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Abstract

Category learning is a fundamental process in human cognition that spans the senses. However, much still remains unknown
about the mechanisms supporting learning in different modalities. In the current study, we directly compared auditory and visual
category learning in the same individuals. Thirty participants (22 F; 18-32 years old) completed two unidimensional rule-based
category learning tasks in a single day — one with auditory stimuli and another with visual stimuli. We replicated the results in a
second experiment with a larger online sample (N =99, 45 F, 18-35 years old). The categories were identically structured in the
two modalities to facilitate comparison. We compared categorization accuracy, decision processes as assessed through drift-
diffusion models, and the generalizability of resulting category representation through a generalization test. We found that
individuals learned auditory and visual categories to similar extents and that accuracies were highly correlated across the two
tasks. Participants had similar evidence accumulation rates in later learning, but early on had slower rates for visual than auditory
learning. Participants also demonstrated differences in the decision thresholds across modalities. Participants had more categor-
ical generalizable representations for visual than auditory categories. These results suggest that some modality-general cognitive
processes support category learning but also suggest that the modality of the stimuli may also affect category learning behavior
and outcomes.
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Introduction

Categorization is critical to all sensory systems, enabling com-
plex behaviors such as object recognition and speech percep-
tion. However, much still remains unknown about the mech-
anisms supporting learning across different modalities.
Theories of perceptual category learning typically focus on
a single modality with relatively little generalization across
modalities. While cross-modal category learning is a large
area of research, understanding the commonalities and
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differences of single-modality category learning is an unex-
plored area. Much has been gained by studying auditory and
visual category learning separately. Theories focused on visu-
al learning have deepened understanding about the nature of
the neural and cognitive mechanisms underlying category
learning (Ashby, 1992a; Goldstone, 1994; Love, Medin, &
Gureckis, 2004; Nosofsky, 1986). Theories focused on audi-
tory and speech category learning have demonstrated the in-
fluences of native language experience and training methods
on the outcomes of second language learning (Best, 1995;
Logan, Lively, & Pisoni, 1991; McClelland, Fiez, &
McCandliss, 2002). These complimentary yet distinct ap-
proaches have resulted in two sets of literature that have
remained relatively separated by modality.

There are reasons to suspect that generic cognitive process-
es support perceptual category learning, regardless of modal-
ity. Recently, theories originally developed in the visual mo-
dality have been applied to learning in the auditory modality
(Francis & Nusbaum, 2002; Goudbeek, Swingley, & Smits,
2009; Maddox, Chandrasekaran, Smayda, & Yi, 2013; Yi,
Maddox, Mumford, & Chandrasekaran, 2014). Generally,
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the application of these theories of visual learning to the audi-
tory modality has proved fruitful for understanding cognitive
mechanisms that support auditory learning, demonstrating
similar overall learning patterns to the visual modality.

When learning a relatively simple unidimensional category
distinction, the learner’s task is essentially the same regardless
of modality: based on their sensory experience, learners need
to create abstract rules, make categorization decisions, and
incorporate feedback to test and update these rules to optimize
their decisions. Beyond perception, learning involves com-
plex cognitive processes including attention, working memo-
ry, hypothesis generation and testing, and feedback process-
ing. In support of a modality-general perspective, these basic
components of cognition operate similarly regardless of mo-
dality (Lehnert & Zimmer, 2006; Visscher, Kaplan, Kahana,
& Sekuler, 2007; Zvyagintsev et al., 2013). Additionally, the
same fronto-striatal brain networks support working memory,
attention, and feedback processing for both auditory and visu-
al tasks, with domain-general response properties (Crittenden
& Duncan, 2014; Duncan & Owen, 2000; Fedorenko,
Duncan, & Kanwisher, 2013; McNab & Klingberg, 2008;
Myers, 2014).

Even if category learning is supported by domain-general
cognitive processes, stimulus modality may still play a sub-
stantial role in learning. To effectively learn perceptual cate-
gories that can be described by a rule along one stimulus
dimension, learners must perceive the stimulus, separate the
stimulus into components, identify which components are rel-
evant or irrelevant to category identity, and specify the deci-
sion criterion along the relevant dimension. For instance, in a
unidimensional auditory categorization task with sounds vary-
ing in duration and pitch, learners must hear the sound, sepa-
rate the duration and pitch components, identify which of
those components is relevant, and, for example, specify that
sounds belong to category A when the duration is longer than
0.5 s and category B when the duration is shorter than 0.5 s.
The rules and processes are not necessarily so explicit, but the
steps are required for accurate rule-based category learning.

The expansion of theories of category learning that origi-
nated in the visual modality into the auditory modality has
highlighted some important differences between vision and
audition (Heffner, Idsardi, & Newman, 2019; Roark & Holt,
2019; Scharinger, Henry, & Obleser, 2013). Specifically, au-
ditory objects may be more difficult to separate into their
individual components than visual objects, meaning that se-
lective attention to dimensions may be more difficult for au-
ditory than visual dimensions (Garner, 1974; Roark & Holt,
2019). Auditory dimensions may also be more difficult to
describe than visual dimensions, which may make hypothe-
sizing about category rules more difficult (Brashears &
Minda, 2020; Zettersten & Lupyan, 2020). Together, these
are reasons to suspect that modality-specific processes support
perceptual category learning.
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In the current study, we examine unidimensional auditory
and visual category learning in the same individuals. In two
experiments (a smaller in-person experiment and a large-scale
online replication), we employed identical category training
tasks that differ only in the modality of the stimuli. We use a
diverse set of tools to compare perceptual and cognitive pro-
cesses of auditory and visual category learning. We assess
category learning by examining accuracy during training.
We examine decision processes during learning by comparing
evidence accumulation rates and decision thresholds assessed
with drift-diffusion models. Finally, we assess learners’ cate-
gory representations in a generalization test with novel
stimuli.

If domain-general cognitive processes support learning
across modalities, then we predict that learners will show sim-
ilarities in performance and decision processes regardless of
modality. If instead, modality plays a substantial role in learn-
ing, we predict that learners will show differences across mo-
dalities. These differences might manifest in one or more be-
haviors, such as the performance, decisional processes, or rep-
resentation of categories.

Methods

We first ran Experiment 1, an in-person first pass of the meth-
odology with 30 participants. After this initial study, we ran
Experiment 2 as a replication in a larger online sample. To
accommodate online testing, we made two small changes to
the overall methodology, outlined below. We ran the same
analyses across both experiments.

Participants

In Experiment 1, participants were 30 (22 F, 8 M) members of
the Pittsburgh community, age 18-32 years. All participants
passed a hearing screening indicating that their pure-tone
thresholds were 25 dB HL or better at octave and half-
octave frequencies from 125 Hz to 6,000 Hz. All participants
were native speakers of English. A power analysis examining
the main effect of modality on accuracy showed that 24 par-
ticipants would provide greater than 80% power (o = .05) to
detect a medium-large effect (d = 0.6). In Experiment 2, par-
ticipants were 99 (45 F, 54 M) individuals recruited through
Prolific (www.prolific.co), age 18-35 years and were tested
using the Gorilla Experiment Builder (www.gorilla.sc;
Anwyl-Irvine, Massonnié, Flitton, Kirkham, & Evershed,
2019). An additional participant was run but excluded
because they only completed one task (1F). Both
experiments were approved by the University of Pittsburgh
Institutional Review Board and participants were paid $10/h.


http://www.prolific.co
http://www.gorilla.sc

Psychon Bull Rev

Stimuli

The auditory stimuli were dynamic ripples varying in spectral
and temporal modulation. The visual stimuli were Gabor
patches varying in spatial frequency and orientation. The pairs
of dimensions were chosen because they are thought to be
similarly complex, have independent neural representations
(Schonwiesner & Zatorre, 2009), and are processed similarly
in working memory (Visscher et al., 2007). Further, categori-
zation with these perceptual dimensions has been examined in
separate individuals (Maddox, Ashby, & Bohil, 2003; Rabi &
Minda, 2014; Yi & Chandrasekaran, 2016).

Category distributions

The category distributions were identical for the auditory and
visual tasks (Fig. 1, circles). To create the stimulus distributions
for category training, a single category was sampled from a bi-
variate Gaussian distribution in normalized space. This category
was mirrored across the space to form the other category, ensur-
ing that the categories have identical variability. The stimuli were
then transformed separately into the auditory and visual spaces.
Optimal performance during learning could be obtained by

selectively attending to temporal modulation in the auditory task
and spatial frequency in the visual task.

A separate set of generalization stimuli was generated,
sampling a grid across the same two-dimensional space (Fig.
1, black Xs). These generalization stimuli provide the oppor-
tunity to understand how general the representations learned
during the training phase are (broad sampling of the space)
and how specific the learning of the distinction between the
categories is (dense sampling around the optimal category
boundary).

Procedure

Participants performed the auditory and visual tasks in the
same session with the order counterbalanced across
participants.

Auditory and visual category training

The auditory and visual tasks were identical (Fig. 1).
Participants were instructed to categorize the stimuli into one
of two categories by pressing buttons on the keyboard (1, 2),
with category-response association counterbalanced across
subjects. Across six blocks of 50 trials (300 trials total), the

Procedure
Modality #1 Modality #1 Modality #2 Modality #2
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Fig. 1 Task procedures for category training and generalization test, across the two modalities. Stimulus distributions for auditory (/eff) and visual (right)
for the category training (circle) and generalization test (x), with optimal distinction between the categories shown as a dashed line
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stimulus was presented for 1 s, followed by a 2-s delay during
which participants were able to respond, corrective feedback
(Correct/Incorrect) for 1 s, and a 1-s intertrial interval (ITT).
Participants were required to respond within 2 s after the onset
of the stimulus or else no response was recorded, and they
were told to respond faster. Trials for which there was no
response (1.2% of all trials) were coded as incorrect.

The method for Experiment 2 was nearly identical to
Experiment 1, with two differences to accommodate testing
online. First, we shortened the number of training blocks from
six to five blocks to enhance the quality of data collected
online. Second, we changed the time allowed for response
from 2 s to infinite time to ensure that participants made a
response on every trial. This change also forced one difference
in our analysis method. We removed the top and bottom 1% of
reaction time responses in the drift-diffusion modeling to ac-
count for cases where participants had impossibly short reac-
tion times (< 3 ms) or unreasonably long reaction times (> 7 s)
that would alter the ability of the models to fit the data
appropriately.

Generalization test

A hallmark of category learning is the ability to generalize
category knowledge to novel exemplars. After category train-
ing, participants were given a generalization test where they
encountered novel exemplars and no longer received any
feedback. Participants were instructed to use the same
category-to-response mapping as during training. In each of
58 trials, the stimulus was presented for 1 s, followed by the
participant’s response, and a 1-s ITI. There was no limit to
participants’ response time during the test.

Drift-diffusion modeling

Drift-diffusion models (DDMs; Nosofsky & Palmeri, 1997,
Ratcliff, 1978; Smith & Vickers, 1988) take into account ac-
curacies and response times to understand processes underly-
ing perceptual decision making. Theoretically, drift-diffusion
models assume that during decision making, evidence for
multiple decision options (in our case, categories) is accumu-
lated at varying rates in a single accumulator (Nosofsky &
Palmeri, 1997) and a decision is made when this evidence
reaches a particular threshold. These models have recently
been extended to a multi-alternative, longitudinal, mixed-
model setting specifically in the context of category learning
by considering multiple simultaneous accumulators of evi-
dence (Paulon, Llanos, Chandrasekaran, & Sarkar, 2020).
We apply the same methods of parameterization of the
DDM as Paulon et al. (2020). Specifically, the model fits an
offset parameter (J;) for each category and, for every combi-
nation of decision response (d) and stimulus (s) category, an
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evidence accumulation rate parameter (i1, ;) and decision
threshold parameter (b, 5; see Fig. 2 for an illustration).

The offset represents the time taken by all the actions that
are not directly relevant to the actual decision making (e.g.,
stimulus encoding, motor response, etc.). Evidence accumu-
lation rate reflects extraction of information from the stimulus
relevant for the categorization decision. Learners have lower
evidence accumulation rates for more difficult tasks, when it is
more difficult to extract what is relevant. Decision threshold
reflects response caution in the speed-accuracy tradeoff
(Bogacz, Wagenmakers, Forstmann, & Nieuwenhuis, 2010).
Learners have higher decision thresholds when they are more
cautious in their responses (i.e., slower reaction times in favor
of more accurate responses). Importantly, the DDM of Paulon
et al. (2020) allows the rates and thresholds to evolve longi-
tudinally as the participants become more experienced in their
decision tasks. Moreover, drifts and the boundaries are
allowed to differ between individuals, capturing the heteroge-
neity in category learning performance across different partic-
ipants. We will examine two parameters: evidence accumula-
tion rate and decision thresholds.

Results

The main goal of the current study is to understand how the
same individuals learn identically structured auditory and vi-
sual categories. We assess several components of this process:
learning performance, dynamics of decision processes (evi-
dence accumulation rates and decision thresholds), and gen-
eralizability of category representations. We present the re-
sults from the in-person and online experiments together.

Category learning

Participants learned the categories in the two modalities fairly
well, with substantial variability across participants (Fig. 3a).
This kind of inter-subject variability is common in learning
tasks and demonstrates the necessity of examining learning in
the same individuals to illuminate the common sources of this
variability.

We compared performance during category learning across
the two tasks using repeated-measures ANOVAs with task
(auditory, visual) and block (1-6) as factors. In both experi-
ments, participants had similar overall accuracies in the two
modalities (Experiment 1: F(1,29) = 1.33, p = 0.26, np2= .04,
Experiment 2: £(1,305.2)=0.29, p = 0.60, T]p2= .003), but had
different patterns of accuracy across blocks (Experiment 1:
F(5,145) = 2.83, p = 0.018, np2= .09; Experiment 2:
F(4,305.2) = 5.89, p = 0.001, np2= .057). Specifically, the
slope of the learning curves across blocks was steeper in the
visual task (Experiment 1: block 6 — block 1: M = 19%;
Experiment 2: block 5 — block 1: M = 16%) than the auditory
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Fig. 2 Dirift-diffusion model for perceptual decision making. After an
initial amount of time ¢, required to encode an input signal s, the
evidence in favor of a response category d accumulates according to a
Wiener diffusion process with drift 1, . The decision d is eventually

task (Experiment 1: block 6 —block 1: M = 9%; Experiment 2:
block 5 — block 1: M = 10.5%). The order in which partici-
pants completed the two tasks did not affect performance
(Experiment 1: F(1,28) = 0.011, p = 0.92, n,*= 0.0;
Experiment 2: F(1,97) = 0.56, p = 0.46, np2= 0.006).

To understand how the outcomes of learning in the two
tasks were related, we examined the correlation between ac-
curacies in the final block. Because the accuracies are bound-
ed by 0 and 1, we applied a logit transform to accuracies
(Lesaffre, Rizopoulos, & Tsonaka, 2007), which did not
change any of the statistical patterns in the results. Final block
accuracy in the auditory and visual tasks was significantly
positively correlated in both experiments (Fig. 3b,
Experiment 1: #(28) = 0.61, p = 0.00034; Experiment 2:
r(97) = 0.54, p = 0.000000009281), indicating a common
source of variability underlying auditory and visual category
learning. Performance in the first block was also positively
correlated in Experiment 1 (#(28) = 0.57, p = 0.0011); how-
ever, this did not replicate in Experiment 2 (#(97) = 0.16, p =
0.12).

Dynamics of decision processes

We compared the dynamics of the decision processes in the
two modalities by examining evidence accumulation rates and
decision thresholds using DDMs. Across both experiments
and for both tasks, the population-level estimates for correct
trials’ rate and threshold parameters did not differ across the
two category responses (e.g., A and B). Thus, without loss of

1.5 2.0

time

taken if the underlying process is the first to reach its decision threshold
by, s The curves represent the probability distributions of the response
times corresponding to the two possible decisions d € {1,2}

generality, we restrict our comparison across modalities to
correct response category A trials.

We compared evidence accumulation rates and decision
thresholds across the two tasks by determining where the
95% credible intervals (95% posterior probability that the pa-
rameter estimate lies within this interval) do not overlap for
auditory and visual tasks (Fig. 3d and e). In both experiments,
evidence accumulation rates differed across auditory and vi-
sual tasks in a way that depended on block (Fig. 3d).
Specifically, the visual task had lower evidence accumulation
rates than the auditory task in block 1 and higher evidence
accumulation rates in later blocks (Experiment 1: blocks 5
and 6, Experiment 2: block 4). In both experiments, the rates
at which participants accumulate evidence towards a catego-
rization decision were stable across blocks in the auditory task
and stabilized in the second block in the visual task. Final
block auditory and visual evidence accumulation rates were
positively correlated in Experiment 1 (#(28) = 0.54, p =
0.0020) and Experiment 2 (7(97) = 0.57, p = 0.00000000098).

In both experiments, decision thresholds also differed
across auditory and visual tasks in a way that depended on
block (Fig. 3e). For both experiments, the auditory task had
higher decision thresholds than visual in block 1 and the visual
task had higher decision thresholds in blocks 3-5. For identi-
cal categorization decisions in two different modalities, there
were differences in decision thresholds in the majority of
blocks. For the auditory modality, there was a decrease in
decision thresholds with more training, meaning that with
more experience in the task, participants were less cautious
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in their responses and were willing to respond faster even if it
meant being incorrect more often. For the visual modality,
response caution was relatively stable; there were no differ-
ences in decision thresholds across blocks except in the final
block. Final block auditory and visual decision thresholds
were positively correlated in Experiment 1 (#(28) = 0.34, p =
0.064) and Experiment 2 ((97) = 0.37, p = 0.00020).

In sum, across both experiments in block 1, participants
accumulated evidence for visual categories at a slower rate
than auditory categories. However, this disappeared by the
second block and by the end of training, evidence accumula-
tion rates were faster for visual categories than auditory cate-
gories. Participants’ decision thresholds were also different
across modalities with initially higher thresholds in the audi-
tory task (i.e., more response caution—bending towards accu-
racy in speed-accuracy tradeoff) and higher thresholds in the
visual task later in training.'

Generalization test

To understand how participants generalized their category
knowledge, we computed the accuracy of their responses to
novel stimuli when they did not receive feedback. We defined
accuracy based on the optimal response, with items to the right
of the boundary belonging to category A and items to the left
belonging to category B. We removed trials for stimuli that lay
directly on the category boundary as performance for these
stimuli would have been at chance for an optimal observer.
In Experiment 1, participants were better able to generalize
their knowledge about visual categories than auditory catego-
ries (Fig. 4a, Myier=7.57%, t(29) = 2.86, p = 0.0078, d = 0.52).
However, this effect did not replicate in Experiment 2; there
was no difference in generalization performance across mo-
dalities (Mgier = 2.18%, #(98) = 1.22, p = 0.22, d = 0.12). In
both experiments, as with training accuracy, the generalization

! We allowed the evidence accumulation and decision threshold parameters to
vary flexibly across learning. As a supplementary analysis, we also compared
this flexible model of Paulon et al. (2020) with other sub-cases in which one
parameter is fixed but the other is allowed to vary to understand the relative
importance of each parameter for auditory and visual learning. We compared
the models using the Watanabe-Akaike information criterion (WAIC), a pop-
ular approach for assessing predictive performances of competing methods.
WAIC is obtained by computing the log point-wise predictive density and then
adding a correction reflecting the effective number of degrees of freedom to
prevent from overfitting (see Gelman, Hwang, & Vehtari, 2014, for details).
The results of this comparison indicated that the model that best describes the
data for both auditory and visual tasks is a fully flexible one, allowing both
evidence accumulation and decision threshold parameters to vary across leamn-
ing (WAIC for Visual: flexible: —6690.71, constant accumulation: —7247.56,
constant threshold: —7084.33; WAIC for Auditory: flexible: —4404.38, con-
stant accumulation: —4443.75, constant threshold: —4590.62). These model
comparisons also help pinpoint which parameter is most relevant for a partic-
ular modality. In the visual task, the flexibility for the accumulation parameter
is more important than for the threshold parameter, as measured by the relative
increase in WAIC. The converse is true for the auditory task. This is consistent
with our results and interpretation of the accumulation and drift results from
the fully flexible model, discussed in the manuscript.
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test accuracy for the auditory and visual tasks (with a logit
transform) was significantly positively correlated (Fig. 4c,
Experiment 1: #(28) = 0.51, p = 0.0043; Experiment 2: 7(97)
=0.34, p = 0.00056).

To understand the nature of the category representations,
we computed proportion of category A responses as a function
of a stimulus’s placement on the category-relevant dimension
(Fig. 4b). Across the nine steps in the generalization grid,
values near 0 represent a consistent “Category B” response
and values near 1.0 represent a consistent “Category A” re-
sponse. In both modalities, participants were more accurate
further from the category boundary and were less able to de-
termine the category identity for stimuli closer to the category
boundary. We compared the categorization response curves
by examining relevant-dimension value (9) X modality (audi-
tory, visual) repeated-measures ANOVAs. In both experi-
ments, participants demonstrated different patterns of gener-
alization across the stimulus space for the two modalities, as
indicated by significant interactions between dimension value
and modality (Experiment 1: F(8, 232)=3.51, p=0.001 an =
.11; Experiment 2: F(8, 424.1) = 6.65, p < 0.0005 np2 =.063).
In Experiment 1, this was driven by more polarized category
representations for visual than auditory categories at the sec-
ond, sixth, and seventh steps in the generalization grid (step 2
(#29) = 1.759, p = 0.089), step 6 #(29) = —3.161, p = 0.004,
step 7 #(29) = —2.819, p = 0.009). All other steps were not
significantly different (ps > 0.077). In Experiment 2, there
were significant differences at steps 1 (#98) = 2.98, p =
0.004), 4 (#(98) = —5.08, p < 0.0005), 6 (#(98) = —3.94, p <
.0005) and 7 (#(98) = —3.46, p = 0.001). All other steps were
not significantly different (ps > 0.10). The effect at steps 6 and
7 was consistent across both experiments. These generaliza-
tion results indicate that participants had more “categorical”
representations of the visual stimuli than the auditory stimuli,
especially in the regions of space near to the boundary on the
right side of the stimulus space.

Discussion

We compared the cognitive and perceptual processes during
auditory and visual category learning in the same individuals
in an in-person experiment and a large-scale online replica-
tion. Participants had similar performance but demonstrated
differences in decision processes across modalities, especially
early in learning. Participants also demonstrated more categor-
ical generalizable representations for visual than auditory cat-
egories. These results suggest that modality plays a substantial
role in perceptual category learning.

We found that learning outcomes and decisional processes
were correlated across modalities. However, evidence of a
correlation does not provide clear information about why this
correlation exists. Future studies should focus on identifying
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Fig. 3 a Accuracy during category training for the auditory and visual
tasks relative to chance (dashed line at 50% accuracy) in Experiment 1
(top) and Experiment 2 (bottom). Lighter lines show individual perfor-
mance and darker lines show the mean. Error bars reflect standard error of
the mean. b and ¢ Correlations between accuracy in the auditory task and

the underlying source the similar patterns of behavior across
modalities. For instance, to identify what underlying skills or
abilities support modality-general or modality-specific learn-
ing, a study might include a large battery of sensory, percep-
tual, and cognitive assessments to discover which measures
reliably account for variance in auditory and visual category
learning.

While there were similar learning outcomes across modal-
ities, we found differences in the decisional processes
supporting learning (evidence accumulation and decision
thresholds). Evidence accumulation reflects extraction of in-
formation about a stimulus to guide categorization decisions
and has been linked to attention and motivation processes in
presumably domain-general cognitive brain regions (i.e., dor-
solateral prefrontal cortex, inferior frontal gyrus), which

visual task, with a logit transform b in the first block and ¢ in the final
block. d and e Population estimates of d evidence accumulation rates and
e decision thresholds from the drift-diffusion models in the auditory and
visual tasks. Error bars reflect 95% credible intervals around population
estimates

support accumulation regardless of sensory modality
(Noppeney, Ostwald, & Werner, 2010). In the current study,
evidence accumulation differed across modalities in the earli-
est stage of learning. In the first block, participants had lower
accumulation rates in the visual than the auditory task, indi-
cating that learners were slower to get the information they
needed from the stimulus. Later when learners were more
accurate and discovered the relevant dimension for category
identity, the accumulation rate increased and stabilized. In the
auditory modality, the accumulation rate was stable across
blocks. The differences in the patterns across modalities in
the same individuals suggests that modality affects how
learners extract information from stimuli to guide categoriza-
tion decisions.
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Fig. 4 a Accuracy in the generalization test for the auditory and visual
tasks relative to chance (dashed line at 50% accuracy), with performance
for individuals connected with gray lines with Experiment 1 on top and
Experiment 2 at the bottom. b Categorization curve as a function of the
placement of the stimulus along the category-relevant dimension for the

Another component of the decision process involves the
balance between accuracy and speed in responses. This “re-
sponse caution” is reflected in learners’ decision thresholds.
Participants were told to prioritize both speed and accuracy
and had equal time to respond across auditory and visual
tasks. Even so, the patterns of decision thresholds differed
across modalities. At the beginning of learning, participants
had less cautious responses in the visual than the auditory
modality, and were thus willing to accept faster, more inaccu-
rate responses.

These results demonstrate that within identical catego-
rization tasks, decisional processes differed across modal-
ities even when accuracies were the same. With training,
participants became more efficient in gathering relevant
information from the stimulus in the visual, but not the
auditory task. This could be due to differences in sensory
processing. With auditory stimuli, information unfolds
across time. With visual stimuli, information is constant
in time; participants can learn to quickly direct attention
to a visual feature and evidence accumulation rates in-
crease with training.
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Category-Relevant

Dimension

auditory and visual tasks, where the dashed line at 50% reflects an equal
response of Category A and Category B for a given category-relevant
dimension value. ¢ Correlation between generalization accuracy in the
auditory task and visual task, with a logit transform

For auditory stimuli, participants initially had higher deci-
sion thresholds, meaning they collected more evidence before
making a decision. Thresholds decreased markedly with train-
ing, suggesting that participants refined their understanding of
the categories. For visual stimuli, participants relied more on
sensory information (faster evidence accumulation) to guide
their decisions rather than lowering their decision thresholds,
which decreased less dramatically across blocks relative to
auditory categories.

Finally, participants demonstrated more categorical re-
sponses in the generalization test for visual than auditory cat-
egories. Critically, during the generalization test, participants
did not receive feedback. One interpretation of this result is
that without the reference of consistent feedback as a remind-
er, participants were less able to remember and apply the rel-
evant rule in the auditory task but were able to apply the visual
rule accurately (see Appendix for supporting evidence from
post hoc decision-bound modeling). It is also possible that
these categorization differences in this region of the stimulus
space could be due to subtle differences in perceptual discrim-
inability across modalities that we cannot rule out in the
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current experiment. However, we note that categorization ac-
curacy was not significantly different across modalities in the
higher-powered Experiment 2.

We designed these categories to be as equal as possible.
However, when comparing across modalities, it is extremely
difficult if not impossible to exactly equate dimensions. We
chose these pairs of dimensions because they have been
shown to be equally independent in representations and be-
have similarly in working memory (Visscher et al., 2007).
However, there could still be differences in separability
(Garner, 1974) or verbalizability of the dimensions that may
have affected learning (Brashears & Minda, 2020; Zettersten
& Lupyan, 2020). Because direct comparisons across modal-
ities are difficult, these persistent differences further highlight
the necessity of considering modality in theories of perceptual
category learning.

Importantly, these categories reflect one specific and rela-
tively simple kind of category — unidimensional rule-based
categories. This study is not meant to reflect the full spectrum
of category learning problems. Indeed, it is possible that dif-
ferent kinds of categories (multidimensional, information-in-
tegration, similarity-based, etc.) may demonstrate different
patterns across modalities. Comparison across different kinds
of categories is an open area for future research and the current
study is an important first step. These experiments were also
not designed to distinguish among different models of catego-
ry learning (i.e., prototype, exemplar, decision bound, etc.).
Instead, we tested a fundamental assumption common across
models: that the processes supporting category learning are
the same across modalities. Future studies should test predic-
tions from specific models of category learning, while includ-
ing categorization problems across different modalities.

Conclusion

Though category learning is ubiquitous across modalities,
it is rare to see comparisons across modalities, and instead
researchers focus their investigations on a single modality.
Theories of perceptual category learning have traditional-
ly focused on the visual modality. The more recent expan-
sion of some popular theories of visual category learning
into the auditory modality has highlighted potential issues
in the generalization of these theories across modalities.
The extent to which mechanisms supporting perceptual
category learning are shared across the senses is an open
question. The current study demonstrates that even when
the ultimate task of category learning is the same (map
some sensory experience onto discrete category responses
through feedback), modality also plays an important role,
even in the same individuals and identical category tasks.
Understanding the mechanisms driving perceptual

category learning will require understanding both
perceptual and learning components.
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Appendix
Decision-bound modeling methods

To address the post-hoc question of whether participants used
more rule-based processing during visual generalization than
auditory generalization, we applied a series of decision-bound
models to participants’ response data from the test blocks of
Experiment 1 and Experiment 2. As a comparison, we also
applied the models to participants’ response data from the
final blocks of Experiment 1 (block 6) and Experiment 2
(block 5), where participants still received feedback.

Rationale

Decision-bound models (Ashby, 1992a; Maddox & Ashby,
1993) give information about the strategies participants use
to separate perceptual stimuli into categories. We used
decision-bound models to understand how individuals use
rule-based processes during auditory and visual rule-based
categorization and generalization.

Decision-bound models assume that participants separate
stimuli into categories with a decision boundary. This bound-
ary can be based on a single dimension or multiple dimen-
sions. Additionally, participants can separate the categories
using rules, which are thought to reflect overt decisional pro-
cesses and hypothesis testing, or they can separate the catego-
ries with a boundary that reflects more implicit, procedural
processes (Ashby, Alfonso-Reese, Turken, & Waldron,
1998). We fit a series of rule-based models that assume that
participants separate the categories based either on the dimen-
sion that is relevant for categorization or the dimension that is
irrelevant. We also fit an integration model that assumes that
participants use both dimensions to separate the categories, in
a manner that reflects implicit, rather than rule-based process-
ing. Finally, we fit a random responder model that assumes
that participants are randomly guessing.

@ Springer
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Rule-based models

The rule-based models assume that participants draw a deci-
sion boundary along one of the two stimulus dimensions. We
fit separate models assuming participants used a rule-based
strategy along the category-relevant and category-irrelevant
dimensions. The rule-based models have two free parameters
— the location of the decision boundary along the dimension
and a perceptual/criterial noise parameter. Rule-based models
assume that participants are using hypothesis testing and overt
rules to separate the stimuli into categories. For instance,
while learning the auditory categories, a specific rule a partic-
ipant could use would be to categorize all stimuli that have
temporal modulation faster than 8 Hz into Category B and all
stimuli slower than 8 Hz into Category A. A rule-based strat-
egy is the optimal strategy to separate the categories in the
current experiments.

Integration model

In contrast to rule-based models, the integration model as-
sumes that participants use both stimulus dimensions to sepa-
rate the categories. Integration strategies are thought to reflect
more implicit, procedural learning processes, separating cate-
gories by a boundary that is not easily verbalizable (Ashby
et al., 1998). The integration model assumes a linear decision
boundary and has three free parameters: the slope and inter-
cept of the decision boundary and a perceptual/criterial noise
parameter. If a participant is using an integration strategy, it
means they are using both dimensions to separate the catego-
ries, which is suboptimal in this case.

Random responder model

The random responder model assumes that participants guess
on each trial.

Model fitting and selection

For each participant (30 in Experiment 1, 99 in Experiment 2)
and each block (final categorization block, generalization test
block), we fit rule-based, integration, and random responder
models. For each model type, the model parameters were es-
timated using a maximum likelihood procedure (Ashby,
1992b; Wickens, 1982). Model selection used the Bayesian
Information Criterion (BIC): BIC = r*InN - 2InL, where r is
the number of free parameters, A is the number of trials in a
given block for a given subject, and L is the likelihood of the
model given the data (Schwarz, 1978). The BIC allows for
comparison of model fits because it penalizes models for extra
free parameters such that the smaller the BIC, the closer the
model is to the “true” model.
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The model fitting and selection procedure produces the
best-fitting model for each participant and each block (final
categorization block, generalization test block). We grouped
the models by whether they reflected rule-based or integration
processing. No participants were best fit by the random re-
sponder model. Below, we report the percentage of partici-
pants best fit by the rule-based models.

Decision-bound modeling results

In the final block of training, there is no evidence that partic-
ipants used more rule-based strategies in the auditory or visual
task. There were no significant differences in strategy use
between auditory and visual tasks (Experiment 1:
McNemar’s Xz: 2.78, p = 0.096; Experiment 2: McNemar’s
x* = 1.67, p = 0.20). In the final block of Experiment 1, 73%
(22/30) of participants in the auditory task and 90% (27/30) of
participants in the visual task used rule-based strategies. In
Experiment 2, 89% (88/99) of participants in the auditory task
and 94% (93/99) of participants in the visual task used rule-
based strategies.

In contrast, during the generalization test, significantly
more participants used rule-based strategies in the visual task
than in the auditory task (Experiment 1: McNemar’s = 4.0,
p = 0.046; Experiment 2: McNemar’s y’= 13.37, p =
0.00026). In the generalization block of Experiment 1, 83%
(25/30) of participants in the auditory task and 97% (29/30) of
participants in the visual task used rule-based strategies. In
Experiment 2, 77% (76/99) of participants in the auditory task
and 96% (95/99) of participants in the visual task used rule-
based strategies.

Overall, these results demonstrate that there are no differ-
ences in auditory and visual rule-based processing during cat-
egorization, but during generalization, when there is no longer
any feedback, more participants rely on rule-based processing
for visual than auditory stimuli. These results also align with
our other measures of performance in the generalization test.
While there were not differences in overall accuracy (in the
highly powered Experiment 2), there were differences in the
pattern of responses. Visual category representations were
more categorical than auditory category representations and
participants found it easier to consistently apply a unidimen-
sional rule to separate the visual categories even in the absence
of feedback.
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