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Abstract. Accurate estimates of past global mean surface
temperature (GMST) help to contextualise future climate
change and are required to estimate the sensitivity of the
climate system to CO2 forcing through Earth’s history. Pre-
vious GMST estimates for the latest Paleocene and early
Eocene (∼ 57 to 48 million years ago) span a wide range
(∼ 9 to 23 ◦C higher than pre-industrial) and prevent an
accurate assessment of climate sensitivity during this ex-
treme greenhouse climate interval. Using the most recent
data compilations, we employ a multi-method experimen-

tal framework to calculate GMST during the three DeepMIP
target intervals: (1) the latest Paleocene (∼ 57 Ma), (2) the
Paleocene–Eocene Thermal Maximum (PETM; 56 Ma), and
(3) the early Eocene Climatic Optimum (EECO; 53.3 to
49.1 Ma). Using six different methodologies, we find that
the average GMST estimate (66 % confidence) during the
latest Paleocene, PETM, and EECO was 26.3 ◦C (22.3 to
28.3 ◦C), 31.6 ◦C (27.2 to 34.5 ◦C), and 27.0 ◦C (23.2 to
29.7 ◦C), respectively. GMST estimates from the EECO are
∼ 10 to 16 ◦C warmer than pre-industrial, higher than the
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estimate given by the Intergovernmental Panel on Climate
Change (IPCC) 5th Assessment Report (9 to 14 ◦C higher
than pre-industrial). Leveraging the large “signal” associ-
ated with these extreme warm climates, we combine esti-
mates of GMST and CO2 from the latest Paleocene, PETM,
and EECO to calculate gross estimates of the average cli-
mate sensitivity between the early Paleogene and today.
We demonstrate that “bulk” equilibrium climate sensitivity
(ECS; 66 % confidence) during the latest Paleocene, PETM,
and EECO is 4.5 ◦C (2.4 to 6.8 ◦C), 3.6 ◦C (2.3 to 4.7 ◦C),
and 3.1 ◦C (1.8 to 4.4 ◦C) per doubling of CO2. These values
are generally similar to those assessed by the IPCC (1.5 to
4.5 ◦C per doubling CO2) but appear incompatible with low
ECS values (< 1.5 per doubling CO2).

1 Introduction

Under high growth and low mitigation scenarios, atmo-
spheric carbon dioxide (CO2) could exceed 1000 parts per
million (ppm) by the year 2100 (Stocker et al., 2013). The
long-term response of the Earth system under such elevated
CO2 concentrations remains uncertain (Stevens et al., 2016;
Knutti et al., 2017; Hegerl et al., 2007). One way to better
constrain these climate predictions is to examine intervals
in the geological past during which greenhouse gas levels
were similar to those predicted under future scenarios. This
is the rationale behind the Deep-time Model Intercomparison
Project (DeepMIP; https://www.deepmip.org/, last access: 21
October 2020) which aims to investigate the behaviour of the
Earth system in three high-CO2 climate states in the latest
Paleocene and early Eocene (∼ 57–48 Ma) (Lunt et al., 2017;
Hollis et al., 2019).

Sea surface temperature (SST) and land air tempera-
ture (LAT) proxies indicate that the latest Paleocene and
early Eocene were characterised by global mean surface
temperatures (GMSTs) much warmer than those of today
(Cramwinckel et al., 2018; Farnsworth et al., 2019; Hansen et
al., 2013; Zhu et al., 2019; Caballero and Huber, 2013). Hav-
ing a robust quantitative estimate of the magnitude of warm-
ing at these times relative to modern is useful for two pri-
mary reasons: (1) it allows us to contextualise future climate
change predictions by comparing the magnitude of future
anthropogenic warming with the magnitude of past natural
warming; (2) combined with knowledge of the climate forc-
ing, it allows us to estimate climate sensitivity, a key metric
for understanding how the climate system responds to CO2
forcing. Using different proxy data compilations (Hollis et
al., 2012; Lunt et al., 2012), the 5th Intergovernmental Panel
on Climate Change (IPCC) Assessment Report (AR5) stated
that GMST was 9 to 14 ◦C higher than for pre-industrial con-
ditions (medium confidence) during the early Eocene (∼ 52
to 50 Ma) (Masson-Delmotte et al., 2014). However, subse-
quent studies indicate a wider range of estimates, from 9
to 23 ◦C warmer than pre-industrial (Caballero and Huber,

Figure 1. Published GMST estimates during the early Paleogene
(57 to 48 Ma). Dots represent average values. The horizontal limits
on the individual dots represent the reported error, and y-axis labels
refer to previous estimates (see Table 1).

2013; Cramwinckel et al., 2018; Farnsworth et al., 2019;
Zhu et al., 2019; Fig. 1 and Table 1). It is an open question
whether this range arises from inconsistencies between the
methods used to estimate GMST, such as selection of proxy
datasets, treatment of uncertainty, and/or analysis of different
time intervals. This methodological variability has thwarted
robust comparisons between GMST methodologies for key
intervals through the latest Paleocene to early Eocene.

Here we calculate GMST estimates within a consistent
experimental framework for the target intervals outlined by
DeepMIP: (i) the Early Eocene Climatic Optimum (EECO;
53.3 to 49.1 Ma), (ii) the Paleocene–Eocene Thermal Maxi-
mum (PETM; ca. 56 Ma), and (iii) the latest Paleocene (LP;
ca. 57–56 Ma). We use six different methods to obtain new
GMST estimates for these three time intervals by employing
previously compiled SST and LAT estimates (Hollis et al.,
2019) as well as bottom water temperature (BWT) estimates
(Dunkley Jones et al., 2013; Cramer et al., 2009; Sexton et
al., 2011; Littler et al., 2014; Laurentano et al., 2015; West-
erhold et al., 2018; Barnet et al., 2019). We also undertake
a suite of additional sensitivity studies to explore the influ-
ence of particular proxies on each GMST estimate. We then
compile GMST estimates from all six methods to generate
a “combined” GMST estimate for each time slice and use
these, with existing estimates of CO2 (Gutjahr et al., 2017;
Anagnostou et al., 2016), to develop new estimates of “bulk”
equilibrium climate sensitivity (ECS) during the latest Pale-
ocene, PETM, and EECO.

2 Methods and materials

Three different input datasets are used to calculate GMST:
(1) dataset Dsurf, which consists of surface temperature esti-
mates, both marine (sea surface temperature) and terrestrial,
(2) dataset Ddeep, which consists of deep-water temperature
estimates, and (3) dataset Dcomb, which consists of a com-
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Table 1. Previous studies that have determined GMST for the early Eocene (EE), EECO, PETM, or latest Paleocene (LP); n/a indicates that
no error bars were reported in the original publications.

Label GMST Uncertainty
in Fig. 1 Source Time (◦C) (◦C) Proxy system

1a Farnsworth et al. (2019) EE 23.4 ±3.2 δ18O planktonic
1b Farnsworth et al. (2019) EE 37.1 ±1.4 δ18O planktonic + TEX86
2a Zhu et al. (2019) LP 27 n/a Multiple
2b Zhu et al. (2019) EECO 29 ±3 Multiple
2c Zhu et al. (2019) PETM 32 n/a Multiple
3 Caballero and Huber (2013) EE 29.5 ±2.6 Multiple
4 Hansen et al. (2013) EE 28 n/a δ18O benthic
5 Cramwinckel et al. (2018) EE 29.3 n/a Multiple

bination of surface- and deep-water temperature estimates.
Here we make use of six different methodologies, which
are described in detail below, to estimate GMST from these
datasets.

2.1 Dataset Dsurf

Dataset Dsurf is version 0.1 of the DeepMIP database, as
described in Hollis et al. (2019) (Supplement). It consists
of SSTs and LATs for the latest Paleocene, PETM, and
EECO. The SSTs are derived from foraminiferal δ18O val-
ues, foraminiferal Mg/Ca ratios, clumped isotopes (147),
and isoprenoid glycerol dialkyl glycerol tetraethers (GDGTs)
(TEX86). Foraminiferal δ18O values and Mg/Ca ratios are
calibrated to SST following Hollis et al. (2019) and Evans
et al. (2018), respectively. TEX86 values are calibrated to
SST using BAYSPAR (Tierney and Tingley, 2014). 147 val-
ues are reported using the parameters and calibrations of the
original publications (Evans et al., 2018; Keating-Bitonti et
al., 2011). LATs are derived from leaf fossils, pollen assem-
blages, mammal δ18O values, paleosol δ18O values, pale-
osol climofunctions, and branched GDGTs. LAT estimates
are calculated using the parameters and calibrations of the
original publications (see Hollis et al., 2019, and references
therein). The locations of the proxy datasets are shown in
Fig. S1 in the Supplement using the paleomagnetic-based
reference frame (Hollis et al., 2019). For each dataset, we
utilise the uncertainty range of temperature estimates re-
ported in Hollis et al. (2019).

Four methods (Dsurf-1, Dsurf-2, Dsurf-3, and Dsurf-4) are
employed to calculate GMST from dataset Dsurf. These
methods employ parametric (Dsurf-1, Dsurf-2, Dsurf-4) or
non-parametric (Dsurf-3) functions to estimate temperature.
We calculate GMST on the mantle-based reference frame
and employ the rotations provided in Hollis et al. (2019).
These differ very slightly from those utilised in the DeepMIP
model simulations (Lunt et al., 2020). Each method conducts
a “baseline” calculation that uses the SST and LAT data com-
piled in accordance with the DeepMIP protocols (i.e. Hollis
et al., 2019). Our baseline calculation (Dsurf-baseline; Ta-

ble 2) excludes δ18O values from recrystallised planktonic
foraminifera because the resulting temperature estimates are
biased by diagenesis toward significantly cooler tempera-
tures than those derived from (i) the δ18O value of simi-
larly aged and similarly located well-preserved foraminifera,
(ii) foraminiferal Mg/Ca ratios, and (iii) 147 values from
larger benthic foraminifera (Pearson et al., 2001; Hollis et
al., 2019, and references therein). For each method, we also
conduct a series of illustrative subsampling calculations rela-
tive toDsurf-baseline based on varying assumptions about the
robustness of different proxies (Table 2). The first sensitiv-
ity experiment (Dsurf-Frosty; Table 2) includes δ18O values
from recrystallised planktonic foraminifera. The second sen-
sitivity experiment (Dsurf-NoTEX; Table 2) removes TEX86
values as these give slightly higher SSTs than other proxies,
especially in the middle to high latitudes (Bijl et al., 2009;
Hollis et al., 2012; Inglis et al., 2015). The third sensitivity
experiment (Dsurf-NoMBT; Table 2) removes MBT(’) /CBT
values derived from marine sediment archives as they may
suffer from a cool bias (Inglis et al., 2017; Hollis et al.,
2019). The fourth sensitivity experiment (Dsurf-NoPaleosol;
Table 2) removes mammal and paleosol δ18O values as
well as paleosol climofunctions as these proxies may suf-
fer from a cool bias (Hyland and Sheldon, 2013; Hollis et
al., 2019). For each method, GMST is calculated for (i) the
Early Eocene Climatic Optimum (EECO; 53.3 to 49.1 Ma),
(ii) the Paleocene–Eocene Thermal Maximum (ca. 56 Ma),
and (iii) the latest Paleocene (LP; ca. 57–56 Ma).

2.1.1 Dsurf-1

Method Dsurf-1 was first employed by Caballero and Hu-
ber (2013) to estimate GMST from early Eocene surface tem-
perature proxies after it was recognised that pervasive recrys-
tallisation of foraminiferal δ18O could overprint the original
SST signal (e.g. Pearson et al., 2001, 2007). That study used
data compilations (Huber and Caballero, 2011; Hollis et al.,
2012) which were the predecessors to the DeepMIP compi-
lation (Hollis et al., 2019).
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Table 2. Baseline and optional subsampling experiments applied to Dsurf.

Experiment Description

Dsurf-Baseline All SST and LAT data compiled in Hollis et al. (2019) but excluding recrystallised planktonic foraminifera δ18O values
Dsurf-Frosty Dsurf-baseline but including recrystallised planktonic foraminifera δ18O values
Dsurf-NoTEX Dsurf-baseline but excluding TEX86 values
Dsurf-NoMBT Dsurf-baseline but excluding MBT(’) /CBT values from marine sediments
Dsurf-NoPaleosol Dsurf-baseline but excluding mammal and paleosol δ18O values and paleosol climofunctions

Here, the anomalies of individual proxy temperature data
points with respect to modern values at the corresponding
paleolocation are first calculated. The time period used is be-
tween 1979 and 2018, and we used a climatology of the full
ERA-Interim period (Dee et al., 2011). The calculation in-
volves binning into low, middle, and high latitudes (30◦ N to
30◦ S, 30 to 60◦ N–S, and 60 to 90◦ N–S) and calculating the
unweighted mean anomaly within these bins between the me-
dian reconstructed value at a given locality and the tempera-
ture in the modern system (from reanalysis). The geograph-
ically binned means are then weighted according to relative
spherical area to calculate a globally weighted mean tem-
perature anomaly between the paleo-time slice and modern.
All samples are treated equally and considered independent.
The associated errors are added in quadrature with the inter-
sample standard deviation. These two sources of error were
combined and normalised by the square root of the num-
ber of samples. This method is intended as an unsophisti-
cated, brute-force approach to estimating GMST when deal-
ing with many localities with poorly characterised errors in
which there is a large difference between the reconstructed
temperature at a given location and the modern equivalent.
It is not intended to identify small changes in GMST; nor
is it expected to work well under conditions in which tem-
perature gradients are stronger than today, continents are far
removed from their current configuration, or systematic er-
rors are not readily mitigated by large sample size (i.e. when
there are correlations in systematic errors between proxies).
It is designed to be relatively straightforward to interpret and
simple to reproduce without overly relying on climate mod-
els or sophisticated statistical models.

Various sanity checks have been performed to determine
if the method is likely to produce useful results for a given
sampling distribution and what corrections should be applied
to optimise it. For example, if the modern temperature field
is sampled using a geographic sampling distribution for a
given time interval, what would the reconstructed modern
temperature be? Sampling the modern global annual aver-
age surface temperature field in the reanalysis product ERA-
5 yields a mean value of 15.1 ◦C, but when resampled at
the equivalent geographic distribution of our samples from
the latest Paleocene, PETM, and EECO yields mean val-
ues for the modern of 16.9 ◦C (±1.8 ◦C), 14.2 ◦C (±1.7 ◦C),
and 15.2 ◦C (±1.1 ◦C), respectively. Thus, for the sampling

densities and spatial structure of the early Paleogene, this
method can approach the true value within ∼ 1.5 ◦C and the
error propagation adequately characterises the error in this
“perfect knowledge” scenario. Seeking precision beyond that
range is unwarranted and, as indicated above, systematic bi-
ases are a serious concern. However, estimating the latest
Paleocene and early Eocene GMST may be somewhat eas-
ier than estimating the modern GMST because temperature
gradients were greatly reduced compared to modern. Huber
and Caballero (2011) estimate a reduction to less than half
the modern temperature gradient, whilst Evans et al. (2018)
constrain the low- to high-latitude SST gradient to at least
∼ 30 % (±10 %) weaker than modern (Evans et al., 2018).

Alongside modern observations, we can also use paleocli-
mate model results to characterise how well the existing pa-
leogeographic sampling network will impact results (Fig. 2).
Here we utilise two CESM1 simulations, as described in
Cramwinckel et al. (2018; EO3 and EO4). The two cases
are chosen to minimise the magnitude of the correction to
GMST, and the final result is not sensitive to the choice of
reference simulation between these two (Supplement). For
each interval, the difference between reconstructed global
temperatures and the true paleoclimate model mean is< 1 to
3 ◦C. These comparisons demonstrate that this method pro-
duces estimates that are within random error given otherwise
perfect knowledge. The errors introduced by limited paleo-
geographic sampling can be alleviated by incorporating the
offset in mean values between the true paleoclimate model
GMST and the sampled paleoclimate model GMST outlined
above (Fig. 2). We utilise this offset to correct for system-
atic errors, but this is the only component in which paleo-
climate model information is included in this GMST estima-
tion methodology. This approach is best applied within the
context of studying the random and systematic error struc-
ture as described above, and caution should be taken in using
systematic corrections that are significantly bigger than the
estimated random error. The underlying assumption is that
the bias in the global mean estimate that exists due to un-
even sampling is the same in the “proxy” Eocene world as
in the “model” Eocene world, i.e. that the zonal and merid-
ional gradients are well characterised by the model, even if
the absolute temperatures are not.

We note that the magnitude of the global correction could
be sensitive to different models and/or boundary conditions.
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Figure 2. An illustration of method Dsurf-1 during the EECO.
(a) Modelled early Eocene temperatures utilising CESM1.2 at 6×
pre-industrial CO2, (b) interpolated absolute SST reconstructions,
and (c) data–model difference between (a) and (b).

To explore this further, we performed the same analysis us-
ing Community Earth System Model version 1.2 (CESM1.2)
at 6×CO2. This model simulation offers a major improve-
ment over earlier models (Zhu et al., 2019) due to the im-
proved treatment of cloud microphysics and is able to re-
produce key features of the early Paleogene (e.g. the merid-
ional SST gradient; Zhu et al., 2019; Lunt et al., 2020). We
find that CESM1 (8× and 16×CO2) and CESM1.2 (6×CO2)

yield similar GMST estimates during the PETM, EECO, and
latest Paleocene. For example, GMST values (obtained us-
ing Dsurf-baseline) during the EECO average 24.5, 24.6, and
25.2 ◦C for CESM1 (×8 CO2), CESM1 (×16 CO2), and
CESM1.2 (6×CO2), respectively. This indicates that the fi-
nal result is not overly sensitive to the choice of reference
simulation, at least within the CESM family. In the follow-
ing sections, we only discuss CESM1 simulations to avoid
circularity if the results from this paper are used to evaluate
more recent simulations (e.g. CESM1.2; Lunt et al., 2020).

2.1.2 Dsurf-2

GMST estimates are calculated using the method described
in Farnsworth et al. (2019), in which a transfer function is
used to calculate global mean temperature from local proxy
temperatures. The transfer function is generated from a pair
of early Eocene climate model simulations carried out at
two CO2 concentrations. The first simulations are the same
2×CO2 and 4×CO2 HadCM3L Eocene simulations from
Farnsworth et al. (2019). The second simulations are the
4×CO2 and 8×CO2 CCSM3 simulations of Huber and Ca-
ballero (2011), also discussed in Lunt et al. (2012). The two
models are configured for the Eocene with different paleo-
geographies (Table S1 in the Supplement). We provide a final
estimate based on the mean of our two models.

The principal assumption of this approach is that global
temperatures scale linearly with local temperatures and that
a climate model can represent this scaling correctly (see be-
low). The resulting GMST estimate is therefore independent
of the climate sensitivity of the model but dependent on
the modelled spatial distribution of temperature. For a sin-
gle given proxy location with a local temperature estimate
(T proxy), Farnsworth et al. (2019) estimate global GMST
(< T>inferred) as

< T>inferred
=< T low >

+ (T proxyT low)
< T high >−< T low >

T high− T low , (1)

where < T low > and < T high > are the global means of a
low- and high-CO2 model simulation, respectively, and T low

and T high are the local temperatures (same location as the
proxy) from the same simulations. T lowand T high represent
local modelled SSTs or local modelled near-surface LATs
(in contrast to Farnsworth et al. 2019, who only used lo-
cal modelled near-surface LATs to calculate T low and T high,
even if T proxy was SST). If the proxy temperature is greater
than T high or cooler than T low, then the inferred global mean
is found by extrapolation rather than by interpolation and is
therefore more uncertain (Fig. 3). This will be sensitive to
the choice of model simulation; models that simulate less po-
lar amplification (e.g. HadCM3L) are more likely to obtain
< T>inferred (i.e. GMST) via extrapolation. We repeat this
process for each proxy data location (Fig. 4) and take an av-
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Figure 3. An illustration of method Dsurf-2 for two sites: (a) Big
Bend LAT in the EECO as diagnosed using HadCM3L and
(b) DSDP Site 401 SST in the PETM as diagnosed using CCSM3.
The vertical dashed line shows < T>inferred and the horizontal
dashed line shows T proxy, which intercept at the orange dot. The
dark blue dots show the intercept of T low with < T low >, and the
red dots show the intercept of T high with < T high >.

erage over all proxy locations as our best estimate of global
mean temperature.

Recent work has demonstrated that CESM1.2 and GFDL
model simulations offer a major improvement over earlier
models (Zhu et al., 2019; Lunt et al., 2020). As such, we also
calculated GMST using CESM1.2 (3× and 6×CO2; Zhu et
al., 2019; Table S1) and GFDL (3× and 6×CO2; Hutchinson
et al., 2018; Lunt et al., 2020; Table S1). We find that all four
simulations (i.e. HadCM3L, CCSM3, CESM1.2, and GFDL)
yield similar GMST estimates. For example, GMST during
the PETM ranges between 32.3 and 34.5 ◦C (Supplement).
This demonstrates that Dsurf-2 is not overly sensitive to the
climate model simulation. However, as CESM1.2 and GFDL
have greater polar amplification than other models (e.g.
HadCM3L), GMST is more likely to be found by interpola-
tion (compare to extrapolation). To explore whether GMST
scales linearly with local temperatures, we used CESM1.2 to
recalculate GMST using the same method as above but using
the 9×CO2 simulation in place of the 6×CO2 simulation. We
find that GMST estimates are very similar (±0.4 ◦C). This is
because, although the relationship between GMST and CO2
is non-linear (Zhu et al., 2019), the relationship between local
and global temperature is relatively constant. In the follow-
ing sections, we employ CCSM3 and HadCM3 simulations
to avoid circularity if the results from this paper are used
to evaluate more recent simulations (e.g. CESM1.2, GFDL;
Lunt et al., 2020).

2.1.3 Dsurf-3

For Dsurf-3, GMST estimates are calculated using Gaus-
sian process regression (Fig. 5; Bragg et al., 2020). In this
method, temperature is treated as an unknown function of lo-
cation, f (x). Many possible functions can fit the available
proxy dataset. By using a Gaussian process model of the un-
known function, we assume that temperature is a continuous
and smoothly varying function of location, and once fitted
to the data, the posterior mean of the model gives the most
likely function form for the temperature. We use a Gaussian

process prior and update it using the proxy data to obtain
the posterior model, which we can then use to predict the
surface temperatures on a global grid. Prior specification of
the model is via a mean function E(f (x))=m(x) and a co-
variance function Cov(f (x),f (x′))= k(x,x′) (which tells us
how correlated f (x) is with f (x′)). We also specify the stan-
dard deviation of the observation uncertainty about each data
point (σ 2

i ). If f = (f (x1) , . . .f (xn))T is a vector of temper-
ature observations at each location xi , then the model is

f ∼N (µ, 6), (2)

where µi =m(xi) and 6ij = k
(
xi, xj

)
+ Ii=jσ

2
i . The proxy

temperatures are expressed as anomalies to either the ma-
rine or terrestrial present-day zonal mean temperature at the
respective paleolatitude. We subtract the mean temperature
anomaly (weighted by the paleolatitude) for each time pe-
riod and core experiment prior to the analysis and therefore
fit the model to the residuals. This means the predicted field
will relax towards the mean surface warming in areas of no
data coverage. The covariance function – which considers
the clustering of proxy locations – describes the correlation
between f (xi) and f (xj ) in relation to the distance of xi
and xj . We use a squared-exponential covariance function
with Haversine distances replacing Euclidean distances so
that correlation is a function of distance on the sphere.

A heteroscedastic noise model is used to weight the influ-
ence of individual proxy data by their associated uncertainty;
i.e. the model will better fit reconstructions with a smaller
reported error. Proxy uncertainties are taken from Hollis et
al. (2019). Standard deviations for TEX86, Mg/Ca, and δ18O
records are derived from the reported 90 % confidence inter-
vals (Hollis et al., 2019). A minimum value of 2.5 ◦C for the
standard deviation is assumed for all other methods. The out-
put variances and length scale of the covariance function are
estimated using their maximum likelihood values, obtained
with the GPy Python package (GPy, 2012). We apply the
method to the marine and terrestrial data separately and com-
bine the masked fields afterwards to prevent mutual inter-
ference. We further constrain the lower bound of the length
scale parameter to 2000 km to always fit a reasonably smooth
surface, even in some continental areas with noisy proxy data
(e.g. western North America). We note that our choice of the
minimum length scale and the separation of land and ocean
temperatures influence the predicted regional surface temper-
ature patterns but do not significantly change our GMST es-
timates.

The Gaussian process approach provides probabilistic pre-
dictions of temperature values, i.e. uncertainty estimates of
the predicted field. The uncertainty reported for an individ-
ual GMST estimate is calculated via random sampling. We
generate 10 000 surfaces from a multivariate normal distri-
bution based on the predicted mean and full covariance ma-
trix and calculate the GMST for each sample. Uncertainty of
the mean estimate is then defined as the standard deviation of
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Figure 4. Inferred global mean temperature (< T>inferred) usingDsurf-2 for (a) each EECO-aged LAT proxy as diagnosed using HadCM3L
and (b) each PETM-aged SST proxy as diagnosed using CCSM3. For (a) and (b), the final estimate of global mean temperature is the average
of all the individual sites. The solid line shows the continental outline in each model, and the dashed line shows the continental outline.

the 10 000 random samples. Regional model uncertainty (ex-
pressed as standard deviation fields) is typically highest in
areas with sparse data coverage (e.g. the Pacific Ocean and
Southern Hemisphere landmasses; Fig. S2). The lower un-
certainty for the latest Paleocene relative to the PETM and
EECO is related to the smaller reported uncertainties in the
proxy dataset rather than enhanced data coverage. The large
spread in reconstructed terrestrial temperatures for North
America during the PETM and EECO (Fig. S2) propagates
through into relatively large uncertainties in the GMST esti-
mates for these intervals.

2.1.4 Dsurf-4

For Dsurf-4, GMST estimates are calculated using a simple
function of latitude (θ) tuned to best fit the proxy data:

T (θ )≈ a+ bθ + ccosθ, (3)

where T (θ ) is the Eocene zonal mean temperature, and the
coefficients a, b, and c are chosen to minimise the sum of the
squared residuals relative toDsurf (i.e. the SST and LAT data
from Hollis et al., 2019). This new model represents T (θ )
well in the modern climate (Fig. S3) when supplied with a
similar number of data points as in the Hollis et al. (2019)
dataset, and it ensures a global solution that is consistent with
the physical expectation that temperature should decrease –
and the meridional gradient in temperature should increase –
from the tropics toward the poles (Fig. S3).

For each data point, we account for three types of uncer-
tainty (i.e. temperature, elevation, latitude). For temperature,
we assume a skew-normal probability distribution based on
the stated 90 % confidence intervals. Where uncertainty es-
timates are not given, we assume a (symmetric) normal dis-
tribution with a 90 % confidence interval of ±5 K. For eleva-
tion, we assume a skew-normal distribution with a 90 % con-
fidence interval equal to the lowest and highest elevations of

adjacent grid points in the paleotopography dataset of Herold
et al. (2014), with a lower bound of zero.
T (θ ) was estimated by sampling temperature, elevation,

and latitude from their respective distributions at each loca-
tion (Fig. S4), and a lapse-rate adjustment of 6◦K km−1 was
applied. Then, using a standard Monte Carlo bootstrapping
method, the same number of data points was resampled via
replacement, and the coefficients in Eq. (3) were found that
best fit the subsampled data. This procedure was repeated
10 000 times to find a probability distribution of T (θ ). The
uncertainty associated with an individual GMST estimate is
the standard deviation.

2.2 Dataset Ddeep

DatasetDdeep consists of benthic foraminiferal δ18O-derived
bottom water temperatures (BWTs) for the latest Paleocene,
PETM, and EECO. The benthic foraminiferal δ18O dataset is
based on previous compilations (Dunkley Jones et al., 2013;
Cramer et al., 2009), updated to include more recently pub-
lished datasets (Sexton et al., 2011; Littler et al., 2014; Lau-
rentano et al., 2015; Westerhold et al., 2018; Barnet et al.,
2019). The EECO dataset is sourced from 11 sites, providing
spatial coverage of the Pacific, Atlantic, and Indian Ocean
(DSDP/ODP Sites 401, 550, 577, 690, 702, 738, 865, 1209,
1258, 1262, and 1263). The PETM and latest Paleocene
datasets are sourced from a compilation of nine and seven
sites, respectively, differing from Dunkley-Jones et al. (2013)
in that (i) more recent datasets were added, and (ii) PETM
sites with a muted carbon isotope excursion (CIE) magni-
tude (< 1.5 ‰) were excluded as these datasets may be miss-
ing the core PETM interval (Table S2). Benthic foraminifera
δ18O values are adjusted to Cibicidoides following estab-
lished methods (Cramer et al., 2009), allowing temperature
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Figure 5. Predicted surface warming by Gaussian process regres-
sion using Dsurf-3 for the (a) latest Paleocene, (b) PETM, and
(c) EECO. Anomalies are relative to the present-day zonal mean
surface temperature. Circles (triangles) indicate all available SST
(LAT) proxy data for the respective time slice used to train the
model. Symbols for locations where multiple proxy reconstructions
are available are slightly shifted in latitude for improved visibility.

to be calculated using Eq. (9) of Marchitto et al. (2014):

(δcp− δsw+ 0.27)=−0.245± 0.005t + 0.0011

± 0.0002t2+ 3.58± 0.02, (4)

where t is bottom water temperature in Celsius, δcp is δ18O of
CaCO3 on the Vienna Pee Dee Belemnite (VPDB) scale, and
δsw is δ18O of seawater on the Standard Mean Ocean Water
(SMOW). δsw is defined in accordance with the DeepMIP
protocols (−1.00 ‰; see Hollis et al., 2019).

2.2.1 Ddeep-1

For Ddeep-1, GMST estimates are calculated following the
method of Hansen et al. (2013), which utilises only the deep-
ocean benthic foraminifera δ18O dataset, and we refer the
reader to that study for a detailed justification of the ap-
proach. Briefly, for time periods prior to the Pliocene, GMST
is scaled directly to deep-ocean temperature. Specifically,
1GMST =1BWT prior to ∼ 5.3 Ma, with early Pliocene
BWT and GMST calculated following Eqs. (3.5), (3.6), and
(4.2) of Hansen et al. (2013). As such, the calculations pre-
sented here differ from those of Hansen et al. (2013) only
in that (i) we use the revised benthic δ18O compilation de-
scribed above rather than that of Zachos et al. (2008) and
(ii) a different equation (Eq. 4) to convert δ18O to tempera-
ture.

2.3 Dataset Dcomb

Dataset Dcomb uses a combination of (tropical) surface- and
deep-water temperature estimates. The deep-ocean dataset
(Ddeep) is identical to that described in Sect. 2.2. The tropi-
cal SST dataset utilises all relevant surface-ocean proxy data
from the DeepMIP database, i.e. those with a paleolatitude in
the magnetic reference frame within 30◦ of the Equator. An
expanded (relative to modern) definition of the tropics is used
because tropical SST reconstructions are relatively sparse;
30◦ was chosen because it retains tropical SST data from
several proxies for all three intervals, whilst SST seasonal-
ity remains relatively low within these latitudinal bounds.

2.3.1 Dcomb-1

For Dcomb-1, GMST estimates are calculated for each time
interval based on the difference between tropical SSTs and
deep-ocean BWTs (Evans et al., 2018) such that

GMST= 0.5(tropicalSST+BWT). (5)

The fundamental assumptions of this approach are that
(1) GMST can be approximated by global mean SST,
(2) global mean SST is equivalent to the mean of the tropical
and high-latitude regions, (3) benthic temperatures are repre-
sentative of high-latitude surface temperatures, and (4) the
temperature gradient between the abyss and high-latitude
SST is fixed through time (see Sijp et al., 2011). To test these
assumptions from a theoretical perspective, we modelled the
shape of the latitudinal temperature gradient using a sim-
ple algebraic function (Fig. S5). These results suggest that
Dcomb-1 may underestimate GMST by 0.75 to 1.25 ◦C in the
modern. We also compared GMST from the EO3 and EO4
model simulations of Cramwinckel et al. (2018) to that cal-
culated using Dcomb-1 (Fig. S5) and find a similar cold bias
during the Eocene (∼ 1 to 3 ◦C). However, we note that these
findings depend on the accuracy of the modelled deep-ocean
temperatures.
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Probability distributions for each time interval were com-
puted as follows. In the case of the tropical SST data, 1000
subsamples were taken, following which a random normally
distributed error was added to each data point in the Deep-
MIP compilation, including both calibration uncertainty and
variance in the data where multiple reconstructions are avail-
able for a given site and time interval. Mean tropical SST
was calculated for each of these subsamples. To provide a
BWT dataset of the same size as the subsampled tropical SST
data, 1000 normally distributed values were calculated for
each time interval based on the mean ±1 SD variation of the
pooled benthic δ18O data from all sites including calibration
uncertainty.

3 Results and discussion

3.1 Comparison of surface and bottom water
temperature-derived GMST estimates

The following section discusses our baseline GMST esti-
mates calculated on the mantle-based reference frame only.
During the latest Paleocene and PETM, GMST estimates de-
rived from Dsurf-baseline average ∼ 27 and 33 ◦C, respec-
tively (Table 3; Fig. 6). These values are consistent with pre-
vious studies analysing the latest Paleocene (∼ 27 ◦C; Zhu
et al., 2019) and PETM (∼ 32 ◦C; Zhu et al., 2019). During
the EECO, GMST estimates calculated using Dsurf average
∼ 27 ◦C (Fig. 6). These values are up to 3 ◦C lower compared
to previous estimates from similar time intervals (ca. 29 to
30 ◦C; Huber and Caballero, 2011; Caballero and Huber,
2013; Zhu et al., 2019). This is likely because we use an ex-
panded LAT dataset (n= 80) compared to previous studies
(n= 51; Huber and Caballero, 2011). Several of these prox-
ies saturate between ∼ 25 and 29 ◦C (e.g. leaf fossils, pollen
assemblages, and brGDGTs; see Hollis et al., 2019, and
references therein) and/or are impacted by non-temperature
controls (e.g. paleosol climofunctions; see below) and could
skew GMST estimates towards lower values. To confirm this,
we calculated GMST values using LAT proxies only (Sup-
plement). We show that LAT-only GMST estimates are up
to 6 ◦C lower than our baseline (SST+LAT) calculations,
suggesting that EECO GMST estimates (Dsurf-baseline) may
represent a minimum temperature constraint.

GMST estimates for the latest Paleocene, PETM, and
EECO, calculated using Ddeep, are 25.8 ◦C (±1.4 ◦C), 31.1
(±2.9 ◦C), and 28.0 ◦C (±1.3 ◦C), respectively (Table 3;
Fig. 6). These estimates are comparable to those derived
from surface temperature proxies alone (Table 3). GMST
estimates from the EECO are also comparable to previous
estimates based on globally distributed benthic foraminifera
data (∼ 28 ◦C; Hansen et al., 2013). As benthic foraminifera
are less susceptible to diagenetic alteration than planktonic
foraminifera (e.g. Edgar et al., 2013), this implies that ben-
thic foraminiferal δ18O values could be used to provide the
“fine temporal structure” of Cenozoic temperature change

Figure 6. GMST estimates during the (a) PETM, (b) EECO, and
(c) latest Paleocene for each methodology. GMST estimates utilise
baseline experiments except Dsurf-1 during the EECO, which uses
Dsurf-NoPaleosol. GMST estimates are based on the mantle-based
reference frame. Error bars on each individual method are the stan-
dard deviation (1σ ), exceptDsurf-1 andDsurf-2, which use the stan-
dard error (1σx ).

(e.g. Lunt et al., 2016; Hansen et al., 2013). However, we also
urge caution as this approach scales GMST directly to BWT
prior to the Pliocene and assumes that the characteristics of
polar amplification are constant through time (see Evans et
al., 2018; Cramwinckel et al., 2018). Changes in ice volume
may also influence the benthic foraminiferal δ18O signal (see
Hansen et al., 2013), and additional corrections are required
before applying this method to other time intervals (e.g. the
Eocene–Oligocene transition). Ddeep also implies that ver-
tical ocean stratification is fixed, even though vertical ocean
stratification has been proposed to change dramatically in the
past (e.g. Sijp et al., 2013; Goldner et al., 2014) and may shift
the slope and/or intercept of the relationship between BWT
and GMST.

GMST estimates for the latest Paleocene, PETM, and
EECO, calculated using Dcomb, are 21.6 ◦C (±1.2 ◦C), 26.6
(±2.1 ◦C), and 22.8 ◦C (±1.0 ◦C), respectively (Fig. 6).
These estimates are consistently lower (up to 5 ◦C) than
GMST estimates derived using Dsurf and Ddeep. Although
Dcomb-1 can estimate modern GMST within ∼ 1 to 2 ◦C of
measured values, whether this approach can be applied in
greenhouse climates remains to be confirmed. As described
above, we used CESM1 simulations (EO3 and EO4 from
Cramwinckel et al., 2018) to compare the “true” model simu-
lation GMST to that calculated usingDcomb-1 (Supplement).
We find that Dcomb-1 underestimates GMST by 1 ◦C during
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Table 3. Individual GMST estimates for the latest Paleocene (LP), PETM, and EECO. Reported GMST estimates utilise baseline experiments
except Dsurf-1 during the EECO, which uses Dsurf-NoPaleosol. GMST estimates are based on the mantle-based reference frame. Error bars
on each individual method are the standard deviation (1σ ), except Dsurf-1 and Dsurf-2, which use the standard error (1σx ).

GMST ( ◦C)

Dsurf-1 Dsurf-2 Dsurf-3 Dsurf-4 Ddeep-1 Dcomb-1

LP 26.6 (±1.3) 26.8 (±6.9) 27.6 (±1.5) 26.8 (±1.3) 25.8 (±1.4) 21.6 (±1.2)
PETM 33.9 (±1.4) 33.4 (±10.3) 32.6 (±1.5) 30.7 (±1.6) 31.1 (±2.9) 26.6 (±2.1)
EECO 27.2 (±0.7) 26.7 (±8.9) 29.8 (±1.5) 25.7 (±1.1) 28.0 (±1.3) 22.8 (±1.0)

the Eocene when the model high-latitude SST is used as a
proxy for the deep ocean and 2–3 ◦C when the model deep-
ocean temperature is used. As such, we suggest thatDcomb-1
may reflect a minimum GMST constraint. We suggest that
variable weighting of the deep ocean and tropics could im-
prove the Dcomb method in future studies (Eq. 5 gives an
equal weighting to each).

3.2 Influence of different proxy datasets upon
Dsurf-derived GMST estimates

To explore the importance of the proxies themselves for
Dsurf-derived GMST estimates, we conducted a series of il-
lustrative subsampling experiments relative toDsurf-baseline
(Table 2). This was performed for methods Dsurf-1, Dsurf-
2, Dsurf-3, and Dsurf-4. In the first subsampling experiment
(Dsurf-Frosty; Table 2), we include δ18O SST estimates from
recrystallised planktonic foraminifera. This yields lower
GMST estimates (< 1 to 4 ◦C; e.g. Figs. S6–S8) and is con-
sistent amongst all four methods. This agrees with previ-
ous studies which indicate that δ18O values from recrys-
tallised planktonic foraminifera are significantly colder than
estimates derived from the δ18O value of well-preserved
foraminifera (Pearson et al., 2001; Sexton et al., 2006; Edgar
et al., 2015), foraminiferal Mg/Ca ratios (Creech et al., 2010;
Hollis et al., 2012), and clumped isotope values from larger
benthic foraminifera (Evans et al., 2018).

The removal of TEX86 results in lower GMST estimates
(∼ 1 to 4 ◦C; e.g. Figs. S6–S8) across all methodologies
(Dsurf-NoTEX; Table 2). This is consistent with previous
studies which indicate that TEX86 gives slightly higher SSTs
than other proxies, especially in the middle to high lati-
tudes (e.g. Hollis et al., 2012; Inglis et al., 2015). The func-
tional response of TEX86 at higher-than-modern SSTs re-
mains relatively uncertain, which may explain why TEX86
gives slightly higher SSTs than other proxies (see discus-
sion in Hollis et al., 2019). New indices or calibrations could
help to reduce the uncertainty associated with TEX86-derived
SST estimates beyond the modern calibration range. TEX86
values can also be complicated by the input of isoGDGTs
from other sources (see discussion in Hollis et al., 2019). The
DeepMIP database excludes samples with anomalous GDGT
distributions (Hollis et al., 2019). However, a Gaussian pro-

cess regression (GPR) model may help to better identify
anomalous GDGT distributions in the sedimentary record us-
ing a nearest-neighbour distance metric (Eley et al., 2019).
This methodology could be employed in future studies to
further refine GDGT-based SST datasets, but this method-
ology is currently under review and is not considered here.
Despite the caveats and concerns raised in previous work, the
exclusion of TEX86 data shifts GMST by a relatively small
amount.

The input of brGDGTs from archives other than mineral
soils or peat can bias LAT estimates towards lower val-
ues (Inglis et al., 2017; Hollis et al., 2019), and the exclu-
sion of MBT(’) /CBT-derived LAT estimates could yield
higher GMST values. Excluding MBT(’) /CBT in marine
sediments does yield slightly warmer GMST estimates (0.5
to 1.0 ◦C). However, the impact of excluding MBT(’) /CBT
values is relatively minor because there are other proxies
(e.g. pollen assemblages, leaf floral) which yield comparable
LAT estimates in the regions where MBT(’) /CBT values are
removed (e.g. the SW Pacific).

The removal of δ18O values from paleosols and mam-
mals as well as paleosol climofunctions (Dsurf-NoPaleosol;
Table 2) also leads to slightly warmer GMST estimates (∼
0.5 ◦C). This may be related to additional controls on pale-
osol and mammal δ18O values. This includes variations in
the isotopic composition of rainfall (i.e. meteoric δ18O; Hy-
land and Sheldon, 2013), variations in soil water δ18O val-
ues (Hyland and Sheldon, 2013), and/or δ18O heterogeneity
within nodules (e.g. Dworkin et al., 2005). Temperature es-
timates from paleosol climofunctions may also be prone to
underestimation (e.g. Sheldon, 2009), and Hyland and Shel-
don (2013) suggest that paleosol climofunctions are only ap-
plied as an indicator of relative temperature change. Intrigu-
ingly, the Dsurf-1 method yields much higher GMST esti-
mates during the EECO when δ18O values from paleosols
and mammals as well as paleosol climofunctions are ex-
cluded (∼ 3 ◦C higher thanDsurf-baseline). This is attributed
to the inclusion of two “cold” LAT estimates from the Salta
Basin, NW Argentina (Hyland et al., 2017), which overly in-
fluence GMST (e.g. Fig. 2). For Dsurf-1, a direct compari-
son of new and prior estimates (Caballero and Huber, 2013)
can be made in which the only change has been the use of a
newer data compilation. For our new estimate, the EECO is
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Figure 7. Probability density function of combined GMST during
the DeepMIP intervals with full propagation of errors. GMST esti-
mates are calculated on the mantle-based reference frame.

∼ 4.5 ◦C colder than previous estimates (29.75 ◦C; Caballero
and Huber, 2013). Given that the floristic LAT estimates are
identical between the DeepMIP compilation and the older
compilation, the lower GMST estimates are largely due to
the incorporation of additional LAT datasets (e.g. paleosol
climofunctions).

3.3 A combined estimate of GMST during the DeepMIP
target intervals

To derive a combined estimate of GMST during the latest
Paleocene, PETM, and EECO, we employ a probabilistic
approach, using Monte Carlo resampling with full propaga-
tion of errors. Our combined estimate employs GMST esti-
mates from each baseline experiment (except Dsurf-1 for the
EECO for which we use Dsurf-NoPaleosol; see discussion
above). We generated 1 000 000 iterations for each of the six
methods for each time interval (latest Paleocene, PETM, and
EECO). In these iterations, the GMST estimates were ran-
domly sampled with replacement within their full uncertainty
envelopes, assuming a Gaussian distribution of errors. As the
different GMST estimates ultimately derive from the same
proxy dataset, we do not consider them to be independent.
The resulting 6 000 000 GMST iterations for each time pe-
riod are thus simply added into a single probability density
function in order to fully represent uncertainty (Fig. 7). This
is equivalent to a linear pooling approach with equal weights
(Genest and Zidek, 1986). From this probability distribution,
the median value and the upper and lower limits correspond-
ing to 66 % and 90 % confidence limits were identified (Ta-
ble 4).

Sequential removal of one GMST method at a time (jack-
knife resampling) was performed to examine the influence
of a single method upon the average GMST estimate. Jack-
knifing reveals that no single method overly influences the
mean GMST or 66 % confidence intervals during the lat-

Table 4. Combined GMST estimates (66 % and 90 % confidence
intervals) during the (i) latest Paleocene (LP), (ii) PETM, and (iii)
EECO.

GMST (◦C) GMST (◦C) GMST (◦C)
(average) (66 % CI) (90 % CI)

LP 26.3 22.3–28.3 21.3–29.1
PETM 31.6 27.3–34.5 25.9–35.6
EECO 27.0 23.2–29.6 22.2–30.7

est Paleocene, PETM, or EECO (±1.5 ◦C; Supplement and
Fig. S9). However, the removal of Dsurf-2 (which has rela-
tively large error bars; Fig. 6) reduces the 90 % confidence
interval (Supplement). We also show that removing Dcomb-
1 removes the bimodality of the temperature distribution
(Fig. S9). This is because Dcomb-1 is associated with con-
sistently lower GMST estimates compared to other methods
(see Sect. 3.1).

During the latest Paleocene, the average GMST estimate
is 26.3 ◦C and ranges between 22.3 and 28.3 ◦C (66 % confi-
dence interval; Table 4; Fig. 7). During the PETM, the aver-
age GMST is higher (31.6 ◦C) and ranges between 27.2 and
34.5 ◦C (66 % confidence interval; Table 4; Fig. 7). Assum-
ing a pre-industrial GMST of 14 ◦C, our average GMST es-
timates indicate that the latest Paleocene and PETM are 12.3
and 17.6 ◦C warmer than pre-industrial, respectively. Our re-
sults indicate that GMST likely increased by ∼ 4 to 6 ◦C be-
tween the latest Paleocene and PETM (66 % confidence), in
keeping with previous estimates (Frieling et al., 2019; Dunk-
ley Jones, 2013). During the EECO, the average GMST esti-
mate is 27.0 ◦C and likely ranges between 23.2 and 29.7 ◦C
(66 % confidence interval; Table 4; Fig. 7). Assuming a pre-
industrial GMST of 14 ◦C, our average GMST estimate indi-
cates that the EECO is 13.0 ◦C warmer than pre-industrial.
The GMST anomaly for the EECO is ∼ 2 ◦C lower than
previous studies (∼ 15 ◦C warmer than pre-industrial; Ca-
ballero and Huber, 2013; Zhu et al., 2019), but the median
falls within the range quoted previously in the IPCC AR5 (9
to 14 ◦C warmer than pre-industrial). The EECO is approx-
imately 4 to 5 ◦C colder than the PETM (66 % confidence).
This is larger than previously suggested (∼ 3 ◦C; Zhu et al.,
2019) and may be related to a cold bias in EECO GMST es-
timates (see Sect. 3.1).

3.4 Equilibrium climate sensitivity during the latest
Paleocene, PETM, and EECO

Equilibrium climate sensitivity (ECS) can be defined as
the equilibrium change in global near-surface air tempera-
ture resulting from a doubling in atmospheric CO2. Various
“flavours” of ECS exist, some of which specifically exclude
various feedback processes not always included in climate
models, such as those associated with ice sheets, vegetation,
or aerosols (Rohling et al., 2012). ECS may also be state-
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dependent (Caballero and Huber, 2013), and there is no rea-
son to expect that it has not changed with time or as a func-
tion of climate state (Farnsworth et al., 2019; Zhu et al.,
2020). Therefore, direct comparison of ECS in the past to
modern conditions is a fraught enterprise. For our purposes
we define a bulk ECS (ECSbulk) as being a gross estimate of
ECS between our three intervals and pre-industrial, i.e.

ECSbulk = (1TCO2−vs−PI)/(1FCO2−vs−PI), (6)

where 1TCO2−vs−PI is the temperature difference between
pre-industrial and the time period of interest that can be at-
tributed to CO2 forcing, and 1FCO2−vs−PI is the CO2 forc-
ing relative to pre-industrial. The result is then normalised
to a CO2 forcing equal to a doubling of CO2. Such calcu-
lations have been performed previously (e.g. Anagnostou et
al., 2016) and they provide some constraint on the range of
climate sensitivity values that are relevant for near-modern
prediction (Rohling et al., 2012). For example, Anagnos-
tou et al. (2016) indicated that early Eocene ECS (exclud-
ing ice sheet feedbacks) falls within the range 2.1–4.6 ◦C per
CO2 doubling, with maximum probability for the EECO of
3.8 ◦C. These values (2.1–4.6 ◦C per CO2 doubling) are sim-
ilar to the IPCC ECS range (1.5–4.5 ◦C at 66 % confidence).
Here we calculate bulk ECS estimates using the change in
GMST and CO2 in the latest Paleocene, PETM, and EECO
intervals with reference to the pre-industrial. Following the
approach of Anagnostou et al. (2016) and using the forc-
ing equation of Byrne and Goldblatt (2014), we first deter-
mine the relative change in climate forcing relative to pre-
industrial (1FCO2−vs−PI):

1FCO2−vs−PI = 5.32ln(Ct/CPI)+ 0.39[ln(Ct/CPI)]2, (7)

where CPI is the atmospheric CO2 concentration during pre-
industrial (278 ppm) and Ct refers to the CO2 reconstruction
at a particular time in the Eocene. The mean proxy estimate
of CO2 for the PETM is∼ 2200 ppmv (+1904/−699 ppmv;
95 % confidence) (Gutjahr et al., 2017). The mean proxy esti-
mate of CO2 for the LP is∼ 870 ppmv (Gutjahr et al., 2017).
The uncertainty of latest Paleocene CO2 represents 2 stan-
dard deviations of pre-PETM CO2 (Gutjahr et al., 2017),
equal to ±400 ppm. The mean proxy estimate of CO2 for
the EECO is ∼ 1625 ppmv (±750 ppmv; 95 % confidence)
(Anagnostou et al., 2016; Hollis et al., 2019). To calculate
bulk ECS, we then use radiative forcing from a doubling of
CO2 from Byrne and Goldblatt (2014) to translate CO2 into
forcing relative to pre-industrial (1FCO2):

ECS= (1TCO2−vs−PI)/1FCO2−vs−PI× 3.875, (8)

where GMST (1T ) distributions are based on output gener-
ated via our Monte Carlo simulations (see Sect. 3.3). Some of
the temperature anomaly of the latest Paleocene, PETM, and
EECO is caused not by CO2 but by the different paleotopog-
raphy, paleobathymetry, and solar constant compared with

Table 5. Estimates of ECS (66 % and 90 % confidence) during the
(i) latest Paleocene (LP), (ii) PETM, and (iii) EECO.

ECS (◦C) ECS (◦C) ECS (◦C)
(average) (66 % CI) (90 % CI)

LP 4.5 2.4–6.8 1.6–8.0
PETM 3.6 2.3–4.7 1.9–5.2
EECO 3.1 1.8–4.4 1.3–5.0

pre-industrial. Furthermore, we choose here to calculate an
ECS that explicitly excludes feedbacks associated with veg-
etation, ice sheets, and aerosols, i.e. S[CO2,LI,VG,AE] in the
nomenclature of Rohling et al. (2012). To account for these
effects, we subtract a value of 4.5 ◦C (Caballero and Huber,
2013; Zhu et al. 2019) from GMST; i.e.

1TCO2−vs−PI =1GMST− 4.5 ◦C. (9)

Following Anagnostou et al. (2016), the uncertainty of the
slow-feedback correction on 1GMST follows a uniform
“flat” probability (±1.5 ◦C). This value of 4.5 ◦C is based
upon a comparison of pre-industrial and Eocene simulations
(both 1×CO2) conducted with CESM1.2 (Zhu et al., 2019),
which incorporates the paleogeographic, solar constant, ice
sheet, vegetation, aerosol, and ice sheet changes from pre-
industrial to Eocene. Our value is similar to previous stud-
ies which attribute ∼ 4 to 6 ◦C to non-CO2 and non-aerosol
forcings and feedbacks (Anagnostou et al., 2016; Caballero
and Huber, 2013, Lunt et al., 2012). However, the sensi-
tivity to these Eocene boundary conditions is likely model-
dependent and this value may differ between model simula-
tions. The uncertainties in our estimated ECS are the prod-
ucts of 10 000 realisations of the latest Paleocene, PETM,
and EECO CO2 values as well as the respective 1GMST es-
timate (the mean estimate and propagated uncertainty) based
on randomly sampling each variable within its 66 % and 90 %
confidence interval uncertainty envelope.
S[CO2,LI,VG,AE] values (66% confidence) for the EECO

and PETM average 0.80 (0.46 to 1.15) and 0.92 (0.60 to
1.20), respectively. This yields ECS estimates (66 % confi-
dence) for the EECO and PETM compared to modern which
average 3.1 ◦C (1.8 to 4.4 ◦C) and 3.6 ◦C (2.3 to 4.7 ◦C),
respectively (Table 5; Fig. 8). These are broadly compa-
rable to previous estimates from the early Eocene which
account for paleogeography and other feedbacks (∼ 2.1 to
4.6 ◦C; Anagnostou et al., 2016). They are also similar to
those predicted by the IPCC (1.5 to 4.5 ◦C per doubling
CO2). S[CO2,LI,VG,AE] values (66 % confidence) during the
latest Paleocene average 1.16 (0.61 to 1.75), which is some-
what higher than the other DeepMIP intervals. This yields
ECS estimates (66 % confidence) for the latest Paleocene
which average 4.5 ◦C (2.4 to 6.8 ◦C) (Table 5; Fig. 8). Higher
ECS values are attributed to relatively high GMST estimates
(∼ 26 ◦C) and relatively low CO2 values (∼ 870 ppm) during
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Figure 8. Probability density function of bulk ECS during the lat-
est Paleocene, PETM, and EECO that explicitly accounts for non-
CO2 forcings of paleogeography and the solar constant, as well as
feedbacks associated with land ice, vegetation, and aerosols (Zhu
et al., 2019), i.e. S[CO2,LI,VG,AE] in the nomenclature of Rohling
et al. (2012).

the latest Paleocene. As latest Paleocene CO2 estimates re-
main highly uncertain (Gutjahr et al., 2017; see above), new
high-fidelity CO2 records are required to accurately constrain
ECS during this time.

ECS may be strongly state-dependent, and model simula-
tions indicate a non-linear increase in ECS at higher temper-
atures (Caballero and Huber, 2013; Zhu et al., 2019) due to
changes in cloud feedbacks (Abbot et al., 2009; Caballero
and Huber, 2010; Arnold et al., 2012; Zhu et al., 2019).
This implies caution when relating geological estimates to
modern climate predictions (e.g. Rohling et al., 2012; Zhu
et al., 2020) and it may be more appropriate to calculate
ECS between different time intervals (e.g. latest Paleocene
to PETM; Shaffer et al., 2016). To this end, we also calculate
ECS between the transition from the latest Paleocene to the
PETM, assuming that non-CO2 forcings and feedbacks are
negligible. This yields an ECS estimate of 3.6 ◦C. However,
early Paleogene CO2 estimates remain uncertain (Gutjahr
et al., 2017), and well-synchronised, continuous, and high-
resolution CO2 records are required to accurately constrain
ECS during the DeepMIP intervals.

4 Conclusions

Using six different methods, we have quantified global mean
surface temperatures (GMSTs) during the latest Paleocene,
PETM, and EECO. GMST was calculated within a coor-
dinated, experimental framework and utilised six method-
ologies including three different input datasets. After eval-
uating the impact of different proxy datasets upon GMST
estimates, we combined all six methodologies to derive an
average GMST value during the latest Paleocene, PETM,

and EECO. We show that the “average” GMST estimate
(66 % confidence) during the latest Paleocene, PETM, and
EECO is 26.3 ◦C (22.3 to 28.3 ◦C), 31.6 ◦C (27.2 to 34.5 ◦C),
and 27.0 ◦C (23.2 to 29.7 ◦C), respectively. Assuming a pre-
industrial GMST of 14 ◦C, the latest Paleocene, PETM, and
EECO are 12.3 ◦C, 17.6, and 13.0 ◦C warmer than mod-
ern, respectively. Using our “combined” GMST estimate, we
demonstrate that “bulk” ECS (66 % confidence) during the
latest Paleocene, PETM, and EECO is 4.5 ◦C (2.4 to 6.8 ◦C),
3.6 ◦C (2.3 to 4.7 ◦C), and 3.1 ◦C (1.8 to 4.4 ◦C) per doubling
of CO2. Taken together, this study improves our characteri-
sation of the global mean temperature of these key time inter-
vals, allowing future climate change to be put into the context
of past changes and allowing us to provide a refined estimate
of ECS.
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