across all 10 blocks.

Low-dipping: ǎ High-falling: à

High-level: ā Low-rising: á

1 4 7 10 1 4 7 10

0

1

2

3

4

0

1

2

3

4

block

μ
d

,s
(i

)
(t

)

Low-dipping: ǎ High-falling: à

High-level: ā Low-rising: á

1 4 7 10 1 4 7 10

0

1

2

3

4

0

1

2

3

4

block

b
d

,s
(i

)
(t

)

Figure 10: Results for tone learning data: Estimated posterior mean trajectories for
individual specific drifts µ

(i)
d,s(t) = exp{fµ,d,s(t) + u

(i)
µ,C(t)} (left panel) and boundaries

b
(i)
d,s(t) = exp{fb,d,s(t) + u

(i)
b,C(t)} (right panel) for successful identification (d = s)

for two different participants - one performing well (dotted line) and one performing
poorly (dashed line). The shaded areas represent the corresponding 90% point wise
credible intervals. Parameters for the high-level tone response category T1 are shown
in red; low-rising T2 in blue; low-dipping T3 in green; and high-falling T4 in purple.

We compare the performance of our method with that of the linear ballistic accu-

mulator (LBA) model (Brown and Heathcote, 2008). Similar to our model, the LBA

uses independent evidence accumulators starting at δ that continue until a response

threshold b is reached. The accumulator that first reaches the boundary corresponds

to the decision outcome, and the time taken to reach this decision boundary is the ob-

served response time. The LBA model, however, assumes that the evidence accumu-

lates linearly at the rate µ, reaching the boundary b precisely at time τ = b/µ. Unlike

in drift-diffusion models, where trial-by-trial variability is explained by stochastically

different diffusion paths, the LBA model explains trial-by-trial variability assuming

the slopes µ for different trials to be drawn from a Normal(md,s, vd,s) distribution.

(Figure S.9 in the supplementary materials).

The literature on LBA models has many serious limitations. The normality as-

sumption on the slopes µ clearly does not satisfy any non-negativity constraints.

Existing LBA models are also limited in their use of a common boundary bs for all

decision categories d. There is also no principled way to incorporate systematic stim-
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ulus and decision category specific fixed or individual specific random effects into the

LBA model. Existing literature is also limited to static settings, there is no mechanism

to estimate smoothly varying longitudinal parameter trajectories as the participants

get trained and experienced in their decision tasks. In our implementation, we thus

fitted the LBA model separately for each block. Finally, the likelihood function of

the LBA model is non-convex in the parameters. Parameter estimation based on

optimization of the likelihood function is thus fraught with convergence issues. We

used the rtdists package (Singmann et al., 2019) in R, using several random initial-

izations and tracking the objective function to ensure convergence. A more detailed

review of the LBA model can be found in Section S.7 of the supplementary materials.
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Figure 11: Results for tone learning data: Left: Estimated mean slopes md,s,t for the
LBA model. Right: Estimated boundaries bs,t for the LBA model. In the left panel,
md,s,t’s for the high-level tone response category T1 are shown in red; low-rising T2
in blue; low-dipping T3 in green; and high-falling T4 in purple.

Results produced by the LBA model applied to our motivating tone-learning data

are reported in Figure 11. Owing to the limitations discussed above, the inference we

make with such models is very limited. For instance, only non-smooth population level

estimates are available, individual specific trajectories can not be assessed, etc. Some

of our findings can, however, be confirmed by the LBA method. For example, looking

at the drift parameter estimates, one can see that tone T3 is consistently associated

with larger drifts. As was also seen in the estimates returned by our method, tones

{T2, T4} have similar values for the drift and the boundary parameters. Except such

general overall findings, the LBA model, however, can not answer scientific questions

related to the dynamics of category learning with fine detail.

Our method, on the other hand, provides a biologically interpretable, statisti-

cally principled approach to accommodate fixed effects of input stimuli and decision

categories as well as random subject specific heterogeneity, allows MCMC algorithm

based efficient estimation of longitudinally smoothly evolving parameter trajectories,

borrowing information across sample subgroups, participants as well as adjacent time

stamps through many layers of hierarchy. Crucially, building on a novel local cluster
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inducing mechanism, our method also allows automated assessment of local similari-

ties and differences in the parameter trajectories in very fine detail as the participants

get trained and experienced in their decision tasks.

On the scientific side, the detailed insights obtained here point toward interesting

and novel hypotheses about learning. For example, we demonstrate that a difference

in drift rates, associated with the speed of sensory evidence accumulation, is critical

in determining good vs poor learners. Evidence thresholds, on the other hand, remain

relatively stable over training blocks as well as across participants. Recent studies

have shown that the process of evidence accumulation can be selectively targeted

by brain stimulation (Van der Groen et al., 2018). Novel tone learning studies are

currently being designed to test if such neurostimulation primarily improves the drift

rates but not the evidence thresholds.

On the practical side, the insights obtained above can have important implications

for developing advanced training regimens in language learning platforms used by

millions of adults. Due to poor understanding of the temporal dynamics of learning,

especially in multi-category learning problems, current training regimens are neither

time adaptive nor individualized. Similar to personalized medicine, next-generation

speech training paradigms seek to optimize and individualize training to reduce vast

inter-individual differences in learning success (Wong et al., 2017; Birdsong, 2004).

With our ability to assess detailed longitudinal confusion patterns, we can set up

efficient training paradigms that can change the dynamics of learning in specific ways.

For example, learners may generally benefit from introducing greater variability in

pitch height that allows them to shift their focus on pitch direction and hence can

reduce disparities in tone confusions like that between T2 and T4; poor learners may

additionally benefit from ‘perceptual fading’ - beginning with easy tones like {T1,T3}
and making the training more challenging afterward with the introduction of tones

like {T2,T4}; etc. As mentioned before, non-invasive and safe brain stimulation

approaches like transcranial random noise stimulation and vagus nerve stimulation

can be leveraged to selectively improve the process of sensory accumulation that could

enhance the performance in poor learners.

6 Discussion

Summary: In this article, we proposed a novel longitudinal drift-diffusion mixed

model for perceptual decision making, allowing the underlying mechanisms to be sim-

ilar or different at different longitudinal stages. Our research was motivated primarily

by auditory neuroscience experiments where scientists are interested in understanding

how the decision making mechanisms evolve as the participants get more training in

the decision tasks. Our model was built on a novel statistical framework for longi-

tudinal data that exploited local support properties of B-spline bases and (factorial)
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HMMs to allow automated assessment of local similarities and differences in the un-

derlying parameter trajectories.

Application to our motivating tone categorization experiments provided interest-

ing novel insights into the underlying learning mechanisms. Notably, we discovered

that the improvements and the local variations in tone categorization performance

can be explained mostly by variations in the underlying drift parameters while the

boundaries mostly remain constant. We also discovered local groupings among the

underlying parameter curves in various phases of the learning experiments, how they

differ between well and poorly performing participants etc. Such inferences were

outside the scope of the previously existing literature.

Methodological extensions: Methodological extensions and topics of our on-

going research include adapting the proposed models to time constrained learning

experiments, developing nested models to capture the dynamics within the blocks,

accommodating sleep induced overnight ‘consolidation’ effects, fully developing the

inverse-probit model (4) for accuracies introduced in Section 3, etc.

Broader scientific impact: The proposed approach, we believe, takes the ex-

isting literature on drift-diffusion decision making models many significant steps for-

ward, enabling neuroscientists to study the longitudinal behavior of biologically in-

terpretable model parameters in much finer detail than what previous methods could

achieve.

As reported in Section 5, the findings of our motivating speech learning experiment

help formulate interesting novel scientific hypotheses about speech learning. The

findings are also practically highly significant in providing exciting opportunities for

developing time adaptive and individualized training regimens for language learning.

Efficient estimation of group and individual level trajectories also open exciting

avenues for potential adaptations in clinical settings, especially in conjunction with

simultaneously performed imaging studies.

Finally, the scope of proposed method is also not restricted to auditory neuro-

science problems but the approach can be readily applied to study decision making

mechanisms in other areas of neuroscience as well.

Supplementary Materials

Supplementary materials present substantive additional details. These include brief
reviews of fHMMs, B-splines, locally informed Hamming ball samplers, the linear
ballistic accumulator model, etc. to make the article relatively self-contained. The
supplementary materials also discuss the choice of hyper-parameters for our model,
the MCMC algorithm used to sample from the posterior of our model and its conver-
gence diagnostics. The supplementary materials also present simulation studies and a
comparison with a reduced model further illustrating the efficacy and the advantages
of our proposed method. In separate files, the supplementary materials additionally
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include the tone categorization data set described in Section 2 and analyzed in Section
5, audio recordings of the four input Mandarin tones, and R programs implementing
the longitudinal drift-diffusion mixed model developed in this article.
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Supplementary materials present brief reviews of B-splines, additional illustrations of our
proposed smoothness inducing priors, brief reviews of fHMMs and associated computational
machinery, details of the MCMC algorithm we designed to sample from the posterior, MCMC
performance diagnostics, a review of linear ballistic accumulator models, comparisons with a
simpler sub-model, results of simulation experiments, and some additional figures. Separate
files additionally include the tone categorization data set described in Section 2 and analyzed
in Section 5, audio recordings of the four input Mandarin tones, and R programs implementing
the longitudinal drift-diffusion mixed model developed in this article.
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S.1 B-splines

In the main article, we employed quadratic B-spline bases in the construction of functional
factorial HMMs. The construction of quadratic B-spline bases is detailed below (de Boor,
1978). Consider knot-points t1 = t2 = t3 = A < t4 < · · · < B = tK+3 = tK+4 = tK+5, where
t3:(K+3) are equidistant with δ = (t4 − t3). For j = 3, 4, . . . , (K + 2), quadratic B-splines Bj

are then defined as

Bj(X) =



{(X − tJ−1)/δ}2/2 if tJ−1 ≤ X < tJ ,

−{(X − tJ)/δ}2 + (X − tJ)/δ + 1/2 if tJ ≤ X < tj+2,

{1− (X − tj+2)/δ}2 if tj+2 ≤ X < tj+3,

0 otherwise.

The components at the ends are likewise defined as

B1(X) =

 {1− (X − t1)/δ}2/2 if t3 ≤ X < t4,

0 otherwise.

B2(X) =


−{(X − t3)/δ}2 + (X − t4)/δ + 1/2 if t3 ≤ X < t4,

{1− (X − t4)/δ}2/2 if t4 ≤ X < t5,

0 otherwise.

BK+1(X) =


{(X − tK+1)/δ}2/2 if tK+1 ≤ X < tK+2,

−{(X − tK+2)/δ}2 + (X − tK+2)/δ + 1/2 if tK+2 ≤ X < tK+3,

0 otherwise.

BK+2(X) =

 {(X − tK+2)/δ}2/2 if tK+2 ≤ X < tK+3,

0 otherwise.

Figure 3 in the main paper provides a graphical illustration of these functions.

S.2 Illustration of the Smoothness Inducing Prior

Our proposed model penalizes the difference between the pairs of core coefficients in the
same latent state. Figure 5 in the main paper, reproduced here as Figure S.1 for easy access,
shows the effect of the smoothing prior on the core coefficients in a synthetic scenario with
x ∈ {1, 2, 3}.

In the example in the left panel, at location k − 1 = 5, all of the levels for the covariate
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Figure S.1: An illustration of the prior on the spline core coefficients β?k,zk at location k
(marked by the dashed vertical lines) in the fixed effects model developed in Section 3.2.1
for a scenario with x ∈ {1, 2, 3}, where the curves corresponding to the three levels of x are
initially equal, the curves for x = 1, 3 (in red) and x = 2 (in blue) then diverge at t = 6,
merging back again at t = 15.

x are assigned to the first latent state, yielding the same curve for the three levels of x. At
location k = 6, levels 1 and 3 are assigned to the first latent state, whereas level 2 is assigned
to the third latent state. This corresponds to the case in which the curves for x = 1, 3 and
x = 2 diverge. Therefore, using (9),

• X
(1)
k = {x : z

(x)
k = 1} = {1, 3} and the conditional prior for the core coefficient of the

first latent state is β?k,1 ∼
∏

j∈{z(1)k−1,z
(3)
k−1}

Normal(β?k−1,j, σ
2
β,1) = Normal(β?k−1,1, σ

2
β,1),

• X
(2)
k = {x : z

(x)
k = 2} = ∅ and the conditional prior for the core coefficient of the second

latent state is β?k,2 ∼ Normal(µβ,0, σ
2
β,0),

• X
(3)
k = {x : z

(x)
k = 3} = {2} and the conditional prior for the core coefficient of the

third latent state is β?k,3 ∼
∏

j∈{z(2)k−1}
Normal(β?k−1,j, σ

2
β,1) = Normal(β?k−1,1, σ

2
β,1).

In the example in the right panel, at location k − 1 = 14, levels 1 and 3 are assigned to
the first latent state, whereas level 2 is assigned to the third latent state. At location k = 15,
all of the levels for the covariate x are assigned to the first latent state. This corresponds to
the case in which the curves for x = 1, 3 and x = 2 merge back. Therefore,

• X
(1)
k = {x : z

(x)
k = 1} = {1, 2, 3} and the conditional prior for the core co-

efficient of the first latent state is β?k,1 ∼
∏

j∈{z(1)k−1,z
(2)
k−1,z

(3)
k−1}

Normal(β?k−1,j, σ
2
β,1) =∏

j∈{1,3}Normal(β?k−1,j, σ
2
β,1),

• X
(2)
k = {x : z

(x)
k = 2} = ∅ and the conditional prior for the core coefficient of the second

latent state is β?k,2 ∼ Normal(µβ,0, σ
2
β,0),

• X
(3)
k = {x : z

(x)
k = 3} = ∅ and the conditional prior for the core coefficient of the third

latent state is β?k,3 ∼ Normal(µβ,0, σ
2
β,0).
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S.3 Factorial HMM (fHMM)

The basic HMM (Frühwirth-Schnatter, 2006; McDonald and Zucchini, 1997, etc.) consists
of two processes: an observed process {yt} recorded sequentially over a set of discrete time
points t = 1, 2, . . . , T and an associated hidden process {zt} which evolves according to a
first order Markov chain with discrete state space. Specifically, an HMM makes the following
set of conditional independence assumptions to model the hidden and the observed processes

p(zt | z1:(t−1)) = p(zt | zt−1),
p(yt | y1:(t−1), z1:t) = p(yt | zt).

The distributions p(zt | zt−1) and p(yt | zt) are often referred to as the transition distri-
bution and the emission distribution, respectively.

In factorial HMMs (Ghahramani and Jordan, 1997), the latent states are represented by

a collection of variables {zt} = {(z(1)t , . . . , z
(L)
t )} where each component {z(`)t } now evolves

according to a first order Markov chain with discrete state spaces, and the observed process
{yt} is observed sequentially as before over a set of discrete time points t = 1, 2, . . . , T . An
fHMM thus makes the following set of conditional independence assumptions to model the
hidden and the observed processes

p(zt | z1:(t−1)) =
∏L

`=1 p(z
(`)
t | z(`)t−1),

p(yt | y1:(t−1), z1:t) = p(yt | zt) = p(yt | z(1)t , . . . , z
(L)
t ).

z1 z2 . . . zT

y1 y2 . . . yT

z
(1)
1 z

(1)
2

. . . z
(1)
T

z
(2)
1 z

(2)
2

. . . z
(2)
T

y1 y2 . . . yT

Figure S.2: Left panel: Graph of an HMM. Right panel: Graph of an fHMM with two layers.

In our work, we adapted the basic fHMM to characterize local influences of the categorical
predictor in longitudinal functional models. In the drift-diffusion model of Section 3, for
each input tone s ∈ {1, . . . , d1}, we introduced an fHMM {z(s)

k = (z
(1,s)
k , . . . , z

(d0,s)
k )} with d0

layers, one for each level of the response d. Conditional on z
(d,s)
k = zk, we then associated

the coefficients βk,d,s of a predictor dependent B-spline mixture model with atoms β?k,zk .
Specifically, we let

p(z
(s)
k | z

(s)
1:(k−1)) =

∏d0
d=1 p(z

(d,s)
k | z(d,s)k−1 ),

{βk,d,s | z(d,s)k = zk} = β?k,zk .
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S.4 Locally Informed Hamming Ball Sampler

Forward-backward (or backward-forward) algorithms for HMMs rely on passing messages
forward (or backward) and then sampling backward (or forward) (Rabiner, 1989; Scott,
2002). While adapting such algorithms to fHMMs, the requirement to sum over all possible
configurations in computing the messages becomes a challenge. Hamming ball samplers for
fHMMs (Titsias and Yau, 2014) avoid this computationally expensive step by introducing
and conditioning on an auxiliary variable that restricts the sampling to only a slice (Neal,
2003) of the entire high-dimensional space. In doing so, the sampler also allows localized
joint updating of all constituent chains, making it less prone to get trapped in local modes.

Let h(zt,vt) =
∑L

`=1 1{z(`)t 6= v
(`)
t } denote the Hamming distance between the vectors

zt = (z
(1)
t , . . . , z

(L)
t )T and vt = (v

(1)
t , . . . , v

(L)
t )T and Hm(zt) = {vt : h(zt,vt) ≤ m} denote a

Hamming ball of radius m around zt.
Consider an fHHM, as shown in Figure S.2 but with L component chains each with state

space {1, . . . , d}. Introducing an auxiliary variable v following a conditional probability
distribution p(v | z) =

∏T
t=1 p(vt | zt), the augmented joint model becomes p(y, z,v) =

p(v | z)p(y | z)p(z) =
{∏T

t=1 p(vt | zt)p(yt | zt)
}
p(z1)

∏T
t=2 p(zt | zt−1). Sampling v

from the posterior can then be done by sampling independently from the full conditionals
p(vt | zt). Sampling z from the posterior can still be carried out using forward-backward
(or backward-forward) message passing algorithms but with the augmented full conditional
p(z | y,v) ∝

{∏T
t=1 p(vt | zt)p(yt | zt)

}{∏T
t=2 p(zt | zt−1)

}
p(z1). The set of possible

configurations needed to compute the messages at time t is now restricted to the support of
p(vt | zt). If this can be made much smaller compared to the original size of the state space,
computational burden can be greatly reduced.

The Hamming ball algorithm does this by setting p(vt | zt) ∝ 1{vt ∈ Hm(zt)}, that is,
by sampling the vt’s uniformly from Hm(zt). By symmetry, since vt ∈ Hm(zt) if and only if
zt ∈ Hm(vt), the support of each zt in the full conditional p(z | y,v) is then restricted only
to Hm(vt).

z1 z2 . . . zt

y1 y2 . . . yt

v1 v2 . . . vt

z1 z2 . . . zt

y1 y2 . . . yt

v1 v2 . . . vt

Figure S.3: Graph of a Hamming ball sampler (left panel) and a locally informed Hamming
ball sampler (right panel) for fHMM.

The Hamming ball sampler is still limited in its ability to efficiently explore the neigh-
borhood of zt as it blindly proposes new values along arbitrarily chosen directions within the
ball. More informed moves can be proposed utilizing the information contained in the likeli-
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hood function (Zanella, 2019). For instance, p(vt | zt,yt) ∝ g{p(yt | vt)}1{vt ∈ Hm(zt)}, for
proper choices of g(·), favors moves along directions that increase the conditional likelihood
p(yt | vt) (Figure S.3). The augmented joint model now becomes p(y, z,v) = p(v | y, z)p(y |
z)p(z) =

{∏T
t=1 p(vt | yt, zt)p(yt | zt)

}{∏T
t=2 p(zt | zt−1)

}
p(z1). Sampling z from the pos-

terior can be carried out using message passing algorithms as before with each zt restricted
to Hm(vt) but with the updated full conditionals p(z | y,v) ∝

{∏T
t=1 p(vt | zt,yt)p(yt |

zt)
}{∏T

t=2 p(zt | zt−1)
}
p(z1).

z
(1,s)
1 z

(1,s)
2

. . . z
(1,s)
K−1 z

(1,s)
K

z
(2,s)
1 z

(2,s)
2

. . . z
(2,s)
K−1 z

(2,s)
K

z
(3,s)
1 z

(3,s)
2

. . . z
(3,s)
K−1 z

(3,s)
K

z
(4,s)
1 z

(4,s)
2

. . . z
(4,s)
K−1 z

(4,s)
K

β
(s)
1 β

(s)
2

. . . β
(s)
K−1 β

(s)
K

y
(s)
1 y

(s)
2

. . . y
(s)
K−2 y

(s)
K−1

Figure S.4: Graph of the proposed longitudinal drift-diffusion mixed model for tone learning

with β
(1,s)
k , . . . ,β

(4,s)
k collected in single nodes β

(s)
k for each k.

S.5 Posterior Inference

S.5.1 Prior Hyper-parameters and MCMC Initializations

The fixed effects parameters of the drift-diffusion mixed effects model (6) are initialized with
an empirical Bayes type approach. As discussed in Section 3, the boundary and the drift
parameters are related to the first two moments of the response times. Thus, we can use
the empirical distribution of the response times to choose the initial guess for both drift and
boundary parameters for each combination of input stimulus and response. The random
effects are instead initialized at zero. The clustering configuration is initialized with all the
success curves in different clusters, and all the failure curves in the same cluster.

Other crucial hyper-parameters are the mean and the standard deviation for the prior
term of the unassigned components of β(x)

µ and β
(x)
b , that is, the second term in the prior (9)

in the main paper. We use the empirical distributions of the response times at every time
point to set µβ,0, σ

2
β,0.
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The hyper-parameters in the Gamma(aα, bα) prior for the concentration parameters α(C)

and α(I) of the Dirichlet distributions characterizing the latent variable dynamics are set at
aα = bα = 1, as recommended in Escobar and West (1995).

The half-Cauchy priors C+(0, 1) on the smoothness parameters are non-informative for
the smoothness of the corresponding longitudinal curves. The C+(0, 1) distribution attains its
mode at zero and hence is capable of capturing strong smoothness but also has heavy tails and
is thus also capable of capturing wiggly functions. The left panel of Figure S.5 shows some
draws from µx(t) | σ2

βµ,1
with independent draws of the corresponding smoothness controlling

parameter σ2
βµ,1

from a C+(0, 1) prior. A wide variety of curves are clearly sampled - some
very smooth, some very wiggly, and many in between. Also, as the right panel of Figure
S.5 illustrates, the posterior distributions of the smoothness parameters in our model all
concentrate well within a region of flat C+(0, 1) prior probability density. This is additional
evidence that our prior is not producing any consistent bias in the posterior estimates.

1

2

3

4

1 4 7 10
block

µ x
(t
)

0

2

4

6

8

0.0 0.5 1.0 1.5 2.0

σβµ,1
2

de
ns
ity

Figure S.5: Left: 10 conditionally independent draws from µx(t) | σ2
βµ,1

with independent

draws of σ2
βµ,1

from a C+(0, 1) prior. Right: The C+(0, 1) prior distribution (in blue) and

the corresponding posterior distribution (in red) for the smoothness parameter σ2
βµ,1

.

S.5.2 Posterior Computation

Posterior inference for the longitudinal drift-diffusion mixed model, described in Section 3
in the main paper, is based on samples drawn from the posterior using a message passing
MCMC algorithm.

In what follows, ζ denotes a generic variable that collects all other variables not explicitly
mentioned, including the data points. Also, p0 will sometimes be used as a generic for a prior
distribution without explicitly mentioning its hyper-parameters. The sampler for the drift
diffusion model of Section 3 comprises the following steps.

1. Update the offset parameters δ
(i)
s , s = 1, . . . , d0. The full conditionals p(δ

(i)
s | ζ) ∝

p0(δ
(i)
s )L(y | s,θ) do not have closed forms. Metropolis-Hastings (MH) steps with log-normal

proposals centered on the previous sampled values are used to update these parameters.

2. Jointly update the drift and boundary spline coefficients (β?µ,k,zk , β
?
b,k,zk

), k = 1, . . . , K.
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(a) If the parameters are assigned to one of the clusters, the full conditionals do not have
closed forms. MH steps are therefore used with the smoothness inducing priors (9) on
(β?µ,k,zk , β

?
b,k,zk

) as the proposal distributions.

(b) If the parameters are not assigned to any of the clusters, the full conditional distribu-
tion is the second term of the prior in (9).

3. Update the latent cluster assignments z
(s)
k = (z

(1,s)
k , . . . , z

(4,s)
k )T:

(a) Sample the auxiliary variables v
(s)
k = (v

(1,s)
k , . . . , v

(4,s)
k )T as

p(v
(s)
k | z

(s)
k , z

(s)
k+1,y

(s)
k , ζ) ∝ g{p(y(s)

k | v
(s)
k , z

(s)
k+1, ζ)}1{v(s)

k ∈ Hm(z
(s)
k )}, k = 1, . . . , K − 1,

p(v
(s)
K | z

(s)
K , ζ) ∝ 1{v(s)

K ∈ Hm(z
(s)
K )}.

(b) Back-propagate the messages mk(z
(s)
k ) = p(y

(s)
k:(K−1),v

(s)
k:K | z

(s)
k , ζ) using the recursion

mk(z
(s)
k ) = p(y

(s)
k:(K−1),v

(s)
k:K | z

(s)
k , ζ)

=
∑
z
(s)
k+1

p(y
(s)
k:(K−1),v

(s)
k:K | z

(s)
k , z

(s)
k+1, ζ)p(z

(s)
k+1 | z

(s)
k , ζ)

=
∑
z
(s)
k+1

p(y
(s)
k ,v

(s)
k | z

(s)
k , z

(s)
k+1, ζ)p(y

(s)
(k+1):(K−1),v

(s)
(k+1):K | z

(s)
k , z

(s)
k+1, ζ)p(z

(s)
k+1 | z

(s)
k , ζ)

=
∑
z
(s)
k+1

p(y
(s)
k ,v

(s)
k | z

(s)
k , z

(s)
k+1, ζ)p(y

(s)
(k+1):(K−1),v

(s)
(k+1):K | z

(s)
k+1, ζ)p(z

(s)
k+1 | z

(s)
k , ζ)

=
∑
z
(s)
k+1

p(v
(s)
k | z

(s)
k , z

(s)
k+1,y

(s)
k , ζ)p(y

(s)
k | z

(s)
k , z

(s)
k+1, ζ)p(z

(s)
k+1 | z

(s)
k , ζ)mk+1(z

(s)
k+1),

∝
∑

z
(s)
k+1∈Hm(v

(s)
k+1)

g{p(y(s)
k | v

(s)
k , z

(s)
k+1, ζ)}1{v(s)

k ∈ Hm(z
(s)
k )}p(y(s)

k | z
(s)
k , z

(s)
k+1, ζ)p(z

(s)
k+1 | z

(s)
k , ζ)mk+1(z

(s)
k+1),

starting with the final condition mK(z
(s)
K ) = 1{z(s)

K ∈ Hm(v
(s)
K )}.

(c) Sample the latent cluster assignments forward one step at a time from

p(z
(s)
1:K | y

(s)
1:(K−1),v

(s)
1:K , ζ) = p(z

(s)
K | z

(s)
1:(K−1),y

(s)
1:(K−1),v

(s)
1:K , ζ) . . . p(z

(s)
1 | y(s)

1:(K−1),v
(s)
1:K , ζ),

where

p(z
(s)
k | z

(s)
1:(k−1),y

(s)
1:(K−1),v

(s)
1:K , ζ) ∝ p(y

(s)
k:(K−1),v

(s)
k:K | z

(s)
1:k, ζ)p(z

(s)
k | z

(s)
1:(k−1), ζ)

= p(y
(s)
1:(k−2),v

(s)
1:(k−2) | z

(s)
1:k, ζ)p(y

(s)
k−1,v

(s)
k−1 | z

(s)
k−1, z

(s)
k , ζ)p(y

(s)
k:(K−1),v

(s)
k:K | z

(s)
k , ζ)p(z

(s)
k | z

(s)
1:(k−1), ζ)

∝ p(y
(s)
k−1,v

(s)
k−1 | z

(s)
k−1, z

(s)
k , ζ)p(z

(s)
k | z

(s)
1:(k−1), ζ)mk(z

(s)
k )
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= p(v
(s)
k−1 | z

(s)
k−1, z

(s)
k ,y

(s)
k−1, ζ)p(y

(s)
k−1 | z

(s)
k−1, z

(s)
k , ζ)p(z

(s)
k | z

(s)
k−1, ζ)mk(z

(s)
k )

∝ g{p(y(s)
k−1 | v

(s)
k−1, z

(s)
k , ζ)}p(y(s)

k−1 | z
(s)
k−1, z

(s)
k , ζ)p(z

(s)
k | z

(s)
k−1, ζ)mk(z

(s)
k ).

4. Update the cluster specific fixed effects spline coefficients:

(β
(x)
µ,k | z

(x)
k = zk, ζ) ∼ 1{β(x)

µ,k = β?µ,k,zk}, k = 1, . . . , K.

(β
(x)
b,k | z

(x)
k = zk, ζ) ∼ 1{β(x)

b,k = β?b,k,zk}, k = 1, . . . , K.

z
(s)
1 z

(s)
2 z

(s)
3

. . . z
(s)
K−1 z

(s)
K

y
(s)
1 y

(s)
2

. . . y
(s)
K−2 y

(s)
K−1

v
(s)
1 v

(s)
2

. . . v
(s)
K−2 v

(s)
K−1 v

(s)
K

Figure S.6: Locally informed Hamming ball sampling of the latent states in our tone-learning
longitudinal drift-diffusion mixed model. See also Figure 6 in the main paper.

5. Update the transition probability matrices:(
π(C)
z | ζ

)
∼ Dir(α(C)/zmax + n

(C)
z,1 , . . . , α

(C)/zmax + n(C)
z,zmax

)(
π(I)
z | ζ

)
∼ Dir(α(I)/zmax + n

(I)
z,1, . . . , α

(I)/zmax + n(I)
z,zmax

),

where n
(C)
z,z′ =

∑
k 1{z(x)k = z, z

(x)
k+1 = z′} is the number of transitions from z to z′ for the

HMMs associated with the correct identification of the tones, that is, with x s.t. d = s. A
similar definition holds for n

(I)
z,z′ .

6. Update the cluster specific smoothness parameter

p(σ2
βµ,1 | ζ) ∝

(
σβµ,1

)−Kxmax
exp

(
− 1

2σ2
βµ,1

∑
x

β(x)T
µ Puβ

(x)
µ

)
p0(σ

2
µ,u,a).

MH steps with log-normal proposals centered on the previous sampled values are used to
update these parameters.

7. Update the random effects spline coefficients β
(i)
µ,k,u and β

(i)
b,k,u: The full conditional does

not have a closed form. An MH step with a normal proposal centered on the previous value
was used.
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8. Update the random effects variance parameters σ2
µ,u,a, σ

2
µ,u,s, σ

2
b,u,a and σ2

b,u,s:
The full conditional for σ2

µ,u,a is given by

p(σ2
µ,u,a | ζ) ∝ det(σ−2µ,u,sPu + σ−2µ,u,aIK)n/2 exp

(
− 1

2σ2
µ,u,a

n∑
i=1

β(i)T
µ,u Puβ

(i)
µ,u

)
p0(σ

2
µ,u,a).

Analogous expressions can be found for the full conditionals of σ2
µ,u,s, σ

2
b,u,a and σ2

b,u,s. MH
steps with log-normal proposals centered on the previous sampled values are used to update
these parameters.

The main challenge here arises from the nonconjugacy of the inverse Gaussian distri-
bution based likelihood function, requiring MH steps for updating δ

(i)
s , β?b,k,zk , β

?
µ,k,zk

. We

employed the adaptive MH algorithm (Roberts and Rosenthal, 2009) for updating δ
(i)
s and

the variance parameters, avoiding the difficult task of choosing the parameters of their pro-
posal distributions while also improving mixing. Specifically, for every batch of 50 iterations,
we inflate or deflate the standard deviation of the proposal distribution such that the optimal
acceptance rate of 44% is achieved (Roberts et al., 2001). The adaptive MH could not be
employed for the cluster specific parameters (β?b,k,zk , β

?
µ,k,zk

) due to label switching, so we used
tempered MH steps instead. For the proposal distributions for (β?b,k,zk , β

?
µ,k,zk

), we used the
smoothness inducing conditional prior distributions p0(β

?
µ,k,zk

| β?µ,k−1) × p0(β?b,k,zk | β
?
b,k−1).

Since the conditioning variables β?µ,k−1 and β?b,k−1 are also updated at every iteration, the
values sampled from the smoothness inducing priors are frequently accepted.

Based on M thinned samples {θ(m)}Mm=1 drawn from the posterior after the burn-in, the
individual level drift parameters in the drift-diffusion mixed model are estimated as

µ
(i)
x (t) = exp{fµ,x(t) + u

(i)
µ (t)} = 1

M

∑M
m=1 exp{f̂ (m)

µ,x (t) + û
(i,m)
µ (t)},

where f̂
(m)
µ,x (t) =

∑K
k=1 β

?(m)

µ,k,z
(x,m)
k

Bk(t), û
(i,m)
µ (t) =

∑K
k=1 β

(i,m)
k,u,µBk(t) etc. The population level

drift parameters are likewise estimated as

µx(t) =
∫

exp{fµ,x(t) + u
(i)
µ (t)}f{u(i)µ (t)}du(i)µ (t) = exp

[
fµ,x(t) +

var{u(i)µ (t)}
2

]
= 1

M

∑M
m=1 exp

{
f̂
(m)
µ,x (t) +

var{û(i,m)
µ (t)}
2

}
,

S.5.3 Software, Runtime, etc.

The results reported in this article are all based on 5, 000 MCMC iterations with the initial
2, 000 iterations discarded as burn-in. The remaining samples were further thinned by an
interval of 5. We programmed in R and C++. The codes are available as part of the sup-
plementary materials. The MCMC algorithm takes 10 hours on a Dell machine with 16 Gb
RAM. A ‘readme’ file, providing additional details for a practitioner, is also included in the
supplementary materials.
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S.6 MCMC Diagnostics

This section presents some convergence diagnostics for the MCMC sampler described in the
main manuscript. The results presented here are for the tone learning data set. Diagnostics
for the simulation experiments were similar and hence omitted.

1 2 3 4 5 6 7 8 9 10
boundary

drift

0200400600020040060002004006000200400600020040060002004006000200400600020040060002004006000200400600

0.5

1.0

1.5

2.0

0.5

1.0

1.5

2.0

iteration

Figure S.7: Trace plots of the individual drift rates µ
(i)
1,1(t) and boundary parameters b

(i)
1,1(t)

corresponding to the success categorization of tone T1 evaluated at each of the training
blocks. The two rows correspond to the two different classes of parameters, and the ten
columns to the training blocks. In each panel, the solid red line shows the running mean.
Results for other drift and boundary parameters were very similar.

Figure S.7 shows the trace plots of some individual level parameters at different training
blocks. Figure S.8 shows the trace plots of some individual level offset parameters. These
results are based on the MCMC thinned samples. As these figures show, the running means
are very stable and there seems to be no convergence issues. Additionally, the Geweke test
(Geweke, 1991) for stationarity of the chains, which formally compares the means of the
first and last part of a Markov chain, was also performed. If the samples are drawn from
the stationary distribution of the chain, the two means are equal and Geweke’s statistic has
an asymptotically standard normal distribution. The results of the test, reported in Table
S.1 and Table S.2, indicate that convergence was satisfactory for the parameters considered.
Only one parameter, µ

(i)
1,1(2) in the second row of Table S.1, had a significant p-value. Some

chance rejections are expected in multiple hypothesis testing scenarios. A visual inspection
of the corresponding trace plot, however, does not indicate any serious issue.
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Figure S.8: Trace plots of the individual level offset parameters δ
(i)
s for the four possible

input tones. The four columns correspond to the input stimuli s. In each panel, the solid
red line shows the running mean. Results for other offset parameters were very similar.

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10

boundary
1.161 0.973 1.162 -1.287 -1.080 -0.554 0.164 -0.285 0.481 0.894
(0.25) (0.33) (0.25) (0.20) (0.28) (0.58) (0.87) (0.78) (0.63) (0.37)

drift
1.884 3.467 -0.102 -0.863 -1.171 -0.845 0.445 0.821 0.362 0.607
(0.06) (0.00) (0.92) (0.39) (0.24) (0.40) (0.66) (0.41) (0.72) (0.54)

Table S.1: Geweke statistics and associated p-values assessing convergence of the individual
drift rates µ

(i)
1,1(t) and boundary parameters b

(i)
1,1(t) corresponding to the success categorization

of tone T1 evaluated at each of the training blocks. Results for other drift and boundary
parameters were very similar.

s = 1 s = 2 s = 3 s = 4
-0.395 -0.848 -0.019 -0.217
(0.69) (0.40) (0.98) (0.83)

Table S.2: Geweke statistics and associated p-values assessing convergence of the of the
individual level offset parameters δ

(i)
s for the four possible input tones. Results for other

offset parameters were very similar.
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S.7 Linear Ballistic Accumulator Model

We present here a review of the LBA model (Brown and Heathcote, 2008) for easy reference
with some repetition from the main paper to make this section relatively self-contained.

The LBA model is a popular framework for studying neural mechanisms underlying
choice between multiple alternatives. Similar to our model, it uses independent evidence
accumulators starting at δs that continue until a response boundary bs is reached. The accu-
mulator that first reaches the boundary corresponds to the decision outcome, and the time
at which the boundary is reached is the response time. The evidence, however, accumulates
linearly at the rate µd,s, reaching the boundary bs precisely at time τd = bs/µd,s. To explain
trial-by-trial variability, the LBA model assumes that the slopes µ for different trials are
random draws from a Normal(md,s, vd,s) distribution. The cumulative distribution function
for the boundary crossing time τd for the dth category is thus given by

FLBA(τd | θd,s) = 1− Φ (bs/τd | md,s, vd,s) ,

where θd,s = (md,s, vd,s, bs)
T. The likelihood of the LBA model at the tth time point is thus

Lt(yt | s,θ) =

d0∏
d=1

n∏
i=1

L∏
`=1

[
fLBA(τi,`,t | θd,s,t)

∏
d′ 6=d

{1− FLBA(τi,`,t | θd′,s,t)}
]1{di,`,t=d}

,

where θd,s,t = (md,s,t, vd,s,t, bs,t)
T, and fLBA(τ) = dFLBA(τ)

dτ
is the pdf of τ .

δ1

µ1,1

0

b1,1

0.00 0.25 0.50 0.75 1.00
τ

W
(τ
)

W
(τ
)

Figure S.9: Representation of the underlying evidence accumulation processes for our drift-
diffusion model (left) and the LBA model (right) for 30 independent trials with fixed stimulus
and decision categories d = s = 1. The red line represents the drift parameter µ1,1 for the
drift-diffusion model (left) and the mean of the drift parameters m1,1 for the LBA (right).
In drift-diffusion models, trial-by-trial variability is explained by stochastically different dif-
fusion paths for different trials. In the LBA model, trial-by-trial variability is explained by
stochastically varying slopes drawn from a Normal distribution.
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The existing literature on LBA models has many serious limitations. The normality
assumption on the slopes µ in the LBA model does not satisfy a non-negativity constraint.
A common boundary bs for all decision categories d is also inflexible. Importantly, there
is no principled method to incorporate systematic stimulus and decision category specific
fixed or individual specific random effects into the LBA model. Existing literature is also
limited to static settings, there is no mechanism to estimate smoothly varying longitudinal
trajectories as the participants get trained and experienced in their decision tasks. In our
implementation, we thus fitted these models separately for each time stamp. Finally, the
likelihood function of the LBA model described above is non-convex in the parameters.
Parameter estimation based on optimization of the likelihood function is thus fraught with
convergence issues. We used the rtdists package (Singmann et al., 2019) in R, using several
random initializations and tracking the objective function to ensure convergence.
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S.8 Comparison with a Simpler Sub-Model

In this section, we summarize the results produced by a simpler alternative model, specifi-
cally, a reduced static version of our proposed longitudinal drift-diffusion mixed model fitted
separately to data from each block as in the case of the LBA model. Using notation similar
to those in our proposed longitudinal mixed model, we now let µ

(i)
x,t = exp{fµ,x,t + u

(i)
µ,x,t} be

the drift rates and b
(i)
x,t = exp{fb,x,t + u

(i)
b,x,t} be the boundary parameters. The time index

t now appears in subscript, as opposed to as an argument within parenthesis in our origi-
nal longitudinal functional model. Other relevant parts of the model, including the priors,
remain unchanged.
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Figure S.10: Results for tone learning data: Estimated posterior mean trajectories of the
population level drifts µd,s,t (left panel) and boundaries bd,s,t (right panel) for the inverse
Gaussian drift-diffusion mixed model applied independently for each block. The shaded
areas represent the corresponding 90% point wise credible intervals. Parameters for the
high-level tone response category T1 are shown in red; low-rising T2 in blue; low-dipping T3
in green; and high-falling T4 in purple.

Figure S.10 shows the posterior means and associated 90% credible intervals for the
population level boundaries bd,s,t and drift rates µd,s,t estimated by fitting the above described
static drift-diffusion model fitted separately to data from each block. These results are
generally consistent with the ones illustrated in Figure 8 in the main paper. However,
this reduced model yields less interpretable results for at least three reasons. First, the
absence of functional dependence makes it harder to pinpoint a general trend because the
estimates are not smooth but very wiggly across the training blocks. Second, the fixed effects
parameters are not allowed to cluster across input-response combinations, which results in
many redundant configurations. Third, the parameter estimates under our proposed model
seem to have smaller uncertainty due borrowing of information across adjacent blocks as well
as across input-output tone combinations via local clustering.
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S.9 Simulation Studies

In this section, we discuss the results of some synthetic numerical experiments. We are not
aware of any other method from the existing literature that can be readily applied or at least
be easily adapted to our data settings and inferential challenges. We thus restrict our focus
mostly on evaluating the performances of the proposed longitudinal inverse Gaussian drift-
diffusion mixed model. We do present a comparison with the LBA model though, applying
it separately for each block as in Section 5 in the main paper.

In designing the simulation scenarios, we have tried to closely mimic our motivating tone
learning data set. We thus chose n = 20 participants being trained over T = 10 blocks to
identify d0 = 4 tones. We set µd,s(t), bd,s(t) to values that are very similar to the correspond-
ing estimated values for the real data set. The local differences were all set to be in the drift
curves; additionally, some boundary trajectories were globally different from each other. We
slightly simplified the local clustering structure, however, to be able to better illustrate the
workings of our proposed method. Moreover, we choose u

(C,i)
µ (t), u

(C,i)
b (t), u

(I,i)
µ (t), u

(I,i)
b (t), δs

etc. to be the estimated posterior means obtained for the real data set.
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Figure S.11: Results for synthetic data: Estimated posterior mean trajectories of the pop-
ulation level drifts µd,s(t) (left panel) and boundaries bd,s(t) (right panel) for the proposed
longitudinal inverse Gaussian drift-diffusion mixed model. The shaded areas represent the
corresponding 90% point wise credible intervals. The solid black lines represent underly-
ing true curves. Parameters for the high-level tone response category T1 are shown in red;
low-rising T2 in blue; low-dipping T3 in green; and high-falling T4 in purple.

We experimented with 50 synthetic data sets generated according to the design described
above. The results produced by our method were highly stable and consistent across all data
sets. The results summarized below represent a typical scenario.

Figure S.11 shows the posterior mean trajectories and associated 90% credible intervals
for the the drift rates µd,s(t) and boundaries bd,s(t), for every possible combination of (d, s).
Figure S.15 additionally presents the drift curves for successful identifications (d = s) su-
perimposed on each other. These figures suggest that the underlying true curves are all
recovered well by our method. In comparison, the results obtained by the LBA model, dis-
played in Figure S.12, suffer from the same limitations discussed in Section 5. Furthermore,
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Figures S.13 and S.14 suggest that the underlying true local partition structure, as well as
the individual specific parameter trajectories, are also estimated quite well by our method.

Figure S.12 presents the results obtained by the LBA model applied to the synthetic data
set. There is a general agreement between the population level estimates produced by our
method and the LBA. However, as discussed in detail in Section 5 in the main paper and
Section S.7 in the supplementary materials, the LBA model has many serious limitations,
including being incapable of producing individual level estimates, having shared boundary
parameters across all input tones, not borrowing any information across adjacent time stamps
etc. Only a very limited set of inferential questions can therefore be answered by the LBA
model.
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Figure S.12: Results for synthetic data: Left: Estimated mean slopes md,s,t for the LBA
model. Right: Estimated boundaries bs,t for the LBA model. In the left panel, md,s,t’s for
the high-level tone response category T1 are shown in red; low-rising T2 in blue; low-dipping
T3 in green; and high-falling T4 in purple.
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Figure S.13: Results for synthetic data: The left panel shows the true clustering structure
of the underlying parameter trajectories for successful identification (d = s) of different
input tones in different learning phases. The right panel shows the corresponding posterior
co-clustering probabilities estimated by our proposed method.
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Figure S.14: Results for synthetic data: Estimated posterior mean trajectories for individual
specific drifts µ

(i)
d,s(t) (left panel) and boundaries b

(i)
d,s(t) (right panel) for two different par-

ticipants - one performing well (dotted line) and one performing poorly (dashed line). The
shaded areas represent the corresponding 90% point wise credible intervals. The solid black
lines represent underlying true curves. Parameters for the high-level tone response category
T1 are shown in red; low-rising T2 in blue; low-dipping T3 in green; and high-falling T4 in
purple.
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Figure S.15: Results for synthetic data: Estimated posterior mean trajectories of the pop-
ulation level drifts µd,s(t) for successful identification (d = s) of different input tones for
the proposed longitudinal inverse Gaussian drift-diffusion mixed model. The shaded areas
represent the corresponding 90% point wise credible intervals. The solid black lines represent
underlying true curves. Parameters for the high-level tone response category T1 are shown
in red; low-rising T2 in blue; low-dipping T3 in green; and high-falling T4 in purple.
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S.10 Additional Figures
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Figure S.16: Results for tone learning data: Estimated posterior mean trajectories of the
population level drifts µd,s(t) for successful identification (d = s) of different input tones for
the proposed longitudinal inverse Gaussian drift-diffusion mixed model. The shaded areas
represent the corresponding 90% point wise credible intervals. Parameters for the high-level
tone response category T1 are shown in red; low-rising T2 in blue; low-dipping T3 in green;
and high-falling T4 in purple.
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